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A Modular System for Robust Positioning
Using Feedback from Stereo Vision

Gregory D. Hager,Member, IEEE

Abstract—This paper introduces a modular framework for
robot motion control using stereo vision. The approach is based
on a small number of generic motion control operations referred
to as primitive skills. Each primitive skill uses visual feedback
to enforce a specific task-space kinematic constraint between a
robot end-effector and a set of target features. By observing both
the end-effector and target features, primitive skills are able to
position with an accuracy that is independent of errors in hand-
eye calibration. Furthermore, primitive skills are easily combined
to form more complex kinematic constraints as required by
different applications. These control laws have been integrated
into a system that performs tracking and control on a single
processor at real-time rates. Experiments with this system have
shown that it is extremely accurate, and that it is insensitive
to camera calibration error. The system has been applied to
a number of example problems, showing that modular, high
precision, vision-based motion control is easily achieved with
off-the-shelf hardware.

Index Terms—Robotics, vision, visual servoing.

I. INTRODUCTION

T HE problem of “visual servoing”—guiding a robot using
visual feedback—has been an area of active study for

several decades [1]. Over the last several years, a great deal
of progress has been made on both theoretical and applied
aspects of this problem [2]–[8]. However, in spite of these
advances, vision-based robotic systems are still the exception
rather than the rule.

In particular, if we restrict our attention to vision-based
positioning relative to a static (unmoving) target, it can be
argued that the basic principles for implementing visual feed-
back are by now well-understood [3], [4], [9]. Why is visual
servoing not in wider use? One reason is the fact that vision
is itself a complex problem. In order to provide information
from vision at servo rates, most systems rely on task-specific
image processing algorithms, often combined with specialized
hardware. This is costly in terms of both time and money as it
forces a system designer to “reinvent” the vision component
for each new application. Another difficulty arises from the
fact that vision-based positioning tends to be a complex
system to implement. Issues such as calibration, time delay
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and interprocess communication tend to be more problematic
in vision-based feedback systems. Finally, and perhaps most
importantly, little work has been done to make the design
of vision-based motion control systems simple, intuitive and
modular.

In this paper, we present an approach to visual servoing that
addresses these issues. The key ideas in this approach are:

• An emphasis on algorithms which compute feedback from
image-level measurements obtained by observing simple
features onboth the robot end-effector and a target object.
It can be shown that calibration errors do not affect the
positioning accuracy of these algorithms.

• An explicit description of the relationship between image-
level constraints among observed features and the task-
space kinematic constraints that they induce. This allows
a task to be programmed or planned in the geometry of
the robot task space, but to be carried out as a robust
vision-based motion control operation.

• The use of stereo (two camera) vision. Stereo vision
makes it easy define image-level constraints which encode
depth information, and it simplifies some aspects of the
control computations.

We take a modular, compositional view of the system
design problem. Vision-based control systems are constructed
by combining a set of motion control and visual tracking
operations subsequently referred to ashand-eye skills. The
hand-eye skills for performing a specific task are developed
out of a smaller set of building blocks referred to asprimitive
skills. The goal of the skill-based paradigm is to demonstrate
that by developing a small repertoire of modular primitive
skills and a reasonable set of “composition” operations, a large
variety of tasks can be solved in an intuitive, modular and
robust fashion.

We have also emphasized portability and efficiency in our
approach by keeping both the visual processing and the control
interfaces simple. The visual information needed to instantiate
hand-eye skills is extremely local: the location of features
such as corners and edges in one or more images. The image
processing needed to extract these features is straightforward,
and can easily be performed on standard workstations or PC’s
[10]. The interface to the robot hardware is a one-way stream
of velocity or position commands expressed in robot base
coordinates. This enhances portability and modularity, making
it simple to retro-fit an existing system with visual control
capabilities. It also makes it simple to superimpose task-space
motion or force control operations to produce hybrid control
systems.
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The remainder of this paper discusses these points in more
detail and presents experimental results from an implemented
system. The next section discusses some of the relevant
visual servoing literature. Section III defines the vision-based
positioning framework that forms the basis of the skill-based
approach. Section IV describes three primitive skills and illus-
trates their application to three example problems. In addition,
the sensitivity of these algorithms to calibration error is
examined. Section V describes an implemented system and
presents several experiments. The final section describes work
currently in progress.

II. RELATED WORK

Visual servoing has been an active area of research over the
last 30 years with the result that a large variety of experimental
systems have been built (see [1] for an extensive review).
Systems can be categorized according to several properties as
discussed below.

The first criterion is whether visual feedback is directly
converted to joint torques (referred to as direct visual servo),
or whether internal encoder feedback is used to implement a
velocity servo in a hierarchical control arrangement (referred
to as look-and-move) [11]. A look-and-move arrangement
allows the visual control system to treat the robot as a set
of decoupled integrators of joint or Cartesian velocity inputs,
thereby simplifying the control design problem. In practice,
nearly all implemented systems are of the look-and-move
variety as is the system described in this paper.

The second criterion is the number of cameras and their
kinematic relationship to the end-effector. A majority of the
recently constructed visual servoing systems employ a single
camera, typically mounted on the arm itself, e.g., [3], [4],
[6], [8], [12]–[14]. A single camera minimizes the visual
processing needed to perform visual servoing, however the
loss of depth information complicates the control design as
well as limiting the types of positioning operations than can
be implemented. Prior depth estimates [4], adaptive estima-
tion [6] or metric information on the target object (from
which depth can be inferred) are common solutions to this
problem. Two cameras in a stereo arrangement can be used
to provide complete three-dimensional information about the
environment [2], [7], [15]–[20]. Stereo-based motion control
systems have been implemented using both free-standing and
arm-mounted cameras, although the former arrangement is
more common. This paper discusses a free-standing stereo
camera arrangement, although with minor modifications the
same formulation could be used for an end-effector mounted
stereo camera system.

