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Visually Guided Object Grasping
Radu Horaud, Member, IEEE, Fadi Dornaika, and Bernard Espiau

Abstract— In this paper we present a visual servoing approach
to the problem of object grasping and more generally, to the
problem of aligning an end-effector with an object. First we
extend the method proposed in [1] to the case of a camera which
is not mounted onto the robot being controlled and we stress the
importance of the real-time estimation of the image Jacobian.
Second, we show how to represent a grasp or more generally, an
alignment between two solids in 3-D projective space using an
uncalibrated stereo rig. Such a 3-D projective representation is
view-invariant in the sense that it can be easily mapped into
an image set-point without any knowledge about the camera
parameters. Third, we perform an analysis of the performances
of the visual servoing algorithm and of the grasping precision
that can be expected from this type of approach.

Index Terms— Object grasping, projective camera model, 3-D
projective reconstruction, hand-eye coordination, visual servoing.

I. INTRODUCTION

One of the most common tasks in robotics is grasping. Al-
though the importance of grasping has been recognized for many
years, there are only a few grasping systems that can operate
in complex environments. This is mainly due to the difficulty to
execute precise robot hand motions in the presence of various
perturbations: the robot’s kinematic is known only partially,
unpredictable obstacles may be located in the neighborhood of
the object to be grasped, and the location of the object to be
grasped with respect to the robot may be either poorly known or
not known at all.

Our approach to perform automatic grasping follows the clas-
sical approach of splitting the task in off-line and on-line stages.
The goal of the off-line stage is to select a grasp – specify a
relationship between the gripper and the object – and represent
this relationship in some space. The task to be achieved on-line
is to control the robot’s motion such that the gripper moves from
its initial position to a final position that is consistent with the
planned grasp. With our approach both off- and on-line stages use
cameras, therefore intrinsic and extrinsic camera calibration will
affect the behavior of the grasping process and the accuracy with
which the grasping location will eventually be reached. Hence,
one of the most important merits of a visually guided grasping
technique is to be robust with respect to internal and external
camera parameters. Alternatively, one may devise a method which
uses uncalibrated cameras.

Consider, for example, the following scenario. The off-line
stage – which may well be viewed as a preparation or planning
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stage – takes place in a laboratory. The on-line stage – task
execution – takes place in a hazardous or remote site (nuclear,
space, offshore, etc.). The cameras used in the laboratory are not
the same as the remote cameras. Moreover, the locations (position
and orientation) of the cameras with respect to the object to be
grasped and with respect to the robot are not the same in the
laboratory and remote site.

In this paper we develop a visual servoing based method
that is able of achieving grasping or, more generally, alignment
tasks. The main feature of the method described herein is that
the accuracy associated with the task to be performed is not
affected by discrepancies between the Euclidean setups at task
preparation and at task execution stages. By Euclidean setup we
mean internal camera calibration and camera-to-world and robot-
to-world relationships.

More precisely, the desired object to gripper alignment will
be represented in 3-D projective space rather than in 3-D metric
space. Such a non-metric representation can be obtained with an
uncalibrated pair of cameras, or a stereo rig. During the off-line
stage one stereo rig observes both the object and the gripper
in their aligned setup and performs a projective reconstruction
of both of them. During the on-line stage another stereo rig
observes the object and performs its projective reconstruction.
Hence, two projective reconstructions of the object are available
in two different projective bases, each one of these bases being
attached to each one of the two stereo rigs. Therefore it is possible
to compute a 3-D projective transformation between the off-line
and on-line setups, transfer the gripper from one setup to another,
and predict the location of the gripper in the images associated
with the second stereo rig. Once this off-line to on-line transfer
of gripper points from one image pair to another image pair has
been performed, the problem of moving the gripper from an initial
position to the desired grasp position becomes a classical image-
based robot servoing problem:

1) estimate the velocity screw associated with the gripper
frame;

2) move the robot until the image points associated with the
observed gripper are properly aligned with their predicted
locations.

The visual grasping scheme that we just described suggests
that:

1) two cameras are involved in the visually guided control
loop;

2) these cameras must be calibrated [2].

