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Computer Vision Assisted Virtual Reality Calibration

Won S. Kim, Member, IEEE

Abstract—A computer vision assisted semi-automatic virtual usefulness with a remote servicing task between Jet Propulsion
reality (VR) calibration technology has been developed that can | aboratory (JPL) and NASA Goddard Space Flight Center
accurat_ely m:_:\tch a virtual environment of_ grap_hlcally simulated (GSFC) in May 1993 [13], [14], [18]. The VR calibration
three-dimensional (3-D) models to the video images of the real . . .
task environment. In conventional model-based computer vision, Was achieved by two sequential model matching procedures:
camera calibration and object localization are performed se- interactive camera calibration followed by interactive object
quentially. This sequential update cannot compensate for the localization. After the calibration, the operator was provided

inaccuracy in initial camera calibrations. We have developed a ith calibrated graphics overlay on actual video images
new 20-variable weighted least-squares algorithm that updates for immediate human visual verification and monitoring.

both camera and object models simultaneously for given two " °_ . - : : .
camera views of two mating objects. This simultaneous update This “operator-interactive” VR calibration and video overlay

enables accurate model matching even with rough, approximate technology has been transferred to industry, which is
initial camera calibrations. The developed semi-automatic VR now commercially available [19]. Recently we have made
calibration supports automated intermediate updates, eliminating - g hstantial improvements by incorporating computer vision
nearly all operator interaction except for initial coarse matching. techni It in hiah _aut tic VR
In our quasistatic supervisory telerobotic applications, interme- ec. nlqyes, re;u Ing In hig -ac.:c.uracy §em|-au omg Ic .
diate VR calibrations are performed intermittently at a few calibration. This new computer-vision assisted VR calibration
robot stopping poses only, as a cost-effective and safer approachsupports automated intermediate updates, eliminating nearly
compared to real-time visual servoing. Extensive experimental g|| operator interaction except for initial coarse matching.

results comparing alignment errors under various viewing con- S : :
ditions are presented in the paper. Using the VR calibration Preliminary results were presented earlier [16], [17]. This

technology developed, we have successfully demonstrated arP&Per descr.it.'.)es th.is new Semi-gutomqtic VR calibration .in
orbital replacement unit (ORU) insertion task within the required ~ greater detail including mathematical derivations and extensive

+1/4 in and +3° alignment precision. new experimental results.
Index Terms—Calibration, computer vision, model matching, VR calil_)ration enables supervisory co_ntrol beyon_d m_anual
simultaneous update, supervisory telerobotics, virtual reality. teleoperation. So far, manual teleoperation [1], relying inten-

sively on human vision and intelligence for direct joystick con-
trol of a remote manipulator, has been the most viable solution
to many nonrepetitive remote manipulations dealing with man-
RAPHIC simulation of telerobotic operations usingmade or natural objects. In supervisory telerobotic operation
known three-dimensional (3-D) geometric models gbe], the operator issues higher-level commands that can be
the remote-site task environment has been widely used Wfecuted autonomously whenever possible. Autonomous ex-
off-line task analysis and planning and also for operat@icytion of higher-level commands generally demands model-
training [15], [22]. However, use of graphic simulation duringyased control. One main reason of a difficulty with model-
the on-line telerobotic operation has been limited due to thgseq supervisory control is that the present computer vision
lack of accurate matching between the graphically Simmat?gchnology has very limited capabilities in generating and
virtual environment and the real task environment. In the p"’l%dating 3-D models in accordance with the scene. By con-
decade or so, there have been considerable efforts to devglag; the human visual system has amazing capabilities in
virtual regllty (VR) callbratlon. techniques that' can ?Ccurategenerating and updating internal 3-D cognitive models in the
match simulated 3-D graphic models to video images @fain with abundant visual illusions for clear perception [28].
the real task environment to enable more reliable, hig{y 5 agvanced supervisory telerobotic system architecture
precision telerobotic operations. An “operator-interactivey i, o virtual reality interface, the system needs to update
VR calibration that perform; 3-D model matchmg _USINGhe virtual 3-D world model intermittently to support higher-
manually entergd corresponding model and |mage.p0|nts }8Yel command executions. The computer-vision assisted VR
developed earlier, and successfully demonstrated its pOtenggiibration enables semi-automated accurate updates of the

