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Abstract

Whether the interior of a simple polygon is visible to a given edge can be
determined in O(n) time [1], where n is the total number of edges in the
polygon. In this paper, we find all such visible edges in O(n) time. It is made
possible by showing that there can be at most three visible edges in a simple

polygon with an empty kernel.



1. Introduction

The visibility of a polygon from an edge is considered by Avis and
Toussaint[1]. In it,they developed an O(n) algorithm for determining if a
simple polygon is visible from a given edge. They also introduce three kinds of
edge visibility—weak, strong and complete, that are illustrated in Figure 1.1. In
this paper, we pose the question : Given a simple polygon, can we find all the
visible edges, if there are any, in O(n) time? If the kernel of the given polygon
exists, then finding all the completely visible edges is trivial since they must be
contained in the kernel. Likewise, finding all the strongly visible edges in a
polygon with a kernel is also straightforward. (It may be noted that if the kernel
of a polygon does not share any point with the boundary of the polygon, then
these two kinds of visible edges do not exist.) The only interesting variation is
to find all the weakly visible edges. Shin and Woo[7,8] described a linear time
algorithm for finding all weakly visible edges in a polygon for which a kernel
exists. In this paper, we examine the problem of finding all weakly visible edges
in a simple polygon in which a kernel does not exist. A straightforward
approach would be to apply the Avis and Toussaint’s linear time test[1] for
edge visibility to each of n edges hence yeielding an 0(n? algorithm. We give
an O(n) algorithm for finding all weakly visible edges, if any, in a simple
polygon with an empty kernel. This algorithm together with the Shin and
Woo’s algorithm[8] make it possible to find all weakly visible edges of a simple

polygon in linear time.

< Insert Figure 1.1 >
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2. Preliminaries

Let P be a simple polygon with n vertices in the plane. Every vertex v;,
where i is taken modulo n, is represented by its Cartesian coordinates (x;,y).
These vertices in sequence are maintained as a circular doubly linked list so
that the interior of P lies to the left as the boundary B(P) of P is traversed in
the counter-clockwise order. We assume that no three consecutive vertices of P

are colinear.

Definition 2.1 : L (u,w) denotes a directed line segment joining two points, uz and
w with the direction from u to w. An open line segment L (u,w) is the line

segment L (u,w) excluding its two endpoints, » and w.

Definition 2.2 : An edge E(v;,v.y) is the segment L (v;v;;) joining two adjacent
vertices v; and v;,; on the boundary B(P) of P. An open edge E(v;,v,;) is the

edge E(v;,vi,1) excluding its two endpoints, v; and v, ;.

Definition 2.3 : Let « and w be two distinct points on the boundary B(P) of P. A
chain C,(u,w) is the portion of B(P) from u to w as B(P) is traversed in the
counter-clockwise sense. An open chain C,(u,w) is the chain C,(u,w) excluding

its two endpoints u and w.

Definition 2.4 : A ray RAY (u,w) is a halfline starting from » with the direction

from u to w.

Definition 2.5 : Two points 4 and w in P is said to be visible if the line segment

joining them is completely contained in P.

Definition 2.6 : The kernel of P, denoted by K (P), is the set of all points in P such

that every point « in P is visible from any point w in K (P).



Definition 2.7 : P is said to be weakly visible from L (u,w) in P if, for every point s
in P, there exists a point ¢ in L («,w) ( depending on s ) such that s and ¢ are
visible. P is line-visible if there exists a line segment L (u,w) in P from which P
is weakly visible. If such a line segment L (u,w) is contained in an edge of P,

then P is said to be edge-visible.

Definition 2.8 : An edge E(v;,v.;) is said to be a visible edge if P is weakly visible

from E(v;,vi41).

Definition 2.9 : Given a polygon P and a point z in P, the visibility polygon V(z,P)

from :z is defined to be the set of all points in P, which is visible from z.

Avis and Toussaint gave an elegant characterization of a visible edge. We

state a part of their results[1] without proof.

Lemma 2.1 : A polygon P is weakly visible from an edge E(v;,v;.1) if and only if its

boundary B (P) is weakly visible from E (v;,vi,1)[1].

Shin and Woo [7,8] exhibited an O(n) algorithm for finding all visible edges
for a polygon with a non-empty kernel. Their basic idea was to discard all edges
not satisfying Lemma 2.1. Linear time was made possible by exploiting point-
visibility of a star-shaped polygon. In this paper, we find all visible edges in a
polygon with an empty kernel. We employ Helly’s theorem [6] to discard edges

not satisfying Lemma 2.1.

Lemma 2.2(Helly’s theorem) : Let {s,| ie1, where I is an index set} be a finite
collection of convex sets in R?. If every subcollection consisting of d+1 or fewer
sets in the collection has a nonempty intersection, then the entire collection has

a nonempty intersection[6].

Let HP(u,w) denoted the half plane which lies to the left of L (u,w). It is well-



known that

n-1
K (P)=\ HP(vi,vis1) (2.1)

i=0

Suppose that K (P)=@. Since HP(v,,v;,;), 0< i< n, is a convex set in R?2, the fol-

lowing result is immediate from Lemma 2.2.

Lemma 2.3 : If the kernel K (P) of a simple polygon P is empty, then there exist

three distinct edges, E(v;,vis1), E(v;,Vj+1), and E(v,v,y) such that

HP(V",VH,l)m HP(Vj,Vj+1)m HP(Vk,Vk+1)=®.

Assuming that K (P)=@, consider three distinct edges, E(v;,vi+1), E(vi,vis1) and

E(vi,vi+1) Such that
HP (vi,vis ) HP (v}, vj ) N\ HP (v, i+ )= 2 (2.2)

Suppose that E(v,,v,,;) is a visible edge. Then, every point z in E(v,,v,41), r=i,j,k
is visible from some point ( depending on z ) in E(v,,v.4+;). In particular, each
midpoint of E(v,,v,,1), r=i,j,k, is visible from E(v,,v.,;). Since visibility is a sym-
metric relation, the converse is also true, i.e., there exists a point in E (v,,va+1),
which is visible from the midpoint of E (v,,v,,;) for each r=i,j,k. In section 3, we
show that there exist at most three edges in P such that each of them contains a
point ( depending on r ) which is visible from the midpoint of E(v,,v,,) for all
r=i,j,k. In section 4, we present a linear time algorithm for finding all such
edges. Although each of these edges contains a point which is visible from the
midpoint|of E(v,,%41), r=i,j,k, it may not be a visible edge since they do not
necessarily satisfy Lemma2.1. We submit each of these edges to Avis and
Toussaint’s test [1] for determining its edge visibility. Finally, in section 5, we

present a linear time algorithm for finding all visible edges in a simple polygon.