In fact, once the gripper points have been properly transferred,
the visual servoing process can proceed with only one of the
two cameras and hence, only one among these two cameras must
be internally calibrated. Recently it has been shown by one of us
that internal camera calibration weakly affects the convergence of
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image-based robot control when only one camera is being used
[3].

II. BACKGROUND, CONTRIBUTION, AND PAPER

ORGANIZATION

The theory of image-based servoing has been developed, in
parallel, by a number of researchers [1], [4], [5], [6], [7], [8],
[9], [10]. Central to the image-based approach is the necessity to
compute the image Jacobian. This is equivalent to computing the
differential relationship between a scene frame and the camera
frame (either the scene or the camera frame is attached to the
robot). Jacobian estimation requires knowledge about the camera
intrinsic and extrinsic parameters. The latter parameters amount
to the rigid mapping between the scene frame and the camera
frame. Many implementations get around this problem by simply
allocating constant values to the image Jacobian.

The debate whether the sensor should be mounted onto
the robot (eye-in-hand) or should be mounted onto a fixture
(independent-eye) is important because each one of these two
setups has limitations and advantages. With a hand-eye approach,
the setup (camera parameters and hand-eye relationship) at plan-
ning must be identical with the setup at runtime. The independent
eye approach offers more flexibility at the price of the use of
several cameras rather than a single camera.

This paper has the following contributions. In section III we
extend the hand-eye servoing method proposed in [1] to the
independent-eye setup. Within the context of the new mathemat-
ical expression that we derive for the image Jacobian, we make
clear which parameters vary with time and which parameters
remain constant. Indeed, in a recent review paper [2] this analysis
was not available. Moreover we stress the importance of on-line
pose computation.

In section IV we show how to represent an alignment between
two objects in 3-D projective space. The alignment condition thus
derived is projective invariant in the sense that it can be used in
conjunction with two uncalibrated camera pairs (one at planning
and one at runtime) to compute a goal position for visual servoing.

In sections V and VI we describe an in depth comparison of
image-based servoing with a fixed (approximated) Jacobian and
with a variable (exact) Jacobian. Next we describe the imple-
mentation of a visually-guided grasping system which integrates
the results of sections III, IV, together with a pose computation
method. Finally, section VII gives some directions for future
work.

III. IMAGE-BASED SERVOING

In this section we consider a camera that observes a moving
robot gripper. First we determine the image Jacobian associated
with such a configuration. Second we define a visual servoing
process that allows the camera to control the robot motion
such that the gripper reaches a previously determined image set
position – one way to compute such an image set position using
an uncalibrated stereo rig will be described in section IV.

A. Image Jacobian

Let us define two useful Euclidean frames as follows, Figure 1:

1) F 0
g is the gripper reference frame associated with the

gripper in its initial position prior to visual servoing and
2) F 0

c is the camera reference frame; since the camera will
remain fixed while the gripper will move, the frame attached
to the camera is a fixed reference frame.

Let Dgc be the 4×4 homogeneous matrix mapping F 0
g onto F 0

c .
Next we consider the gripper while it moves and we define two
moving frames rigidly attached to the gripper:

1) Fg which is a moving gripper frame related to F 0
g by the

continuous displacement Dg(t) : F 0
g → Fg and

2) Fc which as a moving frame as well rigidly attached to
the gripper related to F 0

c by the continous displacement
Dc(t) : F 0

c → Fc.

Clearly the homogeneous matrix mapping Fg onto Fc is the same
as the matrix mapping F 0

g onto F 0
c and is equal to:

Dgc =

(
Rgc tgc

0⊤ 1

)
(1)

At each time t the two displacements Dg(t) and Dc(t) are
conjugated:

Dc(t) = (Dgc)−1 Dg(t) Dgc

Consequently the motion of the gripper can be expressed either
by the moving frame Fg with respect to F 0

g or by the moving
frame Fc with respect to F 0

c :

T g = {V (Og),Ωg}

is the velocity screw of Fg with respect to F 0
g and

T c = {V (Oc),Ωc}

is the velocity screw of Fc with respect to F 0
c . These two screws

are related by the formula:

T c = ΘgcT g (2)

with:

Θgc =

(
Rgc RgcS(tgc)

0 Rgc

)
(3)

where S(a) is the skew-symmetric matrix associated with a 3-
vector a. It is important to notice that the rotation Rgc and
translation tgc describe the initial pose of the gripper with respect
to the camera and hence they remain constant during visual
servoing.

