
814 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 6, DECEMBER 1997

Sensory-Based Motion Planning with Global Proofs
Ishay Kamon,Student Member, IEEE, and Ehud Rivlin,Member, IEEE

Abstract—We present DistBug, a new navigation algorithm
for mobile robots which exploits range data. The algorithm
belongs to theBug family, which combines local planning with
global information that guarantees convergence. MostBug-type
algorithms use contact sensors and consist of two reactive modes
of motion: moving toward the target between obstacles and
following obstacle boundaries.DistBug uses range data in a new
“leaving condition” which allows the robot to abandon obstacle
boundaries as soon as global convergence is guaranteed, based
on the free range in the direction of the target. The leaving con-
dition is tested directly on the sensor readings, thus making the
algorithm simple to implement. To further improve performance,
local information is utilized for choosing the boundary following
direction, and a search manager is introduced for bounding
the search area. The simulation results indicate a significant
advantage of DistBug relative to the classical Bug2 algorithm.
The algorithm was implemented and tested on a real robot,
demonstrating the usefulness and applicability of our approach.

Index Terms—Mobile robots, sensor-based navigation.

I. INTRODUCTION

A UTONOMOUS navigation of indoor mobile robots has
received considerable attention in recent years. Work in

this area was motivated by applications such as office cleaning,
cargo delivery, etc. In realistic settings, the robot cannot base
its motion planning on completea priori knowledge of the
environment. The robot must rather use its sensors to perceive
the environment and plan accordingly. The two main sensor-
based motion planning approaches use either global planning
or local planning. Let us briefly describe these approaches and
point out their limitations.

In the global sensor-based planning approach, the mobile
robot builds a global world model based on sensory informa-
tion and uses it for path planning [6], [20], [21]. This approach
guarantees global convergence to the target. However, the
construction and maintenance of a global model based on
sensory information imposes a heavy computational burden
on the robot. Moreover, the reliance on a global model for
navigation requires frequent localization of the robot relative
to the model, a process which is difficult to attain due to
the inherent uncertainties of practical sensors [5], [10], [16].
Recent works use the global approach to achieve sensor-based
navigation of general robots [4], [17].

In contrast, local path-planners use local sensory informa-
tion in a largely reactive fashion. They are much simpler to

Manuscript received March 2, 1995; revised November 1, 1995 and De-
cember 17, 1996. This paper was recommended for publication by Associate
Editor M. Hebert and Editor A. J. Koivo upon evaluation of the reviewer’s
comments.

The authors are with the Center for Intelligent Systems, Department of
Computer Science, Technion-Israel Institute of Technology, Haifa, Israel.

Publisher Item Identifier S 1042-296X(97)07140-1.

implement than global planners, since they typically map the
sensor readings directly to actions. Various examples include
potential-field methods [1], [8], fuzzy logic approaches [7],
[15], and specialized approaches [2], [3]. As with any local
search method, local path-planners do not guarantee global
convergence to the target since they may get trapped in local
minima.

Thus, the global approaches are difficult to implement, while
the local ones lack a global convergence guarantee. This paper
focuses on a midway approach, called theBug approach,
which was originated by Lumelsky and Stepanov [13], and
subsequently studied in [11], [14], and [18]. This approach
combines local planning with a globally convergent criterion
as follows. Initially, the robot moves directly toward the target.
When the robot hits an obstacle it starts to follow the obstacle
boundary. The robot leaves the obstacle boundary and resumes
motion toward the target only when aleaving condition,
which monitors a globally convergent criterion, holds. The
Bug approach reduces the reliance on a global model to the
essential minimum of loop detection while augmenting the
purely reactive navigation decisions with a globally convergent
criterion. This approach thus minimizes the computational
burden on the planner while still ensuring global convergence
to the target. However, theBugalgorithms mainly use contact
sensors. Range data was incorporated only at a later stage in
an algorithm termedVisBug [12], which calculates shortcuts
relative to the path generated by theBug2algorithm from [13],
or to the line [Start,Target] (Fig. 1).

This paper presents a newBug algorithm, termedDistBug,
which specifically exploits range data. Our main contribution
is a new leaving condition which allows the robot to abandon
obstacle boundaries as soon as global convergence is guaran-
teed, based on the free range in the direction of the target.
To further improve performance, local information is utilized
for choosing the boundary following direction, and a search
manager is introduced for bounding the search area. As a direct
result of these extensions, a significant improvement in the
performance has been achieved.

