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Computer Vision Assisted Virtual Reality Calibration
Won S. Kim, Member, IEEE

Abstract—A computer vision assisted semi-automatic virtual
reality (VR) calibration technology has been developed that can
accurately match a virtual environment of graphically simulated
three-dimensional (3-D) models to the video images of the real
task environment. In conventional model-based computer vision,
camera calibration and object localization are performed se-
quentially. This sequential update cannot compensate for the
inaccuracy in initial camera calibrations. We have developed a
new 20-variable weighted least-squares algorithm that updates
both camera and object models simultaneously for given two
camera views of two mating objects. This simultaneous update
enables accurate model matching even with rough, approximate
initial camera calibrations. The developed semi-automatic VR
calibration supports automated intermediate updates, eliminating
nearly all operator interaction except for initial coarse matching.
In our quasistatic supervisory telerobotic applications, interme-
diate VR calibrations are performed intermittently at a few
robot stopping poses only, as a cost-effective and safer approach
compared to real-time visual servoing. Extensive experimental
results comparing alignment errors under various viewing con-
ditions are presented in the paper. Using the VR calibration
technology developed, we have successfully demonstrated an
orbital replacement unit (ORU) insertion task within the required
�1/4 in and �3� alignment precision.

Index Terms—Calibration, computer vision, model matching,
simultaneous update, supervisory telerobotics, virtual reality.

I. INTRODUCTION

GRAPHIC simulation of telerobotic operations using
known three-dimensional (3-D) geometric models of

the remote-site task environment has been widely used for
off-line task analysis and planning and also for operator
training [15], [22]. However, use of graphic simulation during
the on-line telerobotic operation has been limited due to the
lack of accurate matching between the graphically simulated
virtual environment and the real task environment. In the past
decade or so, there have been considerable efforts to develop
virtual reality (VR) calibration techniques that can accurately
match simulated 3-D graphic models to video images of
the real task environment to enable more reliable, high-
precision telerobotic operations. An “operator-interactive”
VR calibration that performs 3-D model matching using
manually entered corresponding model and image points was
developed earlier, and successfully demonstrated its potential
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usefulness with a remote servicing task between Jet Propulsion
Laboratory (JPL) and NASA Goddard Space Flight Center
(GSFC) in May 1993 [13], [14], [18]. The VR calibration
was achieved by two sequential model matching procedures:
interactive camera calibration followed by interactive object
localization. After the calibration, the operator was provided
with calibrated graphics overlay on actual video images
for immediate human visual verification and monitoring.
This “operator-interactive” VR calibration and video overlay
technology has been transferred to industry, which is
now commercially available [19]. Recently we have made
substantial improvements by incorporating computer vision
techniques, resulting in high-accuracy semi-automatic VR
calibration. This new computer-vision assisted VR calibration
supports automated intermediate updates, eliminating nearly
all operator interaction except for initial coarse matching.
Preliminary results were presented earlier [16], [17]. This
paper describes this new semi-automatic VR calibration in
greater detail including mathematical derivations and extensive
new experimental results.

VR calibration enables supervisory control beyond manual
teleoperation. So far, manual teleoperation [1], relying inten-
sively on human vision and intelligence for direct joystick con-
trol of a remote manipulator, has been the most viable solution
to many nonrepetitive remote manipulations dealing with man-
made or natural objects. In supervisory telerobotic operation
[26], the operator issues higher-level commands that can be
executed autonomously whenever possible. Autonomous ex-
ecution of higher-level commands generally demands model-
based control. One main reason of a difficulty with model-
based supervisory control is that the present computer vision
technology has very limited capabilities in generating and
updating 3-D models in accordance with the scene. By con-
trast, the human visual system has amazing capabilities in
generating and updating internal 3-D cognitive models in the
brain with abundant visual illusions for clear perception [28].
In an advanced supervisory telerobotic system architecture
with a virtual reality interface, the system needs to update
the virtual 3-D world model intermittently to support higher-
level command executions. The computer-vision assisted VR
calibration enables semi-automated accurate updates of the
virtual 3-D world model.

An immediate potential application of the computer-vision
assisted VR calibration is for International Space Station (ISS)
robotics, since the camera viewing problem is a concern in ISS
telerobotic operations and vision system assistance is needed
for high-precision alignment. For instance, during the orbital
replacement unit (ORU) insertion task, the end effector close-
up camera view is occluded by the ORU, while the overhead
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Fig. 1. Schematic of the remote power controller module (RPCM).

and other cameras provide limited views. Due to this visual
occlusion and limited viewing problem, it is often difficult to
ensure baseline manual teleoperation to satisfy the alignment
within the precision requirement reliably [25]. For example,
the alignment requirement for ISS remote power controller
module (RPCM) ORU (Fig. 1) insertion is1/4 in for each
translation axis and 3 for each rotational axis [3], [25]. The
VR calibration presented in this paper enables high-precision
alignment by utilizing known geometric object models and
their salient straight line edges in matching 3-D graphic models
to actual video images, not specifically requiring artificial
vision targets or fiducial markings on object surfaces. Use
of known geometric models permits the VR calibration to
work well even with partially occluded and limited camera
views. Use of natural geometric features of man-made objects
such as object straight-line edges makes the VR calibration not
only versatile but more robust under poor viewing and harsh
lighting conditions, since vision targets attached on object
surfaces are in general much more sensitive to camera viewing
and lighting conditions compared to object-outline natural
edges. Accurate positioning of vision targets is cumbersome
and expensive. Some objects such as an RPCM receptacle
simply do not have enough surface space to attach several
required vision targets on.

