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Abstract 

Constraints on assembly plans vary depending on product, assembly facility, assembly vol- 
ume, and many other factors. Assembly costs and other measures to optimize vary just as 
widely. To be effective, computer-aided assembly planning systems must allow users to express 
the plan selection criteria that apply to their products and production environments. 

We begin this article by surveying the types of user criteria, both constraints and quality mea- 
sures, that have been accepted by assembly planning systems to date. The survey is organized 
along several dimensions, including strategic vs. tactical criteria; manufacturing requirements 
vs. requirements of the automated planning process itself; and the information needed to assess 
compliance with each criterion. The latter strongly influences the efficiency of planning. 

We then focus on constraints. We describe a framework to support a wide variety of user 
constraints for intuitive and efficient assembly planning. Our framework expresses all constraints 
on a sequencing level, specifying orders and conditions on part mating operations in a number of 
ways. Constraints are implemented as simple procedures that either accept or reject assembly 
operations proposed by the planner. For efficiency, some constraints are supplemented with 
special-purpose modifications to the planner's algorithms. Fast replanning enables an interactive 
plan-view-constrain-replan cycle that aids in constraint discovery and documentation. We 
describe an implementation of the framework in a computer-aided assembly planning system 
and experiments applying the system to a number of complex assemblies, including one with 
472 parts. 
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1 Introduction 
Constraints on assembly plans come from a wide variety of sources. Design requirements, part 
and tool accessibility, assembly line and workcell layout, requirements of special operations, a n d ,  
even supplier relationships can determine which orders of assembly are feasible. Among feasible 
orderings, a similarly diverse set of quality measures determine which is preferred or optimal. 
Together, the set of hard constraints and quality measures comprise a complex set of criteria 
that real assembly plans must satisfy. Computer-aided assembly planning systems promise to 
help product and assembly system designers manage this complexity and choose good assembly 
sequences. 

However, there are so many types of assembly criteria that it is impractical for a single program 
to encode them all, and in many cases they are company- or product-specific.' Hence a practical 
assembly planning system must have the ability to manage assembly criteria in a general way to 
find a feasible and best assembly sequence. In response to this apparent need, many types of 
criteria have appeared in the literature on automated assembly planning or have been implemented 
in experimental systems. However, the criteria often occur stated in different ways and in a variety 
of forms and contexts. In this article, we survey assembly constraints and quality measures and 
present a new framework to support constraints in interactive assembly planning. 

We survey the assembly planning literature to identify, synthesize, and organize common criteria 
on assembly plans. We focus on what criteria appear in the literature, rather than how they have 
been implemented. Implicit in our survey is the assumption that if a criterion has appeared in 
the literature then it is either useful or implementable-either of which makes it interesting when 
considering an assembly planning implementation. We group related criteria and categorize them 
along several dimensions, including strategic us. tactical criteria; manufacturing requirements 
us. requirements of the automated planning process itself; and the information needed to assess 
compliance with each criterion. The latter strongly influences the efficiency of planning, because 
criteria requiring only single actions to assess compliance are more amenable to typical state-space 
search and optimization methods. 

We then narrow our focus to hard constraints on assembly plans. We present a framework for 
representing and reasoning about assembly constraints of many types. The user chooses constraints 
from a library of standard constraint types, with a simple graphic interface for defining the specifics 
of the constraint. Constraints are implemented as filters, which are simple procedures that either 
accept or reject assembly operations proposed by the planner. Any constraint that can be encoded 
as a filter can be added to the constraint library in a straightforward way. Some constraints are 
supplemented with special-purpose modifications to the planner's algorithms for greater efficiency. 
We have been able to encode a large majority of the constraints from our survey in this framework. 

The constraint framework has been implemented and tested extensively in the Archimedes 
assembly planning system [15]. In a typical interaction, the system generates and animates a plan, 
the user adds constraints that need to be satisfied by the plan, asks for a new plan, and repeats 
the process until a satisfactory plan is found. Our users have found this interactive constraint 
discovery and planning process to be very natural and productive. In fact, we view the novel form 

'For example, one of our customers requested a constraint that would model solder possibly dripping on fragile 
parts. Another requested that our system model the effects of different assembly sequences on tolerances when 
welding in a certain fixture. 
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of interaction enabled by the constraint system to be one of the main contributions of this article. 
We describe our tests of the user constraint system on a number of complex industrial assemblies, 
including one with an order of magnitude more parts than has been previously demonstrated. 

The rest of this paper is organized as follows. The next section presents our survey approach 
and introduces a number of terms used to define and discuss the criteria. In section 3 we give 
a short systematic name to each criterion and briefly define it, with references to representative 
papers in which it appeared. Section 4 then discusses the results of the survey in detail, particularly 
with regard to our categorizations of criteria. 

We then proceed to describe our constraint framework and implementation. Section 5 presents 
an overview of our framework, including a comparison to previous approaches for representing and 
reasoning about assembly constraints. Section 6 gives a more detailed view and discusses several 
important features. Section 7 describes experience with our implementation of the framework and 
several complex assemblies. Finally, Section 8 concludes and describes future work. 

2 Preliminaries 
This section presents our survey approach and introduces a number of terms used to define and 
discuss the criteria in following sections. 

2.1 Approach 

Our approach has the following motivations and guiding principles: 

Inclusion: First, our goal is to provide perspective on how a large variety of assembly criteria, 
and their potential implementations, interrelate. When in doubt, we err on the side of inclusion. 
We include all criteria mentioned in the assembly planning literature with which we are familiar. 
In addition, we include criteria that have arisen in discussions with industrial assembly personnel, 
or with which we have experience from our own work, or which arose during the survey as seeming 
natural and potentially useful. However, no claim is made that any of these latter criteria are new 
or novel. Finally, we include a number of constraints that occur mainly as limitations of automated 
assembly planning systems. Although these last constraints emanate from an artificial source, they 
are important to document nonetheless. 

Exclusion: On the other hand, this is not an attempt to catalog all possible assembly criteria. For 
example, subassemblies and clusters are two similar but different concepts. Although an engineer 
might require or prohibit use of a particular subassembly, only requiring a cluster makes sense. 
Thus, the logically possible constraint of prohibiting a cluster does not seem useful, and is not 
included. 

In the literature, criteria are often discussed together with features of the computer programs 
which implement them. Such software features may superficially seem like criteria, when they are 
actually just “housekeeping” functions. For example, a feature to DELETE A STATE [l] represents 
a constraint, because it rules out certain assembly sequences. The related software feature of 
UNDELETE A STATE just clears a previously selected constraint, and thus would not be included 
here. Similarly, a state transition diagram may include redundancies which need to be removed [l], 
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but the removal process does not constitute a constraint on the assembly plan or the assembly 
planner. 