The rest of this paper is organized as follows: in Section II
we present theDistBug algorithm, show that it is globally
convergent, and provide an upper bound for its path length.
In Section III we present the experimental results. Finally, the
conclusions are presented in Section IV.

II. THE DistBug ALGORITHM

The DistBug algorithm navigates a point robot in a planar
unknown environment populated by stationary obstacles with
arbitrary shape. The robot is equipped with a range sensor
with maximal detection range The DistBug algorithm

1042–296X/97$10.00 1997 IEEE

KAMON AND RIVLIN: SENSORY-BASED MOTION PLANNING 815

Fig. 1. Comparing paths planned by theDistBugalgorithm (solid line) and
theVisBugalgorithm (dashed line). UsingDistBug, the leaving condition holds
at L1. However,VisBugwould follow the obstacle boundary until the point
V , from which the line[S; T] is visible.

uses two basic modes of motion:motion toward the target
and obstacle-boundary following. Initially, the robot moves
directly toward the target until it hits an obstacle. It then
switches to the boundary following mode and moves along
the obstacle boundary. During boundary following, the robot
records the minimal distance to the target achieved
since the last hit point. It also senses the distance in freespace

from the current location to the nearest obstacle in the
direction of the target. If no obstacles are detectedis set
to The robot leaves the obstacle boundary when either the
target becomes visible or
holds, where is the distance from to the target

and Step is a predefined constant. We now describe the
DistBug algorithm in detail.

1) Move toward the target until one of the following events
occurs.

a) The target isreached. Stop.
b) An obstacle is reached. Go to Step 2.

2) Follow the obstacle boundary while recording the min-
imal distance to and sensing the distance in
freespace , until one of the following events occurs.

a) The target is visible:
Go to Step 1.

b) The range-based leaving condition holds:

Go to Step 1.
c) The robot completed a loop around the obstacle.

The target isunreachable. Stop.

Next we elaborate on the leaving condition. Motivated by
the fact that moving along a straight path is faster and safer
than boundary following, the leaving condition is designed to
abandon the boundary as soon as convergence is guaranteed.
The leaving condition holds when one of the following terms
is satisfied: either or

The first term, is triggered
when the target becomes visible and can be reached directly.
The second term, guarantees
that the distance to the target decreases by at leastStepbetween
successive hit points, The

leaving condition is based on the minimal distance achieved
along the followed boundary, and not on
to prevent a scenario in which the next hit point is located on
a part of the boundary which was already traversed. The size
of the parameterStepis discussed in Section II-A. Note that
when the leaving condition holds it is physically possible to
move directly toward the target, since necessarily holds.

TheDistBugalgorithm has several practical advantages over
existing Bug algorithms. It is simple to implement because
it uses range data directly, in contrast to modeling the local
environment inVisBug. Compared to theBug2 and VisBug
algorithms from [12] and [13], the generated paths are closer
to the optimal ones since the leaving condition is not based on
the line and increasing the sensor range allows to leave
obstacle boundaries earlier (Fig. 1). To guarantee convergence
to the target, theDistBug algorithm needs small amount of
global information. Global positioning is necessary only during
boundary following, for updating and for determining
that the robot completed a loop around an obstacle. (Similar to
the assumptions underlying purely local planners, we assume
here that the direction from the current location to the target
is known, and that the robot can determine when the target is
reached.) The leaving condition is robust with respect to noise
in because the parameterStep forces a significant
improvement in the distance to the target. ChoosingSteplarger
than the expected position error guarantees convergence in the
presence of noise.1 Note thatDistBug is purely reactive when
the target is visually tracked, because in this case can
be extracted directly from the visual information.

A. Algorithm Analysis

First, we analyze the convergence of theDistBugalgorithm
under the assumption that the minimal distance between obsta-
cles is In Section II-B we will present a modified version
of the leaving condition, which can be used when noa priori
knowledge about the environment is available. The value of
the parameterStepis set to where is the
maximal detection range. We also assume that the perimeter of
each obstacle is finite. Next, we prove thatDistBugis complete
and give an upper bound on its performance.