Another important advantage of VR calibration for ISS
robotic applications is that its software does not have to
be installed onboard. It can be installed on the ground as
a cost-effective solution. With ground-based VR calibration,
two control modes can be considered for ISS telerobotic
operations:

1) ground-assisted onboard control;
2) ground remote control.

In the ground-assisted mode, an on-board crew member per-
forming such a task as ORU insertion is assisted by VR

calibration on the ground. Video images received on the
ground are used to perform 3-D graphic model matching
through VR calibration. The relative position between the
ORU and the receptacle is then sent to the on-board crew as a
precision alignment aid. In the ground remote control mode, a
ground operator controls the space manipulator system directly
by issuing robot auto move commands, while an onboard crew
member may monitor the robot motion. Supervisory control
supported by VR calibration is essential for ground remote
operation, since simple manual teleoperation has undesirable
safety problems due to a typical 2–8 s round-trip communica-
tion time delay between a ground control station and the low
Earth orbit.

In this paper, the concept of semi-automatic VR calibration
with computer vision assists is introduced in Section II. With
a brief description of a local line detector in Section III,
a mathematical framework of line-based model matching is
described in Section IV. Section V presents our key new
development of the simultaneous update algorithm that cali-
brates both camera and object models simultaneously, enabling
high-precision matching. Section VI describes the operational
procedure used for the high-precision ORU insertion task.
Extensive experiments were performed to compare algorithms
under various viewing conditions, and the results are described
in Section VII. Section VIII is the conclusion.

II. SEMI-AUTOMATIC VIRTUAL REALITY CALIBRATION

Three-dimensional model-based computer vision for object
recognition and localization has been studied extensively in
the past several decades [2], [4], [6], [7], [9], [20], [24].
At present, 3-D model-based recognition that requires global
searches is not yet robust enough to be fully automated for
general robotic applications. On the other hand, 3-D model-
based object localization for pose refinement requires only
local searches from a given initial estimate, and can be
automated with a sufficient reliability. For this reason, we
have currently implemented semi-automatic VR calibration
that consists of initial operator-interactive coarse matching and
subsequent automated fine matching procedures. Assuming
no prior knowledge of camera calibration parameters and
object poses, the initial coarse matching is based on the
human operator’s interactive inputs guided by superb human
visual recognition. Two different operator interaction modes
are provided for initial coarse matching:

1) point-click;
2) graphic model control, both using a mouse.

In the point-click interface, the operator clicks on 3-D model
points and their corresponding two-dimensional (2-D) image
points using a mouse. After the corresponding points en-
try, the system performs point-based camera calibration and
object localization to complete the initial coarse matching.
In the graphic model control interface, the operator uses a
mouse to roughly align a graphic model to a video image.
The point-click interface is generally simpler and faster for
initial coarse matching with six-degree-of-freedom (dof) po-
sition/orientation and camera focal length adjustments. The
graphic model control interface is, however, often useful when
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only minor adjustments are needed. If initial approximate cali-
bration estimates happen to be known, the operator-interactive
initial coarse matching procedure can be skipped. After the
initial coarse matching, automated fine matching is performed
to achieve more accurate matching by using 3-D model-
based computer vision algorithms. We use a newly developed
simultaneous update computer vision algorithm that updates
both camera and object models simultaneously based on a
20-variable least-squares method as described in this paper.
This simultaneous update algorithm significantly increases the
accuracy of 3-D model matching compared to the conventional
object localization algorithm [9], [13], [20], [23] that does not
compensate for inaccuracy in prior camera calibration.

The above semi-automatic VR calibration can be repeated
at each intermediate robot stopping pose, for example, along
the path to insertion, since the relative alignment precision
of VR calibration increases further as the mating parts get
closer to each other. In earlier operator-interactive manual
VR calibration, it would be very time-consuming since the
operator must enter the corresponding points all over again for
each intermediate VR calibration. In the new computer-vision
assisted VR calibration, intermediate VR calibrations can be
done easily by automated fine matching with virtually no
operator interaction, since all the camera and object models are
already fairly accurate through the initial/previous calibrations.
These intermediate updates are closely related to position-
based visual servoing [11], [30], since they both perform
repeated vision-based position updates. In our implementation,
intermediate VR calibrations are performed intermittently at
a few robot stopping poses only. In telerobotic applications
where the remote-site task environment is quasistatic (target
objects are fixed during robot positioning), the intermittent
update method has several advantages over real-time updates
of visual servoing. It is cost-effective with low computational
power and no special dedicated hardware required. It increases
reliability and safety, since the operator has time to verify
the alignment and correct it if necessary. It permits ground-
based VR calibration in space telerobotic operations, since
communication time delay is not a problem.

