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Simultaneous Robot-World and Hand-Eye Calibration

Fadi Dornaika and Radu Horaud

Abstract—Recently, Zhuang, Roth, & Sudhakar [1] proposed a method
that allows simultaneous computation of the rigid transformations from
world frame to robot base frame and from hand frame to camera frame.
Their method attempts to solve a homogeneous matrix equation of the
form AX = ZB. They use quaternions to derive explicit linear solutions
for X and Z. In this short paper, we present two new solutions that
attempt to solve the homogeneous matrix equation mentioned above:
(i) a closed-form method which uses quaternion algebra and a positive
quadratic error function associated with this representation and (ii)
a method based on non-linear constrained minimization and which
simultaneously solves for rotations and translations. These results may be
useful to other problems that can be formulated in the same mathematical
form. We perform a sensitivity analysis for both our two methods and
the linear method developed by Zhuang et al. [1]. This analysis allows the
comparison of the three methods. In the light of this comparison the non-
linear optimization method, which solves for rotations and translations
simultaneously, seems to be the most stable one with respect to noise and
to measurement errors.

I. INTRODUCTION

In order to use a gripper-mounted sensor (such as a camera)
for a robot task, the position and orientation of the sensor frame
with respect to the gripper frame must be known. The problem of
determining this relationship is referred to as the hand-eye calibration
problem. One can find this relationship by moving the robot and
observing the resulting motion of the sensor. This calibration problem
yields a homogeneous matrix equation of the form AX = XB. Several
closed-form solutions were proposed in the past to solve for X [2],
[3], [4], [5] as well as a non-linear optimization method [6].

Recently, Zhuang et al. [1] proposed a method that allows the
simultaneous estimation of both the transformations from the world-
centered frame to the robot-base frame and from the gripper frame
to camera frame. The identification problem is cast into the problem
of solving a system of homogeneous matrix equations of the form
AX = ZB, where X is the gripper-to-camera rigid transformation
and Z is the robot-to-world rigid transformation. Quaternion algebra
is applied to derive explicit linear solutions for X and Z.

The mathematical framework of AX = ZB allows one to solve
for at least two types of robotic configurations. These configurations
are shown on Figure 1 and Figure 2. It is worthwhile to notice
that matrices X and Z can be estimated either sequentially or
simultaneously. Therefore two approaches are possible:

1) X is estimated first using any hand-eye (or camera-gripper)
calibration method and Z is estimated by solving the equation
AX = ZB, or

2) X and Z are simultaneously estimated by solving AX = ZB
where both X and Z are unknowns.

This paper describes both a closed-form solution and a non-
linear solution for the system of matrix equations AX = ZB.
These solutions solve for two rotations and two translations that are
associated with the matrices X and Z. Likewise the linear method
[1] the closed-form and non-linear methods yield a unique solution
provided that the robot performs two motions with distinct rotation
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Fig. 1. Robot/world (Z) and hand/eye (X) calibration. The camera is mounted
onto the gripper and camera motions are determined using a calibration
pattern. The world frame is the frame of the calibration pattern.
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Fig. 2. Robot/eye (Z) and hand/tool (X) calibration. The tool is mounted onto
the gripper and tool motions are determined by observing tool feature points
with a camera. The world frame is, in this case, identical with the camera
frame.

axes. The main differences between the linear method and the closed-
form method introduced in this paper are the followings:

• The linear method first solves linearly for the components of
two quaternions and second it normalizes these quaternions such
that they represent rotations. The closed-form method solves
directly for two unit quaternions and hence the constraint that
these quaternions must represent two rotations is built in the
resolution method.

• The linear method is not feasible for some special configurations
(see [1] and below). We show that the closed-form method
remains feasible for such special configurations.

We perform a sensitivity analysis for both our methods and for
the linear method of Zhuang et al. [1]. This analysis allows the
comparison of the three methods. In the light of both simulated and
real experiments, it appears that the non-linear optimization method,
which solves for rotations and translations simultaneously, performs
better than the closed-form method which in turn performs slightly
better than the linear method.