3. Characterization of a Candidate Visible Edge

Let m, be a point in an open edge E (v,,v,,1), i.€.,

mrEE-(VnVH-I),’:i:j’k (31)

Suppose that K (P)=&. From Lemma23, there exist three edges

E(vi,Vis1), E(vj,vj41) and E(vg,ve4) such that
HP (vivie 1) (Y HP (vj,vji1) (Y HP (Vg vi41)=D (3.2)

SinCC V(m,,P) [ HP(vr,vr+1)9r=isj’k’
V(m,P)\ V(mj,P)\V(my,P)=0. (3.3)

It is obvious that a visible edge shares at least a point with each of three visi-
bility polygons, V(m,,P),r=i,j,k. Conversely, if an edge shares at least a point

with each of them, it can possibly be a visible edge.

Definition 3.1 : LCt HP(V,',VH.I)m HP(V}',Vj+1)m HP(Vk,Vk+1)= g. An Cdge Of P IS Sald
to be a candidate if it shares at least one point with each of vV (m;,P), V(m;,P), and

V(mk,P).

We show that there are at most three candidates if k¥ (P)=&. From Equation
(3.3), there are two possibilities:
Case 1 : Among three visibility polygons, V(m,,P),r=i,j k,
there exist a pair of them which do not have a common
intersection.
Case 2 : The three visibility polygons are pairwise intersecting.
For Case 1, let V(m;,P) V(m;,P)= without loss of generality. By taking out
from P all points in V(m,,P), the remaining part of P is partitioned into disjoint

regions as shown in Figure 3.1.

< Insert Figure 3.1 >



Figure 3.1 : V(m;,P) Partitions P
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Each region R;,f=0,1,2, - - - is a simple polygon bounded by a portion of B (P)
and a line segment § on the boundary of V(m;,P). Let m; be contained in R, for
some f. We show that V(m;,P) does not share any point with another remaining

region.

Lemma 3.1 : Suppose that V(m;,P)~\V(m;P)=0. Let R;,f=0,1,2,--- be the
remaining region after subtracting V(m;,P) from P. If m;eR, for some f, then
V(mj,P)C Ry.

(Proof] Suppose that V(m;P) shares a point z with another remaining region

R,,g# f. Then
L(m,,z)c V(m,,P)CP (3.4)

R, is bounded by a portion of B(P) and a line segment S on the boundary of
V(m;,P). Since V(m,P)\V(m;P)= &, S~ L(mjz)=@. Since the remaining
regions are disjoint, m;éR,. Therefore, L(mj;,z) crosses an edge of P which
bounds R,. This contradicts Equation (3.4), which asserts that L (m;z)cP.

Hence, V(m;,P) does not intersect any remaining region except R;. O

An implication of Lemma 3.1 is that m; is not visible from any edge which
does not intersect R;. Thus, only the edges sharing one or more points with R,
can possibly be a visible edge. However, a visible edge is required to intersect
V(m;,P). By the way in which R, is constructed, there are only two such edges,
Le., the edges which are contained (or partly contained) in R, and intersect

V(m;,P). Therefore, there are at most two candidates in Case 1.

Lemma 3.2 ¢« Let HP (v;,vie1) N HP(vj,vje 1)\ HP (v, Vi41)=D. If V(ms,P),r=i,j,k does

not pairwise intersect, then there exist at most two candidates.

Now, consider Case 2, where V(m,,P),r=i,j,k are pairwise intersecting. Let

L, = the line containing E(v,,v,,,),r=i,j,k
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i,, = the intersection point of lines L, and L,.
By assumption, HP(v;,vi,))\ HP(vj,vis )\ HP (e vis )= ©&. Since V(m,,P) C
HP (v,,v,41), HP (v,,v,41), r=i,j,k are pairwise intersecting. Therefore, the following
is true:

(1) i, iy, and iy are well-defined and distinct

(2) iy, iz, and iy are not colinear

As illustrated in Figure 3.2, no interior point of the triangle (igj»i i) 18 con-

tained in HP(v,,v,4;) for any r=i,jk. In the following lemma, we show that the

triangle (i;,iz,i;) is entirely contained in P.
< Insert Figure 3.2 >

Lemma 3.3 : Suppose that the following is true :
(1) HP (vi,vie1) N HP (vj,vje1) O\ HP (Ve Vi 1)= 2.
(2) V(m,,P),r=i,j,k are pairwise intersecting.
Then, every point in the triangle, (i;j,ije,ix) 1S contained in P.
[Proof] Take three points, u;;,u;, and uy such that
uj€ V(m,P)"\ V(m;,P)

ujke V(m,,P)m V(mkap) (35)
Uy € V(mk’P)n V(mnP)

SIHCC HP(V",VH,l)m HP(VI‘,V,'+1)m HP(Vk,vkq.l): @,

From Equations (3.5) and (3.6), three points, u;; u;, and u, are necessarily dis-

tinct. Futhermore,

Up € V(mnP) and Ujje V(muP)
S V(m,,P) and Ujke V(m,,P) (37)
u,-ke V(mk,P) and Ukie V(m,,,P)

Let P(w,z) be a simple path between two points, w and z. From Equation



HP (v;,vi) A HP (v, )

HP (v;,viy1) HP (vg,vge1)

Lig Lij

HP (vj,vjer) O HP(ve,Ves1) HP (vj,v+1)

; HP (vi,vier) N HP(v;,vj4)

Figure 3.2 : i;;,i4, and i; are well-defined.
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(3.7), it is possible to construct three simple paths, P(uy,u;), P(u;,u;), and
P(uj,,,u,,;) such that
P (uyi,u;;)cV(m;,P)
P(ujj,up)cV(m;,P) (3.8)
P(ujp,ug)cV(my,P)
Moreover, these three paths can be constructed so that they pairwise intersect

only at u;,u;, and . Since V(m,,P)cP,r=i,j,k,
P (u;,u;)c P, P(uj,up)c P, and P(up,uy)c P (3.9)

In words, each of these simple paths is completely contained in P. Since
V(m,,P)C HP (v,,v,+1),r=i,j,k, the following is immediate from (3.8) :

P (ugi,u;5)C HP (v, Vi 1)

P(uu)c HP (v},je1) (3.10)

P(uj,up;)c HP (vg,vg41)
Equations (3.10) implies that each of these three paths does not share any
point with the interior of the triangle (ij,iz,ix). This is true since
HP (v,,v,41),r=i,j,k does not share any point with the interior of the triangle.
Thus the triangle (i;,ix,i;) is completely contained in R bounded by the three
paths (See Figure 3.3). From Equations (3.9), these three paths lie completely

in P. Hence, the triangle (i;,ix,i;) is completely contained in P. O
< Insert Figure 3.3 >

From Lemma 3.3, every interior point of the triangle (i;,ix,i) is an interior
point of P. Let u be an interior point of the triangle (i;,ix.ix). Since u is also
interior point of P, there exists a line segment L (w,,z,) for each r=i,j,k satisfy-
ing the following properties (See Figure 3.4) :

