
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 6, NO. 6, DECEMBER 1990

Raw
p a r t s

713

Machine
L/u /

Station \

Deadlock Prevention and Deadlock Avoidance
in Flexible Manufacturing Systems Using

Petri Net Models

Abstract-Deadlocks constitute an important issue to he addressed in
the design and operation of flexible manufacturing systems (FMS’s). In
this paper, we show that prevention and avoidance of FMS deadlocks
can he implemented using Petri net models. For deadlock prevention,
we use the reachability graph of a Petri net model of the given FMS,
whereas for deadlock avoidance, we propose a Petri net-based on-line
controller. We discuss the modeling of the General Electric FMS at Erie,
PA. For such real-world systems, deadlock prevention using the reacha-
bility graph is not feasible. We develop a generic, Petri net-based on-line
controller for implementing deadlock avoidance in such real-world
FMS’s.

Key Words-Flexible manufacturing system (FMS), General Electric
FMS, deadlock prevention, deadlock avoidance, Petri Net models.

I. INTRODUCTION

N THIS paper, we investigate the use of Petri net (PN) I models in the prevention and avoidance of deadlocks in
flexible manufacturing systems (FMS’s). We first show that
PN’s constitute an effective modeling framework for real-
world FMS’s by taking the example of the General Electric
FMS (GE FMS) at Erie, PA. We then show that PN models
can be used in the prevention and avoidance of deadlocks.
Deadlock prevention refers to static resource allocation poli-
cies for eliminating deadlocks, whereas deadlock avoidance
refers to dynamic resource allocation policies. For deadlock
prevention, we use the reachability graph of the PN model to
arrive at static resource allocation policies. For deadlock
avoidance, we propose a PN-based on-line monitoring and
control system. We illustrate deadlock prevention for a sim-
ple manufacturing system comprising a machine and an auto-
mated guided vehicle (AGV) and observe that prevention can
be implemented effectively only for reasonably small sys-
tems. Deadlock avoidance is the preferred technique for
real-world FMS’s such as the GE FMS.

A . Deadlocks in Automated Manufacturing Systems
Automated manufacturing systems, including FMS’s, be-

long to the class of discrete event dynamical systems (DEDS)
that are gaining in prominence in the recent literature [l] . In
a typical FMS, raw parts of various types enter the system at
discrete points of time and are processed concurrently, shar-

Manuscript received November 11, 1988; revised June 8, 1990.
N. Viswanadham and Y. Narahari are with the Department of Computer

T. L. Johnson is with the Control Technology Branch, General Electric

IEEE Log Number 9038621.

Science and Automation, Indian Institute of Science, Bangalore, India.

R&D Center, Schenectady, NY 12301.

Fig. 1. Simple manufacturing system comprising an AGV and an NC
machine.

ing a limited number of resources such as numerically con-
trolled (NC) machines, robots, material handling system
(MHS), fixtures, and buffers. In such resource-sharing sys-
tems, deadlocks [2]-[4] constitute a major issue to be ad-
dressed at the design and operation phases. A deadlock is a
highly undesirable situation in which each of a set of two or
more jobs keeps waiting indefinitely for the other jobs in the
set to release resources. The occurrence of a deadlock can
cripple the entire system and renders automated operation
impossible. In addition, a deadlock, occurring in a subsystem
of the given system, can propagate to other parts of the
system, eventually completely stalling all activities in the
entire system. Deadlocks usually arise as the final state of a
complex sequence of operations on jobs flowing concurrently
through the system and are thus generally difficult to predict.
In an improperly designed FMS, the only remedy for dead-
lock may be manual clearing of buffers or machines and
restart of the system from an initial condition that is known to
produce deadlock-free operation under normal production
conditions. Both the lost production and the labor cost in
resetting the system in this way can be avoided by proper
design and careful operation.

To visualize a simple example of a deadlock in a manufac-
turing system, consider the system depicted in Fig. 1. There
is a load/unload (L/U) station at which raw parts are always
available. An AGV carries a raw part from the L/U station
to an NC machine, which carries out some operations on the
raw part. The finished part is carried by the AGV to the L/U
station, where it is unloaded. It is assumed that the AGV can
only carry one part at a time, and the NC machine can only
process one part at a time. In addition, the AGV takes a
certain amount of time to carry a part from L/U to machine
or from machine to L/U. However, if it is not carrying a
part, it can travel very quickly between the L/U and AGV.
Imagine the following sequence of events, starting with an
initial state in which the AGV and the machine are free, and
raw parts are available: 1) The AGV carries a raw part, say
part 1, and loads it onto the NC machine, which starts
processing part 1; 2) the AGV returns to the L/U station and

1 O42-296X/90/ 1200-07 13$0 1 .OO @ 1990 IEEE

7 14 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 6, NO. 6, DECEMBER 1990

carries another raw part, say part 2, to the machine but waits
for the machine, which is still processing part 1. Thus, the
AGV gets blocked waiting for the machine; 3) the machine
finishes the operations on part 1 and starts waiting for the
AGV to carry the finished part 1 to the L/U station. At this
juncture, the machine gets blocked waiting for the AGV. If
the machine and the AGV can only accommodate one part at
a time and there is no additional buffer space, the two
resources here are then involved in a deadlock since each
keeps waiting for the other indefinitely. Even if some buffer
space is provided for raw parts and finished parts in the
above system, a deadlock can still occur because the AGV
can fill the entire buffer with raw parts during the processing
of part 1 by the machine.

In the recent literature, several efforts have focused on the
problem of deadlocks in automated manufacturing systems
[5]-[9]. One of the major traditional applications of PN’s
[lo], [l l] has been in the deadlock analysis of concurrent
systems. In manufacturing systems, studies on deadlocks,
using PN-based models are presented in [5]-[8] and
[121 - [141. These studies essentially prove the existence (ab-
sence) of deadlocks using the invariants of the PN model. In
this paper, we address the important issues of prevention and
avoidance of deadlocks in automated manufacturing systems
using PN-based techniques. The terms prevention and avoid-
ance have been used in the Computer Science literature on
deadlocks [2] - [4] to mean static and dynamic policies, re-
spectively, for eliminating deadlocks. It is known that dead-
lock prevention policies that are usually implemented in the
design stage lead to inefficient resource utilization. Deadlock
avoidance policies that can be enforced during the operation
of a system lead to better resource utilization and throughput.