The remainder of this paper is organized as follows. Section II
briefly recalls the problem formulation and presents the linear solu-
tion suggested by Zhuang et al. [1]. The closed-form and non-linear
methods are described in Section III. Section IV compares the three
methods through a sensitivity analysis. Finally, Section V describes
some experimental results and Section VI provides a short discussion.
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II. PROBLEM FORMULATION

We consider an arbitrary position of the robotic system (refer to
Figures 1 and 2). From these figures we can write:

AX = ZB (1)

In the particular case of a camera, the matrix A is obtained by
calibrating the camera with respect to a fixed calibrating object
and its associated frame, called the calibration frame. The matrix
B is computed using the manipulator’s forward kinematics whose
parameters are supposed to be known (see [7] for an approach which
attempts to estimate simultaneously these kinematic parameters and
the hand-eye transformation). Let RA, RB , RX , and RZ be the
respective 3×3 rotation matrices of A, B, X, and Z, and let tA,
tB , tX , and tZ be the respective 3×1 translational vectors. Equation
(1) can then be written as:[

RA tA
0T 1

][
RX tX
0T 1

]
=

[
RZ tZ
0T 1

][
RB tB
0T 1

]
and one may easily decompose this equation into a rotation equation
and a position equation:

RARX = RZRB (2)

RA tX + tA = RZ tB + tZ (3)

Equation (3) is a linear equation in tX and tZ if RZ is known.

A. Linear solution

This solution was suggested in [1]. Let qA, qB , qX , and qZ be
unit quaternions that correspond to the rotation matrices RA, RB ,
RX , and RZ [8]. Since quaternions can be written as a combination
of a scalar and a 3-vector, we have qT

A =
[
a0,a

T
]

and so forth.
The matrix equation RARX = RZRB is equivalent to the following
quaternion equation:

qA ∗ qX = qZ ∗ qB (4)

Expanding eq. (4) using quaternion products yields two constraints:
a scalar equation and a vector equation:

a0x0 − a · x = z0b0 − b · z (5)

a0 x+ x0 a+ a× x = z0 b+ b0 z − b× z (6)

where · and × denote the dot-product and the vector product in the
space of 3-vectors.

If a0 ̸= 0, x0 can be solved from (5):

x0 = (a/a0) · x+ (b0/a0) z0 − (b/a0) · z (7)

By substitution of eq. (7) into eq. (6) and using the matrix represen-
tation to describe the vector and dot products yields:

(a0I + aaT /a0 +Ω(a)) x+ (−b0I − abT /a0 +Ω(b)) z

= z0 b− z0 (b0/a0)a

where Ω(a) is the skew-symmetric matrix associated with the 3-
vector a.

Therefore, we obtain (with z0 ̸= 0):

J︸︷︷︸
3×6

u︸︷︷︸
6×1

= z0 (b− (b0/a0)a) (8)

where uT =
[
xT , zT

]
.

Equation (8) consists of three linear constraints with six unknowns.
Therefore, a unique solution for u requires multiple measurements.

The solution of u can be obtained using standard linear algebra
techniques. After u is obtained, the components of both qX and qZ

can be determined using the constraints ∥qX∥2 = ∥qZ∥2 = 1 and
eq. (7).

Following the solution of RX and RZ , the computation of tX and
tZ becomes trivial. Each position of the hand provides three linear
equations with six unknowns (the components of tX and tZ ).

III. PROBLEM SOLUTION

In this section we propose two alternatives for estimating RX , RZ ,
tX , and tZ : A closed-form method and a non-linear method which
do not suffer from the above limitations, e.g., a0 ̸= 0 and z0 ̸= 0.

The closed-form method uses algebraic properties associated with
quaternions to cast a sum of squares error function into a positive
semi-definite quadratic form whose minimization uses two Lagrange
multipliers. The non-linear method solves for all the unknowns
simultaneously using standard minimization techniques. Interesting
enough, the closed-form method is similar but not equivalent to the
problem of optimally estimating rigid motion from 3-D to 3-D point
or line correspondences [8], [9]. The method introduced in this paper
solves simultaneously for two rotations in closed form while the
methods developed in the past solved for one rotation in closed form.