Lemma 2.1: If the target is reachable from a hit point
the leaving condition will cause the robot to leave the

obstacle after a finite-length path.
Proof: Starting from the robot uses the boundary

following behavior to move along the obstacle boundary. It
will eventually reach a point which is closest to along
the boundary. At this point
Since is reachable, it must be possible to move from
directly toward hence We next show that the leaving
condition holds at considering the following three cases. If
the target is visible then the term holds. If the
target is not visible and no obstacle is detected in the direction
of the target then In this case the term

holds because If an obstacle is

1As we discuss in Section II-A,Stepshould be smaller than the minimal
distance between obstacles. Otherwise, a modified leaving condition, which
we present in Section II-B, should be used.

816 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 6, DECEMBER 1997

detected in the direction of the target, holds because
the detected obstacle must be different from the currently
followed one. In this case
holds because

Theorem 1: DistBugalways terminates after following a
finite-length path.

Proof: The path generated by the algorithm consists of
motion toward the target segments and boundary following
segments. The path length of each motion toward the target
segment is finite because it is a straight line pointing toward the
target. The path length of each boundary following segment is
bounded by the perimeter of the followed obstacle. To prove
that the algorithm terminates after following a finite-length
path, we show that there is a finite number of motion segments.
It is sufficient to show that the leaving condition enables the
robot to leave obstacles only a finite number of times. The first
term, can be used at most once, because the
robot can reach the target directly after this condition holds.
The second term, can be
used at most times, where After the
robot hits the th obstacle it has two possibilities: either
the target will be reached directly using the first term, or the
robot will not be able to leave the obstacle. In the second case
the robot will complete a loop around the obstacle and halt.
Hence there is a finite number of motion segments, and the
algorithm terminates after following a finite-length path.

Theorem 2: DistBugfinds the targetif it is reachable from
the start point.

Proof: Every motion toward the target segment termi-
nates either at the target or at a hit point If is reachable
from Lemma 2.1 guarantees that every boundary following
segment terminates at a leave point. Since the number of
boundary following segments is finite and every such segment
is followed by a motion toward the target segment, there is
a last motion toward the target segment. This last segment
terminates at the target.

Proposition 2.2: An upper bound on the path length
that DistBug generates is

where is the maximal obstacle
perimeter from the obstacles intersecting the disc of radius

centered at and is the maximal sensor range.
Proof: To bound the path length of motion toward the

target segments, we introduce new notations. Everyleave
point is associated with areach point to which the
distance in freespace is measured along the line
so that A reach point is
located either in freespace or on an obstacle
boundary The leaving condition guarantees that

and path construction guar-
antees that because either is the
next hit point or the robot proceeds from toward the target.
We denote the starting point as and the target as

for some The accumulated sum of
segments is bounded by since the start point of each
segment is closer to the target than the endpoint of the previous
one, and these segments all point towardThe accumulated

sum of segments is bounded by because the
leaving condition may hold at most times, and
the length of each segment is bounded by the detection range

Thus bounds the path length of motion
toward the target segments.

The path length of each boundary following segment is
bounded by the perimeter of the followed obstacle. The robot
may hit at most obstacles, because the leaving condition
may hold at most times. All the hit points are
contained in the disc of radius centered at because
the distance to the target decreases along motion toward the
target segments. Thus the term bounds the path length
of boundary following segments.

This upper bound is comparable with the upper bound for
Bug2 from [13], because the robot may hit each obstacle
times, where is not fixed. We may also ask what is the
lower bound. In [18], Sankaranarayanan and Vidyasagar show
that the worst-case lower bound on the path length ofBug-type
algorithms is where is the perimeter
of the th obstacle which intersects the disc of radius
centered at They also propose an algorithm which uses a
contact sensor and achieves this bound as its upper bound.
But their algorithm is not truly reactive, as it maintains a
global data structure of all the hit and leave points. In contrast,
DistBug stores only the last hit point. Moreover, the same
global data can be incorporated intoDistBug, with a similar
effect of a better bound on the path length.