Finally, note that a number of the criteria could be naturally used as “suggestions” to guide the 
system in a general way or to help the planner find a good plan more quickly. We originally listed 
suggestions separately in [13], but most were just modifications of the corresponding constraints. 
We are investigating the use of suggestions or guidance in our assembly planning implementation, 
but we do not include suggestions as separate criteria here. 

Grouping: Often very similar ideas can be expressed quite differently. For example, “prohibiting 
a plurality of unconnected subassemblies” [6] and “deleting branched assembly lines” [2] are the 
same as requiring “linear” sequences [29] (see definitions below). As a result, we arbitrarily choose 
the latter terminology for inclusion. Similarly, a quality measure that minimizes parallelism in 
a plan is very close to the concept of maximizing linearity, so we again include only one. Some 
decisions we have made to combine criteria into classes may arguably be incorrect, given sufficient 
interest in the details of variants in the class. We have tried to produce a manageable size list, 
trading off loss of detail with clarity of presentation. 

Combining criteria: Constraints can be combined using logical conjunctions, disjunctions? and 
negations, while quality measures may be combined using arithmetic operators, giving weightings 
to various measures. We do not delineate which criteria may be combined with which others and 
in what ways. Instead, we have attempted to identify the basic criteria that might be the terms 
in such composite criteria. Of course, combinations of criteria must be considered carefully when 
implementing an assembly planning system. 

2.2 Terms and Abbreviations 
The following terms are used in the later sections of this article. For terms that appear commonly 
in names of criteria, we give the abbreviation. 

AND/OR graph: a commonly used representation of a set of assembly sequences, listing sub- 
assemblies and actions that create larger subassemblies from smaller ones [12]. 

assembly: a set of parts, in given relative positions. 

assembly action: (abbreviated as ACTION) any single operation of bringing together parts or 
subassemblies, or of moving parts or subassemblies. It is a more general term than “insertion.?’ 

cluster: a group of parts to be assembled in uninterrupted sequence? but for which the sequence 
is not specified [4]. For example, all the bolts holding a lid to an assembly might be defined 
to be a cluster. 

connected: a subassembly is connected if its graph of parts and liaisons is connected. 

insertion: an action that mates two subassemblies. 

liaison: a relationship between two parts which are touching or effectively touching? whether phys- 
ically attached or not [5] .  
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linear: An insertion is linear if the moving subassembly contains only one part [29]. A plan is 
linear if all of its insertions are linear. 

monotone: An action is monotone if aII parts involved end the action in their relative positions in 
the final product [29]. A plan is monotone if all of its actions are monotone. In a monotone 
plan, parts never take temporary positions except while they are being mated. Hence a 
monotone assembly plan for an n-part assembly has exactly n - 1 insertions. 

stable or stability: (abbreviated STAB) resistant to unwanted change due to effects of gravity, 

state: the parts of an assembly, in a certain relation to one another, constituting a stage in assem- 

motion, etc. 

bly. 

state transition diagram: a commonly used representation of a set of assembly sequences, listing 
states and the feasible transitions between them. 

subassembly: (abbreviated SUBASSY) a non-empty subset of parts of an assembly. Note that in 
the limit a subassembly may refer to a whole assembly or a single part. 

3 List of Criteria 
In this section we list and define the criteria we have identified in our search of the assembly planning 
literature. We give a short systematic name for each criterion, in many cases using abbreviations 
from the terms list above. Constraints begin‘ with either “REQ-” or “PRH-” for requiring or 
prohibiting certain situations, respectively. Quality measures begin with either “MAX-” or “MIN-”, 
with the obvious meanings. The criteria are listed here in alphabetical order of their systematic 
name. 

While we have tried to be exhaustive in the criteria we include, we do not claim to list all 
papers that have mentioned any given criterion. Instead, we give references to at most one or 
two representative papers in which each appeared. In addition, some criteria are so general and 
ubiquitous (e.g. MIN-COST and MIN-TIME) that they appear in almost every assembly planning 
paper. 

In our constraint framework, we have further refined some of the criteria listed here, and created 
additional ones that were requested by our users. However, our constraint framework imposes an 
additional source of bias on the survey, which may not be valid for all implementation approaches. 
Hence we list the criteria here in their original form (Le. as in [13]). In subsection 6.3 we describe 
additional constraints that we implemented within our framework. 

MAX-LINEAR: Maximize the number of linear insertions in the plan [as]. 
MAX-PARALLEL: Maximize some measure of the degree of parallelism in the plan [lo, 281. 

This is closely related to maximizing flexibility at each stage of assembly. 

MAX-STAB: Maximize some measure of the stability of states in the plan [19]. 

MIN-AWKWARD-ACTION: Minimize the awkwardness of an assembly action or sequence of 
assembly actions [l]. 
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MIN-AWKWARD-GRIP: Minimize the awkwardness of gripping a part or a set of parts [2]. 

MIN-COST: Minimize the overall cost of the plan. The cost measurement used may vary widely, 
from human estimates of the cost of each assembly step to algorithmic estimates of the cost 
of certain factors in each action. 

MIN-COST-FIXT: Minimize the overall cost of assembly fixtures for the plan [3, 24, 311. 

MIN-DIREC: Minimize the “directionality” of the assembly plan [29]. Directionality might rnea- 
sure the number of insertion directions required by the plan, the range of directions, or the 
number of direction changes. 

mate minimization of fixturing cost. 
MIN-FIXT-COMPLEX: Minimize fixture complexity [3, 24, 311. This is one way to approxi- 

MIN-REFIXT: Minimize the number of refixturings of the evolving assembly [2, 241. 

MIN-REORIENT: Minimize the number of assembly reorientations in the plan [l, 151. MIN- 
COST-FIXT, MIN-REFIXT, MIN-DIREC, and MIN-REORIENT are all closely related and 
often used to approximate each other. 

MIN-SIMUL-LIAISON: Minimize the use of simultaneous liaison creation [l]. In some contexts, 
actions are more difficult or awkward when higher numbers of liaisons are being established 
by the action. 

MIN-TIME: Minimize the time required to execute the plan. 

MIN-TOOLCHANGE: Minimize the number of tool changes in the plan [15]. 

PRH-ACTION: Prohibit a particular action, such as a particular simultaneous liaison creation 
or state transition [2, 71. 

PRH-COLLISION: Do not allow parts to interpenetrate during motions. This a fundamental 
constraint. 

PRH-STATE: Do not allow the assembly to enter a given state [2]. 

PRH-SUBASSY: Prohibit use of a certain subassembly, or possibly any subassembly containing 
certain part combinations. For example, one may need to avoid a hard-to-fixture arrange- 
ment [7] containing a set of key parts. 

PRH-SUBSEQ: Prohibit a particular subsequence of actions. 

REQ-ACCESS-TEST: Require that sufficient space be available to perform a test. 

