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A Modular System for Robust Positioning
Using Feedback from Stereo Vision

Gregory D. HagerMember, IEEE

Abstract—This paper introduces a modular framework for

and interprocess communication tend to be more problematic

robot motion control using stereo vision. The approach is based in vision-based feedback systems. Finally, and perhaps most

on a small number of generic motion control operations referred
to as primitive skills. Each primitive skill uses visual feedback
to enforce a specific task-space kinematic constraint between a

importantly, litle work has been done to make the design
of vision-based motion control systems simple, intuitive and

robot end-effector and a set of target features. By observing both modular.

the end-effector and target features, primitive skills are able to
position with an accuracy that is independent of errors in hand-

eye calibration. Furthermore, primitive skills are easily combined

to form more complex kinematic constraints as required by

different applications. These control laws have been integrated
into a system that performs tracking and control on a single

processor at real-time rates. Experiments with this system have
shown that it is extremely accurate, and that it is insensitive
to camera calibration error. The system has been applied to
a number of example problems, showing that modular, high
precision, vision-based motion control is easily achieved with
off-the-shelf hardware.

Index Terms—Robotics, vision, visual servoing.

In this paper, we present an approach to visual servoing that
addresses these issues. The key ideas in this approach are:

¢ An emphasis on algorithms which compute feedback from

image-level measurements obtained by observing simple
features orboththe robot end-effector and a target object.

It can be shown that calibration errors do not affect the
positioning accuracy of these algorithms.

An explicit description of the relationship between image-
level constraints among observed features and the task-
space kinematic constraints that they induce. This allows
a task to be programmed or planned in the geometry of

the robot task space, but to be carried out as a robust
vision-based motion control operation.
. INTRODUCTION * The use of stereo (two camera) vision. Stereo vision

HE problem of “visual servoing”—guiding a robot using makes it easy define image-level constraints which encode
visual feedback—has been an area of active study for depth information, and it simplifies some aspects of the
several decades [1]. Over the last several years, a great deal control computations.
of progress has been made on both theoretical and applietlVe take a modular, compositional view of the system
aspects of this problem [2]-[8]. However, in spite of thesdéesign problem. Vision-based control systems are constructed
advances, vision-based robotic systems are still the exceptiyn combining a set of motion control and visual tracking
rather than the rule. operations subsequently referred to tend-eye skills The
In particular, if we restrict our attention to vision-basedhand-eye skills for performing a specific task are developed
positioning relative to a static (unmoving) target, it can beut of a smaller set of building blocks referred topanitive
argued that the basic principles for implementing visual feedkills. The goal of the skill-based paradigm is to demonstrate
back are by now well-understood [3], [4], [9]. Why is visuathat by developing a small repertoire of modular primitive
servoing not in wider use? One reason is the fact that visigkills and a reasonable set of “composition” operations, a large
is itself a complex problem. In order to provide informatiorvariety of tasks can be solved in an intuitive, modular and
from vision at servo rates, most systems rely on task-specifabust fashion.
image processing algorithms, often combined with specializedWe have also emphasized portability and efficiency in our
hardware. This is costly in terms of both time and money asapproach by keeping both the visual processing and the control
forces a system designer to “reinvent” the vision componeinterfaces simple. The visual information needed to instantiate
for each new application. Another difficulty arises from théand-eye skills is extremely local: the location of features
fact that vision-based positioning tends to be a complexch as corners and edges in one or more images. The image
system to implement. Issues such as calibration, time dejapcessing needed to extract these features is straightforward,
and can easily be performed on standard workstations or PC’s
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The remainder of this paper discusses these points in moobot task space, whereas image-based systems operate in a
detail and presents experimental results from an implementeds intuitive projection of the task space. Image-based systems
system. The next section discusses some of the relevarg typically less sensitive to errors in the camera calibration
visual servoing literature. Section Ill defines the vision-baselan position-based systems, but they introduce nonlinearities
positioning framework that forms the basis of the skill-basedto the control problem and hence have proven problematic
approach. Section 1V describes three primitive skills and illuse analyze theoretically. This paper employs image-based
trates their application to three example problems. In additiomethods to develop primitive positioning skills. However,
the sensitivity of these algorithms to calibration error ithese skills are chosen so that they are directly related to task-
examined. Section V describes an implemented system amhce kinematic constraints, thereby combining the positive
presents several experiments. The final section describes wattkibutes of both image-based and position-based methods.
currently in progress. Most visual control systems only observe the features used

to define the stationing point or trajectory for the manipulator.
Il. RELATED WORK In this paper, these systems will be referred to as “endpoint-

Visual servoing has been an active area of research over @pen-loop” (EOL) systems since the control error does not
last 30 years with the result that a large variety of experimeniavolve actual observation of the robot end-effector. In par-
systems have been built (see [1] for an extensive revievigular, for position-based systems such as the stereo systems
Systems can be categorized according to several propertiesn@sitioned above, the fact that they are EOL means that the
discussed below. positioning accuracy of the system is limited by the accuracy

The first criterion is whether visual feedback is directlpf stereo reconstruction and the accuracy of the hand-eye
converted to joint torques (referred to as direct visual serv@glibration [9].
or whether internal encoder feedback is used to implement 2A system that observesoth the manipulator and the target
velocity servo in a hierarchical control arrangement (referradll be referred to as an “endpoint-closed-loop” (ECL) sys-
to as look-and-move) [11]. A look-and-move arrangemetgem. Few ECL systems have been reported in the literature.
allows the visual control system to treat the robot as a d8fjesomaet al. [21] describe an ECL monocular hand-eye
of decoupled integrators of joint or Cartesian velocity inputsystem for planar positioning using image feedback. An ECL
thereby simplifying the control design problem. In practicesolution to the problem of three DOF positioning using stereo
nearly all implemented systems are of the look-and-moig described in [5]. A six DOF ECL servoing system em-
variety as is the system described in this paper. ploying stereo vision is described by Hollinghurst and Cipolla

The second criterion is the number of cameras and thgl9]. They employ an affine approximation to the perspective
kinematic relationship to the end-effector. A majority of théransformation to reconstruct the position and orientation of
recently constructed visual servoing systems employ a singllenes on an object and on a robot manipulator. Reconstructed
camera, typically mounted on the arm itself, e.g., [3], [4fose forms the basis of a position-based servo algorithm for
[6], [8], [12]-[14]. A single camera minimizes the visualaligning and positioning the gripper relative to the object. The
processing needed to perform visual servoing, however thffine approximation leads to a linear estimation and control
loss of depth information complicates the control design @soblem, however it also means that the system calibration is
well as limiting the types of positioning operations than caenly locally valid. A similar image-based system appears in
be implemented. Prior depth estimates [4], adaptive estinja6], [22] with the difference that an attempt is made to modify
tion [6] or metric information on the target object (fromthe approximate linear model online. This paper describes an
which depth can be inferred) are common solutions to thimage-based ECL system that uses a globally valid perspective
problem. Two cameras in a stereo arrangement can be usgatlel.
to provide complete three-dimensional information about the As discussed in the introduction, the approach of this paper
environment [2], [7], [15]-[20]. Stereo-based motion contrds to develop a small set of simple, general purpose visual
systems have been implemented using both free-standing ardvoing primitives which can be composed in an intuitive
arm-mounted cameras, although the former arrangementfashion to solve a wide variety of problems. Modeling the
more common. This paper discusses a free-standing steeffect of visual feedback is a central part of this approach. As
camera arrangement, although with minor modifications tiseiggested by Espiaet al. [3], one way to model the effect
same formulation could be used for an end-effector mountetivisual feedback is in terms of the constraints it imposes on
stereo camera system. the position of the manipulator. In their work they employed a

