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Sensory-Based Motion Planning with Global Proofs

Ishay Kamon,Student Member, IEEEand Ehud Rivlin,Member, IEEE

Abstract—We present DistBug, a new navigation algorithm implement than global planners, since they typically map the
for mobile robots which exploits range data. The algorithm sensor readings directly to actions. Various examples include
belong; to the_Bug family, which combines local planning with potential-field methods [1], [8], fuzzy logic approaches [7],
global information that guarantees convergence. MosBug-type 15 d ialized h o1 3], A ith | |
algorithms use contact sensors and consist of two reactive modes[ 1, and specialized approaches [2], [3]. As with any loca
of motion: moving toward the target between obstacles and S€arch method, local path-planners do not guarantee global
following obstacle boundaries.DistBug uses range data in a new convergence to the target since they may get trapped in local
“leaving condition” which allows the robot to abandon obstacle minima.
boundaries as soon as global convergence is guaranteed, based Thus, the global approaches are difficult to implement, while

on the free range in the direction of the target. The leaving con- the local lack a alobal tee. Thi
dition is tested directly on the sensor readings, thus making the 1€ 0Cal ONES lack a giobal convergence guarantee. 1Nis paper

algorithm simple to implement. To further improve performance, focuses on a midway approach, called tBag approach,
local information is utilized for choosing the boundary following which was originated by Lumelsky and Stepanov [13], and
direction, and a search manager is introduced for bounding subsequently studied in [11], [14], and [18]. This approach
the search area. The simulation results indicate a significant ¢mpines local planning with a globally convergent criterion
advantage of DistBug relative to the classicalBug2 algorithm. L -

The algorithm was implemented and tested on a real robot, as follows. Inltlally_, the robot moves directly toward the target.
demonstrating the usefulness and app||cab|||ty of our approach_ When the rObOt hItS an ObStacle It starts to fO"OW the ObStacle
boundary. The robot leaves the obstacle boundary and resumes
motion toward the target only when leaving condition
which monitors a globally convergent criterion, holds. The

|. INTRODUCTION Bug approach reduces the reliance on a global model to the

UTONOMOUS navigation of indoor mobile robots hasessential minimum of loop detection while augmenting the
A received considerable attention in recent years. Work wrel_y reactiye navigation decisior?s.wi_th a globally convergent
this area was motivated by applications such as office cleaniggt€"on- This approach thus minimizes the computational
cargo delivery, etc. In realistic settings, the robot cannot baddrden on the planner while still ensuring global convergence
its motion planning on completa priori knowledge of the to the target. However, tI"Bl_Jg algorithms mainly use contact .
environment. The robot must rather use its sensors to percef¢dSOrs- Range data was incorporated only at a later stage in
the environment and plan accordingly. The two main sens@? @gorithm termed/isBug[12], which calculates shortcuts
based motion planning approaches use either global plannifitftive to the path generated by teg2algorithm from [13],
or local planning. Let us briefly describe these approaches &Hdt° the line Btart, Targek (Fig. 1). _
point out their limitations. ThIS paper presents a neBug algorithm, term_ed)sthg _

In the global sensor-based planning approach, the mobW@'Ch spemﬁgally exp!qlts range data. Our main contribution
robot builds a global world model based on sensory informi$: @ Néw leaving condition which allows the robot to abandon

tion and uses it for path planning [6], [20], [21]. This approacﬂbstacle boundaries as soon as global convergence is guaran-

guarantees global convergence to the target. However, Y. based on the free range in the direction of the target.

