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THE PRODUCT CYCLING PROBLEM IN SYSTEMS WITH
UNCERTAIN PRODUCTION YIELDS

ABSTRACT

This paper addresses a production planning problem for a single machine
producing multiple parts, where the yield rate (fraction acceptable) for each part may
be uncertain and the production policy is to cycle through the set of parts. We analyze a
simplified version of the problem which, while still quite complex, becomes solvable as
a result of several properties that we prove in the paper. We also provide numerical
results to illustrate the solution procedure.



THE PRODUCT CYCLING PROBLEM IN SYSTEMS
WITH UNCERTAIN PRODUCTION YIELDS

1. INTRODUCTION

The single machine economic lot scheduling problem (ELSP) is to find a repeating
production schedule for several products, each with a constant demand, which are
produced on the same machine. Such problems arise often in the manufacture of glass,
rolled steel, and paper, where one machine (or one system of machines) provides
adequate capacity to produce a variety of products. Similar problems are found in
systems where, for simplicity of scheduling or other technical considerations (e.g.,
tooling), a machine is dedicated to a family of parts. The increasing adoption of group
technology concepts in the design of manufacturing systems has led to the widespread
occurrence of systems in which a machine is dedicated to a part family. The primary
tradeoff in these problems is the time and/or cost involved in changing over from one
product to another, and the inventory that accumulates if changeovers are too infrequent.

In many of these processes, the yield rates are random, and are not observed
until after the product has completed its production run (i.e., after inspection). In the
examples above, even with in-process sensors and feedback, we would have to wait for
the glass to cool or the paper to dry before all product defects could be detected. In other
systems, sensing and/or feedback may be infeasible or uneconomical, but the problem
remains the same. Our research was motivated principally by applications in which (i)
process technology is changing rapidly enough that the technology often becomes obsolete
before the process is well-understood and well-controlled, or (ii) factors other than the
process itself have an impact on the yield, but are difficult to control closely. These are
situations in which the "yield problem" cannot be solved even with state-of-the-art
technology, and methods are needed to cope with anticipated ongoing yield uncertainty.
The procedures that we develop also can be used to assess the benefits of installing
improved equipment or in-process controls.

Research to date on economic lot scheduling (see Eimaghraby 1978 for a review;
also Hodgson and Nuttle 1987 and Dobson 1988 for more recent references) has
assumed that production yields are deterministic, if not perfect. It is already known that



the general deterministic, discrete time, single-machine ELSP is NP-hard (Hsu 1983).
Consequently, many practitioners resort to using good or optimal “pure rotation”
policies in which products are produced using a fixed permutation of the products, and
the permutation is repeated again and again (e.g., ABCDABCD). This is commonly
referred to as the product cycling problem. More recently, "powers of two" policies, in
which each product is produced at an interval which is a power of two, have been
analyzed (e.g., Maxwell and Singh 1983).

Almost all of the research on lot-sizing for processes with random yields has
dealt with single-product situations and has not considered capacity constraints. The
reader is referred to papers by Karlin (1958), Silver (1976), Mazzola et al. (1987),
Sepehri et al. (1986), and Gerchak et al. (1985) for a representative set of results on
the single-product problem, as well as surveys of related work. Research on lot sizing
with random yields is surveyed by Yano and Lee (1989). We are not aware of any
published research on lot-sizing issues in multi-product environments with capacity
constraints and random yields. For the convenience of the reader, in Appendix 1 we
provide an explanation of how random yield problems differ from those with random
demand, and why it is not always possible to convert a random yield problem into an
equivalent problem with random demand.

We investigate the problem of finding a pure rotation schedule for a single
machine with uncertain production yields. We consider a simplified, static (planning)
version of the problem for two reasons. First, even this problem is difficult, as we will
explain in the next section. Second, Jones and Inman (1989) have found that for the
deterministic version of the problem, the pure rotation policy is not far from optimal
for many realistic problems.

We view the resulting plan as a basis for specifying targets that provide
guidelines for controlling the system while considering long-term aggregate tradeoffs.
At the control level (not addressed here), shorter term decisions are made to keep the
system near the target. Without a hierarchical decomposition, the problem is
intractable, as we explain later in the paper. We focus on the planning problem for
three reasons. First, this problem has not been addressed in the literature, and its
solution is necessary before it is possible to develop appropriate control policies.
Second, both the goals, and the types and degree of flexibility involved in short-term
decisions often depend on the specific application. On the other hand, once it has been
decided what aspects of the plan constitute the "target,” it is usually not difficult to
formulate an appropriate problem and to find techniques to solve it. Third, many
practitioners will agree that a good (realistic and cost-effective) plan is useful in itself,



even if a simple (manual) control policy is used to keep the system near the target.
Indeed, a very common mode of operation in manufacturing operations is for
“management” to specify a set of targets and for production workers or their
supervisors to find a good way to meet those goals.

Section 2 contains a detailed problem statement and assumptions. A solution
approach for the problem is developed in section 3. In section 4, we describe a
particular manufacturing facility which fits most of the characteristics in our problem
description and discuss how our results might be used to help that facility. Section 5
contains a study of the effects of different yield rate distributions on the long term
problem using an adaptation of data obtained from this facility. Finally, section 6
contains a summary and conclusions.

2. PROBLEM STATEMENT AND ASSUMPTIONS

We address the problem of determining pure rotation policies for a single
machine with uncertain yields. Annual demand for each product is assumed to be known
and to occur constantly over time, although‘ demand rates for the various products may
differ. We assume that the yield rates (i.e., the ratio of usable output to input) have
distributions which may differ among products but are stationary over time, and do not
vary with the batch size. This is a reasonable assumption when external factors (such
as characteristics of the raw materials, temperature or humidity) affect the entire
batch in much the same way, when the effect of yield loss due to startup is minimal, and
when equipment does not deteriorate with the length of the production run. This
particular means of modeling yield uncertainty has become increasingly popular because
it is a fairly accurate representation for many applications (see for example, Bitran and
Dasu 1989, Lee and Yano 1988, Bassok and Akella 1988) and can be handled both
analytically and computationally.