(P1) ueL (w,z)cP

(P2) L(wz)\ B(P)={w,,z,}and L (w,,z,) B(P)=0



HP(v;,vis1) 0 HP (v, veet)
Ly

HP (vi,vis1) HP (vg,Viy)

HP(vj,vie) N HP(vg,Ve4y) HP(vi,vie1) N HP(v;,vjey)

Figure 3.3 : The triangle (i;,i;,i;) is contained in P.
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(P3) L (w,,z2) is parallel with E(v,,v,+})

(P4) the direction of L (w,,z,) is opposite to that of E(v,,v,, ).
< Insert Figure 3.4 >

HP(v,,v,.1),r=i,j,k is determined by the line L, containing E(v,,v,,;) which is
parallel with L (w,,z,). Therefore, L (w,,z,) either is contained in HP(v,v,.;) Or
does not share any point with HP(v,,v,.;). However, no interior point of the tri-
angle (ij,iz,i;) 18 contained in HP(v,,v,.y). In particular, ué& HP(v,,v.1) for any

r=i,jk. Therefore,
L (w,,2,) "\ HP (v, v, )=3,r=i,j k. (3.11)
From Equation (3.11), the following two lemmas are immediate.
Lemma 3.4 : Let HP(v;,viy))\ HP (vj,vje 1) HP (Ve v )=@. If V(m,,P),r=i,j,k, are
pairwise intersecting, then
HP(v,,v,,1)c HP(z,,w,),r=i,j,k.

[Proof] Let V(m,,P),r=i,j,k be pairwise intersecting. By property (P4), L (w,,z,)
has the opposite direction to E(v,v,.;). Thus, L(z,w,) and E(v,v.;) have the
same direction. From property (P3), L(z,w,) and E(v,v,.;) are parallel. There-
fore, either HP(v,,v,,;)c HP(z,,w,) Or HP(z,,w,)C HP (v,,v,41). If HP(v,,v,41))C
HP(z,,w,), then L (z,w,)C HP(v,v,,;) (or equivalently L (w,,z,)C HP(v,,V,s1)),

which contradicts Equation (3.11). Hence, HP (v,,,,1)C HP (z,,w,). O
Lemma 3.5 : Let HP (vi,vie)) N HP (vyvjs1) (O HP (v, vie)=@. If V(m,,P),r=i,jk are
pairwise intersecting, then no point in L (w,,z,) is visible from m,, ie.,

L(w,2z,)\ V(m,P)=0,r=i,j k.

[Proof] From Equation (3.11), L(w,z) A HP(v,v.)=2. Since V(m,P) C

HP (v,,v,41), L (W,,2,) A V(m,,P)=@. O



HP (v;,vi41)

HP(kavk+1)

Figure 3.4 : P (y

P Vrel) N L(W,,Z,) = ¢,f=i,jk.



.10 -

A pair of points, w, and z for each r=i,jk partition B(P) into two chains,
Ci(w,,z,) and C,(z,,w,). From properties (P1) and (P2) of L (w,,z,), L (w,,z,) parti-
tions P into two simple polygons, and P,! and P? as follows :

P} = the simple polygon bounded by C,(w,,z,) and L (z,,w,)
P} = the simple polygon bounded by C,(z,,w,) and L (w,,z,).

Accordingly,
P P’=P and P! P =L (w,,2,),r=i,j,k. (3.12)

By properties (P1) abd (P3) of L (w;,z), L(w;z) containing u is parallel with
E(vi,viy1), where u is an interior point of the triangle (ij,iy,iy). Thus, L (w;,z)
and E(v;,v;,,) are not colinear. Since L (i,i;) is contained in the line L; contain-
ing E(v,vis1), L(wi,z) and L (iy,i;) are parallel but not colinear. Futhermore,
L (w;,z;) bisects both L (ij,iz) and L (ij,ix). Therefore, L (i,i;) and i; cannot be
simultaneously contained in P! (or P?). Since L (iy,i;)cLic HP(v;,visy),
L (i, i) HP(z;,w;). This implies that L (iy,i;) lies to the right of L (w;,z). Since

the interior of P! lies to the right of L (w;,z),
L(iki,iij)CPil and l.jkEP,'z (313)
Similarly, as illustrated in Figure 3.4,

L (ij,iz)c P} and iyeP} (3.14)

L (l'jk,ik,')C Pkl and l.,'jGsz

Thus, the following lemma can be obtained.

Lemma 3.6 : Let HP(vi,viu) N\ HP (vj,vjiu ) HP (0, vie1)=9. If V(m,,P),r=i,j,k are
pairwise in'tersecting, then the following is true :
L (ik;,igj)C Pil and ijkEP;Z

L (ij,iz)c P} and iyeP}

L (ij ,iu)C Pkl and iijEsz
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< Insert Figure 3.5 >
Since m,eE(v,,v,+;), every point in E(v,v,,;) is visible from m,. From
Lemma 3.5, neither w, nor w, is visible from m,. Therefore,
W,&E (Vy,Vy41) and 2, € E (v,,,41). (3.15)
This implies that either E(v,,v,.;)cCi(w,2,) OF E(v,,v,.1)CCi(z,,w,). We show
that E(v,,v,.1)c Ch(w,,2,).
Lemma 3.7 : Let HP(v;,viu1) N HP (vj,vjis ) HP (v, vis1)=9. If V(m,,P),r=i,jk are
pairwise intersecting, then
E(v,,vpe 1) Ch(Wy,2,),7=1,] k.
[Proof] Suppose that E(v;,vi,1)c C4(z,w;). Then,
m;eE (v;,v;s1)c P2 (3.16)
We first show that, given E(v;,vii1)c Ca(ziw;),
m,€ Cy(2:,w;),r=1i,j,k. (3.17)
Assume that m;eC,(w,,z). Then m;eP;!. Since m;eP? and L (w;,2)\ V (m;,P)=0,
V(m;,P)c P2 (3.18)
Thus,
V(m,P)\V(m;P)cP? (3.19)
Let a set G be defined as follows :
G={g|geV(m;,P) and ge P?}.
Then, from Equation (3.18),
V(m,P)\ V(m;P)=V(m,P)" G. (3.20)

By Lemma 3.4,



(b) (wir Zj, Wiy 2iy Wi zk)

Figure 3.5 : w, and z,, r = i, j, k are alternating.
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V(m;,P)c HP (v;,viy1)C HP (z;,w;). (3.21)

Therefore, every point in V(m;,P) lies strictly to the left of L(z,w) or
equivalently lies to the right of L (w;,z). Now, consider G. The interior of P2 lies

to the left of L (w;,z). Since m;eC,(w;,z)c P!, every point g is visible from m,

only through L (w;,z), i.e.,
L(m;,g)\ L (wi,z;)# @ for all geG. (3.22)

Moreover, m;eE (vj,v;,1) so that m; is not an endpoint of E(v;,v;,;). Thus, Equa-
tion (3.22) implies that every point g in G lies on or to the left of L (w;,z).