construction and maintenance of a global model based o} further_ improve performance, I_ocal _infor_mation is utilized
sensory information imposes a heavy computational burd} choosing the boundary following direction, and a search
on the robot. Moreover, the reliance on a global model foRanageris introduced for boundllng_t'he segrch area. Asgdwect
navigation requires frequent localization of the robot relati€Sult Of these extensions, a significant improvement in the
to the model, a process which is difficult to attain due tBerformance has been achieved. _ _
the inherent uncertainties of practical sensors [5], [10], [16]. 1€ rest of this paper is organized as follows: in Section Il
Recent works use the global approach to achieve sensor-ba¥ggPresent theDistBug algorithm, show that it is globally
navigation of general robots [4], [17]. convergent, and provide an upper bound for its pgth length.
In contrast, local path-planners use local sensory inform'Q—SGCt'Qn Il we present thg experllmental results. Finally, the
tion in a largely reactive fashion. They are much simpler g°Pnclusions are presented in Section IV.

Index Terms—Mobile robots, sensor-based navigation.
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leaving condition is based on the minimal distance achieved
along the followed boundaryi,,;,(7), and not ond(H;,T),
to prevent a scenario in which the next hit point is located on
a part of the boundary which was already traversed. The size
of the parameteBtepis discussed in Section II-A. Note that
when the leaving condition holds it is physically possible to
move directly toward the target, siné&> 0 necessarily holds.
TheDistBugalgorithm has several practical advantages over
existing Bug algorithms. It is simple to implement because
it uses range data directly, in contrast to modeling the local
environment inVisBug Compared to théBug2 and VisBug
algorithms from [12] and [13], the generated paths are closer
Fig. 1. Comparing paths planned by tBéstBug algorithm (solid line) and to thg optimal ones since _the leaving condition is not based on
the VisBugalgorithm (dashed line). UsirBistBug the leaving condition holds the line[S, 7], and increasing the sensor range allows to leave
at L;. However,VisBugwould follow the obstacle boundary until the pointobstacle boundaries earlier (Fig_ 1), To guarantee convergence
V, from which the line[5, T] is visible. to the target, theDistBug algorithm needs small amount of
global information. Global positioning is necessary only during
uses two basic modes of motiomotion toward the target boundary following, for updating.;»(Z) and for determining
and obstacle-boundary followinglnitially, the robot moves that the robot completed a loop around an obstacle. (Similar to
directly toward the target until it hits an obstacle. It thethe assumptions underlying purely local planners, we assume
switches to the boundary following mode and moves alofgre that the direction from the current location to the target
the obstacle boundary. During boundary following, the robés known, and that the robot can determine when the target is
records the minimal distance to the targkt;,(7') achieved reached.) The leaving condition is robust with respect to noise
since the last hit point. It also senses the distance in freespiitelnin(1"), because the paramet8tepforces a significant
I from the current locationY to the nearest obstacle in theémprovement in the distance to the target. ChooSteplarger
direction of the target. If no obstacles are detecfeds set than the expected position error guarantees convergence in the
to R. The robot leaves the obstacle boundary when either theesence of noiseNote thatDistBugis purely reactive when
target becomes visible of(X,T) — F < dnin(T) — Step  the target is visually tracked, because in this aagg (1) can
holds, whered(X,T) is the distance fromX to the target be extracted directly from the visual information.
T and Stepis a predefined constant. We now describe the

DistBug algorithm in detail. A. Algorithm Analysis
1) Move toward the target until one of the following events First, we analyze the convergence of DistBugalgorithm

oceurs. under the assumption that the minimal distance between obsta-
a) The target igeached Stop. cles isM. In Section 1I-B we will present a modified version
b) An obstacle is reached. Go to Step 2. of the leaving condition, which can be used whenanpriori

. knowledge about the environment is available. The value of

2) Follow the obstacle boundary while recording the ming o parameteStepis set tominimum(M, R), whereR is the

imal distance tdl' d,,,;,(T) and sensing the distance in

) _ maximal detection range. We also assume that the perimeter of
freespacer’, until one of the following events occurs.