A. Closed-form method

We start by building a positive error function that is derived from
equation (4) as follows. Since the quaternion multiplication can be
written in matrix form and with the notations introduced in [8] we
have:

qAi ∗ qX = Q(qAi) qX

qZ ∗ qBi = W (qBi) qZ

By substituting these equations into (4), we obtain:

Q(qAi) qX −W (qBi) qZ = 0

With matrices Q(q) and W (q) being defined by:

Q(q) =

 q0 −qx −qy −qz
qx q0 −qz qy
qy qz q0 −qx
qz −qy qx q0


W (q) =

 q0 −qx −qy −qz
qx q0 qz −qy
qy −qz q0 qx
qz qy −qx q0


Moreover, these two matrices are orthogonal and for a unit quaternion
q we have:

Q(q)TQ(q) = qTqI = I

W (q)TW (q) = qTqI = I

The squared norm of the corresponding error vector is given by
the following positive quadratic form:

∥Q(qAi) qX −W (qBi) qZ∥
2

= [Q(qAi) qX −W (qBi) qZ ]
T [Q [qAi) qX −W (qBi) qZ ]

= qT
XQ(qAi)

TQ(qAi)qX + qT
ZW (qBi)

TW (qBi)qZ −
qT
ZW (qBi)

TQ(qAi)qX

−qT
XQ(qAi)

TW (qBi)qZ
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Let v be an 8-vector given by:

vT =
[
qT
X , qT

Z

]
Thus, we can write:

∥Q(qAi) qX −W (qBi) qZ∥
2 = vT Si v

with Si being an 8×8 positive semi-definite symmetric matrix:

Si =

[
I Ci

CT
i I

]
(9)

where Ci = −Q(qAi)
TW (qBi) is an orthogonal matrix of rank

equal to 4.

Finally, the error function that will allow us to compute qX and
qZ becomes (n is the number of different positions of the robot):

f(qX , qZ) =

n∑
i=1

vT Si v = vT

(
n∑

i=1

Si

)
v = vT Sv (10)

with:

S =

[
nI C
CT nI

]
Notice that C =

∑n

i=1
Ci is the sum of n orthogonal matrices.

In the general case C has full rank and there may be geometric
configurations for which C is rank deficient. However, such geometric
configurations are very rare in practice and, without loss of generality,
one may assume that C has always full rank. The function f(qX , qZ)
is a positive semi-definite quadratic form and one way to minimize
it is to use two Lagrange multipliers:

min
v

f = min
qX ,qZ

((qX qZ)
T S(qX qZ)

+λ1 (1− qT
XqX) + λ2 (1− qT

ZqZ))

By developing and grouping terms we obtain:

f(qX , qZ) = (n− λ1)q
T
XqX + (n− λ2)q

T
ZqZ

+qT
XCqZ + qT

ZCTqX + λ1 + λ2 (11)

This function passes through a minimum when the first derivatives
vanish. By differentiating with respect to the components of qX and
qZ we obtain:

(n− λ1)qX + CqZ = 0 (12)

(n− λ2)qZ + CTqX = 0 (13)

From equation (12) we obtain:

qX =
1

λ1 − n
CqZ (14)

and by substituting qX in equation (13) we obtain:

CT CqZ = (λ1 − n)(λ2 − n)qZ (15)

Therefore qZ is an eigenvector of the symmetric positive semi-
definite matrix CT C. Such a matrix has four real positive eigenvalues
αi, i = {1...4} and we have an eigenvector ei for each eigenvalue:

CT Cei = αiei

Notice that by substituting equations (14) and (15) into equation (11)
we obtain the value of the error function at the point where the first
derivatives vanish:

f(qX , qZ) = λ1 + λ2

Therefore, we must choose an eigenvalue αi which minimizes λ1 +
λ2. Let us consider the fact that qX must be a unit quaternion. We
obtain from equations (12) and (15):

qT
XqX =

1

(λ1 − n)2
qT
ZCT CqZ

=
1

(λ1 − n)2
qT
Z(λ1 − n)(λ2 − n)qZ

=
λ2 − n

λ1 − n
= 1

Hence, we must have:

λ1 = λ2 ̸= 0

The relationship between λ1 = λ2 = λ and αi, i.e., equation (15) is:

(λ− n)2 = αi

which yields the following solutions for λ:

λ = n±
√
αi

Since λ must be a positive number, one has to select among the
four positive eigenvalues, the eigenvalue αi such that n±√

αi is the
smallest positive number.