A third major distinction is between systems that are
position-basedversus those that areimage-based.The former
define servoing error in a Cartesian reference frame (using
vision-based pose estimation) while the latter compute
feedback directly from errors measured in the camera image.
Most stereo systems are position-based, while monocular
systems tend to be image-based (for an exception, see [8]).
Arguments have been made for both types of systems. In
particular, position-based systems are often characterized as
more “natural” to program since they inherently operate in the

robot task space, whereas image-based systems operate in a
less intuitive projection of the task space. Image-based systems
are typically less sensitive to errors in the camera calibration
than position-based systems, but they introduce nonlinearities
into the control problem and hence have proven problematic
to analyze theoretically. This paper employs image-based
methods to develop primitive positioning skills. However,
these skills are chosen so that they are directly related to task-
space kinematic constraints, thereby combining the positive
attributes of both image-based and position-based methods.

Most visual control systems only observe the features used
to define the stationing point or trajectory for the manipulator.
In this paper, these systems will be referred to as “endpoint-
open-loop” (EOL) systems since the control error does not
involve actual observation of the robot end-effector. In par-
ticular, for position-based systems such as the stereo systems
mentioned above, the fact that they are EOL means that the
positioning accuracy of the system is limited by the accuracy
of stereo reconstruction and the accuracy of the hand-eye
calibration [9].

A system that observesboth the manipulator and the target
will be referred to as an “endpoint-closed-loop” (ECL) sys-
tem. Few ECL systems have been reported in the literature.
Wijesomaet al. [21] describe an ECL monocular hand-eye
system for planar positioning using image feedback. An ECL
solution to the problem of three DOF positioning using stereo
is described in [5]. A six DOF ECL servoing system em-
ploying stereo vision is described by Hollinghurst and Cipolla
[19]. They employ an affine approximation to the perspective
transformation to reconstruct the position and orientation of
planes on an object and on a robot manipulator. Reconstructed
pose forms the basis of a position-based servo algorithm for
aligning and positioning the gripper relative to the object. The
affine approximation leads to a linear estimation and control
problem, however it also means that the system calibration is
only locally valid. A similar image-based system appears in
[16], [22] with the difference that an attempt is made to modify
the approximate linear model online. This paper describes an
image-based ECL system that uses a globally valid perspective
model.

As discussed in the introduction, the approach of this paper
is to develop a small set of simple, general purpose visual
servoing primitives which can be composed in an intuitive
fashion to solve a wide variety of problems. Modeling the
effect of visual feedback is a central part of this approach. As
suggested by Espiauet al. [3], one way to model the effect
of visual feedback is in terms of the constraints it imposes on
the position of the manipulator. In their work they employed a
single end-effector mounted camera in an EOL configuration,
and modeled the effects of image-based feedback as forming
a “virtual linkage” between the camera and the target object.
However, since the robot end-effector is not observed by the
camera, it is unclear when and how task-space objectives for
the end-effector could be related to image-level constraints.
In contrast, as discussed below, feedback from stereo vision
in an ECL configuration directly provides three-dimensional
constraints on end-effector position relative to a target object
from very simple features such as points and lines.
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III. B ACKGROUND AND PROBLEM SETTING

This section establishes notational conventions and provides
general background for the remainder of the paper. The first
part describes a general framework for vision-based control
of position and points out several important properties of the
approach. The development follows that of [3], the formal
underpinnings of which are discussed in greater detail in [23].
The second part reviews results related to the projection and
reconstruction of points and lines from stereo images. More
detail can be found in standard vision references such as [24].

A. A Framework for Vision-Based Control of Position

Unless otherwise noted, all positions, orientations and fea-
ture coordinates are expressed relative to the robot base
coordinate system denoted by The pose of an object
in this coordinate system is represented by a pair

The space of all poses is
the special Euclidean Group Let

represent the space of end-effector configurations
and to represent the space of target configurations.
The special symbols and denote the pose
of the end-effector and of the target in world coordinates,
respectively. The units for linear and angular quantities are
millimeters and degrees, respectively, unless otherwise spec-
ified. When dealing with vector or matrix quantities, the
notation is shorthand for the column concatenation
(stacking) of the vectors and and is shorthand for
the row concatenation of and

The goal in any visual servoing problem is to control the
pose of an end-effector relative to a target object or target
features. In this paper, relative positioning is defined in terms
of observable features rigidly attached to the end-effector and
to the target object. Let and be the joint configuration
space of the features rigidly attached to the end-effector and to
the target, respectively, and define to be
the corresponding mappings relating pose to feature configura-
tion. With these definitions, feature-based relative positioning
in the robot configuration space can be specified in terms of a
constraint on the relationship between observable features.

Definition 3.1: A feature-based relative positioning task
is described by a function This is
subsequently referred to as the task-space error function. The
end-effector is in the desired configuration if task-space error
is zero.

It follows that the task-space error function implicitly de-
fines a kinematic constraint between target pose and end-
effector pose as Suppose
that is held fixed, and considered as a
function of satisfies the conditions of the implicit function
theorem [25]. Then in the neighborhood of the task error
function defines a manifold of dimension This manifold
represents the directions in which the manipulator can move
while maintaining the desired kinematic relationship with the
target. Equivalently, the task error constrains degrees
of freedom of the manipulator. The value ofis subsequently
referred to as thedegreeof the task-space error function.1

1This is closely related to the notion of “class” defined in [3].

As a concrete illustration, suppose a point on the end-
effector with coordinates is to be positioned at a target
point with coordinates Then and the task
error function is simply In
order to determine the constraint on the manipulator, let
denote the coordinates of in the end-effector frame and let

denote the coordinates of in the target frame. Define the
change of coordinates operatoras

(1)

Then the feature mapping functions for this problem are

(2)

(3)

and the constraint on end-effector pose is then

(4)

This is a constraint of degree 3 which is kinematically equiv-
alent to a spherical joint [26].