Now, let Bj be a 3-D point onto the gripper and let Bc
j =

(xj , yj , zj)
⊤ be its Euclidean coordinates in the camera-centered

frame F 0
c , e.g., figure 1. The projection of this point onto the

image has as coordinates:

uj = αu
xj
zj

+ u0 (4)

vj = αv
yj
zj

+ v0 (5)

where αu, αv , u0, and v0 are the well known intrinsic camera
parameters associated with a pin-hole model and (u, v) are the
image coordinates of a pixel. By computing the time derivatives
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Fig. 1
THIS FIGURE SHOWS THE RELATIONSHIPS BETWEEN THE VARIOUS

FRAMES ASSOCIATED WITH THE GRIPPER AND WITH THE CAMERA.

of uj and vj in equations (4) and (5), knowing that
•
Bc

j= V (Oc)+

Ωc ×Bc
j , and by combining with eq. (3), it is straightforward to

obtain: (
•
uj
•
vj

)
= JjT g (6)

with Jj = LjΘ
gc and Lj equal to:(

αu 0

0 αv

) 1
zj

0
−xj

z2
j

−xjyj

z2
j

1 +
x2
j

z2
j

−yj

zj

0 1
zj

−yj

z2
j

−1− y2
j

z2
j

xjyj

z2
j

xj

zj



B. Control law

As already mentioned, we consider n 3-D points (Bj) onto
the robot gripper together with their projections onto the image
(bj = (s uj , s vj , s)). Let s be the image vector formed with
the Euclidean coordinates of all the points bj . For n points, the
vector s has 2×n components:

s =
(
u1 v1 . . . uj vj . . . un vn

)⊤
We denote by s⋆ the image set-point – the final (goal) position.
This goal position may correspond, for example, to an alignment
condition for grasping (see section IV) or to any other goal
position that one wants to reach.

Therefore, the task consists in moving the robot such that the
Euclidean norm of the error vector s− s⋆ decreases. Hence, one
may constrain the image velocity of each point being considered
to exponentially reach its goal position with time. This desired
behavior writes as

•
s= g (s⋆ − s) where g is a positive scalar that

controls the convergence rate of the visual servoing.

It is now possible to combine the above formula with eq. (6)
and we obtain:

JT g = g
(
s⋆ − s

)
(7)

With J⊤ =
(
J⊤1 . . . J⊤n

)
. Let us now assume that the rank of the

n×6 matrix J is 6 (i.e n ≥ 3, and the gripper points Bj are not
collinear). The control velocity screw may then be computed as:

T g = g
(

Ĵ
⊤

WĴ
)−1

Ĵ
⊤
W
(
s⋆ − s

)
= gĴ

† (
s⋆ − s

)
(8)

where W is a symmetric positive matrix of rank 6 allowing, for
example, to select some preferred points in the image among the
n points that are available, and Ĵ is the model of J which is used
in the control expression.

To compute this model Ĵ, it is therefore necessary to estimate
the constant matrix Θgc and the time-varying values of xj , yj ,
and zj in Fc.

Let Bg
j be the coordinates of a gripper point in the gripper

frame Fg . These coordinates can be easily estimated off-line using
a hand-tool calibration technique and which is described in [11].
In order to estimate the initial pose of the gripper with respect
to the camera, i.e., Dgc, one has to apply a pose computation
method to a set of 2-D to 3-D point matches bj ↔ Bg

j when
the gripper is in its initial position. Moreover, xj , yj , zj – the
camera coordinates of Bj can also be evaluated through a pose
computation method, the pose method being applied at each time
to the matches bj ↔ Bg

j .