There are several reports on vision-based precise relative
positioning using two or stereo camera views despite camera
calibration errors [10], [27]. In any alignment tasks using two
camera views, it is in general true that the alignment error
decreases as the two mating parts gets closer to each other,
regardless of the camera calibration errors. For instance, when
the two image points are touching in two camera views, we
can say that the two points are physically touching independent
of camera calibration errors. However, if the objects are not
supposed to touch at the desired alignment, accurate camera
calibration will yield better alignment precision. In an ISS
RPCM example, the receptacle entrance frame is 1/2 in larger
than the ORU in both the horizontal and vertical dimensions to
allow in clearance. The simultaneous update algorithm
presented in this paper tries to best match object models to
two camera views by adjusting both camera and object mod-
els. When inaccurate camera calibration parameters are not
corrected as in the conventional sequential update algorithm,
alignment errors are larger as described in this paper.

III. L OCAL LINE DETECTOR

In computer vision, line features are easier and more reliable
to detect compared to point features, and thus line-based model
matching algorithms are employed in our implementation. In
our current application, we assume that image lines to be
detected are already adjacent to the projected model lines
through human-operator-assisted initial coarse matching. We
thus employed a local edge detector instead of a global one
for computational efficiency and precision.

We currently use Gennery’s weighted-average local line
detector [8], which is an enhanced version of the nearest
edge pixel detector [9]. For a given projected 2-D model
line, the weighted-average line detector determines the weights
and location of the nearby image line in a least-squares
sense. The given model line is first divided into intervals of
about two pixels each. For each interval, the line detector
searches for edge elements at approximately right angles to
the model line (the nearest multiple of 45from the image
axes) by applying Sobel edge operator along the search, and
computes the weighted average of the edge elements found.
This weighted-average computation for each interval results
in one weighted-average edge point per interval. The line
detector then performs a weighted least-squares fit of a line to
these weighted-average edge points. First we define an-
coordinate system such that the-axis is along the model
line with its endpoints at and By denoting the
location and weights of the weighted-average edge element
for the th interval by and respectively, we can
determine the perpendicular distances from the two endpoints
of the model line to the corresponding image line,and
by the weighted least-squares method [9]. By noting that the
image line can be described as

(1)

the weighted least-squares solutions forand are deter-
mined by

(2)

(3)

(4)

where is a weight matrix of the resulting image line
measurements and values, and its inverse is the
covariance matrix describing their variances and covariances.
Typical values of indicate that standard deviations of
the image line measurements usually range from 0.1 pixel
for a good straight image line to 10 pixels to a poor one.
Once and are obtained, the endpoint locations of the
detected image line in image coordinates can be computed.
The enhanced line detector [8] also includes in (2) and (3)
the orientation information produced by Sobel edge detector.
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If and are the two endpoints of the projected
2-D model line, its length and cosine and sine values of the
slope angle are

(5)

(6)

(7)

and the corresponding image line endpoints in image coordi-
nates are

(8)

(9)

In order to take into account the modeling errors, for instance,
due to inaccuracy in 3-D geometric models and nonlinearity
in camera models, we include the systematic error covariance
matrix term in computing weights

(10)

(11)

where is the identity matrix, and 0.5 pixel
is chosen as a nominal value by observing average residual
values of the line-based model matching least squares methods
of this paper (see Section VII). To avoid singularity problem
of weight matrix inverse, (11) is used in actual computation.
In harsh lighting conditions, video blooming can occur due
to bright reflection and overexposure. When one side of the
detected image line is saturated in intensity, we can include
the blooming compensation term

(12)

Since blooming causes about two pixels error in determin-
ing the location of the image line, 2 pixels can
be employed. This simple blooming compensation technique
turns out to be very effective under harsh lighting conditions,
although this paper presents experimental results under normal
lighting conditions only with no blooming.

Only visible model lines are used for the local line detector
and model matching. Further, to handle partial occlusions,
model lines are divided into segments so that their correspond-
ing image segments are approximately 20 pixels each, and
thereafter a list of visible model line segments is obtained by
examining the -buffer data of the graphic model rendered
at a given estimated viewing condition. For each visible
model line segment, the endpoint locations and weights of
the corresponding image line segment can be computed by
(8), (9), and (11). The results are then used in the following
line-based model-matching.

IV. L INE-BASED MODEL MATCHING

Kumar [20] showed that the least-squares algorithm for
object localization that solves for the rotation and translation
simultaneously [24], [29] yields much better parameter esti-
mates in the presence of noisy data than another approach

that solves for rotation first and then translation [21]. He
further showed that the infinite model-line algorithm performs
better than the infinite image-line algorithm when extracted
image lines have significant broken segments. Our algorithm
derived here corresponds to the infinite model-line approach
in concept, but its mathematical derivations are generalized so
that they can be used for both camera calibration and object
localization that can handle multiple camera views. These
unified derivations greatly help a simple, concise formulation
of the simultaneous update algorithm of the next section.

For a given 3-D object model point in object
model coordinates, its 2-D projection on the image plane
in camera image coordinates can be computed by

(13)

(14)

(15)

(16)

where transforms object model coordinates to world co-
ordinates, transforms world coordinates to camera viewing
coordinates, and is the camera focal length which is the
distance from the lens center to the image plane. The camera
focal length is equal to its lens focal length when the focus is
at infinity. The 4 4 object pose transform describes the
object pose relative to the world reference frame. The inverse
of the 4 4 camera viewing transform describes the camera
pose relative to the world reference frame. The above relations
of (13)–(16) are often presented in a matrix form

(17)

where is a homogeneous coordinate scale factor andis a
3 4 perspective projection matrix

(18)