Therefore,
Vim;P) G=0, (3.23)
From Equations (3.20) and (3.23),
V(m;,P) V(m;,P)=0,
which is a contraction. Thus, m;éCy(w;,z;) or m;eCy(z,w;). Similarly,

myeCy(z;,w;). Hence, given E(v;,v;,1)c C4(z,w;), Equation (3.17) holds true.

Now, we show that E(v,v,;) cannot be contained in C,(z,w;) using
Lemma 3.3 and thus arrive at a contradiction. Consider the simple polygon P2
Since m,eC,(z,w;)c P2, there exists an edge E(a,,b,) of P? for each r=i,j,k such
that

(1) E(a,,b,)S E(v,,v,4+1) and m,eE(a,,b,)

(2) E(a,,b,) has the same direction as E(v,,v,,{)
By property (1),
E(a,,b,)cL,,r=i,jk (3.24)
From Equation (3.24) and property (2),

HP (a,,b,)=HP (v,,v,,1),r=i,j,k (3.25)
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Therefore, the triangle determined by L, containing E(a,,b,),r=i,j,k is the trian-

gle (iij)ijkviki)' By Lemma 3.6,
L (iis i) M P,'2=®, (326)

which means that the triangle (i;,iz,iy) is not completely contained in P2 This

contradicts Lemma 3.3 if P satisfies the assumptions for this lemma.

From Equation (3.25), HP(a;,b;) HP(aj,b;)) HP(a;,b,)=2. Thus, P?
satisfies assumption (1) for Lemma 3.3. We will be done if we show that P? also
satisfies assumption (2), i.e., V(m,,P?,r=i,j,k are pairwise intersecting. Since
V(m;,P)c P2,

V(mi,PH\ V(m;,PH=V(m;,P)\ V(m;,P)z O (3.27)
V(mi,PH AV (m,PH=V(mi,P)\ V(my,P)z D

We need to show that
V(m;,PH A\ V(m,PH= D. (3.28)

From Lemmma 3.6, ijeP? and L (iy,i;)c P! Since L (w;,z) bisects L (ij,iy), ij lies
strictly to the left of L (w;,z). Therefore, every point in HP (v;,v;,1) ™ HP (Vi,Ves1)
lies strictly to the left of L (w;,z). Thus, every point in V(m;,P)\ V(m,P) also
lies strictly to the left of L (w;,z;). Suppose that a point » in V(m;,P)\ V(m,P)
is contained in P;!. Since both m; and m, are contained in C4(z,w;), h lies to the

right of L (w;,z), which is not possible. Therefore,
V(m;,P)\ V(m,P)cP? (3.29)

From Equation (3.29), inequality (3.28) follows. Hence, P} also satisfies
assumption (2) for Lemma 3.3. However, the triangle (ij,ix,ix), which is deterf
mined by L,,r=i,j,k, containing E(a,,b,), is not contained in P2 This contradicts
Lemma 3.3. Thus, E(v;,v;,1)cCy(w;,z). By a similar reasoning, E(v;,vjs;)c Ch(w;,2))

and E (vg,vi+1)c Ch(wayz). O
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Based on Lemma 3.7, we develop a fundamental relationship among w, and

z, r=i,j,k.

Lemma38 : Let HP(vvi)\HP(v;,viu )\ HP(vi,vi+1)=@. Suppose that
V(m,,P),r=i,j,k are pairwise intersecting. Then, w, and z,,r=i,j,k, appear in one
of the following order as B(P) is scanned from w; in the counter-clockwise
sense:

(1) (Wisze,wj,2i,wk,2;)

(2) (Wirzj, W 2,w),2)
[Proof] L (w,,z),r=i,j,k are pairwise not parallel and share a common point u

from properties (P1) and (P4) of L (w,,z,) so that
L (wi,z) N\ L (wj,zj)=L (wj,2;)(\ L (We,2¢)=L (wg,2) "\ L (wip2:)=u (3.30)

Therefore, either w; or z;(but not both) is to the right of L (w;,z;). We consider
the following two cases separately :
Case (a) : w; lies to the right of L (w;,z)

Case (b) : ¢ lies to the right of L (w;,z)

Case (a) : Let CN(s,r) be a cone obtained by rotating the ray RAY (u,s)
about u in the counter-clockwise sense until RAY (u,t) is encountered. Since w;
lies to the right of L(w;,z), RAY (u,w;) pértitions HP(z,w;) into two cones,
CN(w;,w;) and CN(w;,z). Accordingly, by Equation (3,30) and properties (p2)
and (P4), Ch(w;,z) is also partitioned into C,(w;,w;) and C,(w;z). From

Lemma 3.4, HP (v,,v,,;)c HP (z,,w,),r=i,j,k. Therefore,
HP(";»";H)(\ HP(V,',V/'_.,I)C HP(Z,',W")m HP(ZJ,W/) (331)

HP (v,,v,,;) lies strictly to the right of L (w,,z),r=i,j,k. Since ueLl(w,z),
HP (v,,v,,1) lies strictly to the left of L (u,w,) and strictly to the right of L (u,z,).

By definition, every point in CN (w;,z;) lies to the left of L (u,w;) and to the right
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of L (u,z). Since every point in HP (z;,w;)~ HP(z;,w,) lies to the left of L(u,w))
and to the right of L (u,z),
CN (w),z;)=HP (z;,w;) " HP (z,w}) (3.32)
From Equations (3.31) and (3.32),
HP (v;,vis ) HP (v},vj41) < CN (w},2;). (3.33)

Since L (w;,z) L (we,2)=u, either w, or z (but not both) lies to the right of

L (w;,z). Suppose that w, lies to the right of L (w;,z). Then,

RAY (u,w,)c HP (z;,w;) (3.34)
Since  RAY(u,w;) partions HP(z,w;), either RAY(u,w,)cCN(w,w;) or
RAY (u,wy)c CN (w;,z;). If RAY (u,w;)c CN (w;,w;), then

CN (w),z;)c HP (z,w;), (3.35)

since L (w,,z,),w=i,j,k are pairwise not parallel and share a point 4. From Equa-

tions (3.33) and (3.35),
HP (v;,vie )Y HP (vj,vj4)C HP (2,,w) (3.36)

This together with the fact that HP(v,,v,)cHP(z,w,) implies that
HP (vi,vie ) HP (v;,vju ) HP (v, w2 @, which is a contradiction. Thus,
RAY (u,w, )& CN (w;,w;). Now, suppose that RAY (u,w,)c CN (w),z;). L,,r=i,j,k deter-
mining HP (v,,v,.1) is parallel with L (w,,z,). Since
HP (vi,vie )\ HP (vj,vj.1)c CN (w},z;), RAY (u,w,) intersects HP(v;,vi.) HP (v;,vjs1).