I. INTRODUCTION
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P 7 calibration on the ground. Video images received on the
ground are used to perform 3-D graphic model matching
through VR calibration. The relative position between the
ORU and the receptacle is then sent to the on-board crew as a
precision alignment aid. In the ground remote control mode, a
ground operator controls the space manipulator system directly
by issuing robot auto move commands, while an onboard crew
member may monitor the robot motion. Supervisory control
supported by VR calibration is essential for ground remote
operation, since simple manual teleoperation has undesirable
safety problems due to a typical 2—8 s round-trip communica-
| tion time delay between a ground control station and the low
Earth orbit.
In this paper, the concept of semi-automatic VR calibration
| with computer vision assists is introduced in Section Il. With
‘ a brief description of a local line detector in Section I,
. | - — Micro-conical a mathematical framework of line-based model matching is
Interface described in Section IV. Section V presents our key new
) development of the simultaneous update algorithm that cali-
35in .,/ brates both camera and object models simultaneously, enabling
high-precision matching. Section VI describes the operational
Fig. 1. Schematic of the remote power controller module (RPCM). procedure used for the high-precision ORU insertion task.
Extensive experiments were performed to compare algorithms

and other cameras provide limited views. Due to this visuypder various viewing conditions, and the results are described
occlusion and limited viewing problem, it is often difficult tol" S€ction VII. Section VIIl is the conclusion.
ensure baseline manual teleoperation to satisfy the alignment
within the precision requirement reliably [25]. For example, |I. SEMI-AUTOMATIC VIRTUAL REALITY CALIBRATION
the alignment requirement for ISS remote power controller : - L -

. . L . Three-dimensional model-based computer vision for object
mOdL:IG. (RPC.M) OaERBlj f(F|g. 1)r]|nserF|on ||$1(4 I;? foerea_l(fE recognition and localization has been studied extensively in
translation axis an or each rotational axis [3], [25]. € the past several decades [2], [4], [6], [7], [9], [20], [24]

VR calibration presented in this paper enables high-precisia rosent 3-D model-based recognition that requires global
alignment by utilizing known geometric object models andq, ches is not yet robust enough to be fully automated for
their salient straight line edges in matching 3-D graphic models,aral robotic applications. On the other hand, 3-D model-
to actual video images, not specifically requiring artificighaseq opject localization for pose refinement requires only
vision targets or fiducial markings on object surfaces. U§§ca| searches from a given initial estimate, and can be
of known geometric models permits the VR calibration tg,;omated with a sufficient reliability. For this reason, we
work well even with partially occluded and limited camergyaye currently implemented semi-automatic VR calibration
views. Use of natural geometric features of man-made objegtg;; consists of initial operator-interactive coarse matching and
such as object straight-line edges makes the VR calibration RObsequent automated fine matching procedures. Assuming
only versatile but more robust under poor viewing and harsf prior knowledge of camera calibration parameters and
lighting conditions, since vision targets attached on Obieébject poses, the initial coarse matching is based on the
surfaces are in general much more sensitive to camera viewiigman operator’s interactive inputs guided by superb human

and lighting conditions compared to object-outline naturgisyal recognition. Two different operator interaction modes
edges. Accurate positioning of vision targets is cumbersorgge provided for initial coarse matching:

and expensive. Some objects such as an RPCM receptaclf) point-click:
simply do not have enough surface space to attach severaé) graphic model control, both using a mouse.
required vision targets on.

Another important advantage of VR calibration for IS

Connector

én the point-click interface, the operator clicks on 3-D model
) L . : oints and their corresponding two-dimensional (2-D) image
robotic applications is that its software does not have Qints using a mouse. After the corresponding points en-

be mita:nlfedt.onboalr(:.. It %‘;/i.'?hbe ms:jaléed %nvtlge glr.(;untt_j § the system performs point-based camera calibration and
a costetiective soufion. ¥WIth grounc-base calbraliolyyiect Jocalization to complete the initial coarse matching.

two control modes can be considered for ISS teleroboyic”y, graphic model control interface, the operator uses a

operations: _ mouse to roughly align a graphic model to a video image.
1) ground-assisted onboard control; The point-click interface is generally simpler and faster for
2) ground remote control. initial coarse matching with six-degree-of-freedom (dof) po-

In the ground-assisted mode, an on-board crew member pstion/orientation and camera focal length adjustments. The
forming such a task as ORU insertion is assisted by V@aphic model control interface is, however, often useful when
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only minor adjustments are needed. If initial approximate cali- lll. LocAL LINE DETECTOR
bration estimates happen to be known, the operator-interactivg, computer vision, line features are easier and more reliable

initial coarse matching procedure can be skipped. After th getect compared to point features, and thus line-based model
initial coarse matching, automated fine matching is performeck;ching algorithms are employed in our implementation. In

to achieve more accurate matching by using 3-D modgjy; cyrrent application, we assume that image lines to be
based computer vision algorithms. We use a newly developggiected are already adjacent to the projected model lines
simultaneous update computer vision algorithm that updaigogh human-operator-assisted initial coarse matching. We

both camera and object models simultaneously based ofngs employed a local edge detector instead of a global one
20-variable least-squares method as described in this PaR&H-computational efficiency and precision.