Once the rotations, RX and RZ , have been determined, the problem
of determining the best translations, tX and tZ , becomes a linear
least-squares problem that can be easily solved using standard linear
algebra techniques.

1) Configurations defeating the linear method: There are two
configurations for which the linear method fails to provide a solution:
z0 = 0 and a0 = 0 (see Section II-A). Clearly the closed-form
solution is able to deal with situations for which z0 = 0. The
case a0 = 0 is a little bit more complex to analyse. First, notice
that the 4×4 matrices Q(q) and W(q) have full rank for all non
null quaternions q. Let, for some i, qAi = [0,aT

i ]
T . Q(qAi)

becomes a skew-symmetric matrix of full rank for all ai ̸= 0.
Hence, the rank of Si in equation (9) is not affected by such a
special case. However there is an ambiguity associated with purely
imaginary unit quaternions because the quaternions qAi = [0,aT

i ]
T

and qAi = [0,−aT
i ]

T describe the same rotation matrix RAi. Hence,
one has two consider two distinct matrices associated with this special
configuration:

S+
i =

[
I Ci

CT
i I

]
and S−

i =

[
I −Ci

−CT
i I

]
Therefore, any time such a special configuration is present in the data,
one has to consider two distinct error functions. There will be two two
distinct solutions for qX and qZ . One may simply consider, among
these two solutions, the solution yielding the smallest minimum.

B. Non-linear method

There are several disadvantages associated with the above methods:

1) The unknowns are estimated in sequence, rotations first and
then translations. Errors from the first stage propagate to the
second stage;

2) It is well known that the performance of linear resolution
methods degrades in the presence of noise, and

3) Unlike non-linear minimization, linear and closed-form solu-
tions do not allow a characterization of both the quality of the
solution and the confidence associated with the solution.
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In this Section, we propose to overcome the disadvantages men-
tioned above. For this purpose we estimate simultaneously the rota-
tions and translations associated with X and Z. This leads to a non-
linear minimization problem. There are 24 parameters associated with
two rotation matrices (18 parameters) and two translation vectors (6
parameters). The initialization of these unknowns is straightforward
because one can use either of the two methods outlined above. Non-
linear minimization provides information about both the quality of
the solution (the depth of the global minimum) and the confidence
associated with this solution (the width of the global minimum).

If we have n positions of the robot, the calibration problem
becomes the problem of solving for a set of 2n non-linear constraints
derived from equations (2) and (3), or equivalently, the problem of
minimizing the following error function:

f(RX ,RZ , tX , tZ) = µ1

n∑
i=1

(
∥RAi RX − RBi RZ∥2

)
+ µ2

n∑
i=1

(
∥RAi tX + tAi − RZ tBi − tZ∥2

)
+ µ3 ∥RXRT

X − I∥2 + µ4 ∥RZRT
Z − I∥2

The criterion to be minimized is of the form:

min
x

{
f(x) =

1

2

m∑
j=1

Φ2
j (x) : x ∈ IR24

}

Therefore, the problem becomes a classical non-linear least-squares
constrained minimization problem and one can apply standard
non-linear optimization techniques, such as Newton’s method and
Newton-like methods [10], [11]. In this error function, the terms Φj

are quadratic in the unknowns. Notice that the last two terms are
penalty functions which constrain the matrices RX and RZ to be
rotations. The parameters µ1 through µ4 are real positive numbers.
High values for µ3 and µ4 inforce the role of the penalty functions
In all our experiments we have set these parameters to the following
values: µ1 = µ2 = 1 and µ3 = µ4 = 106 In the next two sections we
give some results obtained with the Levenberg-Marquardt non-linear
minimization method as described in [12] and in [11].