Pose computation is a classical problem in computer vision
and photogrammetry and many closed-form and/or numerical
solutions have been proposed in the past. Nevertheless, these
solutions to the object pose computation problem were not
entirely satisfactory. This is the main reason for which the current
solution used in visual servoing consists in considering that the
pose parameters do not vary too much over time and hence Ĵ is
often obtained by giving to the entries of J constant values, for
example those corresponding to the goal position [1]. Even if the
stability of the closed loop system can be preserved as long as JĴ

†

is a positive matrix, the convergence can nevertheless be strongly
affected. In [12] we present a new object pose computation
method that is fast and reliable enough to be incorporated in
the real-time loop of the visual servoing algorithm and it will be
shown in the following that its performances will be significantly
improved compared to the classical approach.

IV. PROJECTIVE INVARIANT OBJECT/GRIPPER ALIGNMENT

The visual servoing method described in the previous section
requires knowledge of the set-point s⋆ which is a set of image
points. s⋆ is a function of the camera/gripper relationship (ex-
trinsic parameters) and of the camera internal model (intrinsic
parameters). Whenever the location of the object to be grasped
varies with respect to the camera, the set-point s⋆ varies as well.
In this section we show how to compute the set-point s⋆ such
that it is “view-invariant”, i.e., it is independent of both intrinsic
and extrinsic camera parameters. This will allow more flexibility
because the setups at learning and runtime stages can be different.

In Euclidean space, the relationship between two objects is
usually represented by some rigid transformation. Alternatively,
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Projective
mapping

Euclidean
mapping

Fig. 2
THE OBJECT PROJECTIVE BASIS IS RIGIDLY ATTACHED TO THE GRIPPER

EUCLIDEAN FRAME. WHENEVER THE OBJECT MOVES, THESE TWO

FRAMES REMAIN VIRTUALLY ATTACHED TO IT. THE PROJECTIVE MAPPING

IS CONJUGATED TO THE EUCLIDEAN MAPPING.

the object-gripper alignment, or any other object-to-object rela-
tionship, can be represented in terms of relationships between
objects points. The choice of these points depends upon the visual
sensor being used and hence upon the visual process allowing
to extract image points, i.e., feature extraction. They are not
necessarily contact points between the object and the gripper.
Therefore they may not be present in the CAD descriptions of
both the object and the gripper. The idea of our approach is
to represent such object-gripper relationships projectively: 3-D
object and gripper points are described into an object-centered
projective basis.

More precisely, consider an object to be grasped and a gripper
aligned with this object. Let Ai, i = 1 . . .m be a set of 3-D object
points and Bj , j = 1 . . . n be a set of 3-D gripper points. Among
the object points consider five of them in general position, say
A1 to A5 (these five points form a basis of the 3-D projective
space) and let Ao

i , Bo
j be the projective coordinates of the object

and gripper points in this basis. Moreover, consider an Euclidean
frame attached to the gripper, Fg . Three points are sufficient to
uniquely define such an Euclidean frame. Notice that an Euclidean
frame is just a special case of a projective basis where one point
is the origin of the frame, three points on the plane at infinity
correspond to the directions of the three axes, and the fifth point
defines the unit vector [13].

Therefore, the Euclidean space can be viewed as a subspace
of the projective space. There exists a projective transformation
mapping Euclidean coordinates onto projective coordinates. Such
a transformation is conveniently described by a 4×4 invertible ho-
mogeneous matrix and let Hgo be the matrix mapping Euclidean
coordinates onto projective coordinates from the gripper frame
onto the object basis described above. If we denote by Ae

i , Be
j

the Euclidean coordinates of the points just mentioned we have:

Ao
i ≃ HgoAe

i

Bo
j ≃ HgoBe

j

where “≃” denotes the projective equality.

Next we suppose that the object alone lies in a different position
and orientation. Therefore, the object moved and since its motion
is a rigid one it can be described in the Euclidean frame mentioned
above which remained virtually linked to the object. Let D be the
rigid motion associated with the object and with this particular
frame. D is a 4×4 homogeneous mapping of the form given by
eq. (1). The equivalent projective displacement is (see Figure 2):

H ≃ HgoD
(
Hgo

)−1

H maps the “old” projective coordinates into the “new” ones and
D maps the old Euclidean coordinates into the new ones but the
relationship between the Euclidean and projective representations
of the gripper-to-object alignment, Hgo remains invariant. In
practice this representation is encapsulated by the projective
coordinates of gripper points in an object centered projective
basis: Bo

1, . . .B
o
n in the projective basis Ao

1, . . .A
o
5.