B. Assuming No Knowledge about the Environment

When no a priori knowledge about the environment is
available, setting too big aStepmay prevent the robot from
leaving obstacles, and thus from reaching the target. To
overcome this problem we present a modified version of the
leaving condition. We add a version of the leaving condition
from Bug2 algorithm to our range-based leaving condition,
using a boolean relation. In this way the robot can always
leave an obstacle. We define CROSS (line crossing) as a
boolean condition that holds if the robot meets the straight line

between the last hit point and the target We define
the following subconditions: and

The modified leaving condition isC1 OR C2.
A sketch of the convergence proof for the modified leaving

condition now follows.
The condition alone guarantees reaching the target in

a finite length path if the target is reachable (the complete
proof is presented in [13]). Considering any leave point
as a new start, convergence is guaranteed if alone will
be used after . The condition can be activated at most

times along the path, thus defining at
most leave points. After the last leave point defined by,
the algorithm will converge using the subcondition alone.

C. Using Local Information and Search Management

In the following we present several extensions to the algo-
rithm, which proved to be very effective in our experiments.
First we describe a method for choosing the initial boundary

KAMON AND RIVLIN: SENSORY-BASED MOTION PLANNING 817

Fig. 2. Moving fromS to T , the robot hits the obstacle inH1 and follows
the boundary untilL1. It then moves toH2 and follows the boundary until
L2, from which it moves towardT .

Fig. 3. Choosing the initial boundary following direction based on orienta-
tion at the hit point.

following direction based on local information, and explain
why it is appropriate to use this method together with the
range-based leaving condition. We then describe a local cri-
terion for reversing the boundary following direction and a
search manager for bounding the search area.

Partial use of local information may cause undesirable
behavior. For a class of typical scenarios, using the proposed
leaving condition while keeping a fixed boundary following
direction causes the robot to traverse several times the same
part of the boundary, as shown in Fig. 2. In this example
we assume infinite sensor range and the boundary following
direction is clockwise. Moving from to the robot hits the
obstacle in and follows its boundary until where the
leaving condition holds, because
The robot then moves from to and follows the boundary
until from which it moves directly toward Note that the
value ofStepeffects the path length in this scenario. A smaller
Stepwould cause the robot to perform more cycles, defining hit
points between and (see for example the leave point
and its corresponding hit point). Using range data to choose
the boundary following direction would significantly reduce
the path length in this scenario. In the example presented
above, the local information
which triggers the leaving condition at is available to the
robot before reaching Taking this information into ac-
count, the robot would choose the counterclockwise direction
for boundary following from Based on this observation
and considering we choose the initial boundary
following direction based on the boundary orientation at the
hit point. The robot turns to the direction which takes it closer
to the target (Fig. 3).

Local information can also be used during boundary fol-
lowing. We reverse the following direction when the current
heading drives the robot away from the target, thus indicating
that some part of the followed obstacle does not block the way
from the robot to the target. (Similar considerations, based
on a local map, are used in [19]). In our experiments, the
local reversing criterion is triggered when the angle between
the robot heading and the direction toward the target exceeds
135 . The boundary following direction is reversed at most
once after each hit point, to avoid oscillations.

The problem of path planning with incomplete knowledge
can be viewed as a search problem [11]. To facilitate the
search we present a method for bounding the search area by
“virtual obstacles,” which takes inspiration from the iterative
deepening approach introduced in [9]. The robot first performs
an exhaustive search within the bounded area. If the target is
not found then the search area is enlarged. We use circles,
centered at the target, as the virtual obstacles. A new virtual
obstacle is defined whenever the robot hits an obstacle. When
the robot first touches the virtual obstacle it reverses the bound-
ary following direction. If the robot touches the virtual obstacle
for the second time, it concludes that the target is unreachable
within the current virtual obstacle, and consequently enlarges
the search area. Note that the virtual obstacles are used as
criteria for reversing the boundary following direction. Com-
pared to the local criterion for reversing boundary following
direction, the search manager is more robust with respect to
local disturbances.

The extensions described above do not ruin the conver-
gence of theDistBugalgorithm. Choosing the initial boundary
following direction has no influence on convergence. Using
the local criterion for reversing the following direction, the
direction can be reversed at most once after each hit point.
Thus the robot can traverse the boundary at most twice after
each hit point, and convergence is not disturbed. The search
manager does not ruin convergence, because the search area is
enlarged whenever the robot concludes that it is blocked within
a virtual obstacle. Consequently, if a path to the target exists,
it will eventually be contained within the search area. On the
other hand, if the target is unreachable, the entire boundary
segment which blocks the way to the target will eventually
be contained within the search area. Therefore the robot will
complete a loop around that boundary segment, conclude that
the target is unreachable, and halt.