REQ-ACCESS-TOOL: Require that sufficient space be available for a tool (manual tool, robotic 

REQ-ACTION: Require that a particular assembly action be used in the plan, due to its desir- 

REQ-CLUSTER: Require that a set of parts be added to the assembly consecutively, i.e. without 

gripper, welder, laser, etc.) to  be applied [21, 261. 

ability [l]. This is a minimal case of REQ-SUBSEQ. 

interruption by other parts [4]. 
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REQ-CONNECT: Require that every subassembly in the plan be connected. This common 

REQ-FASTENER: Require that certain parts be treated as fasteners for other parts [ll, 211. 

REQ-LINEAR: Require that parts be inserted one at a time [ l ,  291. This is a common constraint 

constraint is implicit in cut-set methods such as [1, 111. 

The fasteners must be placed immediately after the fastened parts are mated. 

as well as a common limitation in other planning systems. 

REQ-LINEAR-SUBSET: Same as RE&-LINEAR, but applying only to a subset of operations 
or parts. 

REQ-MONOTONE: Require that the plan be monotone [291. This is a very common limitation 
of automated planners; [8] is one system that does not impose this constraint. 

REQ-ORDER-FIRST: Require that the assembly plan start with a given part, such as a “chas- 
sis” [16], or a set of parts. 

REQ-ORDER-LIAISON: Require some ordering between two or more liaison creations; typ- 
ically stated in a boolean form such as 1 2 (2&3), or as a set of such boolean statements 
involving many liaisons [6]. This is a common and powerful type of constraint, analyzed 
in [30]. 

REQ-ORDER-PART: Require an ordering between particular part insertions. 

REQ-ORDER-SPECIAL: Require a part, liaison, or other ordering not classifiable as one of 
the above three. For example, [lo] mentions the case of certain liaisons that must not be 
created until some measured result of another subassembly has been obtained. 

REQ-PART-SPECIAL: Any special-purpose part constraint, such as those dealing with liquids, 
springs, snap-fit parts, etc. 

REQ-PATHS-AXIAL: Require that each assembly action be along one of the six coordinate 
directions of a given coordinate system, or a selected subset of these six directions. Common 
special cases are uniazial constraints (allowing motions in either direction along one axis) [17] 
and unidirectional constraints [16]. This constraint is a limitation of many assembly planning 
systems. 

REQ-PATHS-STR: Require that each assembly action consist of a single translation, or a single 
combined translation and rotation about a fixed axis [28]. This is a common limitation of 
assembly planners. 

REQ-STAB-ACTION: Require that a part or parts be stably fixtured during some assembly 
action such as a reorientation [20] or insertion [24]. 

REQ-STAB-STATE: Require that a subassembly be stably fixtured versus gravity [3, 311. 

REQ-STATE: Require that a given state be in the plan [l]. 

REQ-SUBASSY: Require that a particular subassembly be used in the plan [1, 71. 
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RE&-SUBSEQ: Require that a particular assembly subsequence be used somewhere in the plan. 
This might be invoked because the sequence is particularly efficient or reliable. The front-fdl 
then back-fill subsequences of [2] are relatively complex examples. 

Except in very theoretical papers (e.g. [22]) this assumption is universal. 
REQ-TWO-HANDED: Require that each insertion mate exactly two subassemblies [27, 291. 

4 Categories of Criteria 
In this section we categorize the criteria above in ways that may provide insights as to their 
interrelations and possible approaches to implementation. We categorize criteria according to the 
following attributes: 

the origin or source of the criterion, 

the degree of obligation of the criterion‘ 

whether the criterion is of strategic or tactical scope, and 

the information required to  assess compliance with a constraint or compute the value of a 
measure. 

We restrict each criterion to being in one category for each attribute, which may in some cases 
constitute oversimplification. The criteria are listed in Table 1 along with their categories. We 
define and discuss these categorizations in more detail in the following subsections. 

4.1 Origin 
First, it is natural to  consider the source of the constraint. We use just two categories: assembly 
issues per se and planning issues. Assembly issues arise directly from physical constraints and 
manufacturing concerns, such as fixturing, manipulability, or issues of assembly line layout. Closely 
related are quality measures arising from a need to optimize one of the three basic aspects of 
assembly: assembly cost ? time, or performance/reliability. In contrast ? planning issues are those 
that arise from the assembly planning process itself, such as simplifying assumptions and limitations 
of planning systems, or the need to  handle large numbers of possible sequences practically. 

Most criteria mentioned in the literature are assembly issues. Examples include the need for an 
assembly to be stable with respect to the forces that arise during an action (REQ-STAB-ACTION), 
and the need to perform all the assembly actions vertically in robotic assembly using SCARA-type 
robots (RE&-PATHS-AXIAL). Such criteria may be objectively evaluatable, or may be subjec- 
tive, such as the judgement that a required manipulation is “awkward” (e.g. MIN-AWKWARD- 
ACTION). There is a rich set of such “real-world’? criteria in the literature. 

Criteria that arise from planning issues should be viewed differently from those arising from 
assembly issues, in that an assembly planning system need not include them in order to be com- 
prehensive, if the methods used in the planning system do not themselves require these criteria in 
order to be effective. 

Some criteria have origins in both assembly and planning issues; this is true for all the strategic 
constraints in Table 1 except PRH-COLLISION. Many assembly planning systems have technical 
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CRITERION NAME OBLIGATION SCOPE INFO REQ’D ORIGIN(SUBTOP1C) 
PRH-COLLISION 
REQ-LINEAR 
REQ-PATHS-AXIAL 
REQ-TWO-HANDED 
REQ-MONOTONE 
REQ-PATHS-STR 
REQ-CONNECT 

PRH-ACTION 
REQ-ACCESS-TOOL 
REQ-CLUSTER 
REQ-FASTENER 
REQ-LINEAR-SUBSET 
REQ-ORDER-FIRST 
REQ-ORDER-LIAISON 
REQ-ORDER-PART 
REQ-PART-SPECIAL 
REQ-STAB-ACTION 
REQ-SUBASSY 
REQ-ACTION 
REQ-STATE 
PRH-STATE 
REQ-STAB-STATE 
REQ- ACCESS-TEST 
PRH-SUB ASSY 
REQ-SUBSEQ 
PRH-SUBSEQ 
REQ-ORDER-SPECIAL 

MAX-LINEAR 
MIN-REFIXT 
MIN-REORIENT 
MIN-SIMUL-LIAISON 
MIN-TIME 
MIN-TOOLCHANGE 
MAX-PARALLEL 
M AX-STAB 
MIN-COST 
MIN-COST-FIXT 
MIN-DIREC 
MIN-FIXT-COMPLEX 

constraint 
constraint 
constraint 
constraint 
constraint 
constraint 
constraint 

constraint 
constraint 
constraint 
constraint 
constraint 
constraint 
constraint 
constraint 
constraint 
constraint 
constraint 
constraint 
constraint 
constraint 
constraint 
constraint 
constraint 
constraint 
constraint 
constraint 

measure 
measure 
measure 
measure 
measure 
measure 
measure 
measure 
measure 
measure 
measure 
measure 