B. Outline of the Paper
Section 11 is devoted to a systematic introduction to the

notation of PN’s. The definitions presented are based on
those in [5], [lo], [ll], [15]-[17]. In Section 111, we demon-
strate the use of PN’s in the modeling of a real-world FMS
(namely, the GE FMS at Erie, PA) and present a generic
deadlock situation in the GE FMS. Sections IV and V are
devoted to deadlock prevention and deadlock avoidance,
respectively. In Section IV, we show that scheduling rules
for ensuring deadlock prevention in a given FMS can be
devised by carrying out an exhaustive path analysis of the
reachability graph of the PN model of the FMS. However,
the reachability graph for the PN models of real-world
FMS’s, such as the GE FMS, can contain tens of thousands
of states and arcs, and even off-line analysis may be in-
tractable. This provides the motivation for employing dead-
lock avoidance, which can be implemented without generat-
ing the reachability graph. In Section V, we first show for a
simple example that deadlock avoidance can be guaranteed
by looking ahead into the evolution of the system by a certain
number of steps. The process of looking ahead into the
system evolution can be done in a natural way using a PN
model of the system. We then propose an on-line monitoring
and control system that could avoid most deadlocks for any
given FMS. With a finite look ahead, deadlocks may not be

Fig. 2. (a) Petri net model of a single machine system; (b) initial marking
M, of the above model; (c) another marking M , of the above model.

totally avoided, but the probability of occurrence of deadlock
will diminish appreciably with increasing value for look
ahead. The proposed on-line controller can be used effec-
tively for real-world FMS’s such as the GE FMS.

II. PETRI NETS-AN OVERVIEW

We now present an overview of PN’s [lo], [l l] , [15]-[17]
and state the most relevant results. In the following, N
denotes the set of nonnegative integers.

Definition 2.1: A Petri net G is a four-tuple (P, T, IN,
OUT) where

P = { p l , p 2 , p 3 , * * , p , } is a set of places

T = { t , , t , , t , , * * - , t ,) is a set of transitions

P U T # 0 , ~ n T = 0

and where IN: (P x T) + N is ap input function that de-
fines directed arcs from places to transitions and where OUT:
(P x T) + N is an output function that defines directed arcs
from transitions to places.

Pictorially, places are represented by circles and transi-
tions by horizontal bars. If IN (p,, t J) = k , where k 1 1 is
an integer, a directed arc from place p , to transition tJ is
drawn with label k. If IN (p , , t,) = 0 , no arc is drawn from
p , to tJ. Similarly, if OUT(p,, t J) = k, a directed arc is
included from transition tJ to place p , , with label k if k > 1
and without label if k = 1. If k = 0, no arc is included from

Example 1: Let us consider a machine that processes one
job at a time. As soon as the processing is over, another job
is made available, and the machine starts processing again.
Fig. 2 depicts a PN model (PNM) of the above system. The
places and the transitions have the following interpretation:

p , Machine ready to process (machine “free”)
p 2 job waiting for processing
p 3 job undergoing machining (machine “busy”)
t , machining commences
t, machining finishes.

In the above example, places represent various conditions
in the system, and transitions represent the starting or finish-
ing of activities. For example, place p , models the condition
“machine is free”. We have assumed that the machine, if it
fails, will be repaired and will resume its operation on the

tJ to PI*

VISWANADHAM et al.: DEADLOCK PREVENTION AND DEADLOCK AVOIDANCE 715

job. As such, for the sake of simplicity, failures and repairs
have not been explicitly modeled in this PNM.

For the above PNM

p = { P , > P , , P 3 } ; T = { t , J 2 } ; and

I N (P , , t ,) = I N (p , , t ,) = I N (p , J ,) = 1

IN (PI f t 2) = IN (p , 9 t 2) = IN (p3 , t l) =

OUT(p , , t ,) = O U T (p 2 , t ,) = O U T (p 3 , t I) = 1

OUT (p , , t ,) = OUT (p , , t ,) = OUT (p 3 , t,) = 0.

Definition 2.2: Let 2 p be the powerset of P . We then
define functions ZP: T -+ 2 p and OP: T -+ 2 p as follows:

ZP(tj) = { p i ~ P : I N (p i , t j) # 0 } V t j € T

OP(t,) = { p i E P : OUT (p i , t,) # 0) V t, E T

where ZP(t,) is the set of input places of t, and OP(t,) is
the set of output places of t,.

Example 2: For the PN of Fig. 2(a)

I P (t ,) = OP(t2) = {PI, P2} and

OP(t ,) = ZP(t2) = { P3}.

Definition 2.3: A marking M of a Petri net G is a
function M : P -+ N . A marked Petri net W is a Petri net G
together with a marking defined on it. We denote it by (G ,
M) , and write W = (G , M) . We always associate an initial
marking M , with a given PN. M , will represent the initial
state of the system that the PN is modeling.

It can be noted that a marking of a PN with n places is an
(n x 1) vector and associates with each place a certain
number of tokens, which are represented by means of dots
inside the places.

Example 3: Fig. 2(b) gives a marked PN with marking
M , given by

Mo = [;/;;;I = [;]

[::::::I [I
The marking M of the PNM of Fig. 2(c) is given by

M , = M , (p 2) = 0 .

Definition 2.4: A transition ti of a PN is said to be
enabled in a marking M if

M (p i) 2 I N (p i , t j) V p i ~ I P (t ,) .

An enabled transition ti can fire at any instant of time. When
a transition t j enabled in a marking M fires, a new marking
M’ is reached according to the equation

M’(p,) = M (p i) + O U T (p i , t j) - IN(p i , t ,)Vp iEP .

We say marking M’ is reachable from M and write M -+ M’.
Example 4: In Fig. 2(b), transition t , is enabled in

‘j

b2 - 1 2 ‘ 4

(C)

(a) (b)
Fig. 3. (a), (b) Two Petri net models; (c) union of the above two Petri net

models.

marking M,. When t , fires, the marking M I is reached.
Transition t, is enabled in M I , and when t2 fires, the new
marking is M,. It can be seen that reachability of markings
is a transitive relation on the set of all markings. In addition,
by convention, we regard that a given marking is reachable
from itself in zero steps (that is, by firing no transition).

Definition 2.5: The set of all markings reachable from an
initial marking M , of a PN is called the reachability set of
M , and is denoted by R[M,I.

Example 5: It can be seen from Figs. 2(a) and (b) that

R[M,] = R [M ,] = { M o m , } .