A third major distinction is between systems that arsingle end-effector mounted camera in an EOL configuration,
position-basedersus those that aimage-basedThe former and modeled the effects of image-based feedback as forming
define servoing error in a Cartesian reference frame (usiadvirtual linkage” between the camera and the target object.
vision-based pose estimation) while the latter computéowever, since the robot end-effector is not observed by the
feedback directly from errors measured in the camera imagamera, it is unclear when and how task-space objectives for
Most stereo systems are position-based, while monocuthe end-effector could be related to image-level constraints.
systems tend to be image-based (for an exception, see [8})contrast, as discussed below, feedback from stereo vision
Arguments have been made for both types of systems.ilnan ECL configuration directly provides three-dimensional
particular, position-based systems are often characterizedcasstraints on end-effector position relative to a target object
more “natural” to program since they inherently operate in tHeom very simple features such as points and lines.
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[ll. BACKGROUND AND PROBLEM SETTING As a concrete illustration, suppose a point on the end-

This section establishes notational conventions and providdfector with coordinates” is to be positioned at a target
general background for the remainder of the paper. The fiRqint With coordinatess. ThenC, = C; = R(3), and the task
part describes a general framework for vision-based contfSfOr function is simphyE (P, §) = P—S,P € C., S € Ct'eln
of position and points out several important properties of tff§der to determine the constraint on the manipulator; et
approach. The development follows that of [3], the formatqenote the coordlna_tes @&t in Fhe end-effector frame fand let
underpinnings of which are discussed in greater detail in [23f denote the coordinates 6Fin the target frame. Define the
The second part reviews results related to the projection afiginge of coordinates operatoras
reconstruction of points and lines from stereo images. More ap e pa
detail can be found in standard vision references such as [24]. Ta 0 "P=(Rt)o P =R"P+t (@)

Then the feature mapping functions for this problem are
A. A Framework for Vision-Based Control of Position

Unless otherwise noted, all positions, orientations and fea- Ce(xe) =% 0 “P, (2)
ture coordinates are expressed relative to the robot base Ci(z:) = o *8S. 3)
coordinate system denoted By. The pose of an object ) .
in this coordinate system is represented by a pair= and the constraint on end-effector pose is then
(t,R),t € R(3),R € SO(3). The space of all poses is p B . .
the special Euclidean GroufE(3) = R(3) x SO(3). Let B (@e, ) = e 0 “P -z 0 5. ()
7. € SE(3) represent the space of end-effector con_flgura_uor;ﬁ]is is a constraint of degree 3 which is kinematically equiv-
and7; C SE(3) to represent the space of target conflguratlon§|ent to a spherical joint [26]

The special symbolg, € 7. andz,; € 7; denote the pose :

of the gnd—effector e_md of Fhe target in world coort_jinate%at moves the end-effector into a configuration in which
re;pectlvely. The units for Imear. and angular quant!t|es Afre task-space error is zero. The end-effector is modeled as
'rpllgm?/vtehrs arzjd dl'egree;hrespectlvely, unlgss otherwlse Srf’gc(’:artesian positioning device with negligible dynamics. As
: Iet t ehb ?a'nﬁ \;Vr:t (;/efctorthor m?tnx quantlutes, tt' foted above, this is a reasonable model for a look-and-move
notation (a;b) is shorthand for the co umn concatena Iorétyle system in which the robot is stabilized by internal encoder
(stacking) of the veptora andb and (ajb) is shorthand for feedback. The target pose is assumed to be stationary. The
th?_r:ow colnf:atenathn cxli and b: bl . | hinstantaneous motion of the robot consists of a translational
e goalin any visual servoing problem Is to control t 9elocityv and a rotational velocitw combined into a single

pose of an end-effector relative to a target object or targ\%locity screwr = (v;w) about a specified poir®. In most
features. In this paper, relative positioning is defined in ter sesO — 0. the 70rigin of the base coordinate system
of observable features rigidly attached to the end-effector a| we\1/er as v:/ill be discussed subsequently, it is sometimés

to the target object. Lef, andC; be the joint configuration dvantageous to choo€2 so as to yield a particular type of
space of the features rigidly attached to the end-effector an Qtion or to reduce the effects of miscalibration

the target, respectively, and defi6k:7; — C;,i = e, t to be In this paper, all features are observed by a stereo (two)

the corresponding mappings relating pose to feature configu&a—mera system and a set of measurements calléshtare

tion. With these definitions, feature-based relative pos't'on”}/&ctorare computed. Le, and F; be the set of all feature

in the rc_)bot configurati_on space can be specified in terms o Ector values for the end-effector and the target object and
constraint on the relationship between observable features .fine the mappingdi:C; — Fi,i = ¢t to relate end-

Definition 3.1: A feature-based relative positioning .taSl%ffector and target pose to their respective feature vectors. It

is described by a functioni:C.x C; — R(n). This iS o ao5med that each mapping is invertible except for a small
subsequently referred to as the task-space error function. 'Ijé? of configurations referred to as thimgular setfor that

end-effector is in the desired configuration if task-space erfliure mapping
is zero. '

L Feedback control is based on defining an error funation
It follows that the task-space error function implicitly de

i : . o feature configuration such thatdescribes the same kinematic
fines a kinematic constrairff’ between target pose and end-

configuration as a task-space er@r
effector pose a¥'(z.,z:) = E(C.(x.), Ci(x:)). Suppose - CA ;
e e\ve/ Definition 3.2: A image error functiore: F, R
that E'(x.,x:) = 0,z is held fixed, andE’ considered as a g Fe x Fu — R(n)

f . f ifies th diti t the implicit f _ is equivalent to a task-space error functiBrof degreed < n
unction of z. satisfies the conditions of the implicit function;¢ 4 only if E(ce,c:) = 0 < e(F.(c.), Fi(e:)) = 0 for all

theorem [25]. Then in the neighborhood xf, the task error
function defines a manifold of dimension This manifold

rep_resent_s the_ directions _in Wh.iCh the_ manip_ulato_r can rn()\/eSinguIar configurations are end-effector poses where the
while maintaining the desired kinematic relationship with th80nstraint on position defined by the image error function is

tafr?et.cljiquw?lintly, th? te}sk err_?; conTtra(p!f;;& 6‘; degreelrs locally of lower degree than that of the equivalent kinematic
of freedom of the manipulator. The valuedls subsequently oot nction. For example, any configuration at which feature

referred to as thelegreeof the task-space error functidn. projection is singular is also a singular configuration for the
1This is closely related to the notion of “class” defined in [3]. error function.