MIN-AWKWARD-ACTION measure 
MIN-AWKWARD-GRIP measure 

strategic 
strategic 
strategic 
strategic 
strategic 
strategic 
strategic 

tactical 
tactical 
tactical 
tactical 
tactical 
tactical 
tactical 
tactical 
tactical 
tactical 
tactical 
tactical 
tactical 
tactical 
tactical 
tactical 
tactical 
tactical 
tactical 
tactical 

strategic 
strategic 
strategic 
strategic 
strategic 
strategic 
strategic 
strategic 
strategic 
strategic 
strategic 
strategic 

tactical 

action 
action 
action 
action 
action 
action 
state 

action 
action 
action 
action 
action 
action 
action 
action 
action 
action 
action 
plan 
plan 
state 
state 
state 
state 
action 
sub-plan 
various 

action 
action 
action 
action 
action 
action 
plan 
plan 
plan 
plan 
plan 
plan 

action 

assembly(fundamenta1) 
assembly (line layout) ’ 
assembly(simp1icity) 
assembly(simp1icity) 
planning( simplifying) 
planning( simplifying) 
assembly (hturing) 

assembly( various) 
assembly(manipu1ation) 
assembly(mfg. efficiency) 
assembly(various) 
assembly(1ine layout) 
assembly(mfg. efficiency) 
assembly( various) 
assembly( various) 
assembly (various) 
assembly(kturing) 
assembly( various) 
assembly( various) 
assembly( various) 
assembly( various) 
assembly (fixturing) 
assembly( manipulation) 
planning(fixturing) 
assembly( various) 
assembly (various) 
assembly( various) 

assembly(1ine layout) 
assembly(cost or time) 
assembly(c0st or time) 
assembly( reliability) 
assembly( time) 
assembly( time) 
assembly(time) 
assembly (fixturing) 
assembly(cost) 
assembly (fixturing) 
assembly( cost) 
assembly (fixturing) 

assembly(manipu1ation) 
tactical action assembly(manipu1ation) 

Table 1: Assembly Planning Criteria. Criteria are sorted first by their entry in column two, then 
by their entry in column three, etc., and lastly by the criterion name. 
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limitations that only allow them to generate plans that are linear or that have axial insertion paths, 
for instance. However, linear plans also avoid the complexity of merging assembly lines and often 
minimize the number of assembly fixtures required; axial insertion paths, particularly the sub-case 
of vertical insertions, are preferred for robotic as well as manual assembly. We have generally chosen 
the “assembly issue” classification for such criteria. The main exceptions are RE&-MONOTONE 
and REQ-PATHS-STR, which in our opinion are more often planner limitations than criteria the 
user wishes to impose, due to the computational complexity required to generate nonmonotone 
plans or complex insertion paths automatically. 

In the last column of Table 1 we have indicated the origin of each constraint, and have added a 
subcategory comment regarding a more specific topic that criterion might be expected to address. 
Although not well shown in Table 1, some criteria are sub-cases of others. For example, minimizing 
fixture complexity (MIN-FIXT-COMPLEX) is an approach to minimizing cost of fixturing (MIN- 
COST-FIXT), which is itself a subcase of minimizing cost (MIN-COST). 

4.2 Obligation 
A second, and more useful, categorization is the degree of obligation of the criterion. Constraints 
are absolute, either requiring or prohibiting certain features of assembly plans. Quality measures 
select assembly plans which, at least conceptually, either maximize or minimize a scalar function 
(abbreviated MAX and MIN). 

Note that in many cases constraints can be naturally transformed into quality measures and 
vice versa. For example, REQ-PATHS-AXIAL could be changed to MAX-PATHS-AXIAL, which 
would prefer axial insertion paths but still allow non-axial insertions. Similarly, MIN-DIREC could 
instead be REQ-DIREC, which would only allow a certain number of assembly directions. We 
list each criterion in the form we found it in the literature. Some issues have appeared as both 
constraints and measures, such as RE&-LINEAR and MAX-LINEAR, in which case we list both. 

In [13] we recognized an additional category of obligation called suggestions. The meaning of a 
suggestion is less clear than a constraint or measure; the planner is free to obey a suggestion or not, 
depending on other factors. All five suggestions recognized in [13] were versions of other constraints. 
We now believe that suggestions are more properly understood as versions of constraints that the 
user believes will make planning easier, but the user does not wish to constrain the ultimate choice 
of plan. As a result, we have elected to leave the separate category “suggestion” out of this paper. 

4.3 Scope 

Regardless of the level of obligation a criterion carries, its scope of relevance to the plan or the 
planning program may be strategic or tactical (the terminology is taken from [7]). Strategic criteria 
are applicable during the whole assembly planning process, or to all of the assembly actions. In 
many cases strategic criteria reduce the size of the search space considerably. On the other hand, 
tactical criteria address a physically local situation or apply to a relatively small portion of the 
assembly plan. 

Strategic constraints most often arise from limitations of the assembly environment or the 
planner itself. Tactical constraints more often address stages of the assembly process for a particular 
product. An example of a tactical constraint is a requirement to have access to a portion of 
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an assembly at a particular stage in the assembly plan so that a test can be executed (REQ- 
ACCESS-TEST). Some tactical constraints, such as RE&-ACCESS-TEST, arise due to factors in 
the assembly process that the assembly planning system does not or cannot consider. Other tactical 
constraints, such as RE&-SUBASSY, may arise because the user wishes to impose insight on the 
assembly planner. 

Similarly, quality measures are considered strategic when they refer to quantities that are mean- 
ingful for an entire plan. For example, the cost of fixturing for an entire plan (MIN-COST-FIXT) 
is important, but the fixturing cost for any one operation is not even clearly defined. Most quality 
measures we have identified are strategic; this is natural, because optimizing the overall quality of 
the plan is most important. The few tactical measures we have found are subjective judgements 
supplied by the user, and are in fact most often implemented as tactical constraints. For instance, 
a PRH-ACTION constraint might be applied in order to optimize a MIN-AWKWARD-GRIP mea- 
sure [2]. 

4.4 Information Required 
The final categorization we use is the information that must be supplied to a criterion for calculation 
at any given time. For constraints, this is the information that is needed to determine compliance; 
for quality measures, it is the information needed to calculate the value of the measure for the 
plan. Most criteria fall into one of two classes: those that require an entire plan to calculate, and 
those that require only local information such as single assembly states or actions. We use the term 
sub-plan in Table 1 to refer to a sequence of actions smaller than a plan. 