A. Projective reconstruction with a camera pair

We consider a pair of uncalibrated cameras which observe the
gripper aligned with the object, Figure 3. It is known that from
point-to-point matches between the two images it is possible to
compute the epipolar geometry associated with the two cameras
[14]. Moreover, from the epipolar geometry two 3×4 projection
matrices mapping the 3-D projective space onto the two images
can be computed [15]. We denote by Px and P′x the two
projection matrices. Let mx and m′x be the projections of a
3-D point M onto the left and right images associated with the
two cameras. The equations:

mx ≃ PxMx, m′x ≃ P′xMx (9)

allow to compute the 3-D projective coordinates Mx of the 3-D
point M in a projective basis x attached to the camera pair. Since
the geometry of the camera pair (intrinsic and extrinsic parame-
ters) may change over time, the camera pair is not a rigid object.
However it is possible to compute a projective transformation
mapping the sensor centered projective reconstruction x into the
object centered projective reconstruction o just described. For the
sensor and object projective coordinates of a point Ai we have:

Ao
i ≃ HxoAx

i (10)

where Ax
i is obtained by applying eq. (9) to an object point

being observed with the camera pair, and Hxo is a 4×4 projective
transformation.

B. Stereo point transfer

At runtime, another stereo pair observes the object to be
grasped. However, the gripper is at some distance from the object
and the task is to move the gripper from its initial position to a
virtual position. The latter gripper position corresponds to the
gripper-to-object alignment defined during the off-line stage.

Let Py and P′y be the matrices associated with the runtime
camera pair y and therefore we have:

my ≃ PyMy, m′y ≃ P′yMy (11)
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Fig. 3
THE PROJECTIVE BASIS IN WHICH THE CAMERA PAIR RECONSTRUCTS

SCENE POINTS IS A SENSOR CENTERED BASIS. ALTERNATIVELY, ONE CAN

SELECT FIVE POINTS ONTO THE OBJECT TO BE GRASPED AND BUILT AN

OBJECT CENTERED REPRESENTATION OF THE GRIPPER-TO-OBJECT

ALIGNMENT.

Again, the sensor centered 3-D projective coordinates of an
object point can be mapped in a object centered description:

Ao
i ≃ HyoAy

i (12)

By combining eqs. (10) and (12) we obtain a relationship
between the projective coordinates of an object point expressed
in the two projective bases x and y:

Ay
i ≃

(
Hyo

)−1 HxoAx
i ≃ HxyAx

i (13)

Eq. (13) allows to compute a 4×4 homogeneous matrix Hxy

from point matches between two setups, x and y, (ax,a′x) ↔
(ay,a′y). With five point matches one obtains an exact solution.
However, if a larger number of point matches are available, a
least-square solution can be computed [16]. To summarize, the
following procedure transfers gripper points from the learning
setup to the runtime setup:

1) For each gripper point Bj , j = 1 . . . n:
2) Reconstruct the projective coordinates of a gripper point

from its images associated with the setup x:

bxj ≃ PxBx
j , b′xj ≃ P′xBx

j

3) Map these point coordinates from one projective basis to
the other projective basis:

By
j ≃ HxyBx

j

Move

Transferred 
points

Observed
points

Initial position

Virtual position

Fig. 4
THIS FIGURE SHOWS THE RUNTIME SETUP WHERE THE GRIPPER IS

VISUALLY SERVOED FROM AN INITIAL TO A GOAL POSITION. THE GOAL

POSITION IS DEFINED BY THE IMAGE TRANSFERRED POINT, OR

IMPLICITLY BY A 3-D VIRTUAL POSITION OF THE GRIPPER.