However,
RAY(M,Wk)CLkCHP(Vk,Vk+1) (337)

Therefore, HP (vi,vie1)\ HP (vj,vjs1) (" HP (v, vi1)# @, Which is also a contradic-
tion. Thus, RAY (u,w,)@ CN(w;,z), either. Consequently, w, does not lie to the

right of L (w;,z), and z lies to the right of L (w;,2), i.e.,
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RAY (u,z,)c HP (z;,w;) (3.38)

Thus, either RAY (u,z;)c CH(W",WI') or RAY (u,z)c CN(W/',Z,').
Suppose that RAY (u,z)cCN(w;,z). Using a similar argument as that

employed for deriving Equations (3.33) and (3.395),

HP (vj,vjs 1) (Y HP (vi,vis 1) CN (w),2)
CN (wj,z)c HP (z;,w;) (3.39)

Equatlons (339) lmplies that HP(Vi,V“.‘)m HP(V*,V”,X)m HP(Vk,Vk+1)¢ @, Wthh 15

a contradiction. Therefore,
RAY (u,z;)c CN (w;,2)) (3.40)
Thus, z.eCy(w;,w)). Since w;eCy(w;,z),
Ch(wi,z) < Ch(wi,w;) € Ch(wi,z;) (3.41)
Accordingly, as illustrated in Figure 3.5,
Cu(zi,wp)c Ca(zi,2j)c Cp(2i,wi) (3.42)

From Equations (3.41) and (3.42), the result follows.

Case (b) : By a similar argument,

Ca(wiszj)c Chp(wiyw ) Ch(wiyz;)

Ca(ziswj)c Cu(zi,z) < Cp(2zi,w;) (3.43)

Hence, the result holds. O

Now, we are ready to present the comparison lemma of Lemma 3.2 for Case 2.

Lemma 39 : Let HP(vaH-l)m HP(V]',VH,l)m HP(vk9vk+l)¢ D. If V(m,,P),r=i,j,k are
pairwise intersecting, then there exist at most three candidates.

[Proof] From Lemma 3.5, V(m,,P) L (w,,z,)=@,r=i,j,k. By Lemma 3.7,
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m,€E (v, v,41)C Ch(wy,2,)C P, (3.44)

Therefore, no point in P? is visible from m,,r=i,j,k. In particular, no point in
Ci(z,,w,) is visible from m,. Thus, if an edge of P is completely contained in
C.(z,,w,) for some r=i,j,k, it can not be a candidate by Definition 3.1.

Points w; and z partition B(P) into two chains, C,(w;,z) and C,(z,w).
None of the edges, which are completely contained in C,(z,w;), can be a candi-
date. However, an edge, which is partly contained in C,(z,w;), can possibly be a
candidate. There are at most two edges which are partly contained in C,(z,w;),
Le.,

(1) the edge containing w; if w; is not a vertex.

(2) the edge containing z if z; is not a vertex.

These edges, if they exist, are also partly contained in Cy(w;,z).

In order to identify other possible candidates, consider C,(w;,z). From
Lemma 3.8, there are two possibilities:

(a) Ch(wi,ze)c Cu(wi,wj) Ch(wirz)

(b) Ca(wi,z)c Ch(wi,wp)c Ch(w;,2:)

Without loss of generality, let
Ca(wi,zi)c Ch(wi,wj)c Cy(w;,z:). (3.45)

(Notice that (a) can be obtained from (b) by swapping (w;,z) and (w,z). )
Then,

Ca(wi,2)=Ch(wi,ze) N\ Ca(2,2). (3.46)

Consider C,(z,z). Since Ci(z,z)  Ci(ze,w), N0 point in Ci(z,z) i visible
from m,. Therefore, if an edge is completely contained in C,(z,z), it cannot be
a candidate. There are at most two edges which are partly contained in Cj(z,2),
Le.,

(3) the edge containing z, if z, is not a vertex.
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(4) the edge containing z if z is not a vertex.
However, the edges (2) and (4) are the same. Finally, consider C,(w;,z). Since
Ca(wi,z) C Ca(z,w;), no point in C,(w;,z) is visible from m;. There are at most
two edges which are partly contained in C,(w;,z), i.c.,

(5) the edge containing w; if w; is-not a vertex

(6) the edge containing z, if z is not a vertex.
However, the edges (5) and (6), if any, are the same as the edges (1) and (3),

respectively. Hence, there are at most three candidates in Case 2. O
From Lemma 3.2 and 3.9, the following result is immediate.

Theorem 3.1 : If K (P)=0, then there are at most three candidates, and thus at

most three visible edges in P.

4. Choosing all Candidates

In this section, assuming that K (P)=@, we show algorithmically that all
candidates can be found in O(n) time. Suppose that K (P)=@. From Lemma 2.3,

there exist three edges, E(v,,v,.1),r=i,j,k, such that
HP (vi,vie 1) (Y HP (v}, Vi) (Y HP (Vg Vi 41)=0 (4.1)

We first show that E(v,,v,.1), r=i,j,k can be found in O(n) time. Let

KI(P)=r‘\ HP(V,,‘,VM+1),t=0,1,2, e an—l' (42)

m=0

Since K(P) is the intersection of n half planes HP(vn,vms1), 0< m<n,
K,..(P)=K(P). Lee and Preparata[4] presented a linear time algorithm for

finding K (P). Their basic idea is to iteratively construct K,(P), i.e.,

HP(vg,vy), if t=0
K.(P)= K,_((P)\ HP(v,,v,4;), otherwise (4.3)

The algorithm is terminated if it encounters one of the following conditions :
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(1) K,-(P)* @ and K,(P)=2 for some 0< t< n-1

(2) K,_1(P) is constructed, i.e., t=n-1.
Since K (P)=@, the algorithm is always terminated with condition (1), i.e.,
K. (P)* @ and K,(P)# @ for some 0< < n-1. Moreover, 2< t< n-1 since two

adjacent edges share a common vertex. Thus, the following result is immediate

from reference[4].

Lemma 4.1 : Suppose that K (P)=@. Then, there exist K,_;(P) and E (v,,v.,;) for
some 2< < n—1 such that K,_(P)# @ and K,(P)=@. Such an edge E(v,v.) can be
obtained in O(n) time[4].
Assuming that K,_;(P)# @ and K,(P)=0,0< t< n-1, let
Hr—1= {HP(V,,.,V,,H.I) I 0< m< t}' (44)

Since K,_,(P)# @, every subset of ¢ or fewer halfplanes in H,_, has a non-empty

intersection. Consider
Hi=H,_ 1\ {HP (v;,vi+1) }- (4.5)
By assumption,
K(P)=K,_1(P)\ HP(v;,v;4+1)=0

From Lemma 22(Helly’s theorem), there exist two halfplanes, HP(v;,v;,,) and

HP(V/,Vj+I) in Hl-l SUCh that
HP (vi,vie ) HP (v}, vjs ) Y HP (v, vi41)= 2. (4.6)

There are two possibilities :
Case I : HP (v, Vm+ 1) HP (v1,v141)= @ for some 0< m< ¢
Case II: HP (v, Vm41) (O HP (vi,v,1)# @ for any 0< m< ¢
In case I, take any halfplane HP(v;,v;,) in H,_,, which is not HP(v,,v,.;). Since

HP(V,",V,,H.]) mHP(vnVH-l) = Q, HP(VM’VM+1)m HP(Vj,Vj+1)mHP(V,,V,+1) = Q' By
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setting i=m,
HP (vi,vie ) HP (v, vjs ) N HP (viyvi41)= 0.