IV. SENSITIVITY ANALYSIS AND METHOD COMPARISON

One of the most important merits of any calibration method is its
sensitivity with respect to various perturbations. In our problem, there
are two main sources of perturbations: errors associated with camera
calibration and errors associated with the robot position. Indeed, the
parameters of both the direct and inverse kinematic models of robots
are not perfect. In order to investigate the behaviour of the methods in
the presence of measurement noise we designed a sensitivity analysis
based on the following grounds:

• Nominal values for the parameters of both the hand-eye transfor-
mation X and the robot-to-world transformation Z are provided;

• Also are provided n matrices A1, . . . An from which n hand
positions can be computed with:

Bi = Z−1AiX

• Either Gaussian noise or uniform noise is added to both camera
and robot positions; the homogeneous transformations, (X and
Z), are estimated in the presence of this noise using the three
methods described in this paper: the linear method, the closed-
form method and the non-linear method, and

• We study the variations of the estimation of the hand-eye trans-
formation and the robot-to-world transformation as a function
of the noise being added and/or as a function of the number of
positions (n).

Since both rotations and translations may be represented as vectors,
adding noise to a transformation consists of adding random numbers
to each one of the vectors’ components. Random numbers simulating
noise are obtained using a random number generator either with
a uniform distribution in the interval [−C/2,+C/2], or with a
Gaussian distribution with a standard deviation equal to σ. Therefore
the level of noise that is added is associated either with the value of
C or with the value of σ (or, more precisely, with the value of 2σ).
In what follows the level of noise is in fact represented as a ratio:
the amplitude of the actual random numbers (C or 2σ) divided by
the nominal values of the perturbed parameters.

In the case of a rotation, the vector (quaternion) associated with
this rotation has a module equal to 1 and therefore the ratio is simply
either C or 2σ. In the case of a translation the ratio is computed
with respect to a nominal value estimated over all the perturbed
translations:

∥tnominal∥ =

∑n

i=1
(∥tAi∥+ ∥tBi∥)

2n

where tAi is the translation vector associated with Ai.

For each noise level and for a large number N of trials we
compute the errors as follows. These errors are: orientation error
and position error. The orientation error is defined as the rotation
angle in degrees required to align the coordinate system of X or Z in
its computed orientation with the coordinate system in its theoretical
orientation. The position error is defined as the norm of the vector
which represents the difference between the two translation vectors:
the computed one and the theoretical one, divided by the norm of
the second vector.

In all our simulations we set N = 500, ∥tX∥ = 229mm, and
∥tZ∥ = 768mm.

The following figures show the average of the above errors as a
function of the percentage of noise. The percentage of noise varies
from 1% to 6%. The full curves (—) correspond to the method in
[1], the dotted curves (. . .) correspond to the closed-form method,
and the dashed curves (- - -) correspond to the non-linear method.

Figures 3 and 4 correspond to three positions (n = 3) of the robot
while on Figure 5 the number of positions varies from 3 to 8.

Figure 3 shows the rotation and translation errors as a function of
uniform noise added to the rotational part of the robot and camera
positions. Figure 4 shows the rotation and translation errors as a
function of Gaussian noise added to the rotational part of the hand and
camera positions. These errors are obtained with the three methods.
We can conclude that the closed-form method is more accurate than
the linear method proposed in [1].

As other authors have done in the past, it is interesting to analyze
the behaviour of calibration methods with respect to the number
of positions. In order to perform this analysis we have to fix the
percentage of noise. Figure 5 shows the rotational and translational
errors as a function of the square root of the number of motions (

√
n

varies from 1.732 to 2.828). The noise ratio has been fixed to the
worst case for rotations, e.g., 6% and to 2% for translations. Both
rotational and translational noise distributions are Gaussian.
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(a) Orientation errors.

Z

Z

X

X

(b) Relative position errors.

Fig. 3. Errors in orientations and positions in the presence of uniform noise
perturbing the rotation axes. The full curves (—) correspond to the method
of [1] and the dashed curves (- - -) correspond to the non-linear method.

V. EXPERIMENTAL RESULTS

In this Section we report some experimental results obtained with
two sets of data. The first data set was obtained with 17 different
positions of the hand-eye device with respect to a calibrating object.
The second data set was obtained with 7 such positions. In order
to calibrate the camera we used the classical method proposed by
Faugeras & Toscani described in [9].