The visual servoing problem is to define a control system

c. € F. ande¢, € F; and except for possibly a small set of
singular configurations.
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All feedback algorithms in this paper employ image errors Calibration Insensitivity: The accuracy with which a stable
in proportional control arrangements [27] as follows. Defineimage-based control system maintains the equivalent kine-
matic constraint is independent of errors in the calibration
J(z.) = aae . (5) of the system. This includes the extrinsic (positional) and
Te g, intrinsic (imaging) parameters of both cameras as well as the
anipulator kinematics.
This is one of the principle advantages of image-based
control over functionally equivalent position-based systems. A
ée=J(z)r (6) problem where position-based control is not able to perform
with calibration-insensitive accuracy is given later in this
describes the relationship between change in end-effector ppager.
and change in the image error. Presuming for the momentThe task-space error need not constrain all degrees of
that J(t) = J(z.(t)) is square and full-rank of., hence freedom of the manipulator. More often than not, the degree
invertible, it is well known that the proportional control law of the task-space error function is smaller than the dimension
1 of the task space. In this case, the Jacobian of the image error
u=-kJ e, k>0 () function (which must have rank equal to the degree of the task-

will drive the observed error to zero in the absence of noise Jace error function) is not square, and the matrix right inverse

other disturbances. In particular, since the robot control syst M pTe_LI{ﬂo—mver_se)_ rEU_St be us_edd t?_ C(()jmpute the feedback
acts as a perfect integrater= . Combining (6) and (7) we S'gnal- The matrix right inverse Is defined as

have JT=J5JJH (10)

Recallr denotes the end-effector velocity screw. Considef”
ing now all quantities as functions of time, it follows that

e=Ju=—kJJ e = —ke. (8) SubstitutingJ* for J=! in (7) produces the velocity screw
) ) ) _ ~« which has minimum norm over all vectors which solve the
Thus, image error is an exponentially decreasing functigfiiginal system of equations. It is occasionally the caseJhat

of time and the system is asymptotically stable. Howevegas more rows than columns. In this case, the pseudo-inverse
asymptotic stability implies thatim; ..., e — 0. If e is 5 defined as

equivalent to a task erroF, it follows under reasonable N T o1 T
assumptions thatim,_.., £ — 0. Hence, by design the JT=U )T I (11)

control system is guaranteed to achieve the equivalent ta%—e appropriate interpretation of* is always clear from the
space kinematic constraint. dimensions of the matrix

. As indicated in this development, the mapping from pose t(.) Another important property of image-based systems of the
Image featurle mfeaSLtJ_remefnts ('js r;fonltlnear, her:e_thehJacoIPé% described above is that they are explicitly connected
'S, I general, a function of end-eliector pose. AS 1S Shown g geometry of the robot task space. Thus, it is possible
Section 1V, the Jacobian matrix for the applications descrlb?g synthesize control algorithms by “composing” the desired

in this paper tcan aléva);fs bte parametet_r |ze? n .termf of 'Ma@Rematic constraint using task-space error functions, and to
measurements—end-etiector pose estimation 1S not require Jtomatically derive the equivalent image error function. To

In practice the syste.m Jacobian is computed from feaF strate, suppose thak'; and E, are two kinematic error
measurements and estimates of the camera location and wﬁg

. . - : "Mifctions and that there is at least one end-effector pose which
nal imaging parameters. Let denote the estimated ‘JaCOb'agimultaneously satisfies both. Let and e, represent the
matrix. Then (8) becomes

equivalent image error functions, add andJ, represent the
o= Ju— _ij—le — _IMe ©) corresp_oang Jacobian func“nons.. Trle combined task-space
constraint is represented by “stacking” the system

where M = JJi A differential equation of the form E((er1;010), (6215 02)) = Ei(c11,¢,1) (12)

é = —kMe is asymptotically stable if the eigenvalues &f €120\ @21€2.2)) =\ Boley 9, 600) |

have strictly positive real parts [27]. In general, the entries . ) . o

of the Jacobian matrix are continuous functions of the systénpnsidered as a function of end-effector pose, this function is
calibration parameters, and therefore the eigenvaluedfof zero only if the component functions are both simultaneously

vary continuously with the calibration parameters. Hencé®ro- It follows directly that the equivalent image error is

given that the idealized closed loop system (for whikh ) ) _lei(f11,F21) 13
is the identity matrix) is asymptotically stable, a “slightly e((fra3f12) (F213F22)) = ex(f1 0, fr0) | (13)
miscalibrated” system will also be asymptotically stable. ’ ’
Thus, image-based control systems with the structure outlin%'ad
above have the following robustness property: J(z,) = {Jl(xe)} (14)

Jolx
2|t is interesting to note that in that case of a direct visual servo system, it 2( e)

has been shown that bounded-input bounded-output stability can be guarantpge resulting image-based control system will be calibration

if M is positive definitd3], [23]. The stronger result stated above is directly. i In sh libration i e dund
attributable to the use of internal stabilization to provide an “idealized” robdfSENSItive. In short, calibration insensitivity Is preserved under

dynamics to the visual control system. combination of kinematic constraints in the robot task space.

the corresponding Jacobian is
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Finally, it is possible to superimpose other task-space mecan be written
tions onto visually defined kinematic constraints, provided that
the motions do not “conflict” with the constraint. Suppose that
u,, IS @ motion (referred to as secondary taskn [23]) that 54 it is possible to estimat® as
is to be superimposed on the end-effector while maintaining .
a kinematic constraint with image errer The motion can be P = At (p)b(p). (21)

projected “onto” the direction in which the robot is locally

free to move and combined with feedback to preserve tiybsequently, the estimate Bffrom p is written P(p). .
kinematic constraint as follows: The camera baseline is the singular region for stereo point

projection.
u=—kJte+ (I — It )u,. (15) Lines: An arbitrary line is parameterized by a six-tuple
L = (L4; L,) where Ly € R(3) is fixed point on the line
B. Projection and Estimation of Point and Line Features  and L,, € R(3) is a unit vector representing the direction of
the line. The vectol; parameterizing the projection df in
normalized coordinates in cameras given by

A(p)P = b(p), (20)

Camera positions are represented by the posgs =
(Ri,¢1) and z.2 = (Rz,c¢2). It is assumed that; # .