Definition 2.6: Let GI = (P I , T,, IN,, OUT,) and G2 =
(P,, T,, IN,, OUT,) be two PN’s such that there exists no
pair (p , t) E (P I n P,) x (T , n T,) satisfying either

IN, (p , t) # 0 and IN, (p , t) # 0

O U T , (p , t) #OandOUT, (p , t) # O .

We define the union of GI and G , as the Petri net G = (P ,
T, IN, OUT), where P = PI U P,; T = TI U T,; IN =
IN, U IN,, and OUT = OUT, U OUT,. The union of any
finite number of PN’s nets is also defined likewise.

Example 6: The PN of Fig. 3(c) is the union of the Petri
nets in Figs. 3(a) and (b).

Definition 2.7: Given a marked net (G, M,), a reachable
marking M E R [M,] is called a deadlocked marking (or a
deadlock) if no transition is enabled in M . A marked net (G,
M,) in which no reachable marking is deadlocked is said to
be deadlock free.

We now introduce the notation of generalized stochastic
PN’s [16] (GSPN’s), which are a special class of timed PN’s.

Definition 2.8: A GSPN is a six-tuple (P , T , IN, OUT,
M,, F) where a) (P , T , IN, OUT, M,) is a marked PN, b)
T is partitioned into two sets T, of immediate transitions
and TT of timed transitions, c) F is a function with domain
R[M,] x TT, which associates to each t E TT in each ME

R[M,] a continuous random variable that indicates the firing
time of t in M , and d) each t E T, has zero firing time in all
reachable markings.

In the graphical representation of GSPN’s, a horizontal
line represents an immediate transition, and a rectangular bar
represents a timed transition. GSPN markings are classified
into two types: vanishing markings (those in which at least
one immediate transition is enabled) and tangible markings

or

716 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 6, NO. 6, DECEMBER 1990

TABLE I
DETAILS OF FIXTURE TYPES IN THE GE FMS

Part type operation fixtures available
Stage of Number of

..
509 OPlO 4
509 OP20 3
509 OP30 1

640
640
640

OPlO
OPlO
OP30

3
2
1

(those in which only timed transitions are enabled). In vanish-
ing markings, as a rule, only an immediate transition is
selected to fire even if timed transitions are enabled.

Example 7: Consider the PN of Fig. 2(b). Let t , be an
immediate transition denoting the starting of a machine oper-
ation and t , be a timed transition denoting the actual machin-
ing operation. If we associate to transition t , a random
variable equal to the processing time, this then becomes a
GSPN model. M , will then be a vanishing marking, and MI
will be a tangible marking.

III. MODELING OF GE FMS

In this section, we develop a PN model for the General
Electric FMS at Erie, PA, and exhibit typical deadlocks in
the GE FMS.

A . Architecture of GE FMS
The GE FMS is designed to manufacture locomotive parts

of two types called type 509 and type 640. Parts of type 509
undergo 17 operations in a sequence, and parts of type 640
undergo 18 operations in a sequence. The operations of each
part type are divided into three different stages called OP10,
OP20, and OP30.

There are 12 machines M1, M2; - * , M12, which are
organized as seven different workstations S1, S2, * * * , S7.
Of these, M1 and A43 are special vertical milling machines;
M4, M9, and M10 are large horizontal milling machines;
M5 is a small horizontal milling machine; M7, M14, and
M15 +re medium horizontal milling machines; M13 and
M17 are fixturing machines; M12 is the load/unload ma-
chine. Each workstation has two input buffers and one output
buffer. There is no central storage in this FMS.

For each part type, different fixture types are required for
the stages of operation OP10, OP20, and OP30. Thus,
there are six types of fixtures. The number of fixtures of each
type available in the GE FMS is given in Table I.

A part of a given type is loaded into the system and
fixtured onto a fixture meant for its OP10. The part goes
through several operations, and after finishing the stage
OP10, it is defixtured and then fixtured onto a fixture meant
for its OP20. After undergoing OP20, the part is again
defixtured and then fixtured onto a fixture meant for its
OP30. At the end of OP30, the part is defixtured and finally
unloaded from the system.

Fig. 4 shows the routing table for the GE FMS. This table
gives details of all operations on both part types. In addition
to the machines involved in the particular operation, the
routing table gives the processing times in minutes. These

processing times are not the actual processing times but are
those available from a simulation of the GE FMS.

There is an automated transporter that carries one part at a
time from any source workstation to any destination worksta-
tion. The transportation times are insignificant compared with
the processing times.

B. Petri Net Model of the GE FMS
In the PNM of the GE FMS, a place represents one of the

following: available machines in a workstation, busy ma-
chines in a workstation, blocked machines in a workstation,
parts waiting in an input buffer, parts waiting in an output
buffer, and fixtures of a particular type. A transition in the
PNM of the GE FMS represents one of the following six
epochs of events: 1) commencement of loading operation, 2)
commencement of processing (end of wait in input buffer), 3)
end of blocking of a machine (commencement of wait in
output buffer), 4) end of processing (beginning of blocking
phase), 5) end of wait in output buffer (beginning of wait in
input buffer of next machine), and 6) commencement of
fixture changeover operation.

In the GE FMS, each part of type 509 goes through 17
operations, whereas each part of type 640 goes through 18
operations (see Fig. 4). Thus, the overall operation of the GE
FMS involves 35 different types of operations. In terms of
PN representation, this means that the overall PNM of the
GE FMS is the union (see Definition 2.6) of the PNM’s of
the 35 individual operations [5], [131. Therefore, to construct
a PNM for the GE FMS, we first construct a PNM for each
of the 35 operations and coalesce these PNM’s using the
paradigm of union of PN’s. The detailed PNM’s are available
in [18].

C. Deadlock Situations in the GE FMS
It is reasonable to expect a complex system such as the GE

FMS to have several deadlocks. Here, we give an example of
a deadlock in the GE FMS. Consider a state of the GE FMS
in which the configuration of the workstations S1, S2, and
S3 is as shown in Fig. 5. The figure shows the two input
buffers of each station on the left, the machines in the
workstation at the center, and the output buffer of each
station on the right. The input and output buffers and all
machines except M5 carry a workpiece. The state of a
workpiece is described by Jpi, where p = 1 , 2 and i = 0,
1, 2, - * * , 17. Jpi refers to a job of type 509 or 640 (depend-
ing on whether p = 1 or p = 2) undergoing operation i .
Looking at the routing table of the GE FMS (Fig. 4), we can
see that the parts in the output buffers of 5’2 and S3 are
waiting for a slot in the input buffer of S1, whereas the part
in the output buffer of S1 is waiting for a slot in the input
buffer of either S2 or S3. However, the input buffers of S1,
S2, and S3 are full, and the machines M1, M3, M4, M9,
and M10 are blocked after finishing the processing of work-
pieces. A situation of this type leads to indefinite waiting,
which is never resolved and represents a deadlocked state.