In determining the information required to assess a criterion, we prefer in general more limited 
or local information. For a given constraint, if constraint compliance for a plan is equal to a logical 
conjunction of constraint applications to all of the individual actions or states in the plan, then 
we class the information required for that constraint as action or state, respectively. Similarly, if 
a quality measure for a plan is a sum of the quality measure for each individual action, then we 
consider the information required to be just an action. 

For example, RE&-STAB-STATE could be implemented by evaluating states one at a time 
(whether algorithmically or interactively by a human) to determine if they pass the chosen stability 
criterion. Similarly, to implement REQ-ORDER-PART, each proposed assembly action can be 
compared to a list of part order constraints. In contrast, assembly fixtures and hence their cost 
(MIN-COST-FIXT) depend on the entire plan or large pieces of it. As a general rule, tactical 
criteria require local information, but in many cases strategic criteria can also be implemented 
with only local information. 

We should note that the information requirement listed for some of the criteria may seem too 
localized. We have found that it is possible to implement a number of these criteria using only 
a description of each action. For example, one might think that REQ-SUBSEQ would require an 
entire plan before the presence of a given subsequence can be verified. However, each action can be 
constrained to either (1) keep the relevant parts together if all are present, or (2) remove them in the 
order required by the RE&-SUBSEQ constraint. In this way, only plans that contain the constraint 
can be generated. However, we have found no analogous way of implementing PRH-SUBSEQ by 
only constraining actions. See Section 6 for more examples of constraint implementation. 

The information required is an important implementation factor for a criterion. Criteria requir- 
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ing only local information are much more amenable to standard state-space search and optimization 
techniques, as we will see in Section 5 .  

5 Constraint Framework 

The wide variety of criteria in our survey present a difficult problem for anyone implementing 
an assembly planning system: how does one provide a rich enough assortment of criteria in a 
single maintainable system? In this section we introduce and give an overview of our solution 
to this problem for constraints only. We describe a framework for interactive user constraints in 
assembly planning, using a library of constraint types implemented as filters on assembly operations. 
Section 6 gives a more detailed view of certain aspects of our framework. We have implemented a 
large subset of the constraints identified in the survey and tested the resulting system on several 
complex assemblies provided by our customers; these experiments are described in Section 7. 

Our constraint framework has the following qualities: 

User Friendly Each constraint can be described simply in terms familiar to the user, has straight- 
forward effects, and combines with others in a very predictable way. 

Maintainable Each constraint simply provides a filter procedure that disallows some assembly 
operations. The filter implementations are completely independent, allowing new constraint 
types to be added easily. 

Efficient Because the filters are procedures, they can be implemented in the most efficient way for 
that constraint. They test individual assembly operations, so they are compatible with stan- 
dard state-space search and optimization methods. Furthermore, special-purpose methods 
can be added to improve efficiency. 

The result is a comprehensive and extensible library of simple but useful constraints that enable a 
new, highly interactive mode of assembly planning. 

5.1 Previous Work 
Our filters are an instance of generate-and-test, a standard paradigm in artificial intelligence [23] as 
well as in assembly planning [7, 111. Attaching special-purpose methods to constraint tests is also 
a well known efficiency technique [23], although the methods we use to accomplish this are novel 
(see Section 6). 

Assembly planning systems that allow user-defined constraints have generally been of two types. 
In the first type (for example [6, 711, users must specify all constraints before the long process of 
plan generation begins. In our experience, this is rarely practical: the user finds it very difficult 
to list all constraints on assembly ordering until some possible plans are considered. In the second 
type of system (e.g. [2]), a large space of plans is first generated, and then undesirable operations 
and states are pruned interactively by the user. However, the space of plans quickly becomes too 
large to edit or even generate as assemblies become moderately complex. We approach this problem 
interactively by generating one or a small number of assembly plans that satisfy the current set 
of constraints, allowing the user to impose additional constraints, then repeat. Our approach is 
foreshadowed in a much more limited form by [25]. 
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Previous efforts to incorporate a comprehensive set of user constraints in assembly planners 
were based on liaison precedence relations. Precedence relations specify logical combinations of 
part connections that must be established either before or after others. Precedence relations were 
pioneered by Bourjault [5] and greatly extended by DeFazio and Whitney [6]. Wolter et al 1301 
analyze the expressive power of precedence relations in detail. Precedence relations are quite 
powerful, but they can be very difficult to write correctly or understand as a user of an assembly 
planner. We considered translating all of our constraints into precedence relations internally, but 
chose a procedural approach instead for reasons of efficiency and simplicity of implementation. 
Our system demonstrates that an assembly planning system can achieve comprehensive constraint 
coverage while maintaining the advantages of a procedural representation. 

5.2 Constraints 

Our framework provides a library of constraint types, from which the user can instantiate constraints 
on the assembly plan. Each constraint is described to the user in straightforward terms based on 
manufacturing and assembly sequencing concepts and defined using a simple graphic interface. For 
instance, to instantiate a RE&-SUBASSY constraint, the user simply selects the parts that must 
belong to the subassembly. Multiple REQ-SUBASSY constraints can be instantiated if desired, 
each with a different set of parts. 

Constraints are implemented as filters. A filter is nothing more than a simple procedure that 
accepts or rejects assembly operations. During planning, each proposed assembly operation is 
passed to the constraint’s fiEter function, which returns t r u e  or fa lse  depending on whether the 
operation satisfies the constraint or not. Only an operation that satisfies all current constraints is 
feasible. For instance, consider an operation placing subassembly S1 into subassembly S2 .2 The 
filter function of a REQ-SUBASSY constraint with part set P will return true if and only if 

In other words, the operation satisfies the constraint if it keeps the parts in P together, if only 
parts in P are involved, or if no parts in P are involved. 

As a standard interface to all constraints, the filter function provides a number of benefits. 
First and foremost, it makes the implementation of each constraint type independent. Interactions 
between constraints need not be considered, and each constraint can be implemented in its most 
straightforward and efficient way. This becomes crucial as the number of constraint types grows. 
In addition, constraints can vary in the data associated with them, their instantiation routines, 
various debugging outputs, and so on. 

For use in a standard state-space search method (such as generating an AND/OR graph for 
the assembly), it is important that the filter functions take as input single assembly operations, 
rather than more complex information such as a sequence of operations. In a state-space search, 
a given operation appears only once in the state graph, and is either present or not. Hence its 
feasibility cannot depend on operations that come before or after it. In our framework, a number 
of constraints (e.g. RE&-SUBASSY above) must be implemented in a less natural way to apply to 
single operations than would otherwise be necessary. 