A camera rotation matrid?; may be decomposed into three L' =Ri(L, x (Ly — ¢;))

rows represented by the unit vectaisy,, andZ;. The infinite 1%

line containing both camera positions is referred to as the l, =———. (22)
baselineof the systeni. A plane containing the baseline is 1/L;2 +L;f

referred to as arepipolar plang and the intersection of an ) )
epipolar plane with the camera imaging plane is referred 1§'€S€ are also known as the Placicoodinates for the line
as anepipolar line. It is assumed that estimates of camert9]. In vector form, this is writted; = h;(L). As with points,
intrinsic parameters (parameters describing the mapping fréfi¢ stereo projection ok is writtenl = (I1;ly).

camera pixel coordinates to metric units) and camera extrinsicGeomet”CE‘"yi_L/ is normal to the plane passing through
parameters (the spatial position of the cameras relative to tH& center of projection of the camera containing the pbint

manipulator coordinate system) are available. To simplify tffd the vectorL,. The projection ofL in a camera image
exposition, all observed values are expressedidrmalized 1S the intersection of this plane with the imaging plane. By

coordinatesin which values are scaled to metric units for &0rmalizing the projection as shown, the first two components
camera fitted with a unit focal length lens [29]. of I, encode the normal to the projection of the line, and the
1) Points: A point in three-dimensional space is written irfinal component is the distance from the line to the image
uppercase boldface Roman letters, @pr S. A subscripted Origin. Note that line projection is not defined whdp, is
lowercase boldface letter, e.g,, denotes the projection g Parallel to the viewing directioriLy — ¢;). _
in camerai. The stereo projection dP is written in lowercase  1he projection of a line in an image can be easily related to
boldface without the subscript, e.g.~ (p,;p,). The projec- the projection of points on the line. Létbe a Im_e containing
tion of a pointP = (z,y, z)* expressed in world coordinates” and S with L, directed fromP to S. Then it is easy to

to a normalized homogeneous vegior= (u;, v;, 1) is given Show thatl; is given by

by U =5 xp, (23)
' —_R(P—¢ r
P =R(P-¢) » I, = T (24)
p; =(ug,vi, l)T = 7 (16) V LS+ Ly

o . For any homogeneous vectgyin the image, it can be shown
In vector form, this is writterp; = g;(P). thatp, - I; is the distance between the point and the projection

_ To e;tima_te point location from a stereo observation, (16} the line in the image plane. It follows that a homogeneous
is rewritten in the form vector p; in camera image lies on the line projectiod; if

Ai(p)P = bi(p,) (17) and only ifp, - I; = 0.
In order to estimate the parameters of a line from a stereo
where observation, observe that the direction of the line can be
Foap — 2 computed by
A= [z?z —ﬂ (19 BTl x R
_ Z A Rk R (25)
and b; is [Ry & x Ry Lol
b, = Aic;. (19) It is assumed thaL, is some fixed observable point on the
o line, so its value can be computed from its stereo projection
For two cameras, by defining = (p;;p,),A(®) = as described above. Note that (25) is not defined Whemd

(A1(py); A2(p,)) andb(p) = (bi(p;); b2(p,)) the joint system [, are parallel. This occurs only wheh lies in an epipolar

3This differs somewhat from use in, e.g., [28] where the baseline is the Iilﬁ)éane' Hen(_:e any eplpolar plane IS a Smgl"lar region for stereo
segment defined by the two center points. line projection.



HAGER: A MODULAR SYSTEM FOR ROBUST POSITIONING 587

There is an ambiguity in the sign df, in this construction.  To solve this problem, first consider computing only pure
It can be resolved by computing the valugs = sign(l;- translationsy. The solution to this problem was presented in
hi(L)),i =1,2. If s;% s, <0, the assignment of line normals[5]. Defining D; = (S—¢;)-Z;, the Jacobian of point projection
to inputs isinconsisten{there is no line such that the directionis obtained by differentiating (16) yielding

of the input agrees with the specified direction of the line in 2D, _ Z’T((S ) &)

both images). Otherwise, the correct estimate of line direction B T e 1

is Sl.il ng' (S) -2 y; Di — Z; ((S - CL) -yl) . (28)
- Z ¢

Subsequently, the estimate bffrom I is written L().
Combining (28) with point estimation o from its stereo

I\V. POSITIONING SKILLS BASED ON POINTS AND LINES projection, the Jacobian for the error tewy), is

As discussed in the introduction, our paradigm for designing J,(8) = {ng (S(S))} ) (29)
feedback algorithms for hand-eye coordination proceeds as . J4.(5(s))
follows. Note thatJ,, is not square. This is becaugemaps three

1) We develop a small library of task-space kinematigalues—the Cartesian position of a point—into six values—the
constraints which have equivalent image error functionsomogeneous camera image locations of the projections of the
The feedback algorithms for achieving these constraingsint. Thus, the desired robot translation is computed by
are referred to here gwximitive skills. As discussed in
Section IlI-A, the equri!\jalence between task-space and v=—kJp(s)ep(s.p) k>0 (30)
image constraints guarantees that primitive skills aff this case, endpoint rotations are left unspecified and, unless
calibration insensitive positioning operations. otherwise noted, are set to 0.

2) For a particular application we produce, via composition |n order to compute the six degree of freedom velocity

of primitive skills from the library, a desired task-screw, observe that the motion $ffor a given velocity screw
space kinematic constraint. A calibration insensitive — (y,,) and center of rotation® is

feedback algorithm for achieving this constraint follows .

automatically by combining the equivalent image error S=wx(§-0)+wv. (31)
functions and associated Jacobians for each primitiygca| that the expressian x b can be written ask(a)b =
skill. _ _ _ sk(—b)a where the skew symmetric matrix is
3) Finally, we may superimpose desired motions onto the
kinematic constraints using (15). - 0 -z y
In this section three primitive positioning operations uti- sk((z.y,2)") =12 0 -z (32)
lizing point and line features are defined. These positioning vr 0

operations are illustrated in three example applications. Befining D(a) = (I|sk(—a)) wherel is the 3 by 3 identity
nally, the sensitivity of stability of the primitives to cameramatrix, (31) can be rewritten

calibration error is examined, and the effect of the choice of .

center of rotation is discussed. §=D(S-O)r. (33)

- o Thus, a value for the end-effector screw can be defined by
A. Three Positioning Primitives utilizing (31) and the matrix right inverse to compute a velocity
1) Point-to-Point Positioning:Recall the example of screw that performs the minimum norm six degree-of-freedom

Section Ill. Formally, the problem is: Given a reference poidfiotion equivalent to the pure translation needed to solve the
P fixed with respect to a target object and a pahtigidly ~Problem:
?;tach%d tfc; thte end—ter:fgtor, ;evelop a regulator that positions, _ D g( s)— O

e end-effector so =5. B G +

The corresponding task-space error function is = = kD™(5(s) = O)Jpp(s)eppls,p), k>0, (34)

_ This expression can be simplified if the dimensionality of
E(S,P)=5-P. (26) the image error can be made to match that of the kinematic