This simultaneous update algorithm significantly increases thge currently use Gennery’s weighted-average local line
accuracy of 3-D model matching compared to the conventiongliector [8], which is an enhanced version of the nearest
object Iocallzatlo_n algorlthm.[9], [13], [20], [23] t.hat c_ioes ”Obdge pixel detector [9]. For a given projected 2-D model
compensate for inaccuracy in prior camera calibration. jine, the weighted-average line detector determines the weights
The above semi-automatic VR calibration can be repeatgfly |ocation of the nearby image line in a least-squares
at each intermediate robot stopping pose, for example, alogighse The given model line is first divided into intervals of
the path to insertion, since the relative alignment precisigfhoyt two pixels each. For each interval, the line detector
of VR calibration increases further as the mating parts gglarches for edge elements at approximately right angles to
closer to each other. In earlier operator-interactive manygk model line (the nearest multiple of 4from the image
VR calibration, it would be very time-consuming since _th%xes) by applying Sobel edge operator along the search, and
operator must enter the corresponding points all over again {fmputes the weighted average of the edge elements found.
each intermediate VR calibration. In the new computer-visiofhjs weighted-average computation for each interval results
assisted VR calibration, intermediate VR calibrations can ke gne weighted-average edge point per interval. The line
done easily by automated fine matching with virtually N@etector then performs a weighted least-squares fit of a line to
operator interaction, since all the camera and object models g{gse weighted-average edge points. First we define’gn
already fairly accurate through the initial/previous calibrationggrdinate system such that thé-axis is along the model
These iqtermediate_ updates are clgsely related to positiGiz with its endpoints at0 0) and (0 L). By denoting the
based visual servoing [11], [30], since they both perforacation and weights of the weighted-average edge element
repeated vision-based position updates. In our implementatigd}. the jth interval by (; ¥) andw;, respectively, we can
. . . . . . 7 vy ’ ’
intermediate VR c.al|brat|ons are performed |n.term|tt(_antly Jetermine the perpendicular distances from the two endpoints
a few robot stopping poses only. In telerobotic applicationst the model line to the corresponding image lihg,and /2.,

where the remote-site task environment is quasistatic (targgtihe weighted least-squares method [9]. By noting that the
objects are fixed during robot positioning), the intermittenage line can be described as

update method has several advantages over real-time updates ) )
of visual servoing. It is cost-effective with low computational <1 _ 37_) hy + <37 ) he = 0

power and no special dedicated hardware required. It increases L L

reliability and safety, since the operator has time to Verifﬁﬁe weighted least-squares solutions farand h, are deter-
the alignment and correct it if necessary. It permits grounpﬁmed by

based VR calibration in space telerobotic operations, since

communication time delay is not a problem. K |1 ﬁ , ,

There are several reports on vision-based precise relative Winng = Z L w; [1 ] } )
positioning using two or stereo camera views despite camera J=1 L L L
calibration errors [10], [27]. In any alignment tasks using two - L
camera views, it is in general true that the alignment error K |1_- L
decreases as the two mating parts gets closer to each other, u= Z x/'L w,uj (3)
regardless of the camera calibration errors. For instance, when j=1 fj
the two image points are touching in two camera views, we hy . B N
can say that the two points are physically touching independent [hJ =W, U (4)

of camera calibration errors. However, if the objects are not
supposed to touch at the desired alignment, accurate cameh@rew;,, is a2 x 2 weight matrix of the resulting image line
calibration will yield better alignment precision. In an ISSneasurements; and i, values, and its invers&;i_mlg is the
RPCM example, the receptacle entrance frame is 1/2 in largewvariance matrix describing their variances and covariances.
than the ORU in both the horizontal and vertical dimensions Typical values ofw(mlg indicate that standard deviations of
allow +1/4 in clearance. The simultaneous update algoriththe image line measurements usually range from 0.1 pixel
presented in this paper tries to best match object modelsféo a good straight image line to 10 pixels to a poor one.
two camera views by adjusting both camera and object madnce ; and h, are obtained, the endpoint locations of the
els. When inaccurate camera calibration parameters are detected image line in image coordinates can be computed.
corrected as in the conventional sequential update algorithfilhe enhanced line detector [8] also includes in (2) and (3)

alignment errors are larger as described in this paper. the orientation information produced by Sobel edge detector.
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If (uq v1) and(uz v2) are the two endpoints of the projectedhat solves for rotation first and then translation [21]. He
2-D model line, its length and cosine and sine values of tlierther showed that the infinite model-line algorithm performs

slope angle are better than the infinite image-line algorithm when extracted
B 5 5 image lines have significant broken segments. Our algorithm
L=y/(u1 = u2)? + (v1 = v2) () gerived here corresponds to the infinite model-line approach
c—= Uz — U1 (6) inconcept, but its mathematical derivations are generalized so
vy fvl that they can be used for both camera calibration and object
s=—7 (7) localization that can handle multiple camera views. These

o _ o unified derivations greatly help a simple, concise formulation
and the corresponding image line endpoints in image coorgf the simultaneous update algorithm of the next section.