We assume that the facility operates continuously (except for maintenance),
making overtime production impossible. It would be possible to relax this assumption,
but the modeling (already very complicated) would be difficult to handle except with
very simple assumptions about the overtime policy (e.g., equal amount of time every
day.)

We assume that the output is 100% inspected and that the inspection process is
perfect. It is also assumed that all defective output is treated in the same way: either
disposed at no additional cost or reworked. In the former case, the variable cost per unit
is the entire variable production cost plus the inspection cost. In the latter case, the



variable production cost is only the cost of processing on the machine in question plus
the cost of inspection, since the input material can be reused. We assume, however, that
all excess demand is backordered, so in the long run, the yield-adjusted demand of each
part must be produced each year. Consequently, variable production costs are not
included in the formulation.

We assume that there are non-negative setup costs and setup times for each item
which may be sequence dependent. Capacity is limited and setups decrease the available
productive time. One of the difficulties in determining optimal pure rotation policies is
sequence dependence. However, if (i) the same rotation policy minimizes both setup
costs and setup time, (ii) the setup times are sequence independent, or (iii) the setup
costs are sequence independent, the problem is simplified considerably. In the second
case, it is sufficient to minimize setup costs, and in the third case, it is sufficient to
minimize setup time. In the first case, either can be done. Each appropriate problem
can be solved using any optimal or heuristic traveling salesman procedure (see Lawler
et al. 1985 for further details). For simplicity, we will assume that one of the
conditions above is true. Other costs to be included are inventory holding costs and
shortage costs. We later explain how these costs are charged.

Even if we restrict our solution to pure rotation policies, this problem is
difficult to solve optimally because of the size of the state space. The state would be
defined by:

(i)  the product for which the machine is set up or being set up; and

(ii) the inventory position of each product.

If the machine is being set up, the optimal decision is easy because the solution is
restricted to pure rotation policies, so the setup must continue. On the other hand, if the
machine is already set up for a product, an exact policy must specify for each possible
inventory position vector whether to produce another unit of the current product or to
set up the next product in the rotation. Even the problem of finding the infinite-horizon
optimal solution for a particular inventory position vector is difficult.

This problem bears some resemblance to a variety of other problems, including
"restless” multi-armed bandit problems (Weber and Weiss 1989) and polling systems
in the queueing literature (Takagi 1989). However, our problem has features that have
yet to be incorporated into existing approaches to these related problems. For example,
approaches to restless multi-armed bandit problems cannot yet handle changeover costs
or times, and models of polling systems cannot efficiently handle non-exhaustive service
(which roughly corresponds to shortages in our model), general arrival distributions
(deterministic in our case), general service distributions (which are fairly complicated



in our problem), and changeover times. Consequently, it is necessary to use heuristic
procedures to solve this problem.

As mentioned earlier, we view the planning problem as the first level in a
hierarchical approach to the problem with two levels in the hierarchy. The goal of the
planning problem is to determine a fixed cycle duration, T, during which all products
will be produced once. Our reason for focusing on the cycle duration is that it represents
a simple yet logical target. One of the primary reasons why capacity-constrained
systems with uncertainty in the yields (or demands) become unstable is too frequent
setups resulting from short-term decisions being overly responsive to current
inventory levels--that is, attempting to avoid shortages at all costs. When setups
consume productive capacity, adherence to the planned cycle duration helps to ensure
that there is sufficient remaining capacity to meet demand over the long term. It also
helps in planning for procurement of raw materials.

The control problem would take this value of T as given and determine input
quantities in view of demand data over the short term and the current inventory position.
In similar settings with random demand, it has been suggested (Leachman and Gascon
1989) that when the system is falling behind schedule, lengthening the cycle to spread
out the setups, thereby freeing up some production time, might be desirable. While it
might be possible (although not easy) to adapt their control policy to the case of random
yields, their approach to controlling the problem also requires a target cycle length. In
this paper, we develop one way to determine a good target cycle.

Note that since the yield rates are random, we must distinguish between input and
output quantities. We can make decisions about the input quantities but the inventory
and shortage costs are determined by the random output quantities.

2.1 |njtial Formulation

The objective in this problem is to find a production cycle which minimizes the
expected cost per unit time subject to a capacity constraint. In doing so, we also need to
decide what fraction of the cycle, on average, to allocate to production of each product. In

this subsection, we first discuss some modeling issues, and then propose two different
formulations of the problem. Throughout this section we use the following notation:

Si = setup cost for product i
T = shortage cost per unit per unit time for product i

Di = annual demand for product i



Pi = actual yield rate for product i (random)

Pi = average yield rate for product i (for notational simplicity)
Ki = production rate for product i

Ti = setup time for product i

Qj = input quantity for product i

T = cycle length

fi() = density of yield rate for product i

Fi() = distribution of yield rate for product i

The primary difficulty in formulating this problem is that, regardless of the
particular planning or control policy, the system regenerates (returns to exactly the
same state) very infrequently. Thus, it is difficult to write an analytically tractable,
exact expression for the expected cost per unit time. Even if we ignore the fact that
there may be many production cycles between regenerations and treat the production
cycles as if they were statistically identical, the analysis is complicated by the
interaction between the production policy and safety stock levels (i.e., the average on-
hand inventory immediately before production of a product begins). In the following, we
develop an approximation of the safety stock level under the assumptions that (i) the
starting times of a product's production runs are equally spaced in time, (ii) net demand
for each product during a cycle is always non-negative (otherwise a pure rotation cycle
is unrealistic), and (iii) the production policy has a particular form. The first
condition is never true, but since we are only interested in average inventory levels
(and not their distributions), this should not create a serious error in the
approximation. We later show that (i) under mild conditions, the second condition is
satisfied with a high probability, and (ii) the structure of the optimal production policy
(under the assumptions of our model) has the assumed form of the production policy.