The visual servoing problem is to define a control system
that moves the end-effector into a configuration in which
the task-space error is zero. The end-effector is modeled as
a Cartesian positioning device with negligible dynamics. As
noted above, this is a reasonable model for a look-and-move
style system in which the robot is stabilized by internal encoder
feedback. The target pose is assumed to be stationary. The
instantaneous motion of the robot consists of a translational
velocity and a rotational velocity combined into a single
velocity screw about a specified point In most
cases, the origin of the base coordinate system.
However, as will be discussed subsequently, it is sometimes
advantageous to choose so as to yield a particular type of
motion or to reduce the effects of miscalibration.

In this paper, all features are observed by a stereo (two)
camera system and a set of measurements called afeature
vector are computed. Let and be the set of all feature
vector values for the end-effector and the target object and
define the mappings to relate end-
effector and target pose to their respective feature vectors. It
is assumed that each mapping is invertible except for a small
set of configurations referred to as thesingular setfor that
feature mapping.

Feedback control is based on defining an error functionon
feature configuration such thatdescribes the same kinematic
configuration as a task-space error

Definition 3.2: A image error function
is equivalent to a task-space error functionof degree
if and only if for all

and and except for possibly a small set of
singular configurations.

Singular configurations are end-effector poses where the
constraint on position defined by the image error function is
locally of lower degree than that of the equivalent kinematic
error function. For example, any configuration at which feature
projection is singular is also a singular configuration for the
error function.
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All feedback algorithms in this paper employ image errors
in proportional control arrangements [27] as follows. Define

(5)

Recall denotes the end-effector velocity screw. Consider-
ing now all quantities as functions of time, it follows that

(6)

describes the relationship between change in end-effector pose
and change in the image error. Presuming for the moment
that is square and full-rank on hence
invertible, it is well known that the proportional control law

(7)

will drive the observed error to zero in the absence of noise or
other disturbances. In particular, since the robot control system
acts as a perfect integrator Combining (6) and (7) we
have

(8)

Thus, image error is an exponentially decreasing function
of time and the system is asymptotically stable. However,
asymptotic stability implies that If is
equivalent to a task error it follows under reasonable
assumptions that Hence, by design the
control system is guaranteed to achieve the equivalent task-
space kinematic constraint.

As indicated in this development, the mapping from pose to
image feature measurements is nonlinear, hence the Jacobian
is, in general, a function of end-effector pose. As is shown in
Section IV, the Jacobian matrix for the applications described
in this paper can always be parameterized in terms of image
measurements—end-effector pose estimation is not required.

In practice the system Jacobian is computed from feature
measurements and estimates of the camera location and inter-
nal imaging parameters. Let denote the estimated Jacobian
matrix. Then (8) becomes

(9)

where A differential equation of the form
is asymptotically stable if the eigenvalues of

have strictly positive real parts [27]. In general, the entries
of the Jacobian matrix are continuous functions of the system
calibration parameters, and therefore the eigenvalues of
vary continuously with the calibration parameters. Hence,
given that the idealized closed loop system (for which
is the identity matrix) is asymptotically stable, a “slightly
miscalibrated” system will also be asymptotically stable.2

Thus, image-based control systems with the structure outlined
above have the following robustness property:

2It is interesting to note that in that case of a direct visual servo system, it
has been shown that bounded-input bounded-output stability can be guaranteed
if MMM is positive definite[3], [23]. The stronger result stated above is directly
attributable to the use of internal stabilization to provide an “idealized” robot
dynamics to the visual control system.

Calibration Insensitivity: The accuracy with which a stable
image-based control system maintains the equivalent kine-
matic constraint is independent of errors in the calibration
of the system. This includes the extrinsic (positional) and
intrinsic (imaging) parameters of both cameras as well as the
manipulator kinematics.

This is one of the principle advantages of image-based
control over functionally equivalent position-based systems. A
problem where position-based control is not able to perform
with calibration-insensitive accuracy is given later in this
paper.

The task-space error need not constrain all degrees of
freedom of the manipulator. More often than not, the degree
of the task-space error function is smaller than the dimension
of the task space. In this case, the Jacobian of the image error
function (which must have rank equal to the degree of the task-
space error function) is not square, and the matrix right inverse
(or pseudo-inverse) must be used to compute the feedback
signal. The matrix right inverse is defined as

(10)

Substituting for in (7) produces the velocity screw
which has minimum norm over all vectors which solve the

original system of equations. It is occasionally the case that
has more rows than columns. In this case, the pseudo-inverse
is defined as

(11)

The appropriate interpretation of is always clear from the
dimensions of the matrix.

Another important property of image-based systems of the
form described above is that they are explicitly connected
to the geometry of the robot task space. Thus, it is possible
to synthesize control algorithms by “composing” the desired
kinematic constraint using task-space error functions, and to
automatically derive the equivalent image error function. To
illustrate, suppose that and are two kinematic error
functions and that there is at least one end-effector pose which
simultaneously satisfies both. Let and represent the
equivalent image error functions, and and represent the
corresponding Jacobian functions. The combined task-space
constraint is represented by “stacking” the system

(12)

Considered as a function of end-effector pose, this function is
zero only if the component functions are both simultaneously
zero. It follows directly that the equivalent image error is

(13)

and the corresponding Jacobian is

(14)

The resulting image-based control system will be calibration
insensitive. In short, calibration insensitivity is preserved under
combination of kinematic constraints in the robot task space.
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Finally, it is possible to superimpose other task-space mo-
tions onto visually defined kinematic constraints, provided that
the motions do not “conflict” with the constraint. Suppose that

is a motion (referred to as asecondary taskin [23]) that
is to be superimposed on the end-effector while maintaining
a kinematic constraint with image error The motion can be
projected “onto” the direction in which the robot is locally
free to move and combined with feedback to preserve the
kinematic constraint as follows:

(15)

B. Projection and Estimation of Point and Line Features

Camera positions are represented by the poses
and It is assumed that

A camera rotation matrix may be decomposed into three
rows represented by the unit vectors and The infinite
line containing both camera positions is referred to as the
baselineof the system.3 A plane containing the baseline is
referred to as anepipolar plane, and the intersection of an
epipolar plane with the camera imaging plane is referred to
as anepipolar line. It is assumed that estimates of camera
intrinsic parameters (parameters describing the mapping from
camera pixel coordinates to metric units) and camera extrinsic
parameters (the spatial position of the cameras relative to the
manipulator coordinate system) are available. To simplify the
exposition, all observed values are expressed innormalized
coordinatesin which values are scaled to metric units for a
camera fitted with a unit focal length lens [29].