III. EXPERIMENTAL RESULTS

The experimental study of theDistBug algorithm consists
of simulations and experiments on a mobile robot. Simulations
were performed to study the effect of the range-based leaving
condition and the various extensions on the resulting paths.
The simulations compared theDistBug algorithm with the
classical Bug2 algorithm, showing thatDistBug generates
shorter and safer paths. The algorithm was also implemented
on a Nomad200 robot, demonstrating the usefulness and
applicability of our approach.

The performance of theDistBug algorithm was evaluated
considering the average path length, which will be discussed
below, and path safety, which will be discussed later. The

818 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 6, DECEMBER 1997

(a) (b)

(c)

Fig. 4. Simulation results in “world1” environment. (a)Bug2 algorithm. (b) DistBug algorithm (path length is 0.75 relative toBug2). (c) DistBug +
choosing the boundary following direction (path length is 0.62).

algorithm was tested in two simulated environments. The
simple environment “world1” consisted of convex noninter-
secting obstacles (Fig. 4), while the complex environment
“world2” consisted of concave obstacles with an “office-like”
shape (Fig. 5). Unlimited sensor range was assumed in all
the experiments, and the parameterStepwas chosen as the
minimal distance between obstacles.

The results of path length comparison between plain ver-
sions of DistBug and Bug2 algorithms are presented in the
first line of Table I. The table contains the average path length
over 100 runs in each environment, with randomly chosen
start/target points, relative to the path length generated by
Bug2. One can see that theDistBugalgorithm generates shorter
paths in both environments. A more significant improvement
in the path length was achieved when local decisions and a
search manager were added to the plain algorithm. We added
our modifications one at a time to bothDistBugandBug2, and
tested 100 runs in each environment. The results are summed
up in Table I.

TABLE I
AVERAGE PATH LENGTH OF THE DistBug ALGORITHM

First, we added the method for choosing the initial boundary
following direction (denoted D in Table I). In the com-
plex environment, “world2,” the combination of this method
and the range-based leaving condition generates paths which
are significantly shorter than those generated by theBug2
algorithm with the same modification. Next we added the
local criterion for reversing the boundary following direction
(denoted Rv in Table I). The reversing criterion caused a

KAMON AND RIVLIN: SENSORY-BASED MOTION PLANNING 819

(a) (b)

(c)

Fig. 5. Simulation results in “world2” environment. (a)Bug2 algorithm. (b) DistBug algorithm (path length is 0.87 relative toBug2). (c) DistBug +
choosing the boundary following direction (path length is 0.24).

significant improvement in “world2,” but did not affect the
results in “world1,” since in most cases the convex obstacles
did not drive the robot away from the target. The search
manager (denoted SM in Table I) was tested with the method
for choosing the initial boundary following direction. The
search manager generated results similar to the local reversing
criterion (Fig. 6). Encouraged by the significant improvement
in performance of theBug2 algorithm with the search man-
ager, we believe that this mechanism can be successfully
incorporated into other path-planning algorithms.

Path safety is an important property, which should be
considered while evaluating path quality. We designed the
following measure for path safety. The minimal distance
from the robot to the surrounding obstacles was measured
from every location along the path. The path safety for the
entire path was defined as the average of this local safety
distance. The bigger the average distance was—the safer
was the path. Table II presents safety measures. The results
show that the range-based leaving condition and the various

TABLE II
SAFETY MEASURE OF THEDistBut ALGORITHM

extensions enlarged the average distance from obstacles, and
hence produced safer paths.

To conclude, the results show that theDistBug algorithm
generates paths which are significantly shorter and safer than
Bug2 paths when local information is used to choose the
boundary following direction. Moreover, theDistBug algo-
rithm regularly generates shorter paths: using local informa-

820 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 6, DECEMBER 1997

(a) (b)

(c)

Fig. 6. Reversing the boundary following direction. (a)DistBug+ choosing the initial boundary following direction. In the second hit point the robot turned
left, the “wrong” direction. (b) the path planned with the local reversing criterion. Note that the following direction was reversed in the upper corner, and
the robot traversed a part of the boundary twice (path length is 0.22 relative to the original path). (c) the path planned with the search manager. The robot
reversed the following direction when it touched the virtual obstacle for the first time (path length is 0.34).

tion, it performed better thanBug2 in 90% from the cases in
“world1,” and in 84% from the cases in “world2.”