Such a state of the system is reachable from the initial state
of the GE FMS, as can be seen from the following sequence
of events occurring in three phases.

VISWANADHAM et al.: DEADLOCK PREVENTION AND DEADLOCK AVOIDANCE 717

PART TYPE 509

ml
20 20 78 93 42 20

PART TYPE 509
OP 20

MACHINES INVOLVED -
P 1 - M12

P 2 - M13 or M17

P3 - M1 or M 3

P4 - M 5

P5 - M9 or M10

P 6 - M4 or M9 or M10

PART TYPE509
OP3 0

P I - M l

P8 - M I 4 or M15

P9 - M 7 or M14 or M15

59 26

P A R T TYPE 640
O P 2 0

PART TYPE 640
OP30

Fig. 4. Routing table of the GE FMS. In each table, the first row gives
operation numbers, the second row gives the machines for the operations,
and the third row gives the corresponding processing times.

Phase I : A part of type 509 and a part of type 640 are
admitted into the system. They finish OP10.

Phase 2: Three parts of type 509 and two parts of type
640 are allowed to enter the system and complete OP10.
Meanwhile, the two parts of phase 1 complete OP10.

Phase 3: Four parts of type 509 and three parts of type
640 are admitted into the system. Now, there are 14 jobs in
the system, and all 14 fixtures are utilized. These 14 jobs
eventually distribute themselves among stations S1, S2, and
S3 in the manner shown in Fig. 5.

Using the invariants [5] of the PNM of the GE FMS, it can
be shown formally that the above state corresponds to a
deadlocked marking [18]. Invariants can often be used to
prove the absence of deadlocks as well [5] , [6], [8], [l l] ,
[121. The invariants can be computed efficiently in the above
case by invoking Theorem 1 of [5] , which facilities the
computation of the invariants of the union of a finite number
of PN’s in terms of the invariants of the individual nets.

IV . DEADLOCK PREVENTION

An FMS can be considered to be a concurrent system with
several processes and resources. Processes correspond to
parts inside the system, whereas resources in an FMS are the
machines, input buffers, output buffers, conveyors, fixtures,
etc. Parts inside an FMS compete for these shared resources.
In the Computer Science literature [2] - [4], four conditions
have been identified as necessary conditions for the occur-
rence of deadlock. These include the following:

1) Mutual exclusion: A resource cannot be used by two
or more processes simultaneously,

2) No preemption: When a resource is being used, it is
not released unless the process using it finishes with it.

3) Hold and wait: There must exist a process that is
holding at least one resource and is waiting to acquire

Fig. 5. Deadlock situation in GE FMS.

additional resources that are currently being held by other
processes.

4) Circular wait: There must exist a set { p l , p z , * - * , p,}
of waiting processes such that p1 is waiting for a resource
that is held by p 2 , p , is waiting for a resource that is held by
pf, * * * , p n - , is waiting for a resource that is held by p , ,
and p , is waiting for a resource that is held by p l .

Deadlock prevention consists of falsifying one or more of
these necessary conditions using static resource allocation
policies so that deadlocks are completely eliminated. We now
show how the reachability graph of a PNM of a given FMS
can be used to arrive at resource-allocation policies that
enforce deadlock prevention. As an example, we consider the
single-machine, single-AGV system of Fig. 1. Fig. 6 shows a
PNM of this system and a description of the places and
transitions is given in Table 11. This is a GSPN model
(Definition 2.8) where we distinguish between immediate
transitions and timed transitions. Immediate transitions fire as
soon as they are enabled and represent logical changes in
states. Timed transitions fire a certain time after being en-
abled. We assume that these times are continuous random
variables. We designate t,, t , , t , , t , , t , , and t , as immedi-

718 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 6, NO. 6, DECEMBER 1990

f t1

110 pil; 42

b p4

Fig. 6. GSPN model of the simple manufacturing system comprising an
AGV and an NC machine.

TABLE II
DESCRIPTION OF THE GSPN MODEL OF FIG. 6

Places:

1 : AGV available
2 : Raw parts available
3 : AGV available to carry a raw part
4 : AGV available to carry a finished part
5 : AGV carrying a raw part to the NC machine
6 : AGV, with raw part, waiting for the NC machine
7 : NC machine available
8 : NC machine processing a part: AGV released
9 : NC machine waiting for AGV, after finishing processing
10 : AGV unloading the finished part
1 1 : NC machine processing a part: AGV not released
12 : AGV. not released during processing by Machine. unloading

Immediate Transitions:

1 : AGV assigned to raw part
2 : AGV assigned to finished part
3 : AGV starts transporting a raw part
5 : AGV released after findlng machine free
6 : AGV not released after finding machine free
8 : AGV Starts unloading a finished part

Timed Transitions:

4 : AGV carrying a raw part to the NC machine
7 : Machine processing a part: AGV released
9 : AGV carrying a finished part to L/U station
10 : Machine processlng a part: AGV not released
11 : AGV, not released during processing by machine, carrying

a finished part

a finished part to L/U Station

ate transitions and t4, t,, t , , t , , , and t , , as timed transi-
tions. In the above PNM, there are two sets of conflicting
immediate transitions: { t,, t 2 } and { t,, t 6 } . The set { t,, t 2 }
models the assignment of AGV to a raw part or a finished
part. The set { t,, t 6) models whether or not the AGV is
released after carrying a part from the L/U station to the
machine and finding the machine free. t, represents the
release of the AGV, whereas t6 models the holding of the

Deodlock

@=$

Deadlock
Fig. 7. Reachability graph of the GSPN model of Fig. 6. Single circles are

vanishing markings, double circles are tangible markings, and triple
circles are deadlocks.