4) Project the gripper point onto the images associated with
the runtime setup:

byj ≃ PyBy
j , b′yj ≃ P′yBy

j

C. Computing the set-point s⋆

The set-point s⋆ is simply derived by transforming the 2-
D homogeneous coordinates of an image point into its image
coordinates:

s⋆ =

 b̃x1
...
b̃xn

 with bxj = λ

(
b̃x1
1

)

In theory the visual servoing algorithm described in section III
needs a single camera. Therefore a minimal camera configuration
may consist in one camera pair at planning and a single camera
at runtime: indeed, it is possible to combine the runtime camera
with any one of the two other cameras to perform the transfer
and compute the set-point. Alternatively, one can run two simul-
taneous visual servoing processes and with two cameras eq. (8)
becomes:

T g = g
(

Ĵ
†

Ĵ
′†
)(

s⋆ − s

s′⋆ − s′

)
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V. PERFORMANCE ANALYSIS

In this section we analyze the behavior of the visual servoing
algorithm described in section III. This algorithm is given an
image set-point s⋆ and a current image position s and attempts
to align s with s⋆. This alignment is done according to eq. (8):
the robot moves until the norm of the image error vector s⋆ − s

vanishes. Therefore, a good estimation, Ĵ
†
, of the pseudo-inverse

of J, is key. As already mentioned, the classical approach used as
an estimation of Ĵ is the measured value of J at the equilibrium
configuration — the robot lies in the desired goal position. Hence,
with this choice, Ĵ

†
is kept constant during all the servoing

process.

The pose algorithm introduced in [12] allows us to compute
on-line a current estimate of J† in approximatively 2 10−3

seconds. This computation time is compatible with real-time
feature tracking and servoing. It is therefore possible to run
experiments in order to analyze the behavior of visual servoing
with an updated Jacobian.

Unlike the computation of the set-point s⋆, both methods
(updated and constant Jacobians) require explicit values for the
camera intrinsic parameters. However, in [3] is shown that the
convergence of visual servoing is very little affected by these
parameters. In practice we used the horizontal and vertical focal
lengths provided by the camera manufacturer and we set the
position of the optical axis at the image center: αu = 1500, αv =

1000, u0 = v0 = 256

In order to compare the behavior of the variable Jacobian
servoing with the constant Jacobian servoing we performed
the following experiments. In the first experiment the distance
between the initial and final robot position is “small” (150 in
orientation and 35cm in depth). In the second experiment this
distance is large (300 in orientation and 70cm in depth). The
curves plotted on Figure 5 represent the norm of the image error
(∥s⋆ − s∥) between the current gripper position and the final
gripper position as a function of time.

One may notice that, in both experiments described above,
the variable-Jacobian servoing algorithm has an exponential error
decrease associated with it, which is not the case for the constant-
Jacobian servoing and for large depth discrepancies between the
initial and goal positions.

The visual servoing algorithm runs at 10Hz on a Sun/Sparc10
workstation. Table V summarizes the CPU times associated with
each stage of the algorithm. Notice that 70% of the computing
power is devoted to data transfer (image acquisition, image
transfer, computer-robot communications) and only 2% is devoted
to the on-line computation of the image Jacobian.

TABLE I
ONE CYCLE OF THE REAL-TIME CONTROL LOOP.

Image acquisition 40ms
Image transfer 20ms
Image processing 30ms
Jacobian computation 2ms
Velocity screw computation 1ms
Computer-robot communication 10ms
Total 103ms

Fig. 5
THESE PLOTS SHOW THE BEHAVIOR OF THE SERVOING ALGORITHM WHEN

THE DISTANCE BETWEEN THE INITIAL AND FINAL GRIPPER POSITION IS

“SMALL” (LEFT) AND WHEN THIS DISTANCE IS “LARGE” (RIGHT). THE

FULL CURVES CORRESPOND TO EXACT JACOBIAN SERVOING WHILE THE

DASHED CURVES CORRESPOND TO A CONSTANT JACOBIAN SERVOING.

VI. GRASPING EXPERIMENTS

As already described, grasping includes a planning stage,
a transfer stage, and an execution stage. The execution stage
performs a real-time visually controlled loop:

• At planning time an uncalibrated stereo rig computes a 3-D
projective representation of grasping. This is illustrated on
Figure 6.

• At preparation time a single camera observes both the object
to be grasped and the gripper in some initial position. The
locations of both the object and the gripper are arbitrary,
provided that they are in the field of view of the camera. The
goal of this preparation stage is to transfer gripper points in
order to compute the image set-point s⋆ – Figure 7–left.