each obstacle is finite. Next, we prove tBastBugis complete

a) The target is visibled(X,T) — F < 0. and give an upper bound on its performance.
Go to Step 1. Lemma 2.1: If the target? is reachable from a hit point
b) The range-based leaving condition holds: H, the leaving condition will cause the robot to leave the
d(X,T) = F < dpin(T) — Step. obstacle after a finite-length path.
Go to Step 1. Proof: Starting from H, the robot uses the boundary
c) The robot completed a loop around the obstacldollowing behavior to move along the obstacle boundary. It
The target isunreachable Stop. will eventually reach a poinC' which is closest tdl” along

. o : the boundary. At this poind(X,T) = dmwin(T) = d(C,T).
Next we elaborate on the leaving condition. Motivated b ince T is reachable, it must be possible to move fraim

the fact that moving _along a stra_ight path_ _is fgster e_md Sac(in’lFectIy toward?’, hencel’ > 0. We next show that the leaving
than boundary following, the leaving condition is designed t((:)oréolition holds ;:1'0 considering the following three cases. If
e ! '

abandon.the boundary as soon as convergence is.guarant € target is visible then the teri#{.X, 7)— ' < 0 holds. If the
;h:;t?;\i/gég ggﬂg'tl?}hg,lds v;?e<n (3neo<r3f :lh;f%l,low'r}g t<ermfarget is not visible and no obstacle is detected in the direction
: (d(X,T) — F < 0) of (dX,T) — F < cpe target the¥ = R. In this case the terrd(X,T") — F <

i (1) Step). The first termd(.X, ) — I < 0, is triggered %V (T') — Step holds becaus&tep < R. If an obstacle is
ctiy” -

when the target becomes visible and can be reached dire
The second termy( X, 7)) — F < d; - uarantees

hat the di mi( HT) p dunin(T) bStc]&g 1As we discuss in Section I1-AStepshould be smaller than the minimal
that the - 'Stance tqt e target decreases by at apbetween distance between obstacles. Otherwise, a modified leaving condition, which
successive hit pointsf(H;,T) — d(H;+1,T) > Step. The we present in Section II-B, should be used.
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detected in the direction of the targét,> M holds because sum of[L;, G;] segments is bounded by’ x R, because the
the detected obstacle must be different from the currentlsaving condition may hold at mo§ts — T’||/Step times, and
followed one. In this cas€(X,T) — F < dnin(T) — Step  the length of each segment is bounded by the detection range

holds becausé&tep < M. O R.Thus|S—TJ|+ N x R bounds the path length of motion
Theorem 1: DistBugalways terminates after following a toward the target segments.
finite-length path. The path length of each boundary following segment is

Proof: The path generated by the algorithm consists d#ounded by the perimeter of the followed obstacle. The robot
motion toward the target segments and boundary followingay hit at mostV’ obstacles, because the leaving condition
segments. The path length of each motion toward the targeay hold at most|S — T'||/Step times. All the hit points are
segment is finite because it is a straight line pointing toward tentained in the disc of radiyss — T'|| centered af’, because
target. The path length of each boundary following segmentttee distance to the target decreases along motion toward the
bounded by the perimeter of the followed obstacle. To provarget segments. Thus the tef# x P bounds the path length
that the algorithm terminates after following a finite-lengtiof boundary following segments.
path, we show that there is a finite number of motion segmentsThis upper bound is comparable with the upper bound for
It is sufficient to show that the leaving condition enables thBug2 from [13], because the robot may hit each obstdcle
robot to leave obstacles only a finite number of times. The firsines, wherek is not fixed. We may also ask what is the
term,d(X,T)—I' < 0, can be used at most once, because thaver bound. In [18], Sankaranarayanan and Vidyasagar show
robot can reach the target directly after this condition holdghat the worst-case lower bound on the path lengtBuaftype
The second termd(X,T) — F < din(T) — Step, can be algorithms is||S — T'|| + 2%; II;, wherell; is the perimeter
used at mostV times, whereN = |5 — T||/Step. After the of theith obstacle which intersects the disc of radjgs— 77|
robot hits theN + 1th obstacle it has two possibilities: eithercentered afl’. They also propose an algorithm which uses a
the target will be reached directly using the first term, or theontact sensor and achieves this bound as its upper bound.
robot will not be able to leave the obstacle. In the second caBet their algorithm is not truly reactive, as it maintains a
the robot will complete a loop around the obstacle and hatdflobal data structure of all the hit and leave points. In contrast,
Hence there is a finite number of motion segments, and tBéstBug stores only the last hit point. Moreover, the same
algorithm terminates after following a finite-length pathJ global data can be incorporated inbstBug with a similar