The solution to this problem is based the observation thg@nstraint. For example, if the cameras are arranged as a

two points not on the camera baseline are coincident in spA¢&reo pair so that thg axes are parallel, then one of the
if and only if their stereo projections are coincident. Thi§omponents of the camera observations can be discarded. Let

motivates the error function J;)p be J,,, with the two zero rows and the row corresponding
to the redundant error term removed. kgfs be the error term
ep(s,p) =s—p. (27) with the corresponding elements deleted. Then the Jacobian

. L . ) _relating the end-effector screw to stereo point motion is
Since the error function is a linear function of stereo point

projection the singular set of stationing configurations is Jpp6(0, 8) ZJ;,,(S)D(S(S) -0) (35)
exactly the singular set of the po!nt p_rolecnon f_unct|on. Thu%l,nol the end-effector screw is given by
the system cannot execute a positioning operation that requires

+

stationing at any point along the camera baseline. u=J;.6(0;8)ep6(s,p). (36)
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2) Point-to-Line Positioning: Given two reference point®  evaluated al = (a,b,c)? is
andq fixed with respect to a target object and a reference point

2
S rigidly attached to the end-effector, develop a regulator that 1 @ _‘2‘1’ 0
positions the end-effector so th& @, and.S are collinear. )= (a2 + b2)3/2 —ab b ) 0 o | (41)
The corresponding task-space error function is given by —ca —cb (a”+b7)
E,(P,Q,5)=(S—P)x (Q-P). (37) The Jacobian of the expressidf = Ry (L, x (Lq—¢1)) is

Although E,,; is a mapping intdR(3), placing a point onto a J1(L) = Ra(sk(Ly)|(sk(Ly)sk(O — La)
line is a constraint of degree 2. It is interesting to note that + sk(Lg — €1)sk(Ly)). (42)

this is a positioning operation which cannot be performed in o _ .
a calibration insensitive fashion using position-based contfPte thatifLq is chosen as the point of rotation of the system,

[30]. O = L, and (42) simplifies to

' Thg pqintsP and@ defiqe alinein space. Ldt param.e_ter-. JU(L) = Ry(sk(Ly)|sk(Lq — e1)sk(Ly)). (43)
ize this line. Then a functionally equivalent task specification

is: Given a reference lin rigidly attached to a target objectCombining this with the estimate df from its stereo projec-
and a reference poir§ rigidly attached to the end-effector,tion, the Jacobian is
develop a regulator that positions the end-effector so that

S e L. le(O 1 S) _ SgN(ll)Jil(‘g‘(l)) (44)
The corresponding task-space error function is given by s3 N(12)J5(L({D))
E(S,L) = (S — Ly) x L. (38) The singular stationing points are points along the camera
PR baseline.

The latter is more compact and will be used subsequently with
the understanding that any two points are equivalent to a lir&. Example Compositions

The equivalent error term fak;,, is based on the observa- g rror measures for the point-to-point and point-to-line

tion that for an arbitrary lind. that does not lie in an EpipOIaroperations can be used to define a number of higher degree
plane and a poinf not on the baselind; - p; =12 -p, =0 |inematic constraints.

if and only i_f P.e L. This fact can bg verified py recalling 1) Alignment: Consider Fig. 1(a) in which a visual posi-
that the projection ofZ, in a camera image defines a planggning operation is to be used to place a screwdriver onto
containing L. If the projection of P is on this line, thenP 5 sorew The desired task-space kinematic constraint is to
must be in this plane. Applying the same reasoning to a seccg";bn the axis of the screwdriver with the axis of the screw.
camera, it follows thatP” must lie at the intersection of theBecause the central axes of the screwdriver and the screw
planes defined by the two cameras. But, this is exactly tg, ot girectly observable, other image information must be
line L. Thus, define a positioning errey, as used to compute their locations. The occluding contours of the

s -1y screwdriver shaft and the screw provide enough information
ep(s,l) = L, 1 } (39) to determine the “virtual” projection of the central axis [30].
262 . . . . . .
The intersection of the axis with tip of the screwdriver and the
The Jacobian is top of the screw, respectively, form fixed observable points on
v each as required for line parameterization.
J,(0,5,1) =1 Jpps(0, 5) (40) One ppsg!blllty for solymg this rir_oblem is Eo exf[e_nd_ the
lg set of primitive skills to include a “line-to-line” positioning

primitive. A second possibility using only the tools described
whereJ ¢ is as defined in (29). The error function is a lineaabove can be developed by noting that the intersection of
function of line projection, hence the set of singular stationinge screw with the surface defines a second fixed point on
configurations are those which require placing a point ontlae screw. This motivates the following positioning problem:

line lying in an epipolar plane. Given a reference lind. rigidly attached to the end-effector
3) Line-to-Point Positioning:Consider now the following and two pointsS and T rigidly attached to a target object,
modification of the previous problem develop a regulator that positions the end-effector so that

Given a reference lin& rigidly attached to the end-effectorS ¢ L andT < L.
and a reference poin§ rigidly attached to a target object, This task can now be solved using two line-to-point oper-
develop a regulator that positions the end-effector so thattons. Define
S € L.
This problem has the same task error function and image- E, (S, T,L)= [
space error function as the previous problem, but rgw
depends on the time derivative bf By the chain rule, this Then, the equivalent image-based error is
derivative is composed of two terms: the Jacobian of the
normalization operation, and the Jacobian of the unnormal- ea(s,t,1) = |:epl(sv 1)} (46)
ized projection. The Jacobian of the normalization operation epi(t,1)

E,(T,L)
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P The task error is
i _ EPP(Sv‘P)
, E,(P,L,S.T)= { E(T.L) | (48)
M The corresponding image error and Jacobian result by

/ stacking the corresponding image error terms and Jacobians
for the primitive operations as above. The singular set is the
union of the singular sets of the primitives.
3) Six Degree-of-Freedom Positioningduppose an that
T application requires a stacking operation as illustrated in
Fig. 1(b). The desired task-space kinematic constraint is
\ to align one side the bottom of the upper block with the
corresponding side and top of the lower block, respectively.
/ This constraint forms a rigid link between the two blocks.
! Consider the following definition of a rigid link between end-
effector and target frames: Given three noncollinear, reference
points P, .S, andT rigidly attached to a target object, and two
/ nonparallel reference lines and M rigidly attached to the
S end-effector, develop a regulator that positions the end-effector
@ ®) so thatP € L,S € L, andT € M.