1) Points: A point in three-dimensional space is written in
uppercase boldface Roman letters, e.g.or A subscripted
lowercase boldface letter, e.g., denotes the projection of
in camera The stereo projection of is written in lowercase
boldface without the subscript, e.g., The projec-
tion of a point expressed in world coordinates
to a normalized homogeneous vector is given
by

(16)

In vector form, this is written
To estimate point location from a stereo observation, (16)

is rewritten in the form

(17)

where

(18)

and is

(19)

For two cameras, by defining
and the joint system

3This differs somewhat from use in, e.g., [28] where the baseline is the line
segment defined by the two center points.

can be written

(20)

and it is possible to estimate as

(21)

Subsequently, the estimate of from is written
The camera baseline is the singular region for stereo point

projection.
Lines: An arbitrary line is parameterized by a six-tuple

where is fixed point on the line
and is a unit vector representing the direction of
the line. The vector parameterizing the projection of in
normalized coordinates in camerais given by

(22)

These are also known as the Pluck¨er coodinates for the line
[29]. In vector form, this is written As with points,
the stereo projection of is written

Geometrically, is normal to the plane passing through
the center of projection of the camera containing the point
and the vector The projection of in a camera image
is the intersection of this plane with the imaging plane. By
normalizing the projection as shown, the first two components
of encode the normal to the projection of the line, and the
final component is the distance from the line to the image
origin. Note that line projection is not defined when is
parallel to the viewing direction

The projection of a line in an image can be easily related to
the projection of points on the line. Let be a line containing

and with directed from to Then it is easy to
show that is given by

(23)

(24)

For any homogeneous vector in the image, it can be shown
that is the distance between the point and the projection
of the line in the image plane. It follows that a homogeneous
vector in camera image lies on the line projection if
and only if 0.

In order to estimate the parameters of a line from a stereo
observation, observe that the direction of the line can be
computed by

(25)

It is assumed that is some fixed observable point on the
line, so its value can be computed from its stereo projection
as described above. Note that (25) is not defined whenand

are parallel. This occurs only when lies in an epipolar
plane. Hence any epipolar plane is a singular region for stereo
line projection.
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There is an ambiguity in the sign of in this construction.
It can be resolved by computing the values

If the assignment of line normals
to inputs isinconsistent(there is no line such that the direction
of the input agrees with the specified direction of the line in
both images). Otherwise, the correct estimate of line direction
is

Subsequently, the estimate offrom is written

IV. POSITIONING SKILLS BASED ON POINTS AND LINES

As discussed in the introduction, our paradigm for designing
feedback algorithms for hand-eye coordination proceeds as
follows.

1) We develop a small library of task-space kinematic
constraints which have equivalent image error functions.
The feedback algorithms for achieving these constraints
are referred to here asprimitive skills.As discussed in
Section III-A, the equivalence between task-space and
image constraints guarantees that primitive skills are
calibration insensitive positioning operations.

2) For a particular application we produce, via composition
of primitive skills from the library, a desired task-
space kinematic constraint. A calibration insensitive
feedback algorithm for achieving this constraint follows
automatically by combining the equivalent image error
functions and associated Jacobians for each primitive
skill.

3) Finally, we may superimpose desired motions onto the
kinematic constraints using (15).

In this section three primitive positioning operations uti-
lizing point and line features are defined. These positioning
operations are illustrated in three example applications. Fi-
nally, the sensitivity of stability of the primitives to camera
calibration error is examined, and the effect of the choice of
center of rotation is discussed.

A. Three Positioning Primitives

1) Point-to-Point Positioning:Recall the example of
Section III. Formally, the problem is: Given a reference point

fixed with respect to a target object and a pointrigidly
attached to the end-effector, develop a regulator that positions
the end-effector so that

The corresponding task-space error function is

(26)

The solution to this problem is based the observation that
two points not on the camera baseline are coincident in space
if and only if their stereo projections are coincident. This
motivates the error function

(27)

Since the error function is a linear function of stereo point
projection the singular set of stationing configurations is
exactly the singular set of the point projection function. Thus,
the system cannot execute a positioning operation that requires
stationing at any point along the camera baseline.

To solve this problem, first consider computing only pure
translations, The solution to this problem was presented in
[5]. Defining the Jacobian of point projection
is obtained by differentiating (16) yielding

(28)

Combining (28) with point estimation of from its stereo
projection, the Jacobian for the error term is

(29)

Note that is not square. This is becausemaps three
values—the Cartesian position of a point—into six values—the
homogeneous camera image locations of the projections of the
point. Thus, the desired robot translation is computed by

(30)

In this case, endpoint rotations are left unspecified and, unless
otherwise noted, are set to 0.

In order to compute the six degree of freedom velocity
screw, observe that the motion offor a given velocity screw

and center of rotation is

(31)

Recall that the expression can be written as
where the skew symmetric matrix is

(32)

Defining where is the 3 by 3 identity
matrix, (31) can be rewritten

(33)

Thus, a value for the end-effector screw can be defined by
utilizing (31) and the matrix right inverse to compute a velocity
screw that performs the minimum norm six degree-of-freedom
motion equivalent to the pure translation needed to solve the
problem:

(34)

This expression can be simplified if the dimensionality of
the image error can be made to match that of the kinematic
constraint. For example, if the cameras are arranged as a
stereo pair so that the axes are parallel, then one of the
components of the camera observations can be discarded. Let

be with the two zero rows and the row corresponding
to the redundant error term removed. Let be the error term
with the corresponding elements deleted. Then the Jacobian
relating the end-effector screw to stereo point motion is

(35)

and the end-effector screw is given by

(36)
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2) Point-to-Line Positioning:Given two reference points
and fixed with respect to a target object and a reference point

rigidly attached to the end-effector, develop a regulator that
positions the end-effector so that , and are collinear.