Now, consider Case II. In this case, K,_(P)=@, K,(P) = &, and there does
not exist any halfplane HP(vy,vm+1) in H,_; such that HP (v ,vpe1) (Y HP (v, vie1) =
@. Therefore, the halfplanes in H, are pairwise intersecting. In particular,
HP (v,,v,,1), r=i,j,t are pairwise intersecting (notice that indices i,j, and ¢ are the
same as used in Equation (4.6) ). Recalling that L, is the line containing
E(v,;,V;41),L,,r=i,j,t are pairwise intersecting, and lines L,,r=i,j,r do not have a
common intersection. Thus, three intersection points ij,i,, and i, of these lines
are distinct and well-defined. Futhermore, they are not colinear. Obviously,
ij€ HP (v, viy1), i€ HP(v;,v;y1), and i€ HP(v;,v;,)). Otherwise, HP(v,,v,41),r=i,j,t
would have a non-empty intersection. Since i, is the intersection point of L, and
L, izeL,. Similarly, i,eL,. By definition, E(v,v.,)cL,. Therefore, i,,i,, and
E(v,v,,;) are contained in the same line L,.

Let D, be a unit vector such that

D= Ve 1—wr) (47)

' [Ves1=ve | .
Since i,eL, i, partitions L, into two halflines, i.e.,

{x|x=is+e.D,,e2 0} and (4.8)
{x | x=i;-¢.D,,e2 0}
L, and L, share only one point i,. Therefore, one of two halflines in Equations
(4.8) are completely contained in HP(v;,v;,;) and the other shares only one point
iy with HP (v;,v;,1). Assuming that i, is well-defined, i, is said to be marked white
if i, + €,.D, is in HP (v,,v,,1) for all €,2 0. Otherwise, i, is said to be marked black.
Let three index sets U,S, and Q be defined as follows :
U= {u|HP(v,,vur)€H, -1}

§= {s|HP (v;,vss1)€H,-, and i, is well-defined}
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Q= {q|HP(vq,v4+1)€H,-; and i, is not well-defined}.

Clearly, U= {0,1,2, - - - t-1} = S|y Q and S~ Q = . Since every point i, for
se$§ is marked white or black, § can be partitioned into two subsets, W and B
as follows :

W= {w|weS and i, is marked white }

B= {b|beS and i, is marked black }

§=Wi\y B and W B=@. Consider two points, i, and i,. Since i, and i, are
well-defined, both i and j are in §. Suppose that both i and j are in the same
subset, say W. Then
{ix+€;9D,,e;2 0}c HP (v;,v;41) (4.9)
{ii+ejo D, e;2 0} HP (v,vj4y).
Therefore, either i,eHP(vj,vjs)) Or i;eHP(v;,viy;), Whichever implies that
HP (vi,vire1) N HP(vj,vie1) A HP(v,viyy) # . This contradicts Equation (4.6).
Hence, i and j cannot be contained in the same subset, W or B.

Take any point « in L,. Then, every point in L, can be expressed as
.+e.D, for some €eR'. Let iy=t.+e40D, and i;=t+e;0 D, for some g, and ¢; in
R'. iy is said to be to the right of iy, if ¢,> €. If e4< €/, then i, is said to be the
left of ir,. Otherwise, iy is said to be on i,. This makes sense if the direction

given by D, is pointing to the right along L,. Let

g,=max |, | (4.10)
weW

Ey=max| ¢
A beBl b|

Then, i, is a rightmost point among all i,, for weW, and i, is a leftmost point
among all i, for weB. (The article "a" is used rather than "the" since i, as well
as i, may be on another point in the same subset ). The following lemma

shows that HP(vg,vgu1) (™ HP (v, Vhs1) O HP (vi,v101)= 0.

Lemma 4.1: In Case II, HP (v;,ve1) (Y HP (h,vas1) (O HP (v1,141)=D.
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[Proof] Since the halfplanes in H, are pairwise intersecting,
HP (vg,vgu) M HP (Vi ,vhi1) 2 @. (4.11)

By definition of i, i, is on or to the right if i, for all weW . Since i, for wew

is marked white,

i€ HP (Vyy,Vy41) for all weW. (4.12)
Similarly,

ih‘EHP(Vb,Vb+1) for all beW. (413)

Suppose that i, is not to the right of i,. Then, i, is also contained in

HP (vy,vps1) for all beB ’ i.e.,

i€ (Y HP (g,v541). (4.14)

ses

If 9=2, then U=S\y Q=S. Therefore,

iglem HP(vxav.H-l):m HP(V,‘,V,”.I).

seS uelU

This implies that K,(P)# @, which is a contradiction. Thus, Q0 cannot be empty.

Let
10=m HP(V.nV.rH) (415)
ses
L=\ HP (Vg,Vgs1)
qeQ
Clearly,
K,_I(P)=Iom 11$ @. (4.16)

From Equations (4.14) and (4.15),
iely (4.17)
Since iyeL,c HP (v;,Vy41)
i€l o HP (v,141). (4.18)

Now, consider /;. Since i, is not well-defined for all qeQ, L, and L, are either
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parallel or colinear. Suppose that
Iy HP (v,v,41)=0.
Since L, and L, are either parallel or colinear for all g,
HP (vy,9441) "\ HP (v¢,v141)=( for some qe Q.

This contradicts that HP (Vp,Vms1)YHP (v;,vi41) # D for all 0< m< ¢,

Thus,
Iy HP (v,vi01)# 9, (4.19)
which implies that either
IS HP(v,,vy4y) or L,y (4.20)
Suppose that I, HP(v,,v,,1). Since K,_((P) = o\ 1y,
K, (P)SHSHP(v,V141)-

Therefore, K,(P)=K,_(P) HP (v,,v,s;)# & , which is a contradiction. Now, sup-

pose that L,c/,. Since iyeL,,
el (4.21)
From Equations (4.18) and (4.21),
ig€loM\ 11\ HP (v(,v41)=K,(P).