Theorem 2: DistBudinds the targetf it is reachable from effect of a better bound on the path length.
the start point.

Proof: Every motion toward the target segment termig Assuming No Knowledge about the Environment
nates either at the target or at a hit pahit If 1" is reachable . . .
When no a priori knowledge about the environment is

from H, Lemma 2.1 guarantees that every boundary foIIowin%{ i1abl Hing 1o big St t th bot
segment terminates at a leave point. Since the number iable, setting 1oo big slepmay prévent the robot from

boundary following segments is finite and every such segméﬂ?vmg obstgcles, and thus from reachi_ng the t_arget. To
Qvercome this problem we present a modified version of the

is followed by a motion toward the target segment, there yer o . . .
a last motion toward the target segment. This last segmelg"?t'jwIng cond|t|or). We add a version of the Ieaymg conq[tlon
terminates at the target. rom Bug2 algorithm to our range-based leaving condition,
Proposition 2.2: An upper boundL.,. on the path length using a booleai® R relation. I_n this way the _robot can _always
that DistBug generates is leave an obstacle. We define CROSS (line crossing) as a
boolean condition that holds if the robot meets the straight line
Liox = ||S=T||+ N' x (P+ R) [H,T] between the last hit poirff and the targef’. We define
whereN’ = (||S — T|/Step) + 1, P is the maximal obstacle g];fgj;olvla% sTu)l:)(ggd;tlc;?;Cj{) __F(iRdOS_’S(I}C))IiISStae;d
perimeter from the obstacles intersecting the disc of radi e’modified I7eav’ing conditi(;n ‘€1 OR C‘Em '

15 — T'|| centered af, and R is the maximal SENSorrange. A gyetch of the convergence proof for the modified leaving
Proof: To bound t_he path length of m(_)tlon toward theCondition now follows.

tar_get segments,_ we mt_roduce new.notat|ons. E\Ae@ve The conditionC1 alone guarantees reaching the target in

pplnt Li IS associated \.N'th aeach pointG;, to V\_'h'Ch the a finite length path if the target is reachable (the complete

distance in freespacé’ is measured along the I!nFLi’T.]’ proof is presented in [13]). Considering any leave pdint

so thatd(G;,T) = d(L;,T) — F. A reach pointG; is as a new start, convergence is guaranteed@ifalone will

located either in freespac(eF_ = I or on an obstacle be used aftet;. The conditionC2 can be activated at most
boundary (£ < R). The leaving condition guarantees thaty, _ IS — TJ|/Step times along the path, thus defining at

(G, T) <d(Li,T) <d(H;,T), and path construction guar-y, v jeave points. After the last leave point defined®@g,

antees thati(G;, I') > d(Hi41,T) because eithed; is the o algorithm will converge using the subconditiéii alone.
next hit point or the robot proceeds frof# toward the target.