A. Experiments in a Real-World Scenario

TheDistBugalgorithm was implemented and tested in more
than 100 runs of our Nomad200 robot, demonstrating the
simplicity and robustness of our approach. No model of the
world was created, and the decisions were based directly on
range data. The algorithm was successful in almost all the
cases, driving the robot to the target location. However, several
implementation problems were noticed. Most of the problems
originated from the low reliability of the range sensors (sonar,
infrared, and structured light) in the unstructured laboratory
environment.

One of the experimental settings is presented in detail below.
Several boxes created an oblique “wall” between the starting
location and the target location (Fig. 7). The robot reached

the obstacles in point 1 and turned right. The robot then
followed the obstacles until reaching the wall in point 2, where
it turned away from the target. At that point the boundary
following direction was reversed. The robot turned around and
followed the obstacles boundary until point 3, in which the
leaving condition was satisfied. From point 3 the robot moves
straight to the target .

IV. SUMMARY AND CONCLUSIONS

We have presentedDistBug, a new navigation algorithm
for mobile robots which exploits range data. The algorithm
belongs to theBugfamily, which combines local planning with
global information that guarantees convergence. TheDistBug
algorithm uses range-data in a new “leaving condition” which
allows the robot to abandon obstacle boundaries as soon as
global convergence is guaranteed, based on the free range in
the direction of the target. We have proved the completeness

KAMON AND RIVLIN: SENSORY-BASED MOTION PLANNING 821

(a)

(b)

Fig. 7. (a) The Nomad200 robot in the starting point of the experiment
described below. (b) A scheme of the generated path.

of the DistBugalgorithm and derived an upper bound for the
path length generated by it.

The DistBug algorithm uses local information in a greedy
way, and thus performs well in typical environments. The
leaving condition allows the robot to abandon obstacles re-
gardless of the straight line [Start, Target] which was the
backbone of theBug2 and VisBug algorithms from [13]
and [12]. Moreover increasing the sensor range allows the
robot to leave obstacle boundaries earlier. To further improve
performance, we tested several extensions: local information
was utilized for choosing the boundary following direction
and a search manager was introduced for bounding the search
area. The simulation results indicate a significant advantage
of the DistBugalgorithm relative to the algorithmBug2 from
[13]. Moreover, the results show that the advantage of the
range-based leaving condition becomes more apparent when
local information is used for choosing the boundary following
direction, as we have explained in Section II-C.

TheDistBugalgorithm has several practical advantages over
existing Bug algorithms. It is simple to implement because
the leaving condition is tested directly on the range readings.
Global positioning is necessary only during boundary follow-
ing, for updating and for determining that the robot
completed a loop around an obstacle. The leaving condition
is robust with respect to noise in the minimal distance to the
target, The algorithm was implemented and tested
on a real robot, demonstrating the usefulness and applicability
of our approach.

ACKNOWLEDGMENT

The authors would like to thank M. Heymann and A.
Bruckstein for very helpful discussions. The authors want to
express special thanks to E. Rimon for his encouragement and
helpful comments.

REFERENCES

[1] R. C. Arkin, “Motor schema based navigation for a mobile robot: An
approach for programming by behavior,” inIEEE Conf. Robot. Automat.,
1987, pp. 264–271.

[2] R. Bauer, W. Feiten, and G. Lawitzky, “Steer angle field: An approach
to robust maneuvering in cluttered, unknown environments,”Robot.
Autonomous Syst., vol. 12, pp. 209–212, 1994.

[3] J. Borenstein and Y. Koren, “Real-time obstacle avoidance for fast mo-
bile robots in cluttered environments,” inIEEE Conf. Robot. Automat.,
1990, pp. 572–577.

[4] H. Choset and J. W. Burdick, “Sensor-based planning, Part II: Incre-
mental construction of the generalized Voronoi graph,” inIEEE Conf.
Robot. Automat., Nagoya, Japan, May 1995.