This means that K,(P)# @, which is also a contradiction. Hence, i, is to the
right of i,.
By definition, i, and i, are marked white and black, respectively. This

together with the fact that i, is to the right of i, guarantee that
HP (vg,vge 1)\ HP (Vi,vas ) N L= 2. (4.22)

Therefore, either [HP(vg,ve1y Y HP(Vavas1)] ©HP (vi,%41), O [HP (vg,541) N

HP (vi,vhs1)] O HP (v, vyy) = . Clearly,
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K,_1(P)C[HP(vg,ver DN HP (vy,vas )]

If [HP(Vg,V“l)m HP (vy,vhi 1) IS HP (v1,v141), then K,_((P) © HP(v,vis)s which

would mean that K,(P)# &. Hence,

HP(Vg»VgH)ﬁ HP (v, Ve )N HP(v,,v1)=9. O

Given ¢ with K,_,(P)# @ and K,(P)= &, Lemma 4.2 suggests an algorithm
for finding two edges, E(v;,viy;) and E(v;,vj.y) such that HP (v, vi,) M HP (v;,vj41)

N HP(VI,VH-I):@'

Algorithm 4.1 : (Finding E (v;,v;,)) and E(v},v;41))
Procedure FIND-IJ(t,i,j)
begin
Step 0 GO & true
ie0
while (GO and i< t) do
begin
if HP (v;,vp41) (" HP (v,v141)=9
then GO « false
elseiée i+ 1
end
Step 1 if GO = false then
begin
j « any positive integer x such that 0< x< ¢ and x# i.
end
Step 2 else begin
M0, W@, B
Step 2a while (m < t) do
begin
if the line L,, containing E (Vy,Vm+1)
is neither parallel nor colinear with L,
containing E (v,,v,,1) then begin
compute and mark i,
if i,,, is white
then W « Wy {m}
else B« By {m}
end
mem+ 1
end
Step 2b iy the rightmost point among all i, forwe W.
iy, the leftmost point among all i, for b € B.
ieg, ieh
end
end
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Lemma 4.3 : Given ¢ with K,_(P)* @ and K,(P)=0, Algorithm 4.1 can find, in
O(n) time, two edges, E(v;,vi,y) and E(v;,v;,,) such that HP (v;,vis1) A HP(vj,v;41)
A HP (v, = @D

[Proof] In Step 0, the algorithm checks if there exists any halfplane HP(v;,v.,,)
such that HP(v;,vis1) HP (v,,vi41)=@. If there exists such a halfplane HP (v;,v;, ),
the algorithm sets the logical variable GO false. Otherwise, it sets GO true.
Obviously, if GO = false, then Case I must occur. Therefore, an edge
E(v;,v41)0< j# i<t is chosen by Step 1. Since HP(v,vi,1)\ HP(vivis) = O,
HP (v;,vie1) O\ HP (vj,vj1) (M HP (v,,v41)=@ for any j such that 0< j= i< . If GO =
true, Case II must occur. Therefore, Step 2 chooses E(v;,v;,;) and E(v;,v;,;) such
that HP(v,viu) A HP(v,vis) A HP(v,v,)=@, which is guaranteed by

Lemma 4.2. Hence, the correstness of the algorithm is immediate.

The algorithm traverses C,(vov,) at most twice; once in Step 0 and once
in Step 2a. Therefore, each edge in C,(vo,v) is visited at most twice. At each
edge, a constant number of operations is needed. Thus, Step 0 and Step 2a can
be done in O() time. Clearly, Step 1 and Step 2b can be done in 0(1) and 0(1),

respectively. Since ¢< n, the time complexity of Algorithm 4.1is 0(n). O

If K(P)=@, Algorithm 4.1 together with the kernel finding algorithm[4]
can choose, in O(n) time, three edges, E(vi,vis1), E(v;,vjs)) and E(v,v.;) such
that HP (v;,vie 1)\ HP (vj,vj+1) "\ HP (v, ve1)=@. This is true since HP (v, v,,;) can be

equated to HP(vg,vi.1)-

From Theorem 3.1, there are at most three candidates in a simple polygon
with an empty kernel. By Definition 3.1, each of them intersects V(m;,P),
V(m;,P), and V(m,,P) such that HP(v;,vie1) HP (v;,vj+ 1) HP (vi,vies1)=@, Where
m,=i,j,k is a point in E(v,v,.;). A point is said to be marked red if z € V(m,;,P).

If z € V(m;,P) then z is said to be marked green. Z is said to be marked yellow if
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z € V(m,P). Since HP(v,vier) M HP(vj,vis) M HP (ve,ver)=9D, V(mi,P) N
V(mg,P) ~ V(m,P)=@. Therefore, if K (P)=@, a point z in P can not be marked
with these three colors, simutaneously. An edge of P is said to be marked "C",
if a point in the edge is marked "C", where "C" is red, green, or yellow. An
edge is said to be full-colored if it is marked with three colors simultaneously. It
is clear that a candidate must be full-colored. Therefore, finding all candidates
is equivalent to finding all full-colored edges.

Without loss of generality, let m, be the mid-point of E(v,,v,,1), ie.,
m,=-;-o (Vee 1+ V,),r=1,j,k. (4.23)

Our strategy for determining all candidates is first marking the edges of P
using the three colors assigned to V(m,,P),r=i,j,k and then choosing all full-
colored edges. Therefore, an efficient algorithm for constructing the visibility
polygon V(m,,P) from m, is needed. V(m,,P),r=i,j,k can be constructed in O(n)

time[2,3,5].
Lemma 44 : V(m,,P),r=i,j,k can be constructed in O (n) time[2,3,5].

In order to efficiently mark the edges of P with three colors, the structure
V(m,P),r=i,j,k 1is exploited. Let B(V(m,P)) = (L(sp5;), L(s3,80), -,
L(s.-35.-1), L(s.-1,80)), where B(V(m,,P)) is the boundary of V(m,P)r=i,jk.
(sos1, **,5-1) 18 the sequence of all corner points on B(V(m,,P)) such that s,
appears before s, for all b>a as B(P) is scanned from s, in the counter-

clockwise order. Therefore, (sg,sy, - - - ,5,-;) partitions B(P), i.e.,

c-1
B (P)=U Cr(SarSa41)- (424)

a=0

As illustrated in Figure 4.1, either C,(ssS241)=L (S2,5a+1) OF Cr(Sg,Sas1) N

L (54,5,41)=@, where C,(ss,5.+1) is the chain C,(s,,5,;) excluding its two end-
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points, s, and s,ei. If Cy(54,5051)=L (54,5041), then L (sz,541) S E(vy,vp.;) for some
0< b< n. Otherwise, Cy(ss,5:1) A V(m,P)=@ [2,3,5]. Since L (ss,5..1) C
V(m,,P), an edge of P can be marked with the color assigned to V(m,,P) if and
only if it contains s, for some 0< a< c. Without loss of generality, let s,=V,,,.