To see that these constraints fully define the position of the
end-effector relative to the target, note that positioning the
points P and S on L is the four degree-of-freedom alignment
operation described above. Whene L andS§ € L, satisfying
T € M can be accomplished by first rotating about the line
L until (T - My) x M,)-L, = 0. L, is now parallel to

. the plane defined bW and 7', so it is possible to translate
L along L until T ¢ M.
The task error is

© En(P,L)

E. (LMPST=|E,SL|. 49

Fig. 1. Examples of tasks using visual positioning. The thick lines and (LM, P,5,T) EPI(T’JW) (49)
points indicated tracked features. (a) Aligning a screwdriver with a screw. pl( ’ )

b) Stacking blocks. (c) Positioning a flo disk at a disk drive opening. . . .
®) 9 © g PPy PENNG- The corresponding image error and Jacobian result by

. ) ) . . stacking the corresponding image error terms and Jacobians
The line feature is associated with the moving frame, so thg; the primitive operations. The singular set for this operation
Jacobian is is any setpoint which forceE or M to lie in an epipolar plane.
Ja(Os.t) = [0 | 1)
This defines a collinearity constraint that aligns two points In the discussion thus far, the choice of origin for rotations
to an axis, but leaves rotation about the axis and translatibas been left free. The usual choice @ris O = 0, placing
along the axis free. Once the alignment is accomplishedtree center of rotation at the origin of the robot coordinate
motion along the alignment axis can be superimposed [usisgstem. However, by strategically placing, rotations and
(15)] to place the screwdriver onto the screw, and finally taanslation can be decoupled at a specific point leading to more
rotation about the alignment axis can be superimposed to tdimuitive” motions. For example, choosin@ to be the tip of
the screw. Note that the screw cannot be parallel to the camtra screwdriver causes the tip to undergo pure translation, with
baseline as this is a singular configuration for the componaeit rotations for alignment leaving the tip position fixed.
positioning operations. In this exampleO can be calculated directly using the
2) Positioned Alignment:Consider inserting a floppy disk point estimation techniques described above. This makes it
into a disk drive as shown in Fig. 1(c). The desired task-spapessible to completely parameterize Jacobian matrices in terms
kinematic constraint can be stated as placing one corner of tifeobservable quantities, and has the additional advantage
disk at the edge of the drive slot, and simultaneously alignireg reducing the effect of calibration error. For example, the
the front of the disk with the slot. This motivates the followinglacobian relating the end-effector screw to the motion of a
positioning problem: Given a reference poiRiton a lineL point P depends on the expressidh— O. Estimating both
rigidly attached to a target object and two reference pathtspoints and computing the difference cancels any constant
andT rigidly attached to the end-effector, develop a regulatoeconstructive errorg.g.an error in the position of the robot
that positions the end-effector so tHat= S andT € L using relative to the cameras. Furthermore, errors in point recon-
their stereo projections. struction due to miscalibration typically increase with distance

C. Choosing a Center of Rotation
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from the camera. IfP is close toO, the effect of nonlinear These two equations define an open-ended cone that is
reconstructive errors will be kept relatively small. bounded by lines forming angléswith the baseline. When

In a hierarchical control scheme, the desired center &k 0, the set of stable points is a bounded circular region
rotation in end-effector coordinates is needed in order to R R
parameterize the resolved rate control. Thus, in order to choose (y + cot(8))? + z* = cosec(h)?. (53)
an arbitrary center of rotation, its location relative to the ] ) ] ) ]
physical center of the wrist must be known. As above, iIHotAe_that the size qf the circle shrlnks q_u_|ckly as the_magmtude
order to minimize the effect of calibration and reconstructioff ¢ increases. This accords with intuition. For a fixed value
errors the desired wrist center should be set by computingﬁ%e and a pointP, decreasing has the effect of “pushing”
difference between estimates of the physical wrist center a§ estimated location of the observed point away from the
the desired origin. If the physical wrist center is not directif@meras. Eventually, the calibration describes a camera system
observable it is well known that any three noncollinear poinf¥hich could not physically produce the actual observations of

with known end-effector coordinates can be used to reconstrdet@nd P then becomes an unstable equilibrium. Numerical
its location [24, Ch. 14]. computation of the set of stable points for problems of higher

degree has shown qualitatively similar effects [5].

Suppose now tha = & and consider errors in the estimated
baselinel. In the closed-loop equation, the raﬁ;zﬁl appears

In the absence of noise and calibration error, the syste@s a gain term, and therefore does not affect stability of the
defined above are guaranteed to be asymptotically stablec@htinuous time system. Gain terms do however affect the
points where the Jacobian matrix is nonsingular. Implemestability of discrete time systems. The discrete time model for

tations of these algorithms have shown them be stable eveperfectly calibrated system with unit time delay is of the form
when exposed to radical errors in system calibration.

In this section, the sensitivity of stability to certain types ent1 = &n +tke, (54)
of calibration error is briefly examined. In particular, it is
well known that the accuracy of stereo reconstruction is modpere k is a gain coefficient and is the sampling time
sensitive to the length of the camera baseline and the relati@g@e over the sampling rate). This system has characteristic
camera orientation. Consider a 2-D coordinate system in whipalynomialz*+z+tk = 0 [27]. System stability is guaranteed
the camera baseline forms theaxis. The distance betweenwhen k <1/t. The system is overdamped #: <1/4 and
two cameras is parameterized by the length of the baselifg@derdamped itk > 1/4. Thus, for example, overestimating
I. The direction of gaze is parameterized by a vergence an§flé baseline distance by 10% has the effect of introducing
¢ where# = 0 means the cameras point along thexis. @ fixed gain factor of 1.1 into the closed-loop system and is
Positive values o denote symmetric vergence inward, anéherefore a destabilizing factor. Errors in any other coefficients
nega’[ive values denote Symmetric vergence Outwar£ hed that enter the equations as a scale faCtor, inClUding camera
{ denote the estimated values fnd 1, respectively. focal length and scaling from pixel to metric coordinates,
Consider the point-to-point control algorithm resulting frongXhibit similar effects. These parameters can typically be
2-D versions of expressions (16), (18), (19), and (29). As notégtimated quite precisely (easily to within 1%) so their effects
in Section 111, the closed-loop behavior of the resulting contréi'€ minute compared to the impact of errors in the relative
system at a setpoinP = (z,4)7 is described by a linear position, particularly orientation, of the cameras.
differential equation of the form

D. Sensitivity to Calibration Errors

V. EXPERIMENTS

P RN

¢=—Jpp(P)Jy, (P) = —M(P)e 0 Al of the primitive and composed skills described above

, ) P have been implemented and tested on an experimental visual
where J,,(P) is the true system Jacobian add,(P) rep- genoing system. The system consists of a Zebra Zero robot
resents the Jacobian matrix computed usirand 6 as well arm with PC controller, two Sony XC-77 cameras with 12.5
as observed values d?. As noted earlier, such a system isym |enses, and two Imaging Technologies digitizers attached
asymptotically stable aP’ if and only if the eigenvalues of 15 5 sun Sparc Il computer via a Solflower SBus-VME
M(P) have strictly positive real parts [27]. adapter. The workstation and PC are connected by an ethernet