nates are For a given 3-D object model poift,,, ym, zm) in object
1] [uyg—hys model coordinates, its 2-D projection on the image plane)
| |vi+hie (8) in camera image coordinates can be computed by
To Us — ho 8 Ty ] Tm
=222 9)
Y2 v2 + N2 c Yw =M Ym (13)
In order to take into account the modeling errors, for instance, 1 1
due to inaccuracy in 3-D geometric models and nonlinearity v : .
in camera models, we include the systematic error covariance ¢ b
matrix term in computing weights 20 =V g“’ (14)
—1 2 —1
w= [wimg + UsysI] (10) 1. 1$
= [I + O'Sstwimg]_lwimg (11) U= — f < (15)
Ze
where I is the 2 x 2 identity matrix, ando.,s = 0.5 pixel v= — Y (16)
is chosen as a nominal value by observing average residual Ze

values of the line-based model matching least squares methagiere M transforms object model coordinates to world co-
of this paper (see Section VII). To avoid singularity problemsrdinates,V transforms world coordinates to camera viewing
of weight matrix inverse, (11) is used in actual computatiogoordinates, and is the camera focal length which is the

In harsh lighting conditions, video blooming can occur dugistance from the lens center to the image plane. The camera
to bright reflection and overexposure. When one side of thecal length is equal to its lens focal length when the focus is
detected image line is saturated in intensity, we can inclugeinfinity. The 4x 4 object pose transforM describes the

the blooming compensation term object pose relative to the world reference frame. The inverse
of the 4x 4 camera viewing transfor describes the camera

—1 2 2 —1
w= [wimg Oyl + oo d] (12) pose relative to the world reference frame. The above relations
Since blooming causes about two pixels error in determigf (13)—(16) are often presented in a matrix form
ing the location of the image liner,iomn = 2 pixels can T, T,
be employed. This simple blooming compensation technique u Y Yo
turns out to be very effective under harsh lighting conditions, w|v| =PVM ;:,m =CM ‘Zm 17)
although this paper presents experimental results under normal 1 1 1

lighting conditions only with no blooming. h is ah di le f i
Only visible model lines are used for the local line detectdy erjw Is @ homogeneous coordinate scale actor And a
and model matching. Further, to handle partial occlusion%,x perspective projection matrix

model lines are divided into segments so that their correspond- f 0 0 0O
ing image segments are approximately 20 pixels each, and P=|0 f 0 0]. (18)
thereafter a list of visible model line segments is obtained by 0 0 -1 0

examining thez-buffer data of the graphic model rendereﬁln the above derivations, the camera imaging geometry is for-

at a given estimated viewing pondmor). For each .V's'ble lated by the pin-hole camera model, where the 3-D model
model line segment, the endpoint locations and weights o

o : %oint and its corresponding 2-D image point are related by
the corresponding image line segment can be computed A . oo . .
- liear perspective projection without considering, for example,

(.8)' (9), and (11). The r(_asults are then used in the fOIIOWIr]rgonlinear distortion of lens optics. It is further assumed that
line-based model-matching. . . . )
the camera optical axis is perpendicular to the image plane,

and passes through the center of the camera view with zero
offsets of the image center from the optical axis. Square-

Kumar [20] showed that the least-squares algorithm fgixel resolution is also assumed for the captured video images,
object localization that solves for the rotation and translatidraving uniform scaling for both horizontal and vertical axes.
simultaneously [24], [29] yields much better parameter esfihe common 640« 480 pixel resolution for the NTSC video
mates in the presence of noisy data than another approanhge (4:3 aspect ratio) is a square-pixel resolution.

IV. LINE-BASED MODEL MATCHING
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The relations described above for the perspective projectitm be solved for the object localization is defined by six
of a point can be directly applied to the line-based modeéariables
matching. Since a 2-D projection of a 3-D model line is still T
a straight line, the projected 2-D model line can be simply ey = (@0, Yng 215 o, By 1) (28)
computed by 2-D projections of the two endpoints of the 3-Q/hen A7 pairs of corresponding model and image lines are
model line. Let(uy, v1) and(vy,v2) denote the computed 2-D given, we have2M equations
image plane projections of the two endpoints of a 3-D model

ine, (Zy1, Ymis Zm1) AN (Zm2s Ym2, Zm2), respectively bi(x)
H(z)= : =0 (29)
_u1 - znli h]\{ (.’L')
v Ull =M Zm1 (19) where a 2x 1 vectorh;(x) consists of two normal distances of
L= L 1 4 (21) and (22) for theth corresponding model and image lines
r T [Tm2 ] ] .
U2 hi(z) = “Z(‘”)} : 30
w | vz =CM zrnQ . (20) Z(:’;) |:h21($) ( )
“m2
L1 L 1 Note thatz = z~ of (27) for camera calibration angél= z

of (28) for object localization. Whed{ > N/2 where N is
Further let(x1,y1) and (z2,y2) denote the two endpointsthe number of variables af, the system is overdetermined
of the 2-D image line determined by the weighted-averaggéd a weighted least-squares method can be applied to find
local edge detector (Section Ill). The normal distances frogthat minimizes the weighted sum of the squares of2a#t
the image line endpoints to the projected 2-D model line af®rmal distances

given by M
= KT "y 31
hy = (Azy + By, + C)/M (21) /=) ; i (@hwihi() 1)
ha = (Azs + Bys + C)/M (22) wherew; is given by (11)
where w: — |:wlli wlgi:| (32)
' Wi Wi |
A= Vo — U1 (23) d .
B =y — u (24) By denoting
C= U2V — ULV (25) wy ' 0
M =+/42 4 B2, (26) W= g (33)
0 wy