The following algorithm is for marking the edges of P with the color assigned

to Vi(m,,P),r=i,j,k.
< Insert Figure 4.1>

Algorithm 4.2 : (Coloring the edges of P )
procedure EDGE-CLR(r,C)
begin
Step 0 m, = -;-. (vr+vr+l)
compute V(m,,P)
ber1,qe0

Step 1 while (g< ¢) do
begin
Step la while (S, E (vy,vy41)) do
begin
beb+1l
end
Step 1b mark E (v,,v,,;) with C

if SqEE(Vb+1’Vb+2)’ then
mark E(Vb+1,vb+2) with C
qéeq+l
end
end
Lemmad.5 : Let E,={E(v,v41) 108 b< n and E(v,,v4;) A V(m,P)# @ for some
‘r=i,j,k }. Algorithm 4.2 marks, in O(n) time, all the edges in E, with the color
assigned to V(m,,P).
[PI‘OOf] Let B(V(mnP))=(L (SO’Sl)yL (sl’SZ)’ v ,L (sc—Z’sc-l)’L (30—1)30))'
(5081, * " *,5.-1) 18 in the order appearing on B(P) as B(P) is scanned from s, in
the countér-clockwise sense. Therefore, (sqsy, - - -,5.-;) partitions B(P) into ¢
Chains, Ch(50,31)9 Ch(sl!SZ)’ oty Ch(S,_._z,Sc_l), and Ch(Sc_l,So). Algorithm 42

traverses B(P) from so(or equivalently v,,,) in the counter-clockwise order. Step

0 is mainly for computing V(m,,P). We inductively show that Step 1 correctly
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marks the edges in E, with the given color.

¢=0 : Initially, Step O sets g=0 and b=r since so=v,.;. Therefore, both
E(v,,v;+1) and E(v,.1,v.,) are marked C by Step 1. Since s, is chosen to be a ver-
tex v,.;, there does not exist any other edge E(v,,v,+1) such that so € E(vg,vas1).
Thus, Step 1 works correctly when a=0.

Assuming that Step 1 marks the edges correctly for s;,0< f< ¢, consider
q=f+1. From the previous excution of Step 1, s;€E(vy,v5+1). There are two pos-
sibilities :

(1) sp41€E(VpyVhe1).

(2) sp+1€E (v, Vpa1)-

If s;+1€E(vs,vs+1), then Step la is skipped and Step 1b marks E(v,,vs41) with the
given color. Futhermore, E (vy.1,v5+2) is also marked if sy, €E (Vpe1,Vp42). If 5741 €
E(vy,vp41), then Step la scans Cy(s;,sp,1) from s, until an edge containing sy, 1S
encountered. After Step la, the new E(v,,v,;) contains s;,; so that Step 1b can
be applied. In either case, Step 1 marks every edge E(v,,v,+1) such that sy, €
E(v4,vas1). This together with the induction hypothesis give the correctness of
Step 1. Hence, the correctness of the algorithm follows.

V(m,,P) can be computed in O(n) time by Lemma 4.4. Therefore, Step 0
can be done in O(n) time. Step 1 also requires O(n) time since s, 0< ¢< ¢ is con-
tained at most two edges. Hence, the time complexity of the algorithm is O(n).

a

Now, we are ready to present a linear time algorithm for finding all candi-

dates of a simple polygon P with an empty K (P).

Algorithm 4.3 : ( Finding all candidates in P with an Empty K (P) )
procedure FIND-CD (t, CAND)

begin
Step 0 call FIND-IJ(t,1,j), ket
Step 1 call EDGE-CLR(i,"red")

call EDGE-CLR(j,"green")
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call EDGE-CLR(k,"yellow")
Step 2 f0, CAND«Q
while ( f< n) do
begin
if E(vf,vp41) is full-closed, then
CAND«CAND U {E(vf,vr+1)}
fef+ 1
end
end
Theorem 4.1 : Suppose that the kernel K (P) of a simple polygon P is empty.
Given ¢ with K, ((P)# @ and K,(P)=@, Algorithm 4.3 finds all candidates, if any,
in O(n) time.
(Proof] In Step O, the algorithm chooses three edges, E(v;,vi.1), E(v;,v+1), and
E(vi,vie1) such that HP(V,',VH,I) N HP(Vj,Vj+1) N HP (vg,Vg41) = @. This can be
done in O(n) time by Lemma 4.3. Step 1 marks the edges of P with the three
colors assigned to V(m,,P),r=i,j,k, which can also be done in O(n) time by
Lemma 4.5. Now, Step 2 scans B(P) once and picks up all full-colored edges.
Clearly, Step 2 takes O(n) time. Since an edge is a candidate if and only if it is

full-colored, the result follows. O

5. Determining All Visible Edge

A simple polygon P may or may not have a non-empty kernel K (P). If
K (P) is not empty, we employ Shin and Woo’s algorithm [8] to find all visible

edges.

Lemma 5.1 : Suppose that a simple polygon P has a non-empty kernel K (P).

Then, all visible edges of P can be determined in O(n) time [8].

Suppose that K (P)=@. From Theorem 3.1, there exist at most three candi-
dates in P. By Theorem 4.1, all candidates, if any, can be determined in O(n)
time. A visible edge is always a candidate. However, a candidate is not neces-

sarily a visible edge. This is true since Definition 3.1 does not guarantee that
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every point in P is visible from a candidate. In order to check if a candidate is

indeed a visible edge, we use Avis and Toussaint’s result[1].

Lemma 5.2 : Given an edge E(v,,v,4;) Of a simple polygon P, it takes O(n) time

for determining whether or not E(v,,v,,,) is a visible edge.

Since there are at most three candidates if K (P)=@, given all candidates, all

visible edges can be found in O (n) time using Lemma 5.2.

Now, a linear time algorithm for finding all visible edges in a simple polygon P

is in order.

Algorithm 5.1 : (Finding all Visible Edges in P)
Procedure V-EDGE
: begin
Step O find K (P)
Step 1 if K(P) # O, then determine all visible edges using
Shin and Woo’s algorithm[8]
Step 2 else begin
compute ¢ such that K,_;(P)# @ and K,(P)=90
call FIND-CD(t, CAND)
choose all visible edges in CAND using
Avis and Toussaint’s algorithm [1]
end
end

Theorem 5.1 : Algorithm 5.1 can determine all visible edges in a simple polygon in
O(n) time.

[Proof] Step 0 is for finding K (P) which can be done in 0(n) time [4]. Step 1
determies all visible edges if K (P)# @. Otherwise, Step 2 finds all visible edges.

Step 1 needs O(n) time by Lemma 5.1. From Theorem 3.1, 4.1, and Lemma 5.2, Step

2 can also be done in 0(n) time. Hence, the result follows : O

6. Concluding Remark

A trivial lower bound for determining all visible edges is Q(n). Therefore,

Algorithm 5.1 is optimal within a mutiplicative constant factor. As a direct
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consequent of Theorem 3.1, there are at most three visible edges in a simple
polygon P if K(P)=@. Theorem 3.1 may be extended for a simple polygon with

disjoint holes.
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