We assume that the production policy is

Qj =3 (DT - 1j) (1)

where aj is a constant and |; is the inventory of product i when its production run begins.
In the following, we will treat a single item, and will therefore drop the product index
subscript. Instead, the subscript will denote the cycle index.



Let Xn= inventory at end of cycle n,
pn= observed yield rate in cycle n, and
Qn=  production input quantity in cycle n
= a (DT - Xp-1),
and assume that Xg = 0. Note that we have expressed Qn as a(DT - Xp-1), not a(DT -
Xn-1)* because of our assumption that net demand is non-negative.

Lemma 1: Xn = (1 - apn)(Xn-1- DT).
Proof: Since Xg = 0, we have that

Qi =a(DT-0)=aDT, and
X1 =Xo+Qip1 - DT = (1 - ap1)(Xp - DT).

So X1has the indicated form. Let us assume that this holds for X2,...,Xn.1 (inductive
hypothesis). We then have

Qn =a (DT - Xp.1) and
Xn = Xp-1 + @pn(DT - Xp1) - DT
= (1 - apn) (Xp-1- DT). QED.

Let us now expand Xp by recursive substitution. This gives
Xn = -[(1-apn)DT + (1-apn)(1-apn-1)DT + ...
+ (1-apn)(1-apn-1)-(1-ap1)DT]
+ (1-apn)(1-apn.1)--(1-ap1)Xo.
Noting that the last term is zero because Xo= 0 and that the pps are i.i.d., we have

n
E(Xp) =-DT I (1-ap)k.
k=1

Taking the limit as n -> «, we have

lim n->e E(Xn) = DT (ap-1)/(2-ap ) (2)



if [1 - ap|<1. Notethata =p-! means that the production input quantity is adjusted
to consider the average yield rate. Thus, since a> 0 andp > 0, the condition |1 - ap | <

1 is equivalent to a < 2p-1. This means that the production input quantity is less than
twice the yield adjusted amount. Although this imposes another condition on the
approximation, this would not be constraining in most applications. However, this
condition, in conjunction with the assumption of non-negative demand (X, < DT), places

an additional constraint on ap. Note that for ap<< 1.5, (ap-1)/(2-ap ) << 1,801t s

unlikely that net demand would be negative. On the other hand, for ap > 1.5, lim n.5e
E(Xn) > DT, so there is a significant chance of negative net demand. For the moment, we

will assume that ap is sufficiently small that this is not problematic.
Using the production policy defined by (1) and safety stock quantities as
estimated by (2), we have the following formulation:

aj" !
(P1)  Minimize ${Si + [0.5niDiT2/(2-aipi)?] | lapi-1+aipi(3-2ap)12fi(pi)dpi
l. 0

1
+ [hiDiT2/(2-aipj)] f [1.5aipi-2+aipi(3-2aipi)]fi(pi)dpi
a;- 1
_ aj" ! _
+ [0.5niDiT2/(2-ap))2] | [(1-aipi)(3-2aipi)]2 fi(pi)dpil/ T
0

subjectto ¥ [aiD{T(3-2aipi)/Ki(2-ajpj)] T

Within the brackets in the objective function is the cost per cycle for product i.
The terms represent (i) setup cost, (ii) expected inventory holding costs when a
shortage situation occurs, (iii) expected inventory holding costs when a shortage
situation does not occur, and (iv) expected shortage costs. The first constraint ensures



that capacity is not exceeded, while the others ensure non-negativity of the decision
variables. Derivations of the integral expressions in the objective function and the first
constraint appear in Appendix 2.

For simplicity, cycle stock is represented as if production occurs
instantaneousiy. We could have incorporated finite production rates into the cycle stock
calculations, but because the yield rates are random, so are the production rates (i.e.,
the rate of output of good units). The resulting model (not presented here) is extremely
complex. Incorporating the effect of average yield rates and finite production rates is
straightforward, but unnecessarily complicates the algebra, so we chose not to do so for
clarity of presentation. Even so, the infinite production rate approximation is fairly
accurate when production of each part occurs only during a small portion of the year.

It is useful to point out that in this formulation, shortage costs are charged on
average backorders outstanding to reflect the fact that longer cycles lead to longer
stockout durations. Because variable production costs are not included in the model (as
discussed above), these shortage costs represent the cost of delayed revenue and loss of
customer goodwill per unit time. In addition, inventory holding costs are charged on
average inventory in order to reflect the fact that the cycle duration does influence
time-weighted inventory levels.

Note that the Qjs do not appear at all in this formulation. Thus, one only needs to
find the a; values, proving our conjecture about the form of the production policy under
the assumptions discussed above.

Problem P1 is a non-convex optimization problem with nonlinear constraints.
It is also algebraically very complex. Although it might be possible to solve such
problems numerically, it is unlikely that we would be able to characterize optimal
solutions or develop insights into good policies. For this reason, we analyze an even
simpler, but significantly more tractable version of the problem which lends itself to
obtaining useful insights. We later explain how the simplified problem can be adapted,
in an iterative way, to incorporate some of the effects discussed above.

2.2 Simplified Formulation

The simplified version of the problem is based on the assumption that the initial
inventory of each product at the beginning of its production run is zero. Because
shortage penalties normally exceed inventory holding costs, we would expect the optimal
production quantities to exceed the yield adjusted quantities (i.e., Q;" > D;T/p). Thus,
on the average, we would expect to have positive initial inventory. As a consequence,



less capacity would be needed than would be indicated by our solution. It would be

possible to have a shorter production cycle (T), or alternatively more flexibility (idle

time) within the given cycle. Thus, the solutions for the simplified formulation can be

viewed as conservative. Since we are treating a static version of the problem here, this

additional flexibility may be useful, or even necessary, in the true dynamic

environment. Consequently, it is likely that the solutions to P2 are more realistic than

the solutions to P1. Nevertheless, for the sake of consistency, we later explain how the

average initial inventory levels can be incorporated into the solution procedure.