Our tests compare the linear method [1] with the two methods
developed in this paper. Table I and Table II summarize the results
obtained with the two data sets mentioned above. The second columns
of these tables show the sum of squares of the absolute error in
rotation. The third columns show the relative error in translation,
namely

ER =
∑

∥RARX − RZRB∥2 (16)

Et =

(∑
∥(RAtX + tA − RZtB − tZ∥2∑

∥RAtX + tA∥2

)1/2

(17)

X

X

Z

Z

Z

X

(a) Orientation errors.

X

X

X

(b) Relative position errors.

Fig. 4. Errors in orientations and positions in the presence of Gaussian noise
perturbing the rotation axes. The full curves (—) correspond to the method
of [1], the dotted curves (. . .) correspond to the closed-form solution and the
dashed curves (- - -) correspond to the non-linear method.

TABLE I
THE FORMULATION AX = ZB USED WITH THE FIRST DATA SET (17

DIFFERENT POSITIONS OF THE HAND-EYE DEVICE). THESE DATA WERE
OBTAINED WITH A PPPRRR ROBOT.

ER, eq. (16) Et, eq. (17)
Linear solution 0.00031 0.00068

Closed-form solution 0.00026 0.00075
Non-linear optimization 0.00071 0.00021

It is worthwhile to notice that the robots being used in the two
experiments summarized in the tables above are not identical. The
first data set (Table I) was obtained with a PPPRRR robot (three
prismatic and three rotational joints) while the second data set
(Table II) was obtained with a RRRRRR robot. Unlike the simulated
data, these two experiments do not allow one to conclude that the
closed-form solution outperforms the linear solution. In the first
experiment the linear solution yields a smaller translation error than
the translation error associated with the closed-form method. In the
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X

Z

Z

X

(a) Orientation errors.

X

Z

X

Z

(b) Relative position errors.

Fig. 5. Errors in orientations and positions as a function of the number of
positions. A Gaussian noise is added both to the robot and camera positions.
The full curves (—) correspond to the method of [1] and the dashed curves
(- - -) correspond to the non-linear method.

TABLE II
THE FORMULATION AX = ZB USED WITH THE SECOND DATA SET (7

DIFFERENT POSITIONS OF THE HAND-EYE DEVICE). THESE DATA WERE
OBTAINED WITH A RRRRRR ROBOT.

ER, eq. (16) Et, eq. (17)
Linear solution 0.12174 0.00738

Closed-form solution 0.00068 0.00515
Non-linear optimization 0.00109 0.00451

second experiment the translation error associated with the linear
method does not seem to be affected by a large rotation error.

These experimental results seem however to confirm that the non-
linear method provides a better estimation of the translation vectors at
the cost of slightly larger rotation errors. This is due to the fact that
the robot’s kinematic chain is not perfectly calibrated and therefore
there are errors associated with the robot’s translation parameters.
Obviously, these errors do not obey the noise models used for

simulations.

VI. DISCUSSION

In this paper we addressed the problem of robot-to-world and hand-
eye calibration. As it was proposed in [1] this problem is formulated
as solving a system of homogeneous transformation equations of the
form AX = ZB.

We develop two resolution methods, the first one solves for
rotations and then for translations while the second one solves
simultaneously for rotations and translations. The first method leads
to a closed-form solution while the second one leads to non-linear
optimization.

Both the sensitivity analysis and the results obtained with experi-
mental data show that the closed-form method slightly outperforms
the linear method of Zhuang et al. [1]. This is most probably
due to the Euclidean nature of the error function suggested in
Section III-A. However, there is no evidence that with real data
the closed-form method will always perform better than the linear
method: One can therefore conclude that the two methods have
comparable performances.

The non-linear minimization method suggested in Section III-B
yields the most accurate results and outperforms both the linear and
closed-form methods. The solution obtained with either the linear
or closed-form methods can be used to initialize the non-linear
minimization method.

The two methods proposed in this paper together with [1] may be
useful to other problems that can be formulated into homogeneous
transformation equations of the form AX = ZB.
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