First fix I = [ = 1 and consider the effect of errors injink. All image processing and visual control calculations
the estimate of camera vergence. Expression (50) for this c3gg performed on the Sun workstation. Cartesian velocities
was constructed using a symbolic mathematics package, apd continually sent to the PC which converts them into
the equations describing the points at which the system dsordinated joint motions using a resolved-rate controller
asymptotically stable were computed. Particularly simple ygperating at 140 Hz. The Sun-PC connection is implemented
representative solutions result when the physical cameras pej§fng an optimized ethernet package which yields transmit
straight aheadf(= 0) and# is allowed to range freely. When dejays below a millisecond on an isolated circuit. As the
¢ > 0, the region of stable points is bounded by two lines: system runs, it logs 5 min of joint motion information at 20

. Hz which can be used to examine the dynamic behavior of
Y :—tanA(e)(x -1 (51) the system. All test cases were designed not to pass near
y = tan(0)(z + 1). (52) singularities.
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The XVision tracking system [10] provides visual input
for the controller. XVision is designed to provide fast edge
detection on a memory-mapped framebuffer. In addition, it
supports simultaneous tracking of multiple edge segments, an
can also enforce constraints among segments. The experimer
described here are based on tracking occluding contours wit
edge trackers arranged as corners or parallel strips. In ass
experiments, the occluding contours were of high contrast s«
that other background distractions were easily ignored by the
tracker. Specifics of the tracking setup for each applicatio
are described below.

The hand-eye system was calibrated by tracking a poin ¥ ' ]
on the manipulator as it moved to a series of positions, 1
and applying a least-squares minimization to generate thi
calibration parameters [31].

A. Accuracy
Several experiments were performed to determine the pos

tioning accuracy and stability of the control methods. Sterec

images from the experimental setup are shown in Fig. 2. The

top set of images shows the system in a goal configuratior

where it is attempting to touch the corners of two 3.5 in

floppy disks. The disks are a convenient testing tool since

their narrow width (approximately 2.5 mm) makes them easy

to track and at the same time makes it simple to measure th

accuracy of positioning and orientation. Motions are defined

by tracking one, two, or three corners of the disks. The lengtt

of the tracked segments was 20 pixels, and the search are

around a segment was10 pixels. The cameras were placed

80 cm from the robot along the axis, 30 cm apart along the

y axis, and were oriented to point back roughly along the

axis of the robot with a vergence of approximately’ 10 (b)
Positioning to test the accuracy and repeatability of poingtg. 2. (a) The left camera eye view of the system touching the comers of

to-point positioning, the robot was guided along a squateo floppy disks. (b) The accuracy in depth with which the positioning occurs.

trajectory defined by the sides and top of a target disk. At each

endpoint, it descended to touch opposing corners of the disks.the CCD cameras. These only appear when the contrast

It was allowed to settle for a few seconds at each trajectosgross an edge becomes excessive.

endpoint and the accuracy of the placement was observed. Th&he entire visual control system (including tracking and

expected positioning accuracy at the setpoint depends on tleatrol signal computation) runs at a rate of 27 Hz. For these

error in edge localization. One camera pixel has a width tfals robot velocities were limited to a maximum of 8 cm/s.

approximately 0.01 mm. At 80 cm with 12.5 mm focal lengtfThe total time lag in the system (from images to robot motion)

lenses on both cameras, the expected vertical and horizomgadstimated as follows: the maximum frame lag (1/30 s) plus

positioning accuracy i£0.32 mm, and the expected accuracprocessing time (1/27 s) plus transmission delay from Sun

in depth is£1.75 mm. Consequently, the system should ke robot (measured at less than 1/1000 s) plus delay in the

able to reliably position the corners of the disks so that thegsolved rate control (1/140 s) yielding a worst case delay of

nearly touch one another. 0.079 s. Using the discrete-time model given in Section IV-
The system has performed several hundred cycles of poibt- this suggests that the system should first begin to exhibit

to-point motion under varying conditions over a period afinderdamped behavior at a proportional gain of 3.18.

several months. In nearly all cases, the system was able t®@everal trials were performed to test this prediction. Each

position the disks so that the corners touched. In fact, typidall consisted of having the system move from a fixed starting

accuracy was well below that predicted—usually less thgmosition to a setpoint. The proportional gain values were

a millimeter of relative positioning error. This is an ordewaried for each trial. Fig. 3 shows the recorded motions. As

of magnitude better than the absolute positioning precisiexpected, the system is well-behaved, exhibiting generally

of the robot itself. As expected, this error is independent sfnall corrections of0.6 mm about the setpoint for gains

the fidelity of the system calibration. Occasionally the systeof up to 3.0. At a gain of 4.0 slightly underdamped behavior

failed due to systematic detection bias in the edge trackingn be observed and at a level of 5.0 the system is clearly

system. These biasing problems are due to “blooming” effeacitaderdamped.
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Fig. 3. The position of the robot end-effector during execution of the sanidd- 4. The orientation of the robot end-effector while performing position-
point-to-point motion with various proportional gains. ing and alignment for varying gain levels. The values shown are degrees of
angle with theX — Z andY — Z planes.

B. Position and Orientation the direction along the optical axes (the depth direction) which

The point-to-point skill was combined with a point-to-lineexplains the lower accuracy. Also, in the Zebra robot the shaft
skill to examine the effectiveness of orientation control. Inpuincoders are mounted before the gear train driving the joints,
was provided by tracking an additional corner on both diskso the data reflects some hysteresis due to backlash in the
The point of rotation was chosen to be the corner of the diglear train. Despite these effects, it is clear from the graph
used to define the point-to-point motion in order to decouptbat the system is well-behaved for a gain of 1.5, it exhibits
translation to the setpoint from rotation to produce alignmergome minor oscillation for a gain of 2.0, and exhibits clear
Experimentally, the positioning accuracy of the system wascillation at a gain of 3.0. As before, this is well within the
observed to be unchanged. The accuracy of the alignmentespected performance limits.
the sides of the two disks was observed to be withih(°.

With the increased tracking load and numerical calculatiorfs, Calibration Insensitivity

the cycle time dropped to 9.5 Hz. At this rate, the system Experiments were performed to test the calibration sensitiv-
is expected to be overdamped to a gain of 1.7. Fig. 4 showgof the system. The point-to-point positioning controller was
the system response to a step input for varying gain valugged. The proportional gain was set to 2.0 and the system was
The values shown are the angles between thetaotis and allowed to settle at the setpoint. Then, the physical cameras
the worldz — z andy — z planes. As seen from the uppetwere perturbed from their nominal position while the system
graph, the system tends to exhibit a constant cyclic motievas running until clearly underdamped behavior resulted in

about the setpoint on the order £0.6° relative to they — 2  response to a small step input produced by jostling the target
plane and+0.05 relative to thex — z plane. The former is disk.
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First, the left camera was rotated inward. As noted in
Section IV-D, this is the type of miscalibration to which the
system is expected to be most sensitive. The system becan
observably underdamped after a rotation of7Both cameras
were then rotated outward. In this case the left and right
cameras were rotated 12.@nd 14.5, respectively, with no
observable instability. It was not possible to rotate the camera:
further and maintain the target within the field of view.
Next, the right camera was moved toward the left camera
to decrease the baseline distance. The initial baseline was 3 1
cm. According to the predictions in Section IV-D, the system |
should begin to exhibit signs of underdamped behavior with a r}
baseline distance éf= 30(2.0/3.24)= 18 cm. Experimentally, | .
at distance of 16 cm the system was observed to becom
underdamped. The cameras were then moved outward to
baseline of 60 cm with no apparent effect on system behavior.
Perhaps the strongest testament to the calibration insensi- @
tivity of the system is the fact that it has been demonstratec
dozens of times after placing the cameras by hand and ope
ating the system without updating the calibration. One reasot
calibration error does not become a problem is that the camer
field of view is a strong constraint on camera position and
orientation. Placing the cameras with the robot workspace
approximately centered in the image and with a baseline o
about 30 cm typically orients them within a few degrees
of their nominal positions. This level of calibration error is
tolerable for most normal operations.