We denote the starting poirff as G, and the targetl’ as
H, for somek < N’. The accumulated sum dt;, H; 1]
segments is bounded W5 — T'|| since the start point of each In the following we present several extensions to the algo-
segment is closer to the target than the endpoint of the previaitem, which proved to be very effective in our experiments.
one, and these segments all point towardlrhe accumulated First we describe a method for choosing the initial boundary

C. Using Local Information and Search Management
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Local information can also be used during boundary fol-
lowing. We reverse the following direction when the current
heading drives the robot away from the target, thus indicating
that some part of the followed obstacle does not block the way
from the robot to the target. (Similar considerations, based
on a local map, are used in [19]). In our experiments, the
local reversing criterion is triggered when the angle between
the robot heading and the direction toward the target exceeds
135°. The boundary following direction is reversed at most
! once after each hit point, to avoid oscillations.

Te oo e L, The problem of path planning with incomplete knowledge
can be viewed as a search problem [11]. To facilitate the
search we present a method for bounding the search area by

L 1

“Le

Fig. 2. Moving fromS to T', the robot hits the obstacle iif; and follows
the boundary untilZ; . It then moves toH, and follows the boundary until

Lo, from which it moves towardl". “virtual obstacles,” which takes inspiration from the iterative
deepening approach introduced in [9]. The robot first performs
I I i an exhaustive search within the bounded area. If the target is

not found then the search area is enlarged. We use circles,
centered at the target, as the virtual obstacles. A new virtual
. - . obstacle is defined whenever the robot hits an obstacle. When
1 | | the robot first touches the virtual obstacle it reverses the bound-
ary following direction. If the robot touches the virtual obstacle
Tolbow follow o prellened for the second time, it concludes that the target is unreachable
caunzsrelockwise chockwisg direction within the current virtual obstacle, and consequently enlarges
. . _— o . the search area. Note that the virtual obstacles are used as
Fig. 3. Choosing the initial boundary following direction based on orienta- .. . . . . .
tion at the hit point. criteria for reversing the boundary following direction. Com-
pared to the local criterion for reversing boundary following

) S ) ) _direction, the search manager is more robust with respect to
following direction based on local information, and explaifyca| disturbances.

why it is appropriate to use this method together with the The extensions described above do not ruin the conver-
range-based leaving condition. We then describe a local Gsnce of theDistBugalgorithm. Choosing the initial boundary
terion for reversing the boundary following direction and following direction has no influence on convergence. Using
search manager for bounding the search area. the local criterion for reversing the following direction, the
Partial use of local information may cause undesirablgrection can be reversed at most once after each hit point.
behavior. For a class of typical scenarios, using the proposggls the robot can traverse the boundary at most twice after
leaving condition while keeping a fixed boundary followingach hit point, and convergence is not disturbed. The search
direction causes the robot to traverse several times the samghager does not ruin convergence, because the search area is
part of the boundary, as shown in Fig. 2. In this examplénlarged whenever the robot concludes that it is blocked within
we assume infinite sensor range and the boundary followiggyirtual obstacle. Consequently, if a path to the target exists,
direction is clockwise. Moving front' to 7, the robot hits the it will eventually be contained within the search area. On the
obstacle inH; and follows its boundary until.; where the other hand, if the target is unreachable, the entire boundary
leaving condition holds, becaudeH,,T") < d(Hy,T)—Step.  segment which blocks the way to the target will eventually
The robot then moves froth; to H, and follows the boundary be contained within the search area. Therefore the robot will
until Lo, from which it moves directly towar@’. Note that the complete a loop around that boundary segment, conclude that
value ofStepeffects the path length in this scenario. A smallethe target is unreachable, and halt.
Stepwould cause the robot to perform more cycles, defining hit
points betweerH; andH, (see for example the leave poiht lll. EXPERIMENTAL RESULTS
and its corresponding hit poi.). Using range data to choose The experimental study of thBistBug algorithm consists
the boundary following direction would significantly reducef simulations and experiments on a mobile robot. Simulations
the path length in this scenario. In the example present@@re performed to study the effect of the range-based leaving
above, the local informationl(H»,T) <d(H,,T) — Step, condition and the various extensions on the resulting paths.
which triggers the leaving condition dt;, is available to the The simulations compared thBistBug algorithm with the
robot before reachingd;. Taking this information into ac- classical Bug2 algorithm, showing thatDistBug generates
count, the robot would choose the counterclockwise directi@horter and safer paths. The algorithm was also implemented
for boundary following fromH;. Based on this observationon a Nomad200 robot, demonstrating the usefulness and
and consideringStep — 0, we choose the initial boundary applicability of our approach.
following direction based on the boundary orientation at the The performance of th®istBug algorithm was evaluated
hit point. The robot turns to the direction which takes it closeronsidering the average path length, which will be discussed
to the target (Fig. 3). below, and path safety, which will be discussed later. The
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Fig. 4. Simulation results inworld1” environment. (a)Bug?2 algorithm. (b) DistBug algorithm (path length is 0.75 relative ®ug2d. (c) DistBug +