[5] J. L. Crowley and Y. Demazeau, “Principles and techniques for sensor
data fusion,”Signal Processing, vol. 32, pp. 5–27, 1993.

[6] G. Foux, M. Heymann, and A. Bruckstein, “Two-dimensional robot nav-
igation among unknown stationary polygonal obstacles,”IEEE Trans.
Robot. Automat., vol. 9, pp. 96–102, 1993.

[7] S. G. Goodridge and R. C. Luo, “Fuzzy behavior fusion for reactive
control of an autonomous mobile robot: Marge,” inIEEE Conf. Robot.
Automat., 1994, pp. 1622–1627.

[8] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” in IEEE Conf. Robot. Automat., 1985, pp. 500–505.

[9] R. E. Korf, “Depth-first iterative-deepening: An optimal admissible tree
search,”Artificial Intell., vol. 27, pp. 97–109, 1985.

[10] J. J. Leonard and H. F. Durrant-Whyte,Directed Sonar Sensing for
Mobile Robots Navigation. Boston, MA: Kluwer, 1992.

[11] V. J. Lumelsky, “A comparative study on the path length performance
of maze-searching and robot motion planning algorithms,”IEEE Trans.
Robot. Automat., vol. 7, pp. 57–66, 1991.

[12] V. J. Lumelsky and T. Skewis, “Incorporating range sensing in the
robot navigation function,”IEEE Trans. Syst., Man, Cybern., vol. 20,
pp. 1058–1068, 1990.

[13] V. J. Lumelsky and A. A. Stepanov, “Path-planning strategies for a
point mobile automaton moving amidst obstacles of arbitrary shape,”
Algorithmica, vol. 2, pp. 403–430, 1987.

[14] H. Noborio and T. Yoshioka, “An on-line and deadlock-free path-
planning algorithm based on world topology,” inIEEE/RSJ Conf. Intell.
Robots Syst., IROS, 1993, pp. 1425–1430.

[15] P. Reignier, “Molusc: An incremental approach of fuzzy learning,” in
Int. Symp. Intell. Robot. Syst., 1994, pp. 178–186.

[16] W. D. Rencken, “Concurrent localization and map building for mobile
robots using ultrasonic sensors,” inIEEE/RSJ Conf. Intell. Robots Syst.,
1993, pp. 2192–2197.

[17] E. Rimon, “Construction of c-space roadmaps from local sensory data:
What should the sensors look for?”Algorithmica, vol. 17(4), 1997,
pp.357–379.

[18] A. Sankaranarayanan and M. Vidyasagar, “Path planning for moving a
point object amidst unknown obstacles in a plane: The universal lower
bound on worst case path lengths and a classification of algorithms,” in
IEEE Conf. Robot. Automat., 1991, pp. 1734–1941.

[19] M. G. Slack, “Fixed computation real-time sonar fusion for local
navigation,” in IEEE Conf. Robot. Automat., 1993, pp. 123–129.

822 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 6, DECEMBER 1997

[20] A. Stentz, “Optimal and efficient path planning for partially known
environments,” inIEEE Conf. Robot. Automat., 1994, pp. 3310–3317.

[21] A. Zelinsky, “Using path transforms to guide the search for findpath in
2-D,” Int. J. Robot. Res., vol. 13, 1994, pp. 315–325.

Ishay Kamon (S’96) received the B.A. degree in
computer science from Technion, Haifa, Israel, in
1989. He received the M.Sc. degree in applied math-
ematics and computer science from the Weizmann
Institute of Science, Israel, in 1993. Since 1994, he
has been a Ph.D. student with the Department of
Computer Science at Technion.

The subject of his thesis is incorporating lo-
cal shortest path considerations inBug-type mo-
tion planning. His research interests include sensor-
based motion planning, robot navigation, and task-
oriented vision.

Ehud Rivlin (S’90–M’95) received the B.Sc. and
M.Sc. degrees in computer science and the M.B.A.
degree from the Hebrew University, Jerusalem, and
the Ph.D. degree from the University of Maryland,
College Park.

Currently, he is an Assistant Professor in the
Computer Science Department at Technion, Haifa,
Israel. His current research interests include ma-
chine vision and robot navigation.