TABLE III
DESCRIPTION OF THE REACHABLE MARKINGS OF THE GSPN MODEL OF FIG. 6

Marking pl p2 p3 p4 p5 p6 p7 p8 u9 u10 o l l 012 ~ . . _ . _ ____________--- - - - -_____________________--- - - -~~--- -~~~~~--- - - - - - -~
M 1 l 0 0 0 0 1 0 0 0 0 0

0 1 ' 0 1 0 0 1 0 0 0 0 0
LYy 0 1 1 0 0 0 1 0 0 0 0 0

M2 0 1 0 0 1 0 1 0 0 0 0 0
M3 0 1 0 0 0 1 1 0 0 0 0 0
M4 O l O O O O O O O O l O
M5 0 1 0 0 0 0 1 0 0 0 0 1
M6 1 1 0 0 0 0 0 1 0 0 0 0
M7 O l O O O O O l O O O O
M8 0 1 0 1 0 0 0 0 1 0 0 0

0 1 0 0 0 0 1 0 0 1 0 0

0 0 1 0 0 l 0 0 0 0
::, 0 1 1 0 0 0 0 1 0 0 0 0

M13 0 1 0 0 1 0 0 0 1 0 0 0
M]! 0 1 o o 0 1 0 0 1 o n n

AGV until the machine finishes processing and the AGV
unloads the finished part.

Fig. 7 depicts the reachability graph of the above PNM.
There are 16 markings: M,, M , , - * - , M,5. The description
of these markings is given in Table III. We distinguish the
markings into three classes: vanishing markings (those in
which at least one immediate transition is enabled), tangible
markings (those in which only timed transitions are enabled)
[16], and deadlocks in which none of the transitions is
enabled. Vanishing markings model the states in which the
system stays for zero time, and they only indicate logical
changes of state. Tangible markings are those in which the
system will sojourn for nonzero time due to the progress of
one or more timed activities in the system. Deadlocks are
absorbing states in which the system will have to stay for-
ever. In Fig. 7, vanishing markings are shown as single
circles, tangible markings as double circles, and deadlocks as

n

VISWANADHAM et al.: DEADLOCK PREVENTION AND DEADLOCK AVOIDANCE 719

triple circles. The labels on the arcs indicate the transitions to
be fired. From the graph, the following can be inferred:

1) The deadlock M2 can be prevented by firing t , in
preference to t , in the marking M,, that is, the deadlock
M2 can be prevented by assigning the AGV to only a raw
part when no finished part is waiting.

2) The deadlock Mi5 can be prevented by firing t , in
preference to t, in the marking M4. This means that we do
not release the AGV after the AGV transports a raw part to
the machine, and the machine takes up the raw part for
processing. In this case, we hold the AGV until the machine
finishes processing and the AGV unloads the finished part.

3) The deadlock Mi5 can also be prevented by firing t,in
preference to t l in marking M,, that is, by assigning the
AGV to a finished part when a finished part is waiting.

As is shown above, an exhaustive path analysis of the
reachability graph can lead to a set of resource allocation
policies that prevent the occurrence of deadlocks. It is enough
to do such an analysis just once in order to devise deadlock-
prevention policies. Such a method has earlier been used in
the context of safety critical systems by Leveson and Stolzy
~ 9 1 .

V . DEADLOCK AVOIDANCE

Deadlock prevention is accomplished by static policies and
is known to result in poor resource utilization [3], [4] . In
addition, the reachability analysis technique to arrive at dead-
lock prevention policies can become infeasible if the state
space is very large, as in the case of a real-life FMS such as
the GE FMS. Deadlock avoidance is the preferred alternative
in such cases. In deadlock avoidance, we attempt to falsify
one or more of the necessary conditions in a dynamic way by
keeping track of the current state and the possible future
conditions. The idea is to let the necessary conditions prevail
as long as they do not cause a deadlock but falsify them as
soon as a deadlock becomes a possibility in the immediate
future. As a result, deadlock avoidance leads to better re-
source utilization.

In this section, we present an on-line monitoring and
control system, based on PN’s, for implementing deadlock
avoidance. This system will avoid most of the deadlocks and
for deadlocks that are not predicted by this scheme, recovery
mechanisms have to be used. We first present some defini-
tions.

Definition 5.1: The look ahead of a deadlock-avoidance
policy is the number of steps of future evolution of the
system computed before making a resource-allocation deci-
sion.

Definition 5.2: Given a PNM (P, T, IN, OUT, M,), a
marking M E R [M ,] is said to be blocked if there exists a
t E T such that a) t has two or more input places, b) there
exists a p EIP(t) such that M (p) 2 IN(p , t), c) t is
disabled in M.

Note: The motivation for the above definition is to
capture markings in which processes are blocked waiting for
resources. Blocking can be represented by a partially enabled
transition having two or more input places. A blocked mark-

ing is to be distinguished from a deadlocked marking in
which all transitions are disabled (Definition 2.7). Blocking
is a necessary but not a sufficient condition for the occurrence
of a deadlock. A blocked marking is often a good portent of a
deadlock.

Definition 5.3: A marking M of a PNM is designated safe
if it is neither blocked nor deadlocked.

Note: The term “safe” here is inspired by the Operat-
ing Systems literature [2] - [4] and is not to be confused with
the safeness property of PN’s in classical PN literature.

Notation: A marking M can only be of three types:
safe, blocked, and deadlocked. We use the labels S , B , and
D , respectively, to designate a marking.

Definition 5.4: Given a PNM (P , T, IN, OUT, M,) and
a marking M E R [M,] , the future set of markings reachable
from M in i steps i 2 0 is denoted and defined by L, (M) =
{(a, M‘, t) , where M’ is reachable from M in exactly i
steps by firing the transition sequence and is of type t where
t may be S , B or D } .

Note: Given a marking M of type t , we have

where E is the null transition sequence. In addition, for
i 2 0, j 2 0, if M‘ EL ;(M), then the elements of Lj(M’)
will be contained in L,+ j (M) . Hence, if L,+,(M) is known,
Lj(M’) can be obtained. We first motivate PN-based dead-
lock avoidance using an example and then discuss the on-line
controller.