With this simplification, the problem becomes:

DiT/Qj

(P2) Minimize $[Si + (ni/2Di) [ (Qipi)?fi(pi)dpi
0

1

+ hiT f (Qipi - 0.5DiT)fi(pi)dpi

DiT/Qj

DiT/Qj

+ (m/2D) 1 (OIT - Qipi)? fi(pi)dpil/T

0

subject to Y (Qi/Kj + Ti)/T < 1
i

Q20,Vi

T20

Within the brackets in the objective function is the cost per cycle for product i.

The terms represent (i) setup cost, (i) expected inventory holding costs when a
shortage situation occurs, (iii) expected inventory holding costs when a shortage

situation does not occur, and (iv) expected shortage costs. The first constraint ensures

that capacity is not exceeded, while the others ensure non-negativity of the decision

variables. Details of the derivation of the objective function appear in Appendix 2. Note
that the objective function is not jointly convex in T and the Q;s, and therefore cannot be

solved by standard techniques.



2.3 Solution Procedure

In this subsection, we propose an iterative procedure based on Lagrangian
relaxation to solve this problem. We first establish a series of results on which the

procedure is based.
Relaxing the capacity constraint and rewriting (4) we obtain:

Minimize L(Q,T,A) = {3 [Si + (hjTPi) Qi - 0.5h;D;T2
i

DiT/Qj
+ 0.5(m+hi) (Qi2/Di) | pifi(pi)dpi
0
DiT/Qj
- (i + i) TQ; [ Ppifi(pi)dpi

0
+ 0.5(nj + hj) DiT2F{(DiT/Qj) 1}/T

+A [T (QUKi + Ti)T - 1]
|

We can now obtain the Kuhn-Tucker conditions:

DiT/Qj

3L(Q,TA)/8Qj = [Tpi + (n + h) (Q/Di) [  pi2fi(pi)dpi

0

DiT/Qj

- (mi + hi)T [ Pifi(pi)dpi + MK{)T = 0

0

DiT/Qj

oL(Q,TA)AT = { & [hipiQij - hiD{T - (nj + hi)Qi |  pifi(pi)dpi
|

0

+ (mj + hj))DiT/Qj ] - (L+A)YT = 0

oL(Q,T,A)/0h =Y (Qi/Kj+ Ti)/T -1 =0
i



If T and A were given, the Qj's could be obtained directly from (6). This is
relatively easy to do if the two integral expressions are tabulated in advance for a range
of values of the upper limit (which is constrained to be less than or equal to 1). Also, as
we show later in this section, 32L(Q,T,1)/aQi2 > 0 (i.e., the first derivative is
increasing) for all non-negative A, so even simple search procedures can be used.
Furthermore, with T and A fixed, the problem is separable by product. Unfortunately, T
and A are fairly difficult to find from (7) and (8). What typically is done for problems
of this type is to solve the optimization problem for several values of T and to choose the
T giving the minimum cost. It is not obvious, however, that the resulting minimum cost
function is convex in T. We discuss this point in more detail later in this section.

To simplify the solution process, we can rewrite oL(Q,T,A)/dQj = 0 as

— DiT/Qj
hipi + MK{T + (i + hi) [Q/(DIT] | pi2fi(pi)dpi
0
DiT/Qj
S (mi + M) [ pifi(pidpi = O (©)
0

Observe that for each T and A we only need to find a value of ratio DyQj, which can then
be used to specify a Qj for any possible Dj value. Before doing so, however, we must
ensure that L is convex in Qj. We have

DiT/Qj
32L(Q,T,\)/3Qi2 = [(mi + h)/DIT] [ pi2fi(pi)dpi
0

which is non-negative for any finite Qj. Thus L(Q,T,A) is convex in Q;.

Now 92L(Q,T,A)/0Qjd A = 1/K;T > 0, so as A increases, the Qjs must decrease, as
expected. In other words, dL(Q,T,A)/dQj is increasing with A, and since we need to have
oL(Q,T,1)/0Qj equal to zero for all i, we must modify the Qjs as A increases. Since
32L(Q,T,A)/aQ;2 > 0, this is accomplished by decreasing the Qis. Because of these
monotonicity properties, for fixed T, it should be relatively easy to find the appropriate
value of A so that the capacity constraint (if binding) is satisfied at equality. Finding the
optimal value of T is somewhat more difficult.

It is well known that the total cost is convex in T for deterministic problem.
Thus, if the unconstrained T* is not capacity-feasible, then the optimal decision is to



make T* as small as possible. In the deterministic problem, the relationship between Qj
and T is linear (i.e., Qj = DjT). However, in the problem with random yields, the
relationship between Qjand T is not necessarily linear. In fact,

DiT/Qj
32L(Q,T,A)/3QjdT = - {(ri + hj)(Qi/Dj) [ picfi(pi)dpi + MK{}/T2 < 0.
0

Thus, while Qj increases with T, the relationship is not linear, and clearly depends upon
both the yield rate distribution and the production rate for item i.

In Appendix 3, we show that for fixed A, L is unimodal in T at the optimal values
of Qj which are consistent with the values of T. Thus, one can find the optimal value of T
given A. Using such an approach would require a hierarchical search procedure in which
one searches for A at the highest level, and searches for the optimal value of T (and
associated Qj) for a given L. The values of Qj are needed to check for feasibility. An
alternate method, which is much more efficient, is described below.

The procedure uses a form of dL(Q,T,A)/0Q;j in which the T in the denominator of
(6) is retained and we define Bj = DjT/Qj. This first order condition becomes

_ 4 B,
hipi + (mi + hi)Bi" " [ pi“fi(pi)dpi
0
Bi
-(mi + hi) [ pifi(pi)dpi + A/K(T = 0. (10)
0

which is obtained by direct substitution of i for D;T/Q; . Here Bj is the ratio of the
demand during the cycle to the production quantity. Note that using Bj does not constrain
the solution in any way, since one is essentially using it to choose Q; for a given T.