choosing the boundary following direction (path length is 0.62).

algorithm was tested in two simulated environments. The
simple environment World1” consisted of convex noninter-
secting obstacles (Fig. 4), while the complex environment
“world2’ consisted of concave obstacles with an “office-like”
shape (Fig. 5). Unlimited sensor range was assumed in all
the experiments, and the parame&epwas chosen as the
minimal distance between obstacles.

The results of path length comparison between plain ver-
sions of DistBug and Bug?2 algorithms are presented in the
first line of Table I. The table contains the average path length
over 100 runs in each environment, with randomly chosen

TABLE |
AVERAGE PATH LENGTH OF THE DistBug ALGORITHM
world1 world?2

Type Bug? J DistBug || Bug?2 | DistBug
P 1.00 0.92 1.00 0.89
P+D 0.84 0.78 0.94 0.71
P+D+Rv 0.84 0.78 0.61 0.42
P+D+4+SM | 0.84 0.78 0.49 0.41

start/target points, relative to the path length generated byFirst, we added the method for choosing the initial boundary
Bug2 One can see that tiikistBugalgorithm generates shorterfollowing direction (denoted D in Table 1). In the com-
paths in both environments. A more significant improvemeptex environment, World2,” the combination of this method

in the path length was achieved when local decisions andaad the range-based leaving condition generates paths which
search manager were added to the plain algorithm. We added significantly shorter than those generated by Biug?2

our modifications one at a time to bdthstBugandBug2 and algorithm with the same maodification. Next we added the
tested 100 runs in each environment. The results are sumntaghl criterion for reversing the boundary following direction
up in Table I. (denoted Rv in Table ). The reversing criterion caused a
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Fig. 5. Simulation results inworld2’ environment. (a)Bug?2 algorithm. (b) DistBug algorithm (path length is 0.87 relative ®ug2d. (c) DistBug +
choosing the boundary following direction (path length is 0.24).

significant improvement inwWorld2,” but did not affect the TABLE I
results in twvorld1,” since in most cases the convex obstacles SAFETY MEASURE OF THE Dist But ALGORITHM
did not drive the robot away from the target. The search world1 world?2

manager (denoted SM in Table 1) was tested with the method

. . L T Bug? | DistB Bug? | DistB
for choosing the initial boundary following direction. The vre 4 ik 4 ik

search manager generated results similar to the local reversing P 1.00 1.16 1.00 1.24
criterion (Fig. 6). Encouraged by the significant improvement P+D 1.16 1.29 1.12 1.43
in performance of th&ug?2 algorithm with the search man- P+D+Rv || 1.16 1.29 1.19 1.52
ager, we believe that this mechanism can be successfully PAD4SM || 1.16 1.99 1.20 1.50

incorporated into other path-planning algorithms.