A . Example to Illustrate Deadlock Avoidance

Here, we consider again the single-machine- single-AGV
system depicted in Fig. 1. A PNM of this system is shown in
Fig. 6, and the reachability graph is shown in Fig. 7. We
discuss this example for look ahead 1. Therefore, we look at
the L , (*) function only. Let us say we start in the initial
marking M,. This is a vanishing marking in which two
conflicting immediate transitions t , and t , are enabled.
When we fire t , , we obtain marking Mi, which is a safe
state. When we fire t , , we obtain marking M 2 , which is a
deadlock. Thus, we have

To avoid the deadlock, we have to fire t , in preference to t , ,
that is, we should assign the resource AGV to a raw part. In
this case, we have predicted a deadlock with a look ahead of
1. After firing t , , the system reaches the state M,. M , is a
vanishing marking in which only one immediate transition is
enabled. We have

Therefore, we can fire t , , which means that the AGV starts
transporting the raw part. M, is a tangible marking that
represents the transport of a raw part by the AGV from the
L/U station to the machine. As soon as the AGV finishes,
the PN marking can be updated to M4. State M4 is a
vanishing marking in which two conflicting immediate transi-

720 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 6 , NO. 6 , DECEMBER 1990

Actuators
4

tions ts and t6 are enabled. We see that

L 1 (M 4) = { (t 6 9 M 5 , s) , (t 5 r M 7 7 s)}.
Since both of the next states are safe, we can choose any
transition to fire. Let us choose t,, that is, we release the
AGV after the AGV reaches the machine and finds the
machine available. Thus, the current marking is M7, which
is, again, a vanishing marking with two conflicting transitions
t , and t , . We find

Physical Smsors Data
S y s t e m >Acquisition .

FMS System

The choice here is between assigning the released AGV to a
raw part or a finished part. Let us say we fire t , , that is, we
assign the AGV to the next raw part (which is already
available). We reach the marking M,,, which is a vanishing
marking with t , as the only enabled transition. We have

The firing of t3 means that the AGV starts transporting a
fresh raw part. The marking M I , is a tangible marking in
which the machine and the AGV are both busy. Depending
on whichever finishes faster, we will reach M13 or M14. If
we assume that the AGV transport time and the machine
processing time are independent continuous random vari-
ables, then the AGV and the machine cannot finish simultane-
ously. We have

Since t4 and t7 are activities in the physical system, we do
not have any control over their progress. However, whether
t4 or t , fires first, we end up in a blocked state. In M I , , the
AGV is blocked while waiting for the machine (t s and t , are
disabled), whereas in MI, , the machine is blocked while
waiting for the AGV (t s is disabled). Let us say that the
AGV finishes first and that we reach the marking MI, . Now

M I , is a tangible marking, and eventually, t7 fires, resulting
in the deadlocked state M I S , in which both the AGV and the
machine are blocked. Thus, using a look ahead of 1, we are
able to avoid only one deadlock (M 2) . This will be the case
with look aheads of 2 and 3 as well. It can be shown that a
look ahead of 4 will avoid both the deadlocks. We can make
the following observations:

1) Greater look ahead implies greater probability of avoid-
ing deadlocks. However, there can be systems where only
infinite look ahead will guarantee total deadlock avoidance.
For this reason, deadlock avoidance may have to be supple-
mented by deadlock recovery.

2) In the case of look ahead equal to 1, the deadlock M I ,
is predicted in M13 or M14. In the case of look ahead of 2,
the deadlock is predicted in M,, (two steps earlier), and if
look ahead equals 3, the deadlock is predicted in M,, itself.
Therefore, the cost of deadlock recovery becomes less with
increasing look ahead.

3) The PN framework is suitable for implementing dead-
lock avoidance. Vanishing markings with conflicting transi-

tions naturally model resource-allocation decisions; tangible
markings model the progress of timed activities, which are
not controllable once started. The evolution of the system can
be easily determined by computing the future markings using
the L function.

B. On-line Controller for Deadlock A voidance
We now present an on-line controller for deadlock avoid-

ance in any FMS using PN’s. The controller is basically an
on-line monitoring system. Fig. 8 shows the components of
the proposed controller. These components are described
below.

Physical System: This block corresponds to the actual
FMS in operation.

Data Acquisition System: This unit is responsible for
gathering, using various sensors, status information of all
resources in the FMS. The output of this unit can be used to
determine the current marking of the PNM of the FMS.

Petri Net Model: This corresponds to a data structure that
efficiently stores the PNM of the FMS. The construction of
this model can be carried out easily using the paradigm of
union of PN’s, as is detailed in Section III. This data
structure also includes a field for the current marking, which
is updated constantly by the real-time controller.

Set of Future Markings: This is another data structure
that efficiently stores the sets L , (M) , L , (M) ; . . , L , (M) ,
where n is the look ahead employed and M is a current
marking. These sets are crucially used by the real-time
controller to select the immediate transitions to fire. When
the marking of the PNM changes, the L sets for the new
marking can be computed easily from those of the current
marking.

Real-time Controller (RTC): The inputs to this unit are
the look ahead to be employed and the sensor output data for
the current state of the FMS. The controller has access to the
two data structures, namely, PNM and the set of future
markings. This unit mainly performs three functions in each
iteration.

1) Determination of the current marking of the PNM.
2) Classification of the current marking into deadlock,

3) Looking ahead into the system evolution and initiation

The RTC first checks if the previous marking, say P (not
to be confused with the notation for the set of places for a

tangible marking, or vanishing marking.

of appropriate actions.

VISWANADHAM et al. : DEADLOCK PREVENTION AND DEADLOCK AVOIDANCE 72 1

Algorithm: Real-Time Controller
Input: (1) Petri Net Model of the FMS. (2) n, the look-ahead.

(3) P , the previous marking. (4) Ll(P), L2(P). ..., L,(P).
Output: Appropriate Scheduling Decision or Deadlock Recovery

Action
Local Variables: i (integer); deadlock-flag (boolean);
begin

if P tangible then compute the current marking M after
reading appropriate sensor outputs

else compute the current marking M by firing in P the
transition that was selected to fire;

Compute E , the set of enabled transitions in M;
if E = ,@ {M is a deadlock) then initiate deadlock recovery
else if E contains only timed transitions JM is tangible) then

initiate monitoring of activities in progress
else 4 M vanishing1 begin

i:= 1;
repeat

compute Li(M) using Li+, (P) ;

if L.(M) contains only deadlocks then deadlock-
flag: = true

else i: = i+l
until (i = n+l or deadlock-flag);
if deadlock-flag then initiate appropriate advance

else begin {Ln(M) contains at least one safe state
deadlock-recovery

or one blocked state)
if L (M) contains at least one safe statethen

select for firing a n immediate
transition that leads to one of these
safe states

else select for firing an immediate transition
that leads to one of the blocked states

end
end

end.
Fig. 9. Informal algorithm for the real-time controller.

PNM), was tangible or vanishing. If P was tangible, then it
obtains the current marking M by reading off appropriate
sensor data output values. This is because in a tangible
marking, several activities are in progress, and the next
marking is decided by the activity that finishes first. The
finishing of an activity is indicated by a sensor, which is read
off by the data acquisition system. If the previous marking P
was vanishing, then the RTC computes the current marking
M as the marking obtained by firing in P the transition that
was selected to fire in the previous iteration. Having deter-
mined M , the RTC updates the PNM to reflect the change in
marking.