In the line-based model matching, the least-squares soluti@fy pecomes
is obtained that minimizes the normal distances between the
projected 2-D model lines and their corresponding actual f(z) = H' (z)WH(z). (34)
2-D image lines in the least-squares sense. The line-ba
model matching can be used for both camera calibration
object localization. In the camera calibration, we determi
C, or equivalentlyV and f, for given M. If M = I
(identity matrix), the camera calibration is performed relativ
to the object model reference frame. Since the 4 camera
viewing transformV can be equivalently represented by three Tpy1 = Tp — (JT(zk)WJ(zk))*l,]T(zk)WH(zk) (35)
translational displacements:c, v, 2¢) and three rotational
angles (ac, e, 7¢), the unknown vector to be solved forwhere the Jacobian is defined as

HqceH(:c) contains nonlinear functions af, the nonlinear
east-squares solution that minimizg&e) can be obtained by
r‘ﬁewton—Gauss method, which is a combination of Newton’s
method and the least-squares method originated by Gauss. The
Fth iteration can be described as

the camera calibration is defined by 7 variables including the PRED)
camera focal length T(zh) = OH(z1) _ ] (36)
Ox o
Trc = (‘ICayCaZCaaCaﬁCa,}/Caf)T' (27) :‘gj\}i(lg;;) )
1i\LEk

Sometimes an accurate camera focal length is known, e.g., Jilzw) = ahé(xk) = 8ha:($:c ) (37)
in a fixed focal-length camera, and the camera calibration z 2877k
in this case determines the six pose parameters only. In the Ohy; A 85 aC,
object localization, we determin@df for given V and /. 8:51 = <xlza—; erlia—xZ + a;)/Mi

Since the 4x 4 object pose transformM can be equivalently

represented by three translational displacem@mns yas, zar) _ <Az% + Bz%> (hu/Mf) (38)
and three rotational anglés ;. 31/, v ), the unknown vector Oz Oz
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2 (g 28 4y 0 M, objects with two views
oz ox ox oz H(z) =0 (46)
OA; dB; ) =
z=|zc, 47
A;, B;, and C; are functions ofuy;, v1;, uo;, andve;, and Th,

their partial derivations can be found in [13]. By noting that . .
W is a block diagonal matrix with each block being a2 where z consists of seven variables af, for cameraCy,

matrix, computation of (35) can be done more efficiently byeVen variables aéc, for camerals, and six variables oty
using the relations or object M,. The object posé/; is fixed in this derivation,

since one frame must be fixed to get a unique solution.

- M - ) With more than 10 corresponding model and image lines, the

T @)W (zy) = > 37 (@r)wid;(zr) (40) nonlinear least squares solution of (46) can be obtained by the
=1 Newton—-Gauss method. Its Jacobian is given by

M
I (@i)WH(z) = Y j (@)wiki(@).  (41) OHc\ 0 0
=1 8:501
OH ¢\,
oH 0 B 0
V. SIMULTANEOUS UPDATE OF CAMERA AND OBJECTMODELS J=_"" = LCy (48)
. L . oz OH ¢\, OHc, v,
In conventional approach, camera calibration and object Ozc: 0 OTas
localization are performed sequentially. This sequential up- N OHc, vy, 3H02/2\42
date assumes that the camera calibration provides sufficiently 0 dzc Oz

accurate camera calibration parameters for the subsequent _ ) )
object localization. Accurate camera calibration, however, We applied both sequential and simultaneous update al-
generally requires a calibration fixture. Placing a calibratiddPrithms to an RPCM-like ORU insertion task using two
fixture whenever the camera parameters are changed, WS (side and overhead view$ and (%) for comparison.
example, due to camera pan, tilt, zoom, or focus control, is f@Pth cameras were set by manual pan, tilt, zoom, and focus
practical for telerobotic applications. In our practical approachOntrol- The camera focal lengths were approximately 50 mm
an object with known geometric model that is naturallfvertical field of view angle 5.3 for the side camera and 25
seen by the cameras during telerobotic operation is used fof? (1) for the overhead camera. The inter-camera angle
camera calibration. Let us consider a typical telerobotic tag€tween the two camera optical axes was approximately 50

environment to perform parts mating of objedts and M,
using two camerag;; andC,. The camera calibration af
can be performed by matching the object modé| to the
camera viewC;. From (29)

HC1 My ('1"01 ) =0. (42)

The least-squares solutiate, = (xc,, Yoy, 2cy sy, Bey s
ve,, fe, )Y can be computed for given object podd;.