In the above derivations, the camera imaging geometry is for-
mulated by the pin-hole camera model, where the 3-D model
point and its corresponding 2-D image point are related by
linear perspective projection without considering, for example,
nonlinear distortion of lens optics. It is further assumed that
the camera optical axis is perpendicular to the image plane,
and passes through the center of the camera view with zero
offsets of the image center from the optical axis. Square-
pixel resolution is also assumed for the captured video images,
having uniform scaling for both horizontal and vertical axes.
The common 640 480 pixel resolution for the NTSC video
image (4:3 aspect ratio) is a square-pixel resolution.
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The relations described above for the perspective projection
of a point can be directly applied to the line-based model
matching. Since a 2-D projection of a 3-D model line is still
a straight line, the projected 2-D model line can be simply
computed by 2-D projections of the two endpoints of the 3-D
model line. Let and denote the computed 2-D
image plane projections of the two endpoints of a 3-D model
line, and respectively

(19)

(20)

Further let and denote the two endpoints
of the 2-D image line determined by the weighted-average
local edge detector (Section III). The normal distances from
the image line endpoints to the projected 2-D model line are
given by

(21)

(22)

where

(23)

(24)

(25)

(26)

In the line-based model matching, the least-squares solution
is obtained that minimizes the normal distances between the
projected 2-D model lines and their corresponding actual
2-D image lines in the least-squares sense. The line-based
model matching can be used for both camera calibration and
object localization. In the camera calibration, we determine

or equivalently and for given If
(identity matrix), the camera calibration is performed relative
to the object model reference frame. Since the 44 camera
viewing transform can be equivalently represented by three
translational displacements and three rotational
angles the unknown vector to be solved for
the camera calibration is defined by 7 variables including the
camera focal length

(27)

Sometimes an accurate camera focal length is known, e.g.,
in a fixed focal-length camera, and the camera calibration
in this case determines the six pose parameters only. In the
object localization, we determine for given and
Since the 4 4 object pose transform can be equivalently
represented by three translational displacements
and three rotational angles the unknown vector

to be solved for the object localization is defined by six
variables

(28)

When pairs of corresponding model and image lines are
given, we have equations

... (29)

where a 2 1 vector consists of two normal distances of
(21) and (22) for theth corresponding model and image lines

(30)

Note that of (27) for camera calibration and
of (28) for object localization. When where is
the number of variables of the system is overdetermined
and a weighted least-squares method can be applied to find

that minimizes the weighted sum of the squares of all
normal distances

(31)

where is given by (11)

(32)

By denoting

... (33)

(31) becomes

(34)

Since contains nonlinear functions of the nonlinear
least-squares solution that minimizes can be obtained by
Newton–Gauss method, which is a combination of Newton’s
method and the least-squares method originated by Gauss. The
th iteration can be described as

(35)

where the Jacobian is defined as

... (36)

(37)

(38)
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(39)

and are functions of and and
their partial derivations can be found in [13]. By noting that

is a block diagonal matrix with each block being a 22
matrix, computation of (35) can be done more efficiently by
using the relations

(40)

(41)

V. SIMULTANEOUS UPDATE OFCAMERA AND OBJECTMODELS

In conventional approach, camera calibration and object
localization are performed sequentially. This sequential up-
date assumes that the camera calibration provides sufficiently
accurate camera calibration parameters for the subsequent
object localization. Accurate camera calibration, however,
generally requires a calibration fixture. Placing a calibration
fixture whenever the camera parameters are changed, for
example, due to camera pan, tilt, zoom, or focus control, is not
practical for telerobotic applications. In our practical approach,
an object with known geometric model that is naturally
seen by the cameras during telerobotic operation is used for
camera calibration. Let us consider a typical telerobotic task
environment to perform parts mating of objects and
using two cameras, and The camera calibration of
can be performed by matching the object model to the
camera view From (29)

(42)

The least-squares solution
can be computed for given object pose

Similarly, camera calibration of can be performed by
matching the same object model to the other camera view

to determine

(43)

After the above two camera calibrations, the object localization
of can be performed by matching object model to
each camera view

(44)

(45)

The least-squares solution
can be computed for given and Note

that and are intentionally added as function arguments
in (44) and (45), since they are needed for the simultaneous
algorithm.

Combining the above four equations with 20 unknown
variables results in the simultaneous update algorithm for two

objects with two views

(46)

(47)

where consists of seven variables of for camera
seven variables of for camera and six variables of
for object The object pose is fixed in this derivation,
since one frame must be fixed to get a unique solution.
With more than 10 corresponding model and image lines, the
nonlinear least squares solution of (46) can be obtained by the
Newton–Gauss method. Its Jacobian is given by

(48)