In the second step, the RTC classifies the current marking
M into a deadlock or a tangible marking or a vanishing
marking. To this end, the RTC first computes the set E of
enabled transitions in M . If E is empty, then M is a
deadlock. If E contains only timed transitions, then M is a
tangible marking; otherwise, M is a vanishing marking. The
actions of the RTC now depend on this classification.

a) If M is a deadlock, the RTC initiates appropriate
deadlock recovery actions or informs the operator if neces-
sary.

b) If M is a tangible marking, then one or more activities
are in progress. Therefore, we have to monitor these activi-
ties to determine the next state of the FMS. The RTC in this
case generates signals to activate appropriate sensors to moni-
tor these activities. Note that typical activities include pro-
cessing by a machine, part transfer by a robot, loading of raw
parts, unloading of finished parts, transport of semi-finished
parts, etc.

c) If M is a vanishing marlung, then at least one immedi-
ate transition is enabled and a decision may be required to be
made about assigning or releasing some resource. Here, we
use the look ahead into the system evolution up to n steps,
where n is the look ahead. We select an immediate transition
to fire to avoid a deadlock as far as possible. First, the RTC
computes L 1(M) by selecting appropriate elements of
L , (P) , where P is the previous marking (note that L l (M)

722 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 6, NO. 6, DECEMBER 1990

is a subset of L,(P)) . If L 1 (M) contains only deadlocks,
then the RTC initiates advance deadlock recovery. Other-
wise, it computes L2(M) using L3(P). Again, it repeats the
steps as in the case of L , (M) . If each L , (M) contains no
deadlocks for i = 1, 2;.- , n - 1, it computes L, (M) ,
where n is the look ahead. If L, (M) contains only dead-
locks, the RTC initiates advance deadlock recovery. If
L,(M) contains at least one safe state, it will select for firing
an immediate transition enabled in M that would lead to a
safe state at the end of n steps. If L, (M) contains no safe
states, the RTC selects for firing an immediate transition that
would lead to a blocked state after n steps. The immediate
transition that is finally chosen to fire will depend on the
actual system. Depending on the immediate transition se-
lected to fire, appropriate actuators are set.

Fig. 9 gives (in a Pascal-like language) an algorithm that
describes the working of the RTC in each iteration. It can be
seen that such a controller can, in principle, be implemented
for real-world FMS’s such as the GE FMS.

VI. CONCLUSION

In this paper, we have demonstrated the use of Petri nets in
the modeling of FMS’s and in prevention and avoidance of
deadlocks in FMS’s. We have shown that the paradigm of
union of Petri nets can be used in a bottom-up construction of
large Petri net models, as in the case of the General Electric
FMS. The Petri net model captures all behavioral characteris-
tics of an FMS, including deadlocks. Deadlocks can cause
serious performance degradation, and eliminating them is
very important for effective automated operation of FMS’s.
Deadlock handling can take two forms: deadlock prevention
in which deadlocks are eliminated by static resource alloca-
tion policies and deadlock avoidance in which dynamic poli-
cies are employed to avert deadlocks just in time. We have
shown the following:

a) Deadlock prevention policies can be devised by con-
ducting an exhaustive path analysis of the reachability graph
of a PN model of the given FMS; such an option is feasible
for reasonably small systems.

b) Deadlock avoidance can be implemented effectively by
an on-line monitoring and control system that employs the
PN model to look ahead into the future evolution in order to
make a resource-allocation decision; the rare occurrence of
deadlocks that cannot be captured by the look ahead that is
employed can be handled by suitable deadlock-recovery
strategies. Deadlock avoidance is feasible for large real-world
FMS’s, such as the GE FMS.

There are two important issues for future investigation: 1)
software implementation of the on-line controller for dead-
lock avoidance and 2) quantitative analysis in the context of
deadlocks.

An effective software implementation of the on-line con-
troller for deadlock avoidance will have to consider the
following issues:

1) Suitable data structures for the PN model and the set of

2) classifying a given marking of the PN model into a
future markings

tangible marking or a vanishing marking and designat-
ing it as safe or blocked or deadlocked

3) Efficient computation of future markings and firing
sequences for the current marking from those of the
previous marking

4) Effective deadlock-recovery strategies.

With respect to a quantitative study of FMS’s with dead-
locks, there is good potential in using the theory of Markov
chains with absorbing states [20] to compute the mean time to
deadlock and the mean number of parts produced before
deadlock. In addition, GSPN models, which have been used
in [21] and [22] for performance evaluation of FMS’s, can be
used for comparing the relative effectiveness of different
deadlock-prevention algorithms.

REFERENCES

Y. C. Ho, “Performance evaluation and perturbation analysis of
discrete event dynamic systems,” ZEEE Trans. Automat. Contr.,
vol. AC-32, no. 7, pp. 563-472, July 1987.
E. G. C o h a n , Jr., M. J. Elphick, and A. Shoshani, “System
deadlocks,” ACMComput. Surveys, vol. 3, no. 2, pp. 67-78, June
1971.
A. N. Habermann, “System deadlocks,” in Current Trends in
Programming Methodology, Vol. I11 (K. M. Chandy and R. T.
Yeh, Fds.). Englewood Cliffs, NJ: Prentice-Hall, 1977, pp.

J. L. Peterson and A. Silberschatz, Operating System Concepts.
Reading, MA: Addison-Wesley, 1985 (2nd ed.).
Y. Narahari and N. Viswanadham, “A Petri net approach to mod-
elling and analysis of flexible manufacturing systems,” Annals Oper.
Res., vol. 3, pp. 449-472, 1985.
H. Alla, P. Ladet, J. Martinez, and M. Silva, “Modelling and
validation of complex systems by Petri nets: Application to FMS,” in
Lecture Notes in Computer Science, Vol. 188. New York:
Springer-Verlag, 1985, pp. 15-32.
M. Kamath and N. Viswanadham, “Applications of Petri net based
models in the modelling and analysis of flexible manufacturing sys-
tems,” in Proc. 1986ZEEE Conf. Robotics Automat., Apr. 1986,