*An operation will typically have other specifications, such as a mating trajectory and perhaps an assembly 
orientation, but these are not relevant to RE&-SUBASSY. 
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Constraint Name Scope 
RE&-CONNECT" strategic 
RE&- LINEAR* strategic 
RE&-VERTIC AL* strategic 

PRH-STATE 
P RH- S UB AS SY 
RE&-CLUSTER 
RE&-FASTENER* 
RE&-LINEAR-CLUSTER 
RE&-LINEAR-PARTS 
RE&- ORDER-FIRST 
RE&-ORDER-LAST* 
RE&- ORDER-LIAISO N 
RE&-ORDER-PART 
RE&-PART-SPECIAL 
RE&-PATHS-AXIAL 

RE&- S TAT 
RE&-STACK 

RE&-SUBASSY* 
RE&-SUBASSY-WHOLE* 
RE&-SUBSEQ 
RE&-TOOL* 

tactical 
tactical 
tactical 
tactical 
tactical 
tactical 
tactical 
tactical 
tactical 
tactical 
tactical 
tactical 
tactical 
tactical 
tactical 
tactical 
tactical 
tactical 

Table 2: Constraints implemented in Archimedes. Those marked by * have special-purpose routines 
for efficiency. 

Filter functions are flexible enough that we have been able to implement a large subset of 
the constraints identified in our survey, plus some additional ones that our users requested. The 
flexibility is further demonstrated by the RE&-TOOL constraint , which encodes tool accessibility 
constraints for various hand and robotic tools [26] within the framework. Table 2 lists the constraint 
types currently in the Archimedes system. Those that do not appear in the survey are defined in 
Subsection 6.3. 

Although filter functions themselves are usually quite fast , the generate-and-test abstraction 
can sometimes lead to an inefficient planning process overall. This is particularly true when many 
dead-ends appear in the search space, or when a large number of assembly operations are generated 
but few satisfy the constraints. In many cases, special purpose routines can increase efficiency 
dramatically. The constraint types for which we have implemented such methods are indicated 
with an asterisk (*) in Table 2. Subsection 6.5 provides more details of these methods. 
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5.3 Interaction 
In experiments with product designers and assembly process engineers, we have found that a high 
level of interactivity is critical to successful application of an assembly planner. Usually the designer 
cannot list all the constraints on assembly order at the start of the planning session. However, many 
of these constraints become “obviou~’~ when the system graphically illustrates a plan that violates 
them. Seeing a violation, adding a constraint to remove it, and then replanning becomes the main 
cycle of interaction in the system. In this way, the assembly planner aids constraint discovery and 
management as well as plan generation and optimization. 

Note, however, that placing a new constraint is very different from ruling out a certain opera- 
tion, as performed in some previous systems such as [2]. Although a single operation demonstrates 
the need for a constraint, placing the constraint prohibits similar actions from occurring in many 
different operations, and hence limits the allowable plans far more than prohibiting a single oper- 
ation. In the best case (and in many practical cases), the constraint encodes the manufacturing 
constraint exactly. 

This plan-view-constrain-replan cycle requires that replanning be performed at interactive 
speeds. In the Archimedes system, a first assembly plan for a product can usually be found in a 
few minutes [15]. However, the most expensive part of planning is ensuring that part insertions 
are collision-free. By saving collision-detection information, replanning usually requires 10 or 20 
seconds for assemblies of up to 100 parts. 

There is of course no guarantee that all of the constraints the user has instantiated can be 
satisfied by a single plan. In this case, the planner fails and enters a “debug” mode that helps the 
user to determine the cause of the failure. If the constraints are all real, then a problem with the 
product design may be indicated. In most cases, some constraints can be adjusted to allow planning 
to succeed. When there are inaccuracies or inconsistencies in the product CAD data, planning can 
fail before the user has entered any constraints. The debug mode also supports finding such 
problems, and certain problems can be fixed within Archimedes. Subsection 6.4 provides more 
details. 

Note that if constraints are entered inaccurately, they may over-constrain the choice of plan 
and rule out some plans incorrectly. However, if some plans still satisfy the entered constraints, 
then the error may go unnoticed. This is a difficult problem to solve in a system allowing user 
specification of constraints. 

After all known manufacturing constraints have been entered, the user can then ask for an opti- 
mal plan, according to user-specified costs of certain standard operations. In some cases additional 
unstated constraints will be violated and discovered as the planner looks through a large space of 
plans to find the best. In this case the new constraints must be added and the cycle repeats. 

6 A Detailed View 
6.1 Assembly Planning Approach 
The approach taken to assembly planning is obviously critical to the design, implementation, and 
performance of a user constraint system. It especially affects special-purpose routines for efficiency. 
Our constraint system was added to the Archimedes mechanical assembly planner [15]. The system 
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consists of four main elements: a user interface, a constraint system, a search engine, and an 
animation module. 

Archimedes generates two-handed monotone assembly sequences in reverse, starting from the 
more highly constrained, fully assembled state. This a standard technique in assembly planning. 
The search space is an AND/OR graph of subassembly states and operations to construct them 
from smaller subassemblies. The planner uses an NDBG of each subassembly [28] to efficiently 
determine assembly operations that might be performed to construct that subassembly, then checks 
these operations for geometric collisions, which is essentially a built-in filter. Operations are then 
checked against the list of user constraints. 

The search strategy is carefully tuned to generate a first plan as quickly as possible in the 
domain of mechanical assembly. This is critical to achieve the desired view-constrain-replan cycle 
of interaction. The search algorithm is not the focus of this paper, and space allows only a cursory 
description. An AND/OR version of iterative sampling [18] is performed: during each pass of 
the algorithm, a single assembly sequence is generated, making random choices of operations to 
construct each subassembly. The first time any subassembly is visited, only a single operation is 
generated to construct it, and the known subassemblies of that operation are then visited. Bounds 
on quality measures for each subassembly and operation are stored and propagated in the AND/OR 
graph as they are generated. This allows useless search paths to be identified and pruned and an 
optimal plan to be identified when it is known. The strategy is designed to quickly reach a first 
solution, like a depth-first search, but to avoid getting caught by bad early decisions as a depth-first 
search would. The same algorithm functions as an any-time algorithm to optimize the assembly 
sequence when the user requests. 

6.2 User Interface 

The user interface is critical to effectiveness and user acceptance of an interactive planning system. 
The constraints must be easy to understand, define, and manage. In this subsection we describe 
features of the Archimedes user interface that are important to the success of the constraint system. 
See [14] for a better understanding of the Archimedes constraint interface. 

Figure 1 shows the main Archimedes user interface. The upper left window shows the program’s 
current status, displays any diagnostic output, and allows pausing or aborting any computation. 
The upper right window provides graphic output and part/subassembly selection. The bottom 
window is the main control window. 