The side camera was about 7.5 m away from the receptacle,
and the overhead one was about 3.5 m away. First, the line-
based camera calibration was performed for each camera by
matching the ORU graphic modgf; to its camera view. After

the camera calibrations, the ORU graphic model was well
aligned to its camera views. Thereafter the object localization
was performed by matching the receptacle graphic madel

with its camera views. In Fig. 2, the receptacle localization was
performed by using the side camera view only. The receptacle

Similarly, camera calibration of”; can be performed by model pose was determined to best align the projected model
matching the same object model; to the other camera view 3nd image lines in the least squares sense. Since only the

Cs to determinexc, = (zc,, Yoy, 26, O, ey Yoy fe )T

He, v, (zc,) = 0. (43)

side camera view (top window in Fig. 2) was used, the
receptacle graphic model was not aligned in the overhead
camera view (bottom). In Fig. 3, the receptacle localization

After the above two camera calibrations, the object localizatié¥gs performed by using the overhead camera view (bottom)

of M, can be performed by matching object modél, to
each camera view

(44)
(45)

Heon, (e, 20,) =0
He,n, (e, 20,) =0.

The least-squares solutiomy;, = (Tagn,, Yntss 20y CMys
B, yar,)T can be computed for givemc, and zc,. Note

only, and this time the receptacle model was not aligned in
the side camera view (top). Fig. 4 shows the video overlay
after the receptacle localization was performed using both
camera views. Note that the receptacle model was still visibly
misaligned in both camera views. This poor alignment was
mainly due to inaccuracy in camera calibrations. Note again
that the ORU was used for camera calibration which provided
less accurate and sparse input data, since placing an accurate

thatz¢, andz, are intentionally added as function argumentsirge camera calibration fixture in the telerobotic work site
in (44) and (45), since they are needed for the simultaneomnas impractical. The inaccuracy in camera calibrations causes

algorithm.

the subsequent object localization of the sequential update to

Combining the above four equations with 20 unknowhe also inaccurate. Fig. 5 shows the model matching result
variables results in the simultaneous update algorithm for tvebtained with the simultaneous update. Note that the receptacle
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Fig. 2. Receptacle localization using side camera view (top) only. Fig. 3. Receptacle localization using overhead camera view (bottom) only.

model is very well aligned in both camera views. Unlike thedge detector that searches nearby image lines only, within
sequential update, the simultaneous update algorithm upda@@@roximately 20 pixels or so, for a given projected model
both the camera and object models simultaneously, achieviiitg. Therefore, when initial camera and pose parameters are
accurate matching even with rough, approximate initial camefgt known fairly accurately, we need to perform operator-
calibrations. This clearly demonstrates that the simultanedateractive initial coarse matching first before automated fine
update is essential to achieve high-precision model matchifigtching. In the initial coarse matching, an operator clicks
using two views. model points and their corresponding image points by using
a mouse. Once corresponding points are entered, point-based
camera calibration followed by point-based object localization
can be applied to determine the object pose as presented in
The above line-based simultaneous update algorithm hag earlier paper [13]. This sequential update, however, does
been developed for automated fine matching to refine came@ compensate for initial camera calibration errors during the
calibration and object pose estimates, assuming approximsisequent object localization, and initial camera calibrations
initial camera calibration and object pose parameters areed to be sufficiently accurate. In [13], the solution was to
known. Note that the current algorithm employs a locahove the robot arm holding an ORU to three different poses

VI. OPERATIONAL PROCEDURE
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Fig. 4. Receptacle localization (sequential update after camera calibratifig- 5. Simultaneous update of camera and object models using both camera
using both camera views. views.

to enter more corresponding points over a wider region. THigta entry, the operator can adjust camera and graphic models
calibration procedure is time-consuming and took about 10—-28ing a mouse. The lower video image window shows all the
min. corresponding image points entered so far for that view. Five
Our new solution is to use point-based simultaneous upd@emore points for each of ORU and receptacle per camera
algorithm, which is very similar to the line-based simultaneougew are usually desired. In Fig. 6, seven points for ORU and
update algorithm described in the previous sections. It turgig points for receptacle are entered for this view. Note that
out that this new point-based simultaneous update no longerresponding points entered are well distributed on the video
requires robot arm re-positioning to cover a wide region famage. The operator data entry time for two camera views
data entry, since the algorithm compensates for initial cameygpically takes approximately 2—3 min in total. The current
calibration errors. Fig. 6 shows a display screen after gmaphic model states set by the operator’'s mouse control are
operator completes the corresponding points data entry fed to the least-squares algorithms as initial states together
one view. The operator clicks a graphic model point on theith correspondence data. In the specific example of Fig. 6, all
top video overlay window by using a mouse, and then clickbe least-squares algorithms of point-based camera calibration,
the corresponding image point on the same window (graphibject localization, and simultaneous update converged well
models disappear during the image point entry). During this the desired solutions from the initial graphic model states
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simultaneous update, the automated lined-based simultane-
ous update algorithm is applied for fine matching and pose
refinement.

The operational procedure used to demonstrate a high-
precision ORU insertion into its receptacle is listed here.