We applied both sequential and simultaneous update al-
gorithms to an RPCM-like ORU insertion task using two
views (side and overhead views and ) for comparison.
Both cameras were set by manual pan, tilt, zoom, and focus
control. The camera focal lengths were approximately 50 mm
(vertical field of view angle 5.5) for the side camera and 25
mm (11 ) for the overhead camera. The inter-camera angle
between the two camera optical axes was approximately 50.
The side camera was about 7.5 m away from the receptacle,
and the overhead one was about 3.5 m away. First, the line-
based camera calibration was performed for each camera by
matching the ORU graphic model to its camera view. After
the camera calibrations, the ORU graphic model was well
aligned to its camera views. Thereafter the object localization
was performed by matching the receptacle graphic model
with its camera views. In Fig. 2, the receptacle localization was
performed by using the side camera view only. The receptacle
model pose was determined to best align the projected model
and image lines in the least squares sense. Since only the
side camera view (top window in Fig. 2) was used, the
receptacle graphic model was not aligned in the overhead
camera view (bottom). In Fig. 3, the receptacle localization
was performed by using the overhead camera view (bottom)
only, and this time the receptacle model was not aligned in
the side camera view (top). Fig. 4 shows the video overlay
after the receptacle localization was performed using both
camera views. Note that the receptacle model was still visibly
misaligned in both camera views. This poor alignment was
mainly due to inaccuracy in camera calibrations. Note again
that the ORU was used for camera calibration which provided
less accurate and sparse input data, since placing an accurate
large camera calibration fixture in the telerobotic work site
was impractical. The inaccuracy in camera calibrations causes
the subsequent object localization of the sequential update to
be also inaccurate. Fig. 5 shows the model matching result
obtained with the simultaneous update. Note that the receptacle
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Fig. 2. Receptacle localization using side camera view (top) only.

model is very well aligned in both camera views. Unlike the
sequential update, the simultaneous update algorithm updated
both the camera and object models simultaneously, achieving
accurate matching even with rough, approximate initial camera
calibrations. This clearly demonstrates that the simultaneous
update is essential to achieve high-precision model matching
using two views.

VI. OPERATIONAL PROCEDURE

The above line-based simultaneous update algorithm has
been developed for automated fine matching to refine camera
calibration and object pose estimates, assuming approximate
initial camera calibration and object pose parameters are
known. Note that the current algorithm employs a local

Fig. 3. Receptacle localization using overhead camera view (bottom) only.

edge detector that searches nearby image lines only, within
approximately 20 pixels or so, for a given projected model
line. Therefore, when initial camera and pose parameters are
not known fairly accurately, we need to perform operator-
interactive initial coarse matching first before automated fine
matching. In the initial coarse matching, an operator clicks
model points and their corresponding image points by using
a mouse. Once corresponding points are entered, point-based
camera calibration followed by point-based object localization
can be applied to determine the object pose as presented in
our earlier paper [13]. This sequential update, however, does
not compensate for initial camera calibration errors during the
subsequent object localization, and initial camera calibrations
need to be sufficiently accurate. In [13], the solution was to
move the robot arm holding an ORU to three different poses
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Fig. 4. Receptacle localization (sequential update after camera calibration)
using both camera views.

to enter more corresponding points over a wider region. This
calibration procedure is time-consuming and took about 10–20
min.

Our new solution is to use point-based simultaneous update
algorithm, which is very similar to the line-based simultaneous
update algorithm described in the previous sections. It turns
out that this new point-based simultaneous update no longer
requires robot arm re-positioning to cover a wide region for
data entry, since the algorithm compensates for initial camera
calibration errors. Fig. 6 shows a display screen after an
operator completes the corresponding points data entry for
one view. The operator clicks a graphic model point on the
top video overlay window by using a mouse, and then clicks
the corresponding image point on the same window (graphic
models disappear during the image point entry). During this

Fig. 5. Simultaneous update of camera and object models using both camera
views.

data entry, the operator can adjust camera and graphic models
using a mouse. The lower video image window shows all the
corresponding image points entered so far for that view. Five
or more points for each of ORU and receptacle per camera
view are usually desired. In Fig. 6, seven points for ORU and
six points for receptacle are entered for this view. Note that
corresponding points entered are well distributed on the video
image. The operator data entry time for two camera views
typically takes approximately 2–3 min in total. The current
graphic model states set by the operator’s mouse control are
fed to the least-squares algorithms as initial states together
with correspondence data. In the specific example of Fig. 6, all
the least-squares algorithms of point-based camera calibration,
object localization, and simultaneous update converged well
to the desired solutions from the initial graphic model states
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Fig. 6. Corresponding points entry during operator-interactive initial coarse
matching.

shown in the picture. Even when the initial graphic model
poses were intentionally set to more than 40off from the
actual poses, they still all converged well. However, in some
other camera viewing conditions with different initial poses,
we noticed that the convergence range of the point-based 20-
dimensional (20-D) simultaneous update was often less wide
than those of the sequential update. In order to maintain
the convergence range as wide as the sequential update in
general, point-based simultaneous update can be preceded by
point-based sequential update of camera calibration and object
localization for operator-interactive coarse matching. Since
computation times for least-squares methods are negligible
(in the order of a few milliseconds) compared to human data
entry time, an inclusion of the optional sequential update does
not reduce the operational efficiency. After the point-based

simultaneous update, the automated lined-based simultane-
ous update algorithm is applied for fine matching and pose
refinement.

The operational procedure used to demonstrate a high-
precision ORU insertion into its receptacle is listed here.

1) Move the robot arm holding the ORU to an initial
position.

2) Grab video images from two cameras showing both the
ORU and the receptacle.

3) Enter corresponding points using a mouse for both
views.

4) Apply point-based camera calibration and object local-
ization sequentially.

5) Apply point-based simultaneous update.
6) Apply computer vision assisted line-based simultaneous

update. This completes VR calibration at the initial ORU
pose, and the system now knows the receptacle pose
relative to the ORU.

7) Move the robot arm holding the ORU to the next via
point toward the receptacle.