The corresponding task-space error function is given by

(37)

Although is a mapping into placing a point onto a
line is a constraint of degree 2. It is interesting to note that
this is a positioning operation which cannot be performed in
a calibration insensitive fashion using position-based control
[30].

The points and define a line in space. Let parameter-
ize this line. Then a functionally equivalent task specification
is: Given a reference line rigidly attached to a target object
and a reference point rigidly attached to the end-effector,
develop a regulator that positions the end-effector so that

The corresponding task-space error function is given by

(38)

The latter is more compact and will be used subsequently with
the understanding that any two points are equivalent to a line.

The equivalent error term for is based on the observa-
tion that for an arbitrary line that does not lie in an epipolar
plane and a point not on the baseline,
if and only if This fact can be verified by recalling
that the projection of in a camera image defines a plane
containing If the projection of is on this line, then
must be in this plane. Applying the same reasoning to a second
camera, it follows that must lie at the intersection of the
planes defined by the two cameras. But, this is exactly the
line Thus, define a positioning error as

(39)

The Jacobian is

(40)

where is as defined in (29). The error function is a linear
function of line projection, hence the set of singular stationing
configurations are those which require placing a point on a
line lying in an epipolar plane.

3) Line-to-Point Positioning:Consider now the following
modification of the previous problem

Given a reference line rigidly attached to the end-effector
and a reference point rigidly attached to a target object,
develop a regulator that positions the end-effector so that

This problem has the same task error function and image-
space error function as the previous problem, but now
depends on the time derivative of By the chain rule, this
derivative is composed of two terms: the Jacobian of the
normalization operation, and the Jacobian of the unnormal-
ized projection. The Jacobian of the normalization operation

evaluated at is

(41)

The Jacobian of the expression is

(42)

Note that if is chosen as the point of rotation of the system,
and (42) simplifies to

(43)

Combining this with the estimate of from its stereo projec-
tion, the Jacobian is

(44)

The singular stationing points are points along the camera
baseline.

B. Example Compositions

The error measures for the point-to-point and point-to-line
operations can be used to define a number of higher degree
kinematic constraints.

1) Alignment: Consider Fig. 1(a) in which a visual posi-
tioning operation is to be used to place a screwdriver onto
a screw. The desired task-space kinematic constraint is to
align the axis of the screwdriver with the axis of the screw.
Because the central axes of the screwdriver and the screw
are not directly observable, other image information must be
used to compute their locations. The occluding contours of the
screwdriver shaft and the screw provide enough information
to determine the “virtual” projection of the central axis [30].
The intersection of the axis with tip of the screwdriver and the
top of the screw, respectively, form fixed observable points on
each as required for line parameterization.

One possibility for solving this problem is to extend the
set of primitive skills to include a “line-to-line” positioning
primitive. A second possibility using only the tools described
above can be developed by noting that the intersection of
the screw with the surface defines a second fixed point on
the screw. This motivates the following positioning problem:
Given a reference line rigidly attached to the end-effector
and two points and rigidly attached to a target object,
develop a regulator that positions the end-effector so that

and
This task can now be solved using two line-to-point oper-

ations. Define

(45)

Then, the equivalent image-based error is

(46)
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(a) (b)

(c)

Fig. 1. Examples of tasks using visual positioning. The thick lines and
points indicated tracked features. (a) Aligning a screwdriver with a screw.
(b) Stacking blocks. (c) Positioning a floppy disk at a disk drive opening.

The line feature is associated with the moving frame, so the
Jacobian is

(47)

This defines a collinearity constraint that aligns two points
to an axis, but leaves rotation about the axis and translation
along the axis free. Once the alignment is accomplished, a
motion along the alignment axis can be superimposed [using
(15)] to place the screwdriver onto the screw, and finally a
rotation about the alignment axis can be superimposed to turn
the screw. Note that the screw cannot be parallel to the camera
baseline as this is a singular configuration for the component
positioning operations.

2) Positioned Alignment:Consider inserting a floppy disk
into a disk drive as shown in Fig. 1(c). The desired task-space
kinematic constraint can be stated as placing one corner of the
disk at the edge of the drive slot, and simultaneously aligning
the front of the disk with the slot. This motivates the following
positioning problem: Given a reference pointon a line
rigidly attached to a target object and two reference points
and rigidly attached to the end-effector, develop a regulator
that positions the end-effector so that and using
their stereo projections.

The task error is

(48)

The corresponding image error and Jacobian result by
stacking the corresponding image error terms and Jacobians
for the primitive operations as above. The singular set is the
union of the singular sets of the primitives.

3) Six Degree-of-Freedom Positioning:Suppose an that
application requires a stacking operation as illustrated in
Fig. 1(b). The desired task-space kinematic constraint is
to align one side the bottom of the upper block with the
corresponding side and top of the lower block, respectively.
This constraint forms a rigid link between the two blocks.
Consider the following definition of a rigid link between end-
effector and target frames: Given three noncollinear, reference
points , and rigidly attached to a target object, and two
nonparallel reference lines and rigidly attached to the
end-effector, develop a regulator that positions the end-effector
so that , and

To see that these constraints fully define the position of the
end-effector relative to the target, note that positioning the
points and on is the four degree-of-freedom alignment
operation described above. When and satisfying

can be accomplished by first rotating about the line
until is now parallel to

the plane defined by and so it is possible to translate
along until

The task error is

(49)

The corresponding image error and Jacobian result by
stacking the corresponding image error terms and Jacobians
for the primitive operations. The singular set for this operation
is any setpoint which forces or to lie in an epipolar plane.

C. Choosing a Center of Rotation

In the discussion thus far, the choice of origin for rotations
has been left free. The usual choice foris placing
the center of rotation at the origin of the robot coordinate
system. However, by strategically placing rotations and
translation can be decoupled at a specific point leading to more
“intuitive” motions. For example, choosing to be the tip of
the screwdriver causes the tip to undergo pure translation, with
all rotations for alignment leaving the tip position fixed.