1) Move the robot arm holding the ORU to an initial
position.

2) Grab video images from two cameras showing both the
ORU and the receptacle.

3) Enter corresponding points using a mouse for both
views.

4) Apply point-based camera calibration and object local-
ization sequentially.

5) Apply point-based simultaneous update.

6) Apply computer vision assisted line-based simultaneous
update. This completes VR calibration at the initial ORU
pose, and the system now knows the receptacle pose
relative to the ORU.

7) Move the robot arm holding the ORU to the next via
point toward the receptacle.

8) Grab video images from the same two cameras, and
apply line-based simultaneous update (or object localiza-
tion) for further pose refinement. No operator-interactive
data entry is needed at this time, since fairly accurate
estimates of camera/object variables are already known
in previous VR calibration. As the ORU gets closer
to the receptacle, new update increases the alignment
precision.

9) Repeat the above intermittent update/pose refinement at
next via points, until the ORU reaches at alignment ready
for insertion.

10) Insert the ORU. A graphical user interface (GUI) is

provided for the operator to execute each command
successively in the auto sequence command script [16].

The above operational procedure was successfully used to
demonstrate high-precision ORU insertion within thd/4

in and +3° alignment precision for various viewing and
object pose conditions both at Jet Propulsion Laboratory and
at NASA Johnson Space Center [12]. A video tape is also

Fig. 6. Corresponding points entry during operator-interactive initial coargavailable [5].
matching.

VII. EXPERIMENTAL RESULTS

shown in the picture. Even when the initial graphic model A series of experiments were performed using an RPCM
were intentionall more tharf 4if from the _ _ _ : a
poses were intentionally set to more tharf 4dif from the like ORU insertion task. First, three sequential and one si-

actual poses, they still all converged well. However, in some . )
multaneous update algorithms were compared by running each

other camera viewing conditions with different |n_|t|al POSESy150rithm five times to measure the alignment errors. The ORU
we I’lO'[Ified that the convergence range of the point-based fvas 20 in away from its receptacle and the inter-camera angle
dimensional (20-D) simultaneous update was often less W'ggtween the two cameras used was approximatefy Ybe
than those of the sequential update. In order to maintalflynment error was measured by comparing the true alignment
the convergence range as wide as the sequential updaig,d@e with the algorithm estimate. The true alignment pose of
general, point-based simultaneous update can be precedeghByORU relative to the receptacle was obtained by careful
point-based sequential update of camera calibration and objgGtan visual alignment roughly within about 0.05 in anc?0.5
localization for operator-interactive coarse matching. Singgecision. The position alignment error was computed as the
computation times for least-squares methods are negligildector sum of the translational alignment errors for the three
(in the order of a few milliseconds) compared to human dagxes. Similarly, the orientation alignment error was computed
entry time, an inclusion of the optional sequential update doas the vector sum of the rotational alignment errors for the
not reduce the operational efficiency. After the point-baselree axes. The experimental results are shown in Fig. 7. The
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Fig. 7. Alignment error plots comparing sequential and simultaneous updates.

alignment error standard deviation from the true alignment wésan that with the two-view sequential update. The orientation
computed from five runs for each algorithm, and the computedignment with the simultaneous update was about three to five
standard deviations are connected by a dashed line. Tmes more precise than that with the single-view sequential
position/orientation alignment error standard deviations weupdates, and 1.4 times better than that with the two-view
1.57 in/2.69 for the sequential update using a single camesequential update.

view C1 (OBJLOCL1 in Fig. 7), 1.64 in/4.2Zor the sequential  Second, the effect of the ORU-receptacle distance and the
update using a single camera view C2 (OBJLOC?2), O.%ffect of the inter-camera angle on the alignment error were
in/1.19 for the sequential update using both camera vievisvestigated together. The alignment errors were measured by
(OBJLOC12), and 0.21 in/0.88for the simultaneous updaterunning the simultaneous update algorithm five times each for
using both camera views (CAMOBJ). In this experiment, thieur ORU positions of 20, 8, 4, and 2 in away from the recep-
position alignment with the two-view simultaneous updati&cle at four different inter-camera angles of 981°, 28°, and

was about eight times more precise than that with the single4°. The experimental results are plotted in Fig. 8 as a function
view simultaneous updates, and about 2.5 times more preai$¢he ORU-receptacle distance. The same experimental results
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Fig. 8. Alignment error with respect to ORU distance from receptacle.