Suppose that for a moment we fix the ratio A/T, and let g;j(Bj) be the first three
terms of (10). It is easily shown that gj(Bj) is monotonically non-increasing with B;.
Thus, it is easy to find the appropriate fj values for each A/T ratio. The question now is
what the optimal value of T should be.

Let G(B,A,T) represent L constrained to the values of Q; (T), where Q;"(T) is
the optimal value of Q;j given T (i.e., Qi = D;T/Bj). Then



Bi
G(BTA) =T [Si - hiDiT2/2 - (mi + h)(DiT2/2)8i2 [ pi2fi(pi)dpi
' 0
+ (mi + hj) DiT2Fi(Bi)/2)/T

+ A3 TiT - 1)
i

which is obtained by substituting Q; -(dL(Q,T,1)/9Qj) = 0 for all i (from (4)) into
(3a), substituting B; where appropriate, and simplifying. Now

OG(B.TMAT = % { - (Si + Ati)/T2
|

Bi
+ Di[- hi + (ni + hi)Bi 2] pi2fi(pi)dpi
0

+ (m + hj) Fi(Bi)]/2}.

Let gi(Bi) represent the expression in brackets. Then setting this first derivative to

zero and solving for A , we get

A = [T2Z Digi(Bi) - 2 £ SilI2 ¥ 1. (11)
| | |

We propose an iterative procedure in which one starts with a feasible /T ratio
(e.g., zero). One then sequentially uses equation (10) to find the Bj values, equation (8)
to find a new value of T, and equation (11) to find a new value of .. With the new /T
ratio, the process repeats until convergence is attained. Although this procedure bears
some resemblance to standard fixed point methods, there are two limitations in
implementing this iterative procedure exactly. In computing T and A, it is possible to
obtain negative values, which are infeasible. Thus, in our actual implementation, we
take the following precautionary steps.

1. If T is negative, it is the result of capacity utilization exceeding 100%. Thus, the
values of Bj must be increased, which can be accomplished by increasing M/T. We
arbitrarily double the A/T ratio until a feasible solution is found. This provides a new
starting point in the iterative procedure.



2. After finding a positive T in step 1 above, if A is negative (making AT negative), we
simply set MT equal to its absolute value to give a new, feasible starting point for the
iterative procedure.

This procedure may appear to be ad hoc, but it simply represents one possible
procedure to search for MT. Another possible procedure is a bisection search, but it
may be difficult to identify an appropriate upper bound a priori. On the other hand, the
bisection search is guaranteed to converge. It is important to point out that we only need
to obtain values of A/T, T, and the Bjs to satisfy (8), (10, and (11) simultaneously, or
if the capacity constraint is not binding, find T and the Bjs to satisfy (10) and (11) with
A = 0. Any reasonable way to do this will find the optimal solution. The main point is
that searching for A/T rather than A is much easier and much more efficient.

Recall that this procedure is based on the assumption of zero initial inventory.
In reality, we would expect initial inventory, on the average, to be positive. Given any
set of Bjs, we can determine an adjusted net demand rate for product i by dividing the

actual demand rate by p;/Bj. We could then re-solve the problem, find a new set of Bis,
and iterate until the Bjs stabilize. In this way, we could heuristically account for the
effects of safety stock induced by the production policy. Although it is not obvious that
such a procedure would always converge, intuition suggests that it should. If the initial
Bis are too small (i.e., too much safety stock), the resulting net demand will be small,
reducing the amount of "risk" in the system, since much of the demand will be satisfied
by on-hand inventory. The next iteration will adjust to the decreased uncertainty by
increasing the Bis. Thus, the feedback appears to drive subsequent solutions in the right

direction.
4.0 A POSSIBLE APPLICATION

In this section, we describe one facility, among many, that provides motivation
for this research. The facility is a painting operation which tries to use a pure rotation
policy. The production process within this facility includes three major steps. The first
step produces parts in a batch fabrication process. These parts are then painted by
grouping parts which need to be painted the same color. Average yield rates vary
considerably by color, and there are approximately one dozen colors. The painted parts
are sent to an assembly area where work proceeds at a fairly constant pace. Thus, the
aggregate "demand" on the paint facility is also fairly constant, although the mix of



colors fluctuates from day to day. The weekly demand for each color remains fairly
stable.

The painting facility is highly automated. Parts are placed on carriers which
ride on a conveyor through the system at a constant rate. Large parts require more
spacing between carriers than small parts. Changeovers (setups) between colors take
only a few minutes. However, since the production rate of the system is high, many
units can be painted in the time required for a setup. Moreover, the paint is expensive
and the entire system must be purged of paint and cleaned with solvent each time the
color is changed.

The facility operates continuously except for preventive maintenance and
repairs. Thus, there is no opportunity for additional production on overtime.

The system has very good average yield rates, but many different factors (e.g.,
temperature, humidity, as well as equipment calibrations) affect the acceptability of the
finished product. Thus, yield rates (i.e., the ratio of acceptable output to input) are
highly variable and this complicates the scheduling problem.

The parts are 100% inspected upon completion of the painting process,
Unacceptable items are reworked when possible. The rework process usually involves
sanding and complete repainting, so the input material is saved, but the cost and time
associated with painting is otherwise the same as for an unpainted part.

There are some fairly tight storage capacity constraints which essentially
require that production track demand fairly closely. Unfortunately, since painted and
unpainted parts share the same storage area, it is difficult to specify an exact storage
capacity constraint for the painted parts. (Setups in the fabrication stage take
approximately one hour, so it is customary to produce batches of several hundred or
more). Management has already evaluated the setup cost-storage capacity constraint
tradeoff, and has decided that a reasonable way to deal with the problem is to cycle
through nearly all colors (with the exception of low volume colors) on a regular basis.
Even within the limitations of the storage space constraint, there is some latitude in
selecting the frequency with which to cycle through the colors.