• The robot motion can now be controlled using visual feed-
back. The velocity screw associated with the gripper frame is
iteratively updated using eq. (8) until the norm of the image
error vector ∥s⋆−s∥ vanishes. Figure 7–right shows the final
grasping location reached by the gripper.

Since only one camera is used at runtime, the image point transfer
technique combines this camera with the camera pair used off-line
to form two stereo pairs.

One important feature of any grasping method is the precision
with which the gripper and the object are eventually aligned. In all
our experiments the distance from the camera to the object to be
grasped is of approximatively 1 meter. The camera lens has a focal
length of 12.5 mm (αu ≈ 1000) which allows for a wide field
of view. Since the method’s main idea is to align image points,
the final grasping overall precision depends on the quality of the
set-point s⋆. When the gripper is properly aligned with the object
to be grasped, a gripper point with camera coordinates (x, y, z)

matches an image point with coordinates (u, v) and this image
point belongs to the set-point s⋆. We establish the relationship
between the 3-D error and the 2-D error.

By differentiation of eq. (4) we obtain the following relation-
ship:

du = αu

(
dx

z
− x dz

z2

)
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Fig. 6
THE GRIPPER AND THE OBJECT TO BE GRASPED AS VIEWED BY A STEREO

RIG. A LARGE SET OF POINT CORRESPONDENCES (NOT SHOWN) ALLOWS

US TO COMPUTE THE EPIPOLAR GEOMETRY. OBJECT POINTS TOGETHER

WITH GRIPPER POINTS ARE REPRESENTED IN A 3-D PROJECTIVE SPACE.

Fig. 7
AN EXAMPLE OF APPLYING THE VISUALLY GUIDED GRASPING METHOD.

THE SET-POINT (LEFT) IS THE PROJECTION OF A VIEW-INVARIANT

ALIGNMENT REPRESENTATION. THE GRASP (RIGHT) IS REACHED WHEN

THE IMAGE OF THE GRIPPER IS ALIGNED WITH THE SET-POINT.

The 3-D precision that we want to achieve is 0.5 mm. Therefore
we have dx = dz = 5 10−4m, and let x = 0.1m, z = 1m,
αu = 1000. We obtain: du ≈ dv ≈ 0.5pixels This means
that the transfer method outlined above must compute the set-
point with an accuracy of 0.5 pixels. Such an accuracy may be
obtained, provided that (i) the image locations of object points
have an equivalent accuracy and (ii) there are 15 to 20 object
points available with the image pairs [16]. The first condition can
be easily satisfied with standard correlation-based point-feature
extraction methods. The second condition is more difficult to
satisfy because it is context dependent.

VII. DISCUSSION

We described a method for aligning a robot end-effector with an
object. An example of such an alignment is grasping. The method
consists of using an uncalibrated stereo rig in order to represent
the alignment in 3-D projective space and of servoing the robot
using visual feedback from either one or two cameras. As already
mentioned, the set-point – the set of image points with which
the gripper points must eventually be aligned – can be computed
without any camera calibration. The final accuracy of the gripper-
to-object alignment depends on the accuracy with which the set-

point has been estimated. Nevertheless, the computation of the
image Jacobian requires the camera intrinsic parameters to be
known. The accuracy of these parameters does not affect neither
the final precision of the alignment nor the convergence of the
servoing algorithm; they merely affect the trajectory of the gripper
between its initial and goal locations.

One interesting feature of the method is that no Euclidean
knowledge about the object to be grasped is required. In order
to relate the velocity screw of the gripper with the image error
vector the method requires Euclidean knowledge about the robot
gripper, namely the Euclidean coordinates of the gripper markings
must be known in gripper frame. This is an intrinsic property of
the gripper that can be easily determined using standard hand-eye
or hand-tool calibration methods [17], [11].

The use of visual feedback for object grasping and for align-
ment in general is a promising research topic because it is a
tolerant to various disturbances and because it does not require
such prior knowledge as robot-to-world calibration and/or CAD
models for the objects to be manipulated. The method described
in this paper permits a deeper understanding of the interaction be-
tween uncalibrated vision and robot control which has important
implications in robotics.
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