After loading the CAD data for an assembly and perhaps making some initial adjustments to it 
(see Subsection 6.4), the user selects “Plan”, which brings up the planning dialog shown in Figure 2. 
The top half of this dialog concerns global choices for the planner, and the bottom half provides 
management of the current set of constraints. 

Constraints are added by clicking on the “Add” button at the bottom, which brings up a se- 
quence of menus and questions that let the user pick a constraint type and specify the particulars 
of the desired constraint. Each constraint requires the user to select one or more parts of a “con- 
trolled” set in the graphic window, such as the parts making up a subassembly. For some constraints 
additional inputs must be provided, such as a second set of parts required by the constraint or the 
choice and placement of a tool to be used in assembly (see Figure 3). An auxiliary window provides 
a list of named subassemblies to facilitate selection of larger sets of parts. Each constraint can be 
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Figure 1: The Archimedes assembly planning system 

given a name and descriptive comment by the user. Some simple checks are performed to catch 
certain obvious inconsistencies within and between constraints. 

Once defined, constraints are listed in the planning dialog. They can be edited using a process 
very similar to initial definition. They can also be deleted, temporarily suspended, and re-activated. 
Constraint suspension is a very useful feature that allows the user to consider various scenarios 
for assembly. Constraints often embody assumptions about the product assembly scheme; by 
suspending some and replanning, the user can compare the cost of removing the assumption to the 
possible gains in assembly sequence efficiency that result. 

6.3 Additional Constraints 
~ 

In experience with our constraint framework, we implemented several additional constraint types 
that we did not find in our survey. Some constraints were requested by users explicitly, while others 
were identified by members of our team. We describe them below. These constraint types do not 
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Figure 2: Planning dialog, showing the list of current constraints 

appear (in the same form) in Section 3 or Table 1, but do appear in Table 2. 

REQ-VERTICAL: Requires that all parts be placed directly downward, but unlike REQ- 
PATHS-AXIAL, allows the assembly to be reoriented so that any given action is considered 
“downward”. This constraint is very useful when planning assembly with standard SCARA- 
type robots, where insertions must be vertical but reorientations should be minimized. 

REQ-LINEAR-CLUSTER: A combination of RE&-CLUSTER and RE&-LINEAR-SUBSET. 

REQ-LINEAR-PARTS: Requires that a given set of parts be assembled linearly when they are 
being mated with any of another set of parts. 

REQ-ORDER-LAST: Requires that a certain part of set of parts be placed last in the assembly 
plan. 

REQ-PART-SPECIAL: Any action involving the part is shown to the user for manual con- 
firmation of its feasibility. This is very time-consuming, but in some cases it is required. 

REQ-STACK: Specifies a set of parts to be assembled one at a time in a given direction. 

REQ-STAT: Requires a set of parts to be in the stationary subassembly when mated with any 

REQ-SUBASSY-WHOLE: The same as REQ-SUBASSY but tells the planner in addition not 

of another set. 

to generate a plan to construct the subassembly. 
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Figure 3: Defining the placement of a socket wrench for a RE&-TOOL constraint. The constraint 
requires the translucent volume to be free when the tool is applied [26]. 

REQ-TOOL: Requires that a collision-free placement of a given tool use volume must exist in 
the assembly during a certain operation. See [26] for more details. 

6.4 When Planning Fails 
When the product cannot be assembled according to the current set of constraints, the planner fails 
and enters a “debug” mode that helps the user to determine the cause of the failure. For example, 
one can request that the planner try to remove a particular part or subassembly (from the subset 
of parts remaining when the planner failed) in a direction that appears possible. Collisions or 
constraints that disallow the operation are then posted in the status window. Other options include 
trying to disassemble every pair of parts in the offending subassembly, or trying to remove any parts 
along a given trajectory. This constraint debugging capability is very important and useful, since 

19 



in some cases it may not be apparent to the user why the planner cannot find a feasible plan. 
Often, the planner can fail without any user-defined constraints. This is sometimes due to 

limitations in the planner’s algorithms, such as an inability to reason about flexible parts such 
as snapfits and springs. Other times, inaccuracies or inconsistencies in the product CAD data 
cause the planner to fail. Examples include pressfit parts and threaded parts that are modeled 
as cylinders too large for their holes. Archimedes includes a set of model adjustment features, or 
overrides, which can be used to correct such problems. These include a function to effectively add 
threads to cylindrical contacts between parts; to specify that certain part insertions are in fact 
possible, even though collisions occur between the parts; and to delete a part temporarily. 

6.5 Efficiency 

As mentioned above, the generate-and-test abstraction can sometimes lead to an inefficient planning 
process where a large number of operations are generated, very few of which pass through the filters. 
In such cases supplemental routines can improve planning efficiency greatly. These routines are 
very dependent on the internal algorithms of the planner. Because Archimedes plans backward 
from the assembled state to individual parts, the supplemental routines must be implemented in 
reverse. 

For instance, if the user has created a REQ-SUBASSY constraint with part set P ,  and parts not 
in P are present, then P cannot be “split” at that point in the plan. To implement this constraint 
efficiently, a supplemental routine binds the parts of P together for that stage, not considering any 
operations that split them. This is accomplished by placing bidirectional arcs between every pair 
of parts in P in every blocking graph of the subassembly [28]. 

Supplemental routines must be considered carefully, trading off the added speed against the 
increase in planner complexity. Three characteristics identify candidates for supplemental routines: 

1. the constraint either leads to many dead-ends in the search space or rules out a very large 
proportion of generated operations, 

2. an efficient method exists to implement the preprocessing, and 

3. the constraint is used often. 

The REQ-FASTENER constraint type is another instructive example. Fasteners are very com- 
mon in mechanical assemblies. The REQ-FASTENER constraint requires that as soon as one set 
of parts is joined (the fastened parts), then a set of fastener parts must immediately be placed. 
In reverse, this constraint means that as soon as a single fastener part is removed, then all other 
fasteners must be immediately removed, followed by at least one of the fastened parts. If any of the 
fasteners cannot be removed, a dead end appears in the search space (in fact many can appear). 

The filter function for RE&-FASTENER is straightforward, but its supplemental routines are 
the most complex we have implemented. The fastener parts are removed from the assembly repre- 
sentation and considered secondary parts, that implicitly must be added when the fastened parts 
are mated. Before generating operations to construct a certain subassembly, the planner determines 
which fasteners could be placed into the subassembly. For each fastener that cannot be placed, the 
corresponding fastened parts are bound together as for REQ-SUBASSY. Fasteners are placed back 
in subassemblies for collision checking and other calculations. 
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Assembly Parts Overrides Constraints 

Door latch 23 28 8 
Discriminator 42 18 15 
Hughes 472 26 144 

Sprytron 18 0 5 

Table 3: Example assemblies planned with Archimedes 

Note that when a constraint has supplemental routines, the planner still calls the constraint’s 
filter function, which should never return false. This double check is very useful to ensure correct- 
ness, because the supplemental routines are complex and interact with each other. It is conceivable 
that a supplemental routine would only reduce the number of operations rejected by the filter 
function, but we have not found such a case. 