The painting operation has a single "customer,” which is the assembly area. The
company recognizes the difficulties of yield variability in the paint area, and therefore
specifies production targets for the paint area in advance. The goal of the paint area is
to meet those production targets as closely, yet as economically as possible. After work
is completed in the assembly area, the part is sent to another plant within the same
company for assembly into the finished product. The ultimate user of the painted parts



is a fixed pace assembly line. Thus, the total demand for a part is relatively stable over
time.

The situation at this facility differs from our problem assumptions in that
demand is not truly constant, and consequently, it is not possible to ensure equal time
between the start of production runs of a given part. Moreover, the storage capacity
imposes additional constraints on the solution. Beyond this, however, the managerial
policy of trying to cycle through all of the colors at regular intervals actually makes the
problem very similar to the one described above.

The solution from the procedure described in section 3 could be used as the basis
for setting planned cycle durations in this facility. It could also be used to evaluate the
impact of different production policies (i.e., set of Bis) on inventory levels and service
measures. We should note that the facility already uses yield adjustment factors. Thus,
it would not be difficult to implement the solution from the model described above.

5.0 EXPERIMENTAL RESULTS

We were able to obtain gverage yield rate data from the painting facility
described earlier, but distributional information was not available. We decided to use
this opportunity to investigate the effects of different yield rate distributions upon
solutions to the problem. It was our hope that we would be able to obtain some insights
into characteristics of optimal policies even if the yield rate distributions were not
known precisely. It was well-known at this facility that colors with lower average yield
rates also had the highest yield rate variances. Indeed, it was this combination of factors
that made the lot-sizing decisions so difficult.

The products manufactured at the facility are similar with regard to cost of input
materials and labor (at least up to and including the painting process). We estimated the
ratio of the shortage cost to the inventory holding cost to be approximately 50 to 1. At
the moment, the painting facility appears to be a bottleneck, so typically many other
parts which, in aggregate, have considerable value, must wait for parts produced at this
facility. One might think that such a high n/h ratio would lead to large adjustments for
yield losses (i.e., small Bjs). However, the tight capacity constraints preclude producing
far ahead of demand. The ratio of the setup cost to the annual inventory holding cost for
one unit was estimated to be 10 to 1.

Since the parts are similar in terms of both processing time and costs,
production policies will tend to allocate more than a "fair share" of the capacity to colors
having high yield rates. Such policies cannot continue indefinitely, however, since



backlogs of parts requiring low-yield-rate colors will eventually accumulate, forcing
the system to produce those parts. Thus, the system will achieve equilibrium production
levels over the long term, although short term policies will fluctuate. Nevertheless, in
real systems, there is always a spectrum of parts, from easy and profitable to produce,
to difficult and not very profitable to produce. The cost characteristics described above
reflect such a system.

For the purposes of illustration we performed a single iteration of the procedure
described in section 3. As the results will show, it appears that only one iteration is
necessary. We explain the reasons for this in more detail later. We present results for
a hypothetical four-product system which bears some similarity to the real system.

We chose to use uniform distributions for the yield rates because of their
simplicity, and because they permit a great deal of flexibility in selecting means and
variances without introducing complicating factors such as skewness, positive
probabilities of negative yield rates, etc. The products have average yield rates of 0.75,
0.80, 0.85, and 0.90, respectively (with a maximum of 1.0 in all cases), and average
daily demands of 100 apiece. The capacity of the system was varied from 500 to 750
units per day to permit us to examine the effect of capacity tightness on the solutions.
Setup times are sequence independent and each consumes on the order of .005 of one day's
available production time. Setting hj = 1 for all i, we used the relative costs mentioned
above rather than absolute costs because of confidentiality considerations.

The results for this set of problems (shown in Table 1) were quite interesting.
First, we found that there appeared to be three distinctly different policies depending
upon capacity tightness. When the capacity constraint was not binding, the Bj values
were less than the average yield rates, indicating some provision of "safety input.”
There was a greater relative provision for the items with larger relative yield rate
variances. That is, the item with the the smallest average yield and the largest yield rate
variance had the smallest value of Fj(Bi).

Table 1 here

Secondly, we found that when capacity was relatively tight, the optimal policy
was to set Bj equal to the average yield rate for all i, and to adjust T to handle the capacity
constraint. It is worthwhile to point out that the former occurred in spite of the very
high shortage cost to holding cost ratio. Finally, in an intermediate range, where the
capacity constraint was binding, but utilization of the system with the unconstrained
solution was only slightly greater than 1.0, there was a tradeoff between setup costs and



the sum of inventory holding and shortage costs. The intermediate range appeared to be
very small, however.

We also investigated the effect of the variance of the yield rate distribution by
using slightly different problem parameters. We again used uniform yield rate
distributions. The average yield rate is 0.75 for all parts, but the ranges are 0.5, 0.4,
0.3, and 0.2, respectively. The capacity level was varied from 550 to 800 units per
day. All other parameters and costs are the same as above.

We found quite similar patterns in the results, although the range of the Fj(B;)
values (when the capacity constraint was not binding) was slightly smaller (see Table
2). It appears that the differences among the Fi(Bj) values are due principally to the
differences of the yield rate variances among parts, and not to differences in the average
yield rates. This conjecture is supported by experimental results (see Table 3) for
problems with parts having the same yield rate variances but different average yield
rates . Here, the ranges of the Fj(Bj) values were fairly small, although the Bjs were
still smaller for the parts with lower average yield rates. Thus, it appears that the
yield rate variance is a major contributor to relative "safety input" quantities. It is
important to point out that in this third set of problems, on the first iteration, the
policy was to set Bj equal to the lower limit of the yield rate support when the capacity is
fairly tight. Thus, in this case, there would be no shortages, but inventory holding costs
will be quite high. Recall, however that this represents results for the first iteration
only.