J. Martinez, H. Alla, and M. Silva, “Petri nets for specification of
FMS’s,” in Modelling and Design of FMS (A. Kusiak (Ed.)).
New York: Elsevier, 1986, pp. 389-406.
E. S. Acree and M. L. Smith, “Simulation of a flexible manufactur-
ing system- Application of computer operating system techniques,”in
Proc. 18th ZEEE Simulation Symp., Mar. 1985, pp. 205-216.
J. L. Peterson, Petri net Theory and the Modelling of Systems.
Englewood Cliffs, NJ: Prentice-Hall, 1981.
W. Reisig, “Petri nets: An introduction,” in EATCS Monographs
on Theoretical Computer Science. Berlin: Springer-Verlag, 1985.
N. Viswanadham and Y. Narahari, “Coloured Petri net models for
automated manufacturing systems,” in Proc. 1987 IEEE Znt. Conf.
Robotics Automat., Mar.-Apr. 1987, pp. 1985-1990.
Y. Narahari, “Petri net-based techniques for modelling, analysis, and
performance evaluation,” Doctoral dissertation, Dept. Comput. Sci.
Automat., Indian Inst. Sci., Bangalore, India, July 1987.
C. L. Beck and B. H. Krogh, “Models for simulation and discrete
control of manufacturing systems,’’ in Proc. Znt. Conf. Robotics
Automat., Apr. 1986, pp. 305-310.
T. Murata, “Modelling and Analysis of Concurrent Systems,” in
Handbook of Software Engineering (C. R. Vick and C. V. Ra-
mamoorty Eds.). New York: Van Nostrand Reinhold, 1984, pp.

M. A. Marsan, G. Balbo, and G. Conte, “A class of generalized
stochastic Petri nets for the performance analysis of multiprocessor
systems,” ACM Trans. Computer Systems, vol. 2, no. 2, pp.
93-122, May 1984.
J. B. Dugan, K. S. Trivedi, R. M. Geist, and V. F. Nicola,
“Extended Stochastic Petri Nets: Applications and analysis,” in
Proc. Performance ’84 (Paris, France), Dec. 1984, pp. 507-519.
N. Viswanadham, Y. Narahari, and T. L. Johnson, “Petri net-based
investigations on the General Electric flexible manufacturing system,”

256-297.

pp. 312-316.

39-63.

VISWANADHAM et al. : DEADLOCK PREVENTION AND DEADLOCK AVOIDANCE 723

Tech. Rep., Dept. Comput. Sci. Automat., Indian Inst. Sci., Banga-
lore, May 1987.
N. G. Leveson, and J . L. Stolzy, “Safety analysis using Petri nets,”
IEEE Trans. Software Eng., vol. SE-13, no. 3, pp. 386-397, Mar.
1987.
K. S . Trivedi, Probability and Statistics with Reliability, Queue-
ing, and Computer Science Applications. Englewood Cliffs, NJ:
Prentice-Hall, 1982.
G. Balbo, G. Chiola, Franceschinis, and G. M. Roet, “Generalized
stochastic Petri nets for the performance evaluation of FMS,” in
Proc. IEEE In!. Conf. Robotics Automat. (Raleigh, NC), Mar.-
Apr. 1987, pp. 1013-1018.
N. Viswanadham and Y. Narahari, “Stochastic Petri nets for perfor-
mance evaluation of automated manufacturing systems,” Inform.
Decision Teehnol., vol. 14, pp. 125-142, 1988.

N. Viswanadham (SM’86) received the Ph.D.
degree in 1970 from the Indian Institute of Science
(IISc), Bangalore, India. Since August 1987, he
has been on the faculty of IISc, where currently, he
is a Professor and chairperson of the Department
of Computer Science and Automation. He has held
several visiting appointments at the University of
New Brunswick, the University of Waterloo, and
the General Electric Corporate Research and De-
velopment Center. He was a GE Research Fellow
during 1989. Since 1981, his research investiga-

tions have been in the areas of automated manufacturing systems and
fault-tolerant control system design. His current research interests are in the
areas of fault-tolerant control system design, large-scale dynamic systems,
flexible manufacturing systems, and distributed computing systems. He is the
author of more than 55 referred journal publications and 60 conference
papers. He is a joint author of a book entitled Reliability in Computer and
Control Systems (North-Holland, 1987). He is currently an Associate
Editor at large for the IEEE TRANSACTIONS ON AUTOMATIC CONTROL,
Associate Editor of the Journals: Control Theory and Advanced Technol-
ogy, (MITA Press, Japan); Information and Decision Technologies
(North-Holland, Amsterdam); Intelligent and Robotics Systems (Kluwer
Academic); and Sadhana (Indian Academy of Sciences).

Dr. Viswanadham is a Fellow of Indian National Science Academy and
the Indian Academy of Sciences and Indian National Academy of Engineer-
ing.

Y. Narahari received the M.E. degree in com-
puter science in 1984 and the Ph.D. degree in 1987
from the Department of Computer Science and
Automation, Indian Institute of Science (IISc),
Bangalore. His Doctoral Dissertation was on Petri
net-based performance analysis of flexible manu-
facturing systems.

He is currently an Assistant Professor in the
Department of Computer Science and Automation
at IISc. His current research is focused on stochas-
tic modeling of automated manufacturing systems

and on performance modeling of distributed computing systems. He has
several research publications in these areas.

Timothy L. Johnson (S’69-M’72) received the
S.B., S.M., and Ph.D. degrees in electrical engi-
neering and computer science from the Mas-
sachusetts Institute of Technology (MIT), Cam-
bridge, in 1968, 1969, and 1972, respectively.

He is currently Manager of the Control Systems
and Architecture Program at General Electric Cor-
porate Research and Development, Schenectady ,
N.Y. He was a Senior Scientist with the Auto-
mated Systems Department of BBN Laboratories,
Inc., from 1980 to 1984 and served as Assistant

and Associate Professor of Electrical Engineering and Computer Science at
MIT from 1972 to 1980. He has held visiting positions with the Department
of Neurology, Boston University, Brown University, Imperial College
(London), IRIA (Paris), LAAS (Toulouse), and he is currently an Adjunct
Professor of Electrical Engineering at Rensselaer Polytechnic Institute,
Troy, N.Y.

He was the recipient of the Donald P. Eckman Award in 1974 and was
Edgerton Assistant Professor at MIT from 1973 to 1975. He served as an
elected member of the IEEE Control Systems Society Board of Governors
from 1983-1989 and as Associate Editor at Large of the IEEE TRANSAC-
TIONS ON AUTOMATIC CONTROL from 1986-1989.