In almost all cases, adding constraints reduces planning time. The reduced size of the search 
space usually outweighs the extra time required to compute the filter functions. In fact, con- 
straints can be used to guide the planner to a correct plan for assemblies that would otherwise have 
intractably large search spaces. 

6.6 Implement at ion 

Archimedes is implemented in C++, with Tcl/Tk used for the graphic interface and OpenGLTM for 
3D graphics and animation. The constraints are implemented as a hierarchy of C++ derived classes. 
Each type of constraint simply overrides the filter function from a base class, along with methods to 
define the type, name, etc. of the constraint. Each constraint type also has its own data members, 
such as part sets, tool choices and points of application, and so on. Some of the supplemental 
routines are implemented as constraint class methods; however, most cannot be separated from the 
planner’s algorithms, and are woven directly into the planner implementation. 

In our survey above, we differentiated between strategic and tactical constraints. Archimedes 
currently implements strategic constraints as flags for the planner. However, in implementing our 
framework it has become clear that in theory there is no real difference between strategic and 
tactical constraints. Tactical constraints can usually be applied to the entire assembly, whereas 
strategic constraints can always be limited to a subset of the parts. For instance, the REQ-PATHS- 
AXIAL constraint, identified in Table 1 as strategic, is also very useful applied to a subset of the 
assembly. Implementing it as a tactical constraint allowed both uses, was simpler to implement, 
and caused no loss in efficiency. We plan to replace all strategic constraints in Archimedes with 
tactical constraints. 

7 Examples 
We have applied the Archimedes planner, extended with the constraint system, to a number of 
actual assemblies from sources in government and industry. Example results are summarized in 
Table 3. 
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Figure 4: An exploded view of the discriminator 

The sprytron is an eighteen part diode-like device, including a surrounding assembly fixture. 
Most of the parts are symmetric or nearly symmetric about a central axis. The CAD data required 
no overrides to produce a first plan. However, in the resulting plan some parts that would more 
naturally be inserted along the axis were inserted from other directions. Adding a REQ-PATHS- 
AXIAL constraint removed all these unwanted directions, and adding a REQ-ORDER-FIRST 
placing the fixture first made the plan even better. Three REQ-ORDER-LIAISON constraints 
were then added to fine tune the assembly plan to specific manufacturing constraints. 

r latch mechanism involves 23 parts, some of which are very complex. The presence 
of snapfit and riveted fasteners, plus many inaccuracies in the CAD data, required 28 overrides. 
A good plan was obtained after seven REQ-SUBASSY constraints were added, and one REQ- 
ORDER-LAST was used. 

The discriminator is a 42-part clockwork-like mechanism used as a safety device. It is the 
object partially shown in the animation window in Figure 1, and Figure 4 shows an exploded 
view. Several parts overlapped in the CAD data, including 12 screws which were modeled larger 
than their corresponding holes, resulting in 18 model overrides. A plan for the resulting adjusted 
model was then found with no need for constraints. To make Archimedes place all fasteners 
in appropriate groups seven RE&-FASTENER constraints were needed, and to match the sub- 
assemblies intended by the designer six RE&-SUBASSY constraints were used. In addition, one 
RE&-LINEAR-CLUSTER was used, and the chassis was requested to be placed first with a REQ- 

The Hughes assembly in Figure 5 is an initial design of the guidance section of a Hughes 
Aircraft AIM-9X air-to-air missile. With 472 parts described by 55Mb of ACETM data (translated 
from Pro/ENGINEERTM) and over 800,000 facets, the Hughes assembly is to our knowledge the 
most complex assembly that has been processed by any automated assembly planning system. 
Since Archimedes plans only for straight line assembly motions, and this assembly contained a 
number of flexible parts (such as cables) that could not use straight line insertions, we overrode 
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Figure 5:  The guidance section of a Hughes Aircraft AIM-9X air-to-air missile. Figure used by 
permission of Hughes Aircraft and the U.S. Naval Air Command. 

22 part mating situations with specific matings. Four other overrides clarified contacts between 
parts. A large number of RE&-SUBASSY-WHOLE constraints were used for subassemblies that 
our Hughes customer was not interested in sequencing. A breakdown of all the constraints used to 
produce a plan useful to  the customer is in Table 4. After loading and facetting all the parts in the 
Hughes assembly, Archimedes requires approximately 22 minutes to find all contacts and produce 
an assembly plan. After modifying constraints, replanning is usually performed in a few minutes. 

The reader may note an approximate 3-to-1 ratio of parts to constraints in Table 3. Although 
our data is clearly insufficient to  draw any conclusions, this may be indicative of what we should 
expect for typical applications. 

8 Conclusion 
We have surveyed, formalized, and categorized a rich set of assembly criteria appearing in the as- 
sembly planning literature or of common knowledge. We hope this collection of criterion definitions 
and categorizations will be useful to  other assembly planning software and research efforts. The 
perspective provided by the survey influenced to  a great extent our development of an interactive 
user constraint system for the Archimedes computer-aided assembly planning system. 
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Constraint 
RE&-SUBASSY-WHOLE 
RE&- 0 RDER-LIAIS 0 N 
RE&-CLUSTER 
RE&-SUBASSY 
RE&-FASTENER 
RE&-ORDER-FIRST 
RE&-ORDER-LAST 
RE&-PATHS-AXIAL 

Count 
70 
48 
11 
7 
3 
2 
2 
1 

Table 4: Constraints for the Hughes Assembly 

In our experience, constraint-based interaction has proven to be a powerful and intuitive 
paradigm for interactive assembly planning. In addition, we have been very pleased with the 
concept and implementation of constraints as filters. It keeps the code simple, maintainable, and 
efficient, especially when supplemented with special-purpose routines for certain constraints. A rich 
variety of useful constraints can be so represented, and we have easily added constraint types when 
required. The interactive mode of user-guided planning that results from the system has been very 
effective in our experience. 

At present, our framework only addresses the constraints from our survey. We are working to 
expand the scope of our algorithms to also include quality measures and suggestions. A relatively 
simple approach to user-specified quality measures would have a library of measure types available, 
parallel to our current library of constraints. Each measure would express a certain condition; but 
rather than requiring or prohibiting conditions like constraints, the measure would simply express 
a positive or negative value that is incurred when the condition happens in a plan. In this view, 
constraints could be seen as measures with infinite values, although planners can be more efficient 
with the direct constraint representation we currently have. However, it remains to be seen whether 
such a straightforward framework can be as successful in representing user quality measures as our 
constraint framework has been in representing user process constraints. 
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