8) Grab video images from the same two cameras, and
apply line-based simultaneous update (or object localiza-
tion) for further pose refinement. No operator-interactive
data entry is needed at this time, since fairly accurate
estimates of camera/object variables are already known
in previous VR calibration. As the ORU gets closer
to the receptacle, new update increases the alignment
precision.

9) Repeat the above intermittent update/pose refinement at
next via points, until the ORU reaches at alignment ready
for insertion.

10) Insert the ORU. A graphical user interface (GUI) is
provided for the operator to execute each command
successively in the auto sequence command script [16].

The above operational procedure was successfully used to
demonstrate high-precision ORU insertion within the1/4
in and 3 alignment precision for various viewing and
object pose conditions both at Jet Propulsion Laboratory and
at NASA Johnson Space Center [12]. A video tape is also
available [5].

VII. EXPERIMENTAL RESULTS

A series of experiments were performed using an RPCM-
like ORU insertion task. First, three sequential and one si-
multaneous update algorithms were compared by running each
algorithm five times to measure the alignment errors. The ORU
was 20 in away from its receptacle and the inter-camera angle
between the two cameras used was approximately 90. The
alignment error was measured by comparing the true alignment
pose with the algorithm estimate. The true alignment pose of
the ORU relative to the receptacle was obtained by careful
human visual alignment roughly within about 0.05 in and 0.5
precision. The position alignment error was computed as the
vector sum of the translational alignment errors for the three
axes. Similarly, the orientation alignment error was computed
as the vector sum of the rotational alignment errors for the
three axes. The experimental results are shown in Fig. 7. The
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Fig. 7. Alignment error plots comparing sequential and simultaneous updates.

alignment error standard deviation from the true alignment was
computed from five runs for each algorithm, and the computed
standard deviations are connected by a dashed line. The
position/orientation alignment error standard deviations were
1.57 in/2.69 for the sequential update using a single camera
view C1 (OBJLOC1 in Fig. 7), 1.64 in/4.12for the sequential
update using a single camera view C2 (OBJLOC2), 0.51
in/1.19 for the sequential update using both camera views
(OBJLOC12), and 0.21 in/0.88for the simultaneous update
using both camera views (CAMOBJ). In this experiment, the
position alignment with the two-view simultaneous update
was about eight times more precise than that with the single-
view simultaneous updates, and about 2.5 times more precise

than that with the two-view sequential update. The orientation
alignment with the simultaneous update was about three to five
times more precise than that with the single-view sequential
updates, and 1.4 times better than that with the two-view
sequential update.

Second, the effect of the ORU-receptacle distance and the
effect of the inter-camera angle on the alignment error were
investigated together. The alignment errors were measured by
running the simultaneous update algorithm five times each for
four ORU positions of 20, 8, 4, and 2 in away from the recep-
tacle at four different inter-camera angles of 90, 51 , 28 , and
14 . The experimental results are plotted in Fig. 8 as a function
of the ORU-receptacle distance. The same experimental results
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Fig. 8. Alignment error with respect to ORU distance from receptacle.

are plotted in Fig. 9 as a function of the inter-camera angle.
Fig. 8 shows that the alignment error reduces as the ORU gets
closer to the receptacle. This clearly illustrates that intermittent
updates at intermediate robot stopping poses on a path to
insertion increases the alignment precision. Fig. 9 shows that
the alignment error reduces as the inter-camera angle increases
toward 90 (orthogonal view). For each of the inter-camera
angles at 28 51 and 90 except for 14 all five runs of
the VR calibration satisfied the 1/4 in, 3alignment precision
requirement when the ORU reached at 2 in in front of the
receptacle. The alignment precision was poor for the 14inter-
camera angle. The above experimental results indicate that the
ORU insertion can be performed successfully within the 1/4

in, 3 alignment precision requirement when the inter-camera
angle is greater than about 30.

Finally, the effect of the object image size (zoom) on the
alignment error was investigated. In our setup, one camera
happened to be equipped with a zoom lens, and the other with
a fixed-focal-length lens. Three different viewing sizes of 10-,
20-, and 30-in-wide views were obtained by adjusting the
zoom of the zoom-lens camera and re-positioning the fixed-
lens camera closer to or further away from the receptacle, so
that each of the two camera views covers just enough to see
both the ORU and the receptacle when they are 10, 20, and
30 in apart, respectively. The image sizes of the ORU and
receptacle for the 10-in-wide view are larger than those for
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Fig. 9. Alignment error with respect to inter-camera angle.

the 30-in-wide views. The inter-camera angle was set to 90
As expected, the experimental results in Fig. 10 show that the
alignment error increases as the object image size gets smaller.