Tables 2 and 3 here

Note that in the first two sets of results, it would generally be necessary to
perform only one iteration of the procedure. When capacity constraints are loose (i.e.,
when the production rate is high in our examples), the Bj values remain unchanged as
the capacity constraints become looser. Thus, when the demand rates are adjusted
downward to account for initial inventory, the Bj values remain the same. (Decreasing
demand has the same qualitative effect as increasing the production rate. This is
intuitively clear, but we obtained empirical evidence of this as well.) Therefore, the
initial Bj values will reflect the true net demand, and only the value of T must be
modified to reflect the impact of initial inventory. Likewise, when capacity is
sufficiently tight, the Bjs remain the same since the net demands appear not to require
any adjustment at all. It is only in the relatively small "intermediate" range of capacity
tightness where iteration might be necessary. |



In the third set of problems, it would be necessary to perform additional
iterations, since the adjusted demand rates would be much lower than the original
values, especially under the high production rate scenarios. This would tend to move the
Bis closer to the midpoints of their respective ranges. This is, indeed, what happens on
the second iteration. For the production rates 600 and 640, the Bjs are now equal to the
respective mean yield rates. For all higher production rates, the Bjs are the same as for
the higher production rate cases in Table 3. For the higher production rates, the
solution converges on the third iteration. For the low production rates, the solution
oscillates between the solutions obtained in iterations 1 and 2. Thus, manual
intervention may be needed to find an intermediate degree of demand adjustment and
consistent Bjs, but this would not be difficult.

It is also useful to point out that, at least in the first two problem scenarios, a
significant amount of capacity is required (despite the small setup time) before the
solution moves away from the simple policy of adjusting for the average yield rates.
Such a simple policy could lead to very high shortage costs. It appears that, in order to
avoid these high shortage costs, the solution has a short cycle duration, which in turn,
reduces the average shortage duration. In this way, shortage costs are controlled, but at
the expense of more frequent stockout occasions. This suggests that when yields are
random, it is important to plan the capacity of the system with a sufficient amount of
slack to avoid being forced into a rather undesirable operating policy.

6.0 SUMMARY AND DISCUSSION

We have investigated a version of the product cycling problem in which the
fraction of parts that are acceptable is characterized by a yield rate distribution. The
major simplifying assumption is that inventory of each product is zero when its
production run begins. A procedure with a fixed-point flavor was developed to
determine the cycle duration and the associated production policies (yield loss
adjustment factors). An iterative scheme was suggested to heuristically incorporate the
impact of the yield adjustment factors on average initial inventory. In numerical
experiments, however, it was found that in most situations only a single iteration is
needed.

Here, it was assumed that the yield adjustment factors and cycle durations, once
selected, could not be revised. Further work is needed to understand how to make these
decisions dynamically, and in the presence of uncertain demand. Additional work is also



needed to investigate how these yield adjustment factors would perform, either alone, or
with a modification to consider a target cycle length, in a dynamic setting.
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Table 1

Example Results

Problem Data:

Dj =100 fori=1,..,4

Py ~ U[0.8,1.0]
Py ~ U[0.7,1.0]
P53 ~ U[0.6,1.0]
P4 ~ U[0.5,1.0]

Minimum daily capacity required: 487.1 (not considering setups)

Besults:

Production Rates

(same for all products) B
760,800 (0.887,0.804,0.719,0.630)
720 (0.899,0.849,0.799,0.749)

560,600,640,680 (0.9,0.85,0.8,0.75)

F(B)
(0.436,0.347,0.297,0.260)

(0.495,0.497,0.497,0.498)

(0.5,0.5,0.5,0.5)



Table 2

Effect of Different Yield Rate Variances
and Capacity Tightness

Problem Data:

Dj =100 fori=1,..4

Py ~ U[0.5,1.0]
P» ~ U[0.55,0.95]
P3 ~ U[0.6,0.9]
P4 ~ U[0.65,0.85]

Minimum daily capacity required: 533.3 (not considering setups)
Results:

Production Rates
(same for all products) B F(B)
850,900,950,1000 (0.630,0.665,0.698,0.729) (0.260,0.287,0.328,0.395)
800 (0.663,0.693,0.722,0.748) (0.326,0.358,0.407,0.490)

600,650,700,750 (0.729,0.729,0.729,0.729)°  (0.458,0.448,0.430,0.395)

*The difference between these values and the average yield rate (0.75) may be due to
rounding error and minor numerical instability when A is large.



Table 3

Effect of Different Yield Rate Means
and Capacity Tightness
(First Iteration)

Problem Data:
Di =100 fori =1,..4

P{ ~ U[0.8,1.0]
Py ~ U[0.7,0.9]
P3 ~ U[0.6,0.8]
P4 ~ U[0.5,0.7]

Minimum daily capacity required: 545.6 (not considering setups)

Results:

Production Rates

(same for all products) B F(B)
800,840,880 (0.887,0.782,0.678,0.571) (0.436,0.409,0.389,0.356)
600,640,680,

720,760 (0.8,0.7,0.6,0.5) (0,0,0,0)



Appendix 1

Difference between Random Yield and Random Demand Problems

The key difference between random demand and random yield is that in the former
case, production input is equal to production output (except perhaps for a constant
multiplicative conversion factor), whereas in the latter case, it is not. Thus, when
yields are random, any mathematical representations of production, inventory, and
shortage quantities must distinguish between input and output quantities.

Even if demand is deterministic, it is not always possible to convert a problem
with random yields into an equivalent problem with random demand. Suppose that we
try to do this. A reasonable approach would be to define the distribution of the
hypothetical random demand as the distribution of the quantity that would have to be
input in order to satisfy demand. If the yield uncertainty is expressed in the form of a
probability mass function, the conversion is straightforward, but it is not as simple if
the yield uncertainty is expressed in another form, or if the demand itself is random.