D. Three Example Applications

The three applications described in Section IV-B were im-
plemented and tested to demonstrate the use of skills i
realistic situations. (b)

1) Screwdriver PlacementSection IV-B described the use.. o . . _

. . . g. 5. (a) A view of the tracking used to place a screwdriver onto a screw.

of an alignment constraint to place a screwdriver onto a SCreg A close up of the accuracy achieved. The screw in this picture is 8 mm
A system was constructed to determine the feasibility of this diameter.
operation. The objects were an unmodified wood screw with
a head diameter of 8 mm, and a typical screwdriver wittaused the tip to move slightly just before touching down,
its shaft darkened to enhance its trackability. Both the screvad to miss the designated location. These failures could be
and the screwdriver were tracked as parallel edge segmeaitgviated by monitoring the alignment error and only moving
as illustrated in Fig. 5(a). Because of the small size of thieward the screw when alignment is sufficiently accurate.
objects, the cameras were placed about 50 cm from the object8) Floppy Disk Insertion: The disk tracker and the tracker
in question. The baseline was 20 cm. Despite the charfge parallel lines were combined to perform the insertion of a
in camera configuration, the same system calibration wbgppy disk into a disk drive as described in Section IV-B. The
employed. The tracking system ran at 20 Hz without contrekperimental configuration and the tracking used to define the
calculations, and 12 Hz with control calculations. setpoint are shown in Fig. 6. The cameras were again moved

The screwdriver was placed in an arbitrary position in thand rotated to provide a better view of the drive slot, but the
robot gripper. Visual servoing was used to first perform agystem calibration was not recomputed. The floppy disk is
alignment of the screwdriver with the screw. Once aligned,za5 mm wide, and the disk slot is 4 mm wide. Over several
motion along the calculated alignment axis was superimposigidls, the system missed the slot only once due to feature
using (15) while maintaining the alignment constraint. Theistracking.
screwdriver was successfully placed near the center of th8) Six Degree-of-Freedom Relative Positioning:hree
screwhead in all but a few trials. There was no discernible erqooint-to-line regulators were combined to perform full six
in the alignment of the screwdriver with the screw. Fig. 5(tjegree of freedom relative positioning of two floppy disks.
shows the final configuration of one of the experimental runghe final configuration was defined using three corners of

In those cases where the system failed, the failure occurmeath disk to achieve the configuration pictured in Fig. 7.
because the robot executed a corrective rotation just befdhen correctly positioned, the disks should be coplanar,
touching the screw. Due to kinematic errors in the robot, thidrresponding sides should be parallel, and the disks should
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) . ) . . . ) Fig. 7. Th li fl isks. Ali i
Fig. 6. The robot inserting a disk into a disk drive. The slot is about 4 mlﬁllgm the(%ht c?ar%]eec:;nsci% ltjﬁgdtr;c:;ﬁr:gnof,véﬂaigf)py disks. (b) A live view

wide and the disk is 2.5 mm wide.

touch at the corner. Because the epipolar plane is a singu#asily be improved by changing the camera configuration to
configuration, the disks were rotated°3@om horizontal. The a wider baseline, improving the image-processing to be more
complete closed-loop system including tracking and contratcurate, or increasing the focal length of the cameras. The
operated at 7 Hz. current vision processing and control computation system uses
Experimentally, the accuracy of the placement was foumb special hardware (other than a simple digitizer) and could
to be somewhat lower than that reported for the previobe run on off-the-shelf PC's. Furthermore, since the entire
problems. Typically, orientation was withitt2 © of rotation system, including image processing, runs in software, moving
and positioning was within a few millimeters of the correcto a newer or more powerful system is largely a matter of
value. Most of the lower accuracy can be attributed to the fagicompiling. On current hardware, field-rate (60 Hz) servoing
that third point used for positionin@l” in Fig. 7) was located for simple problems is already feasible.
far from the corners used to define the the second (e Clearly, a wider variety of positioning skills must be de-
in Fig. 7). Thus, small errors in tracking the corners used {@loped, as well as a richer notion of skill composition.
defineM andT were magnified by the problem geometry. |n particular, all of the skills described here have focussed
on moving points and lines into “visual contact” with one
VI. DIsCUSSION another. Another natural type of motion is to move “between”
This paper has presented a framework for visual contryo visual obstacles, avoiding contact with either. Similarly,
that is simple, robust, modular, and portable. A particulavhile performing a task, there is often a natural “precedence”
advantage to the approach is that kinematic constraints drgiween skills. For example, as noted experimentally, the
motions can be chosen in the robot task space, yet implemenietion to place a screwdriver onto a screw should only take
using image-based feedback methods that are insensitiveplace when the tip of the screwdriver lies along the axis of the
system calibration. screw. Interesting work along these lines has been recently
The system is extremely accurate. As reported, the currgmesented by [32] and [33].
system can easily position the end-effector to within a few The robustness of visual tracking continues to be a major
millimeters relative to a target. This positioning accuracy coulgstoblem. In the experiments described above, the features used
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were relatively easy to distinguish and were never occlud€ds] R. L. Anderson, “Dynamic sensing in a ping-pong playing robtEEE

These limitations must be overcome before visual servoin

truly practical. Work is proceeding on occlusion detection ar{(ﬁi%]
compensation. In particular, the design of motion strategi&s]
that plan an occlusion-free path offline or online are of

interest. Offline vision planning using visibility models andzig;
a prior world model information has already been investigated
[34], [35]. Online motion compensation based on occlusioyq
detection does not appear to have been considered to date.

Work is also proceeding on extending the framework tg
. (20
more complex task representations. In recent work [30], i

was noted that projective invariants [36] provide a basis
for specifying robot positions and motion independent df!
geometric reconstructions, and consequently independent of
camera calibration. Development of these concepts is clg2]
rently underway, including both the visual tracking methods
needed to compute projective invariants, and the design gpgl
implementation of vision-based motion strategies that emplc[%]
invariants.
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