are plotted in Fig. 9 as a function of the inter-camera anglie, 3° alignment precision requirement when the inter-camera
Fig. 8 shows that the alignment error reduces as the ORU gatgyle is greater than about 30

closer to the receptacle. This clearly illustrates that intermittentFinally, the effect of the object image size (zoom) on the
updates at intermediate robot stopping poses on a pathatgnment error was investigated. In our setup, one camera
insertion increases the alignment precision. Fig. 9 shows theppened to be equipped with a zoom lens, and the other with
the alignment error reduces as the inter-camera angle increaséiged-focal-length lens. Three different viewing sizes of 10-,
toward 90 (orthogonal view). For each of the inter-camer20-, and 30-in-wide views were obtained by adjusting the
angles at 28 51°, and 90 except for 14, all five runs of zoom of the zoom-lens camera and re-positioning the fixed-
the VR calibration satisfied the 1/4 in¢ alignment precision lens camera closer to or further away from the receptacle, so
requirement when the ORU reached at 2 in in front of thhat each of the two camera views covers just enough to see
receptacle. The alignment precision was poor for tHeidter- both the ORU and the receptacle when they are 10, 20, and
camera angle. The above experimental results indicate that 8@ein apart, respectively. The image sizes of the ORU and
ORU insertion can be performed successfully within the 1#¢ceptacle for the 10-in-wide view are larger than those for
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Fig. 9. Alignment error with respect to inter-camera angle.

the 30-in-wide views. The inter-camera angle was set fo 9®f camera and object pose8V and AM and its Jacobian
As expected, the experimental results in Fig. 10 show that themputations are modified. In each iteratidn,and M are
alignment error increases as the object image size gets smal@gdated by
Another way to investigate the alignment error is to compute
1 — o error ellipses from the covariance matiid? W.J)—! V=avy (49)
resulting from the least squares solution. In order to have the M =MAM (50)
resulting covariance .matri>.< represent C,amera_pOS‘? variangﬂa the initial conditions for the next iteration are set to
in camera frames while object pose variances in object framgy — Ap = 1 or o = zy = 0. Note that AV is
each iterative update of the least-squares method describggl multiplied, whileAM is post-multiplied. IfAV is post-
in Sections IV and V needs to be performed in incrementg{ultipied andAM is pre-multiplied, they both are expressed
form. In the incremental update, unknown variabtesof (27) relative to the world reference frame [see (13) and (14)]. From
and z,, of (28) are associated with incremental adjustmentise covariance matrixJ” WJ)~! resulting from the above
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incremental-form least squares solution, we can compute Error ellipses obtained are shown in Fig. 11 for the same

error ellipses, which are two-dimensional projections of the 28xperimental condition as in Fig. 5, where the ORU was
D error ellipsoid (18-dimensional if two camera focal lengthapproximately 10 in away from the receptacle. The standard
are given). For instance, four elements of the covariance matti@viations of the camera poses along the camera optical axes

associated with variables; andz; form (» axes) are very large for both cameras, and their error ellipses
(upper and middle right plots of Fig. 11) are truncated. This is
_ |9 G . .
Yij = [0‘ 2 } (51) because the camera pose along the optical axis and the camera
" J focal length (or field of view angle) are highly correlated,
and thel — o standard error ellipse is given by in particular when the camera lens has a long focal length

2\ 2 . y y 2 , with a small field of view angle (telephoto lens) showing

<—> — 2p<—> <—> + <—> =1-—p (52) almost no perspective view effect. The standard deviation
i 9i/ \%i i of the receptacle pose estimate (bottom plots of Fig. 11) is

where the correlation coefficiept= 0;;/0;0;. within 0.14 in along all three axes, indicating thato3for
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Fig. 11. 1 — o ellipses of the pose estimates: (top) side camera pose relative to its camera frame, (middle) overhead camera pose relative to its camera
frame, and (bottom) receptacle pose relative to the receptacle frame.

95% confidence level is within 0.41 in in this experimentahe covariance error analysis, by assuming uniform one-pixel
condition. As the ORU gets closer to the receptacle, tiséandard deviation for all image edge measurements. As an
relative pose estimate gets more accurate. For example, wegample, for the experimental condition of Fig. 5, the root-
the ORU is less than 5 in away, the pose estimate was |&&gan-squared residual of the simultaneous update least squares
than 1/4 in at 95% confidence level. These covariance erfdethod was 1.2 pixels, and the maximum residual was 3.7
analysis results agree with the experimental results in Fig.fgXels.

The covariance error analysis can provide a powerful tool

in comparing pose estimate errors of different objects under VIll. CONCLUSION

various viewing conditions, without relying on extensive actual \We presented an exciting new technology of computer
error measurement experiments. In our various experimeng@ion assisted semi-automatic VR calibration for reliable,
conditions, it appears that we could also simply use tldgh-precision telerobotic servicing. In particular, the newly
nonweighted covariance matrig/*'J)~* with W = I for developed simultaneous update of both camera and object
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models were described in great detail as a key new techniqu& w. S. Kim, D. B. Gennery, and E. C. Chalfant, “Computer vision
to produce high precision alignment. Experimental results
indicate that the simultaneous update yields considerably meg
precise matching than the conventional sequential update
that does not compensate for inaccurate camera calibration
parameters. Experimental results also indicate that intermitteqy;

updates at a few intermediate robot stopping poses increases

the alignment precision further. This semi-automatic VR cal-
ibration provides a new way of performing more reliable and
accurate telerobotic servicing with model-based supervis&dl
autonomy beyond simple manual teleoperation.
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