In this example can be calculated directly using the
point estimation techniques described above. This makes it
possible to completely parameterize Jacobian matrices in terms
of observable quantities, and has the additional advantage
of reducing the effect of calibration error. For example, the
Jacobian relating the end-effector screw to the motion of a
point depends on the expression Estimating both
points and computing the difference cancels any constant
reconstructive error,e.g. an error in the position of the robot
relative to the cameras. Furthermore, errors in point recon-
struction due to miscalibration typically increase with distance
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from the camera. If is close to the effect of nonlinear
reconstructive errors will be kept relatively small.

In a hierarchical control scheme, the desired center of
rotation in end-effector coordinates is needed in order to
parameterize the resolved rate control. Thus, in order to choose
an arbitrary center of rotation, its location relative to the
physical center of the wrist must be known. As above, in
order to minimize the effect of calibration and reconstruction
errors the desired wrist center should be set by computing a
difference between estimates of the physical wrist center and
the desired origin. If the physical wrist center is not directly
observable it is well known that any three noncollinear points
with known end-effector coordinates can be used to reconstruct
its location [24, Ch. 14].

D. Sensitivity to Calibration Errors

In the absence of noise and calibration error, the systems
defined above are guaranteed to be asymptotically stable at
points where the Jacobian matrix is nonsingular. Implemen-
tations of these algorithms have shown them be stable even
when exposed to radical errors in system calibration.

In this section, the sensitivity of stability to certain types
of calibration error is briefly examined. In particular, it is
well known that the accuracy of stereo reconstruction is most
sensitive to the length of the camera baseline and the relative
camera orientation. Consider a 2-D coordinate system in which
the camera baseline forms theaxis. The distance between
two cameras is parameterized by the length of the baseline,
. The direction of gaze is parameterized by a vergence angle

where 0 means the cameras point along theaxis.
Positive values of denote symmetric vergence inward, and
negative values denote symmetric vergence outward. Letand

denote the estimated values ofand respectively.
Consider the point-to-point control algorithm resulting from

2-D versions of expressions (16), (18), (19), and (29). As noted
in Section III, the closed-loop behavior of the resulting control
system at a setpoint is described by a linear
differential equation of the form

(50)

where is the true system Jacobian and rep-
resents the Jacobian matrix computed usingand as well
as observed values of As noted earlier, such a system is
asymptotically stable at if and only if the eigenvalues of

have strictly positive real parts [27].
First fix 1 and consider the effect of errors in

the estimate of camera vergence. Expression (50) for this case
was constructed using a symbolic mathematics package, and
the equations describing the points at which the system is
asymptotically stable were computed. Particularly simple yet
representative solutions result when the physical cameras point
straight ahead ( 0) and is allowed to range freely. When

0, the region of stable points is bounded by two lines:

(51)

(52)

These two equations define an open-ended cone that is
bounded by lines forming angleswith the baseline. When

the set of stable points is a bounded circular region

(53)

Note that the size of the circle shrinks quickly as the magnitude
of increases. This accords with intuition. For a fixed value
of and a point decreasing has the effect of “pushing”
the estimated location of the observed point away from the
cameras. Eventually, the calibration describes a camera system
which could not physically produce the actual observations of

and then becomes an unstable equilibrium. Numerical
computation of the set of stable points for problems of higher
degree has shown qualitatively similar effects [5].

Suppose now that and consider errors in the estimated
baseline In the closed-loop equation, the ratio appears
as a gain term, and therefore does not affect stability of the
continuous time system. Gain terms do however affect the
stability of discrete time systems. The discrete time model for
a perfectly calibrated system with unit time delay is of the form

(54)

where is a gain coefficient and is the sampling time
(one over the sampling rate). This system has characteristic
polynomial [27]. System stability is guaranteed
when The system is overdamped if and
underdamped if Thus, for example, overestimating
the baseline distance by 10% has the effect of introducing
a fixed gain factor of 1.1 into the closed-loop system and is
therefore a destabilizing factor. Errors in any other coefficients
that enter the equations as a scale factor, including camera
focal length and scaling from pixel to metric coordinates,
exhibit similar effects. These parameters can typically be
estimated quite precisely (easily to within 1%) so their effects
are minute compared to the impact of errors in the relative
position, particularly orientation, of the cameras.

V. EXPERIMENTS

All of the primitive and composed skills described above
have been implemented and tested on an experimental visual
servoing system. The system consists of a Zebra Zero robot
arm with PC controller, two Sony XC-77 cameras with 12.5
mm lenses, and two Imaging Technologies digitizers attached
to a Sun Sparc II computer via a Solflower SBus-VME
adapter. The workstation and PC are connected by an ethernet
link. All image processing and visual control calculations
are performed on the Sun workstation. Cartesian velocities
are continually sent to the PC which converts them into
coordinated joint motions using a resolved-rate controller
operating at 140 Hz. The Sun-PC connection is implemented
using an optimized ethernet package which yields transmit
delays below a millisecond on an isolated circuit. As the
system runs, it logs 5 min of joint motion information at 20
Hz which can be used to examine the dynamic behavior of
the system. All test cases were designed not to pass near
singularities.
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The XVision tracking system [10] provides visual input
for the controller. XVision is designed to provide fast edge
detection on a memory-mapped framebuffer. In addition, it
supports simultaneous tracking of multiple edge segments, and
can also enforce constraints among segments. The experiments
described here are based on tracking occluding contours with
edge trackers arranged as corners or parallel strips. In all
experiments, the occluding contours were of high contrast so
that other background distractions were easily ignored by the
tracker. Specifics of the tracking setup for each application
are described below.

The hand-eye system was calibrated by tracking a point
on the manipulator as it moved to a series of positions,
and applying a least-squares minimization to generate the
calibration parameters [31].