Having completed this conversion, we now need to relate these hypothetical
demand quantities to the consequent actual inventory or shortage quantities for every
possible input quantity. In some cases, the mapping is not one-to-one, making it
impossible to define an equivalent problem. For example, suppose there is the
possibility of a zero yield outcome. Then there is a positive probability of an infinite
hypothetical demand. What is the resulting shortage quantity? That information is now
lost in the conversion. Of course, we could recover this information, but this would not
be necessary if the two problems were actually equivalent. How do we represent the fact
that even though the hypothetical demand is ostensibly infinite, the actual shortage is
finite? It is not clear that this can be done. Let us consider another example. Suppose
there are several input quantity-yield outcome pairs that give the same hypothetical
demand quantity. The conversion process would aggregate information, which again
would need to be recovered in order to compute actual inventory and shortage quantities.

In conclusion, random yield problems cannot be converted to random demand
problems without a significant transformation of the objective function and constraints
to reflect the disaggregation process described above. The resulting formulations would
be more complex than the original fomulations.



APPENDIX 2
Derivation of Terms in the Formulations

We derive the second, third, and fourth terms of the objective function in (P1),
and the first constraint.

Second term:

Starting with the safety stock level of DiT(ajpi-1)/(2-aipj), we input
Qi=a;[DiT-DiT(ajpj-1)/(2-ajpi)] with a resulting output of ajpi[DiT-DiT(ajpi-1)/(2-
aipi)]= aipiDiT(3-2ajpi)/(2-a;pi). Adding this to the safety stock quantity gives

DiT[aipi-1+aipi(3-2ajpi)]/(2-ajpj). This is less than the demand during the cycle if p;
< ai1, which is the limit of integration. In this case, the average inventory during the
cycle is one half the square of the maximum inventory level divided by DiT. Multiplying
by hj gives the second term.

Third term:
The derivation follows that of the second term except that we now consider the

case of pj > ai’!. Here, inventory is non-negative throughout the entire cycle, so the

average inventory level is the maximum level, DiT[ajpi-1+aipi(3-2aipi)]/(2-aip i),
less 0.5D;T. A little algebra gives the expression in (P1).

Fourth term:

We again consider situations in which shortages occur. If pj < ai’1, the shortage

quantity is DT - DiT[ajpj-1+ajpi(3-2a;pi)]/(2-ajpi), and the average time-weighted
backorder level is one half the square of this value, all divided by DiT. Some
simplification leads to the expression in (P1).



First constraint:

The capacity constraint in general form is:

T (Qi/Ki+ 1) < T.
i

Substituting for Qi and simplifying leads to the expression in (P1).

P2

The derivation of the integral expressions in P2 are similar to those above. The
only differences are that the quantities are expressed in terms of the Qjs rather than the
a;s, and the initial inventory is assumed to be zero for all products.



APPENDIX 3

In this appendix we show that for a fixed value of A, L(Q,T,A) (see equation (5))
is unimodal in T at the optimal values of Qj consistent with these values of T. From
equation (9), a first order necessary condition for Qj is:

_ DiT/Qj
hiTPi + (v + hi)(Q/D)) [ pi?fi(pi)dpi + MK
0
DiT/Qj
= (m+ M) T 1 pifi(pi)dpi

0

Substituting Q;-aL(Q,T,A)/0Q; = 0 into L for all i, we get,

. . DiT/Qj’
G(Q(TA).TA) =3 [Si- hiDiT2/2 - (mj + hi)(Qi"2/2D)) |  pi2fi(pi)dpi
| 0

+ (mj + hj) DiT2F(DiT/Q{ )/2)/T
+ MI T - 1)
i

where G is defined as L restricted to Q*(T,k) and Q*(T,A) denotes the vector of optimal
values of Q; given T and A.

After some algebra we get:

3G(Q*(T,A),T,A)/0T = Y {-(Si+ AT{)/T2
|

) DiT/Q;*
+ Di [hi + (m + hi) (Qi/DIT2 [ pi2fi(pi)dpi
0

+ (mj + hj) Fi(DiT/Qj*)}/2}.



Also,

32G(Q*(T,A),TA)/AT2 = (2/T3) T [Si + A1

. DiT/Qy
- (mi + hi)(Qi"2/2Di) [ pi?fi(pi)dpi]
0
+ 2 (m + hi)(Di2/Q{)f(DiT/Q;) (A-1)

[
which will clearly be non-negative if the first term is non-negative, that is, if

DiT/Qy’
T (mi + h)(Q"2/2D)) [ pi2fi(pi)dpi < T [Si + Aril (A-2)
| 0 |

Observe that each term in the summation on the left hand side of the inequality is
monotone nondecreasing in T, so the inequality will be satisfied for all T sufficiently
small. Hence, in this domain, the function is strictly convex. We will show that the
function is strictly increasing for all larger values of T.

Consider a value of T that does not satisfy (A-2). For this value of T we would
have

3G(Q"(T.A),TAVAT > £ {05 Dy [(xi + hi) Fi (DT/Qy) - hi]) (A-3)
|

which comes from appropriate substitution (of (A2) divided by T2) into
0G(Q*(T,A),T,A)/dT. Thus, aG(Q*(T,A),T,A)/dT must be strictly positive (and T
cannot be optimal) if the right hand side of (A-3) is non-negative. Let us consider the
case where the right hand side of (A-3) is strictly negative. We would have



, . DiT/Qy’
G(Q'(TA)TA) = [(Si + Ati) - (m + h)(Q'2/2Di) [ pi2fi(pi)dpi)/T
' 0
+Y 05 DiT[-hj + (r + hi) Fi (DiT/Q{)] - A

i

<-A (A-4)

The inequality follows from the facts that the first term is negative from the assumption
that (A-2) is not satisfied and second term is negative by the assumption that the right
hand side of (A-3) is strictly negative. Since costs must be non-negative, (A-4) cannot
possibly be true.

Thus, for values of T where (A-2) is not satisfied (i.e., "large" values of T), it
must be true that aG(Q'(T,X).T,A)/aT is strictly positive. Thus, since L is convex for
"small" values of T and strictly increasing for "large" values of T, it is unimodal in T.