Another way to investigate the alignment error is to compute
error ellipses from the covariance matrix

resulting from the least squares solution. In order to have the
resulting covariance matrix represent camera pose variances
in camera frames while object pose variances in object frame,
each iterative update of the least-squares method described
in Sections IV and V needs to be performed in incremental
form. In the incremental update, unknown variablesof (27)
and of (28) are associated with incremental adjustments

of camera and object poses and and its Jacobian
computations are modified. In each iteration,and are
updated by

(49)

(50)

and the initial conditions for the next iteration are set to
or Note that is

pre-multiplied, while is post-multiplied. If is post-
multipied and is pre-multiplied, they both are expressed
relative to the world reference frame [see (13) and (14)]. From
the covariance matrix resulting from the above
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Fig. 10. Alignment error with respect to camera field of view (zoom).

incremental-form least squares solution, we can compute
error ellipses, which are two-dimensional projections of the 20-
D error ellipsoid (18-dimensional if two camera focal lengths
are given). For instance, four elements of the covariance matrix
associated with variables and form

(51)

and the standard error ellipse is given by

(52)

where the correlation coefficient

Error ellipses obtained are shown in Fig. 11 for the same
experimental condition as in Fig. 5, where the ORU was
approximately 10 in away from the receptacle. The standard
deviations of the camera poses along the camera optical axes
( axes) are very large for both cameras, and their error ellipses
(upper and middle right plots of Fig. 11) are truncated. This is
because the camera pose along the optical axis and the camera
focal length (or field of view angle) are highly correlated,
in particular when the camera lens has a long focal length
with a small field of view angle (telephoto lens) showing
almost no perspective view effect. The standard deviation
of the receptacle pose estimate (bottom plots of Fig. 11) is
within 0.14 in along all three axes, indicating that 3for
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Fig. 11. 1 � � ellipses of the pose estimates: (top) side camera pose relative to its camera frame, (middle) overhead camera pose relative to its camera
frame, and (bottom) receptacle pose relative to the receptacle frame.

95% confidence level is within 0.41 in in this experimental
condition. As the ORU gets closer to the receptacle, the
relative pose estimate gets more accurate. For example, when
the ORU is less than 5 in away, the pose estimate was less
than 1/4 in at 95% confidence level. These covariance error
analysis results agree with the experimental results in Fig. 8.
The covariance error analysis can provide a powerful tool
in comparing pose estimate errors of different objects under
various viewing conditions, without relying on extensive actual
error measurement experiments. In our various experimental
conditions, it appears that we could also simply use the
nonweighted covariance matrix with for

the covariance error analysis, by assuming uniform one-pixel
standard deviation for all image edge measurements. As an
example, for the experimental condition of Fig. 5, the root-
mean-squared residual of the simultaneous update least squares
method was 1.2 pixels, and the maximum residual was 3.7
pixels.

VIII. C ONCLUSION

We presented an exciting new technology of computer
vision assisted semi-automatic VR calibration for reliable,
high-precision telerobotic servicing. In particular, the newly
developed simultaneous update of both camera and object
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models were described in great detail as a key new technique
to produce high precision alignment. Experimental results
indicate that the simultaneous update yields considerably more
precise matching than the conventional sequential update
that does not compensate for inaccurate camera calibration
parameters. Experimental results also indicate that intermittent
updates at a few intermediate robot stopping poses increases
the alignment precision further. This semi-automatic VR cal-
ibration provides a new way of performing more reliable and
accurate telerobotic servicing with model-based supervised
autonomy beyond simple manual teleoperation.

ACKNOWLEDGMENT

The author would like to thank Dr. D. Gennery for providing
weighted-average line detector and covariance analysis, E.
Chalfant for conducting experiments, E. Barlow, Jet Propul-
sion Laboratory, for building the RPCM-like ORU mockup,
L. Junkin and I. Spain, NASA Johnson Space Center (JSC),
for their collaboration in experimental evaluation, and the
reviewers’ for their helpful comments. Video images used
in this paper were taken at the JSC Automated Robotic
Maintenance for Space Station (AMRSS) facility.

REFERENCES

[1] A. K. Bejczy, “Sensors, controls, and man-machine interface for ad-
vanced teleoperation,”Science, vol. 208, no. 4450, pp. 1327–1335,
1980.

[2] B. Bhanu, “CAD-based robot vision,”Computer, vol. 20, no. 8, pp.
13–16, 1987.

[3] D. Brown, M. Hiltz, A. Samji, and C. Thorton, “RPCM ORU exchange
with SPDM,” MSS On-Orbit Operations Concept Document, SPAR-SS-
R-044, vol. II, app. A, Dec. 1992.

[4] R. T. Chin and C. R. Dyer, “Model-based recognition in robot vision,”
ACM Comput. Surv., vol. 18, no. 1, pp. 67–108, 1986.

[5] Videotape Proceedings of the IEEE International Conference on Robotics
and Automation, 1998.

[6] O. D. Faugeras and M. Hebert, “The representation, recognition, and
locating of 3-D objects,”Int. J. Robot. Res., vol. 5, no. 3, pp. 27–51,
1986.

[7] M. A. Fischler and R. C. Bolles, “Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography,”Commun. ACM, vol. 24, no. 6, pp. 381–395,
1981.

[8] D. B. Gennery, “Improved edge measurement for visual tracking,”
Intern. Doc. D-16693, Jet Propulsion Lab, Pasadena, CA, 1999.

[9] , “Visual tracking of known three-dimensional objects,”Int. J.
Comput. Vis., vol. 7, no. 3, pp. 243–270, 1992.

[10] G. D. Hager, “A modular system for robust positioning using feedback
from stereo vision,”IEEE Trans. Robot. Automat., vol. 13, pp. 582–595,
Aug. 1997.

[11] S. Hutchinson, G. D. Hager, and P. I. Corke, “A tutorial on visual servo
control,” IEEE Trans. Robot. Automat., vol. 12, pp. 651–670, Oct. 1997.

[12] L. Junkin, “International Space Station robotic technology transfer
program: Evaluation of calibrated synthetic viewing technology to
augment ISS camera views for ORU insertion tasks,” Phase II, AR&SD-
98-001, NASA Johnson Space Center, 1998.