A. Accuracy

Several experiments were performed to determine the posi-
tioning accuracy and stability of the control methods. Stereo
images from the experimental setup are shown in Fig. 2. The
top set of images shows the system in a goal configuration
where it is attempting to touch the corners of two 3.5 in
floppy disks. The disks are a convenient testing tool since
their narrow width (approximately 2.5 mm) makes them easy
to track and at the same time makes it simple to measure the
accuracy of positioning and orientation. Motions are defined
by tracking one, two, or three corners of the disks. The length
of the tracked segments was 20 pixels, and the search area
around a segment was10 pixels. The cameras were placed
80 cm from the robot along the axis, 30 cm apart along the

axis, and were oriented to point back roughly along the
axis of the robot with a vergence of approximately 10.

Positioning to test the accuracy and repeatability of point-
to-point positioning, the robot was guided along a square
trajectory defined by the sides and top of a target disk. At each
endpoint, it descended to touch opposing corners of the disks.
It was allowed to settle for a few seconds at each trajectory
endpoint and the accuracy of the placement was observed. The
expected positioning accuracy at the setpoint depends on the
error in edge localization. One camera pixel has a width of
approximately 0.01 mm. At 80 cm with 12.5 mm focal length
lenses on both cameras, the expected vertical and horizontal
positioning accuracy is 0.32 mm, and the expected accuracy
in depth is 1.75 mm. Consequently, the system should be
able to reliably position the corners of the disks so that they
nearly touch one another.

The system has performed several hundred cycles of point-
to-point motion under varying conditions over a period of
several months. In nearly all cases, the system was able to
position the disks so that the corners touched. In fact, typical
accuracy was well below that predicted—usually less than
a millimeter of relative positioning error. This is an order
of magnitude better than the absolute positioning precision
of the robot itself. As expected, this error is independent of
the fidelity of the system calibration. Occasionally the system
failed due to systematic detection bias in the edge tracking
system. These biasing problems are due to “blooming” effects

(a)

(b)

Fig. 2. (a) The left camera eye view of the system touching the corners of
two floppy disks. (b) The accuracy in depth with which the positioning occurs.

in the CCD cameras. These only appear when the contrast
across an edge becomes excessive.

The entire visual control system (including tracking and
control signal computation) runs at a rate of 27 Hz. For these
trials robot velocities were limited to a maximum of 8 cm/s.
The total time lag in the system (from images to robot motion)
is estimated as follows: the maximum frame lag (1/30 s) plus
processing time (1/27 s) plus transmission delay from Sun
to robot (measured at less than 1/1000 s) plus delay in the
resolved rate control (1/140 s) yielding a worst case delay of
0.079 s. Using the discrete-time model given in Section IV-
D, this suggests that the system should first begin to exhibit
underdamped behavior at a proportional gain of 3.18.

Several trials were performed to test this prediction. Each
trial consisted of having the system move from a fixed starting
position to a setpoint. The proportional gain values were
varied for each trial. Fig. 3 shows the recorded motions. As
expected, the system is well-behaved, exhibiting generally
small corrections of 0.6 mm about the setpoint for gains
of up to 3.0. At a gain of 4.0 slightly underdamped behavior
can be observed and at a level of 5.0 the system is clearly
underdamped.
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Fig. 3. The position of the robot end-effector during execution of the same
point-to-point motion with various proportional gains.

B. Position and Orientation

The point-to-point skill was combined with a point-to-line
skill to examine the effectiveness of orientation control. Input
was provided by tracking an additional corner on both disks.
The point of rotation was chosen to be the corner of the disk
used to define the point-to-point motion in order to decouple
translation to the setpoint from rotation to produce alignment.
Experimentally, the positioning accuracy of the system was
observed to be unchanged. The accuracy of the alignment of
the sides of the two disks was observed to be within1.0 .
With the increased tracking load and numerical calculations,
the cycle time dropped to 9.5 Hz. At this rate, the system
is expected to be overdamped to a gain of 1.7. Fig. 4 shows
the system response to a step input for varying gain values.
The values shown are the angles between the toolaxis and
the world and planes. As seen from the upper
graph, the system tends to exhibit a constant cyclic motion
about the setpoint on the order of0.6 relative to the
plane and 0.05 relative to the plane. The former is

Fig. 4. The orientation of the robot end-effector while performing position-
ing and alignment for varying gain levels. The values shown are degrees of
angle with theX � Z andY � Z planes.

the direction along the optical axes (the depth direction) which
explains the lower accuracy. Also, in the Zebra robot the shaft
encoders are mounted before the gear train driving the joints,
so the data reflects some hysteresis due to backlash in the
gear train. Despite these effects, it is clear from the graph
that the system is well-behaved for a gain of 1.5, it exhibits
some minor oscillation for a gain of 2.0, and exhibits clear
oscillation at a gain of 3.0. As before, this is well within the
expected performance limits.

C. Calibration Insensitivity

Experiments were performed to test the calibration sensitiv-
ity of the system. The point-to-point positioning controller was
used. The proportional gain was set to 2.0 and the system was
allowed to settle at the setpoint. Then, the physical cameras
were perturbed from their nominal position while the system
was running until clearly underdamped behavior resulted in
response to a small step input produced by jostling the target
disk.
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First, the left camera was rotated inward. As noted in
Section IV-D, this is the type of miscalibration to which the
system is expected to be most sensitive. The system became
observably underdamped after a rotation of 7.1. Both cameras
were then rotated outward. In this case the left and right
cameras were rotated 12.0and 14.5, respectively, with no
observable instability. It was not possible to rotate the cameras
further and maintain the target within the field of view.

Next, the right camera was moved toward the left camera
to decrease the baseline distance. The initial baseline was 30
cm. According to the predictions in Section IV-D, the system
should begin to exhibit signs of underdamped behavior with a
baseline distance of 30(2.0/3.24) 18 cm. Experimentally,
at distance of 16 cm the system was observed to become
underdamped. The cameras were then moved outward to a
baseline of 60 cm with no apparent effect on system behavior.