Path safetyis an important property, which should be
considered while evaluating path quality. We designed the
following measure for path safety. The minimal distancextensions enlarged the average distance from obstacles, and
from the robot to the surrounding obstacles was measurdeehce produced safer paths.
from every location along the path. The path safety for the To conclude, the results show that tBéstBug algorithm
entire path was defined as the average of this local safggnerates paths which are significantly shorter and safer than
distance. The bigger the average distance was—the sa&eg2 paths when local information is used to choose the
was the path. Table Il presents safety measures. The reshtisndary following direction. Moreover, thBistBug algo-
show that the range-based leaving condition and the variaithm regularly generates shorter paths: using local informa-



820 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 13, NO. 6, DECEMBER 1997

©

Fig. 6. Reversing the boundary following direction. @istBug+ choosing the initial boundary following direction. In the second hit point the robot turned
left, the “wrong” direction. (b) the path planned with the local reversing criterion. Note that the following direction was reversed in the ugpeacdrn

the robot traversed a part of the boundary twice (path length is 0.22 relative to the original path). (c) the path planned with the search manager. The ro
reversed the following direction when it touched the virtual obstacle for the first time (path length is 0.34).

tion, it performed better thaBug2in 90% from the cases in the obstacles in point 1 and turned right. The robot then

“world1,” and in 84% from the cases inwbrld2.” followed the obstacles until reaching the wall in point 2, where
it turned away from the target. At that point the boundary
A. Experiments in a Real-World Scenario following direction was reversed. The robot turned around and

followed the obstacles boundary until point 3, in which the

The DistBugalgorithm was implemented and tested n rnorFéaving condition was satisfied. From point 3 the robot moves
than 100 runs of our Nomad200 robot, demonstrating ”%'t:raight to the targef’

simplicity and robustness of our approach. No model of the
world was created, and the decisions were based directly on
range data. The algorithm was successful in almost all the IV." SUMMARY AND CONCLUSIONS
cases, driving the robot to the target location. However, severaWe have presente®istBug a new navigation algorithm
implementation problems were noticed. Most of the problenfisr mobile robots which exploits range data. The algorithm
originated from the low reliability of the range sensors (sondsglongs to th&ugfamily, which combines local planning with
infrared, and structured light) in the unstructured laboratogtobal information that guarantees convergence. DisBug
environment. algorithm uses range-data in a new “leaving condition” which
One of the experimental settings is presented in detail belosilows the robot to abandon obstacle boundaries as soon as
Several boxes created an oblique “wall” between the startigépbal convergence is guaranteed, based on the free range in
location.S and the target locatiol (Fig. 7). The robot reached the direction of the target. We have proved the completeness
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TheDistBugalgorithm has several practical advantages over
existing Bug algorithms. It is simple to implement because
the leaving condition is tested directly on the range readings.
Global positioning is necessary only during boundary follow-
ing, for updatingd,,;,(7") and for determining that the robot
completed a loop around an obstacle. The leaving condition
is robust with respect to noise in the minimal distance to the
target, d.,in(7"). The algorithm was implemented and tested
on a real robot, demonstrating the usefulness and applicability
of our approach.
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Fig. 7. (a) The Nomad200 robot in the starting point of the experimeni]
described below. (b) A scheme of the generated path.

(b)

[11]

of the DistBugalgorithm and derived an upper bound for the
path length generated by it. [12]
The DistBug algorithm uses local information in a greedy
way, and thus performs well in typical environments. Thaa]
leaving condition allows the robot to abandon obstacles re-
gardless of the straight lineSfart, Target which was the [14]
backbone of theBug2 and VisBug algorithms from [13]
and [12]. Moreover increasing the sensor range allows t %]
robot to leave obstacle boundaries earlier. To further improve
performance, we tested several extensions: local informatitif]
was utilized for choosing the boundary following direction

and a search manager was introduced for bounding the segtigh

area. The simulation results indicate a significant advantage
of the DistBug algorithm relative to the algorithrBug2 from (18]
[13]. Moreover, the results show that the advantage of the

range-based leaving condition becomes more apparent when

local information is used for choosing the boundary following q;
direction, as we have explained in Section II-C.

helpful comments.
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