[13] W. S. Kim, “Virtual reality calibration and preview/predictive displays
for telerobotics,”Presence. Cambridge, MA: MIT Press, 1996, vol. 5,
no. 2, pp. 173–190.

[14] W. S. Kim and A. K. Bejczy, “Demonstration of a high-fidelity
predictive/preview display technique for telerobotic servicing in space,”
IEEE Trans. Robot. Automat., vol. 9, pp. 698–702, Oct. 1993.

[15] , “Graphics displays for operator aid in telemanipulation,” in
Proc. IEEE Int. Conf. Syst., Man, Cybern., Charlottesville, VA, 1991,
pp. 1059–1067.

[16] W. S. Kim, D. B. Gennery, and E. C. Chalfant, “Computer vision
assisted virtual reality calibration,” inProc. IEEE Int. Conf. Robot.
Automat., Albuquerque, NM, Apr. 1997, pp. 1335–1340.

[17] W. S. Kim, D. B. Gennery, E. C. Chalfant, L. Q. Junkin, I. M. Spain, and
S. B. Rogers, “Calibrated synthetic viewing,” inProc. Amer. Nuclear
Soc. (ANS) 7th Topical Meeting Robot. Remote Syst., Augusta, GA, Apr.
1997, pp. 596–602.

[18] W. S. Kim, P. S. Schenker, A. K. Bejczy, S. Leake, and S. Ollendorf,
“An advanced operator interface design with preview/predictive displays
for ground-controlled space telerobotic servicing,” inProc. SPIE Conf.
2057: Telemanipulator Technol. Space Telerobot., Boston, MA, Sept.
1993, pp. 96–107.

[19] W. S. Kim, H. Seraji, P. Fiorini, R. Brown, B. Christensen, C. Beale,
J. Karen, and P. Eismann, “Commercialization of JPL virtual reality
calibration and redundant manipulator control technologies,” in3rd Int.
Symp. Artif. Intell., Robot., Automat. Space, 1994, pp. 23–26.

[20] R. Kumar and A. R. Hanson, “Robust methods for estimating pose
and a sensitivity analysis,”CVGIP: Image Process., vol. 60, no. 3, pp.
313–342, 1994.

[21] Y. Liu, T. S. Huang, and O. D. Faugeras, “Determination of camera
location from 2-D to 3-D line and point correspondences,” inProc.
IEEE Conf. Comput. Vision Pattern Recog., 1988, pp. 82–88.

[22] P. B. Loftin and P. J. Kenny, “Training the Hubble space telescope flight
team,” IEEE Comput. Graphics Appl., vol. 15, no. 5, pp. 31–37, 1995.

[23] D. G. Lowe, “Fitting parameterized three-dimensional models to im-
ages,”IEEE Trans. Pattern Anal. Machine Intell., vol. 13, pp. 441–450,
May 1991.

[24] , Perceptual Organization and Visual Recognition. Norwell,
MA: Kluwer, 1985.

[25] M. Muchinsky, E. Mohr, and B. Cura, “Remote power controller module
(RPCM) orbital replacement unit (ORU) hardware to robotic systems
integration standards (RSIS) verification test report,” Oceaneering Space
Systems 061-ER-GF1, 1996.

[26] T. B. Sheridan, (1192),Telerobotics, Automation, and Human Supervi-
sory Control. Cambridge, MA: MIT Press.

[27] S. B. Skaar, W. H. Brockman, and W. S. Jang, “Three-dimensional
camera space manipulation,”Int. J. Robot. Res., vol. 9, no. 4, pp. 22–39,
1990.

[28] L. W. Stark, “How virtual reality works: The illusions of vision in real
and virtual environment,”SPIE Symp. Electron. Imaging: Sci. Technol.,
San Jose, CA, Feb. 1995.

[29] T. Tanabe, E. Ohyama, and H. Koyama, “Model based vision system
for autonomous teleoperated spacecraft,” inProc. Amer. Astronaut.
Soc./Jpn. Rocket Soc. Joint Int. Symp., 1985, pp. 85-661.

[30] W. J. Wilson, C. C. W. Hulls, and G. S. Bell, “Relative end-effector
control using Cartesian position based visual servoing,”IEEE Trans.
Robot. Automat., vol. 13, pp. 684–696, Oct. 1997.

Won S. Kim (M’97) received the B.S. degree
from Seoul National University, Seoul, Korea,
the M.S. degree from Korea Advanced Institute
of Science and Technology, Taejon, both in
electronics engineering, and the Ph.D. degree
in electrical engineering and computer sciences
from the University of California, Berkeley, in
1986.

From 1979 to 1981, he was a Lecturer in the
Department of Electronics Engineering, Kyungpook
National University, Korea. He joined the Jet

Propulsion Laboratory, California Institute of Technology, Pasadena, in
1988. He has published more than 50 conference and journal papers in the
telerobotics area and holds a NASA patent. His research and development
interests include onboard and ground-controlled telerobotic servicing for
international space station applications, automated material transportation for
automobile industry, and autonomous downlink processing for an exploration
technology rover system.

Dr. Kim received the Franklin V. Taylor Award from the 1988 IEEE
Conference on System, Man, and Cybernetics, and several NASA Tech Brief
Awards.