Perhaps the strongest testament to the calibration insensi-
tivity of the system is the fact that it has been demonstrated
dozens of times after placing the cameras by hand and oper-
ating the system without updating the calibration. One reason
calibration error does not become a problem is that the camera
field of view is a strong constraint on camera position and
orientation. Placing the cameras with the robot workspace
approximately centered in the image and with a baseline of
about 30 cm typically orients them within a few degrees
of their nominal positions. This level of calibration error is
tolerable for most normal operations.

D. Three Example Applications

The three applications described in Section IV-B were im-
plemented and tested to demonstrate the use of skills in
realistic situations.

1) Screwdriver Placement:Section IV-B described the use
of an alignment constraint to place a screwdriver onto a screw.
A system was constructed to determine the feasibility of this
operation. The objects were an unmodified wood screw with
a head diameter of 8 mm, and a typical screwdriver with
its shaft darkened to enhance its trackability. Both the screw
and the screwdriver were tracked as parallel edge segments
as illustrated in Fig. 5(a). Because of the small size of the
objects, the cameras were placed about 50 cm from the objects
in question. The baseline was 20 cm. Despite the change
in camera configuration, the same system calibration was
employed. The tracking system ran at 20 Hz without control
calculations, and 12 Hz with control calculations.

The screwdriver was placed in an arbitrary position in the
robot gripper. Visual servoing was used to first perform an
alignment of the screwdriver with the screw. Once aligned, a
motion along the calculated alignment axis was superimposed
using (15) while maintaining the alignment constraint. The
screwdriver was successfully placed near the center of the
screwhead in all but a few trials. There was no discernible error
in the alignment of the screwdriver with the screw. Fig. 5(b)
shows the final configuration of one of the experimental runs.

In those cases where the system failed, the failure occurred
because the robot executed a corrective rotation just before
touching the screw. Due to kinematic errors in the robot, this

(a)

(b)

Fig. 5. (a) A view of the tracking used to place a screwdriver onto a screw.
(b) A close up of the accuracy achieved. The screw in this picture is 8 mm
in diameter.

caused the tip to move slightly just before touching down,
and to miss the designated location. These failures could be
alleviated by monitoring the alignment error and only moving
toward the screw when alignment is sufficiently accurate.

2) Floppy Disk Insertion:The disk tracker and the tracker
for parallel lines were combined to perform the insertion of a
floppy disk into a disk drive as described in Section IV-B. The
experimental configuration and the tracking used to define the
setpoint are shown in Fig. 6. The cameras were again moved
and rotated to provide a better view of the drive slot, but the
system calibration was not recomputed. The floppy disk is
2.5 mm wide, and the disk slot is 4 mm wide. Over several
trials, the system missed the slot only once due to feature
mistracking.

3) Six Degree-of-Freedom Relative Positioning:Three
point-to-line regulators were combined to perform full six
degree of freedom relative positioning of two floppy disks.
The final configuration was defined using three corners of
each disk to achieve the configuration pictured in Fig. 7.
When correctly positioned, the disks should be coplanar,
corresponding sides should be parallel, and the disks should
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Fig. 6. The robot inserting a disk into a disk drive. The slot is about 4 mm
wide and the disk is 2.5 mm wide.

touch at the corner. Because the epipolar plane is a singular
configuration, the disks were rotated 30from horizontal. The
complete closed-loop system including tracking and control
operated at 7 Hz.

Experimentally, the accuracy of the placement was found
to be somewhat lower than that reported for the previous
problems. Typically, orientation was within2 of rotation
and positioning was within a few millimeters of the correct
value. Most of the lower accuracy can be attributed to the fact
that third point used for positioning in Fig. 7) was located
far from the corners used to define the the second line
in Fig. 7). Thus, small errors in tracking the corners used to
define and were magnified by the problem geometry.

VI. DISCUSSION

This paper has presented a framework for visual control
that is simple, robust, modular, and portable. A particular
advantage to the approach is that kinematic constraints and
motions can be chosen in the robot task space, yet implemented
using image-based feedback methods that are insensitive to
system calibration.

The system is extremely accurate. As reported, the current
system can easily position the end-effector to within a few
millimeters relative to a target. This positioning accuracy could

(a)

(b)

Fig. 7. (a) The geometry used to align two floppy disks. (b) A live view
from the right camera with the tracking overlaid.

easily be improved by changing the camera configuration to
a wider baseline, improving the image-processing to be more
accurate, or increasing the focal length of the cameras. The
current vision processing and control computation system uses
no special hardware (other than a simple digitizer) and could
be run on off-the-shelf PC’s. Furthermore, since the entire
system, including image processing, runs in software, moving
to a newer or more powerful system is largely a matter of
recompiling. On current hardware, field-rate (60 Hz) servoing
for simple problems is already feasible.

Clearly, a wider variety of positioning skills must be de-
veloped, as well as a richer notion of skill composition.
In particular, all of the skills described here have focussed
on moving points and lines into “visual contact” with one
another. Another natural type of motion is to move “between”
two visual obstacles, avoiding contact with either. Similarly,
while performing a task, there is often a natural “precedence”
between skills. For example, as noted experimentally, the
motion to place a screwdriver onto a screw should only take
place when the tip of the screwdriver lies along the axis of the
screw. Interesting work along these lines has been recently
presented by [32] and [33].

The robustness of visual tracking continues to be a major
problem. In the experiments described above, the features used
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were relatively easy to distinguish and were never occluded.
These limitations must be overcome before visual servoing is
truly practical. Work is proceeding on occlusion detection and
compensation. In particular, the design of motion strategies
that plan an occlusion-free path offline or online are of
interest. Offline vision planning using visibility models and
a prior world model information has already been investigated
[34], [35]. Online motion compensation based on occlusion
detection does not appear to have been considered to date.

Work is also proceeding on extending the framework to
more complex task representations. In recent work [30], it
was noted that projective invariants [36] provide a basis
for specifying robot positions and motion independent of
geometric reconstructions, and consequently independent of
camera calibration. Development of these concepts is cur-
rently underway, including both the visual tracking methods
needed to compute projective invariants, and the design and
implementation of vision-based motion strategies that employ
invariants.
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