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Abstract-Multiple arm systems, multifingered grippers, and walking 
vehicles all have two common features. In each case, more than one 
actively coordinated articulation interacts with a passive object, thus 
forming one or more closed chains. For example, when two arms grasp 
an object simultaneously, the arms together with the object and the 
ground (base) form a closed chain. This induces kinematic and dynamic 
constraints and the resulting equations of motion are extremely nonlin- 
ear and coupled. Furthermore, the number of actuators exceeds the 
kinematic mobility of the chain in a typical case, which results in an 
underdetermined system of equations. An approach to control such 
constrained dynamic systems is described in this short paper. The basic 
philosophy is to utilize a minimal set of inputs to control the trajectory 
and the surplus inputs to control the constraint or interaction forces and 
moments in the closed chain. A dynamic control model is derived for 
the closed chain that is suitable for designing a controller, in which the 
trajectory as well as the interaction forces and moments are explicitly 
controlled. Nonlinear feedback techniques derived from differential ge- 
ometry are then applied to linearize and decouple the nonlinear model. 
In this paper, these ideas are illustrated through a planar example in 
which two arms are used for cooperative manipulation. Results from a 
simulation are used to illustrate the efficacy of the method. 

I. INTRODUCTION 

A. General 

There are many tasks that require cooperative manipulation by 
two or more robot manipulators. In applications such as lifting a 
heavy object or assembling mating parts, the two manipulators must 
directly interact with each other. Any two manipulators, together 
with the grasped object(s), form a closed kinematic chain. In such a 
situation, the two manipulators are kinematically and dynamically 
constrained and the resulting dynamic equations of motion are 
extremely nonlinear and coupled. The control problem is further 

Manuscript received January 27, 1989; revised November 1,  1989. This 
work was supported in part by the U.S. Air Force under Grants AFOSR 
88-0244 and AFOSR 87-0186, by the U.S. Army under Grant DAAG-29- 
84-K-0061, by the National Science Foundation under Grants NSF- 
CER/DCR82-19196 A02, NSF INT85-14199, and NSF DMC85-17315, by 
NASA under Grant NAGS-1045, by the Office of Naval Research under 
Grant SB-35923-0, and by the University of Pennsylvania Research Founda- 
tion. Portions of this paper were presented at the International Conference on 
Advanced Robotics, Columbus, OH, June 12-15, 1989. 

X. Yun is with the Department of Computer and Information Science, 
University of Pennsylvania, Philadelphia, PA 19104. 

V. R. Kumar is with the Department of Mechanical Engineering and 
Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104. 

IEEE Log Number 9102374. 

complicated since in a typical case, the number of actuators avail- 
able far exceeds the mobility of the system (dimension of the task 
space). This scenario also occurs in a multifingered gripper, in 
which multiple fingers are used for fingertip grasping, and also in a 
walking vehicle where multiple legs are used to “manipulate” the 
vehicle body relative to the ground. 

B. Previous Work 

In all the examples just discussed, the two key features are the 
closed chains that impose kinematic and dynamic constraints in the 
control equations and the redundancy in actuation. These character- 
istics have led to the development of a variety of control schemes 
for force control and hybrid control. With reference to multifingered 
grippers, the problem of static interdeterminacy and underdeter- 
mined nature of the equations of motion have been studied by 
Holzmann and McCarthy [3], Yoshikawa and Nagai [24], Holler- 
bach and Narasimhan [2], Kerr and Roth [5], and Li and Sastry 
[12]. The same problem in legged locomotion systems has been 
studied by Klein and Chung [7], and Kumar and Waldron [lo]. 
However, in most of these works, the focus has been on optimizing 
contact conditions in a static, or at best quasistatic, mode of 
operation. Methods based on generalized inverses and linear pro- 
gramming were found to be effective. 

The simplest approach to dual-arm control was based on a 
resolved motion rate control scheme in which manipulator dynamics 
was ignored and the inverses of the two Jacobian matrices were used 
to determine the joint velocities in response to specified end-effector 
trajectory [14]. Such an analysis is adequate for a static or at best 
quasistatic mode of operation since it does not account for dynamic 
coupling between the manipulators. The idea of hybrid 
position/force control was extended to the multi-arm case by Hayati 
[l]. Based on the equations of a motion constraint coordinate frame 
located at the manipulated object, a hybrid controller was designed 
for the coordination of multiple robots to ensure load sharing. More 
complete mathematical treatments can be found: a method for 
obtaining the dynamic equations of motion is described in [23]; the 
dynamic control problem has been analyzed in [21]; and a set of 
holonomic constraint equations relating positions, velocities, and 
accelerations have been derived and a method to compute joint 
torques with the aid of holonomic constraint equations has been 
developed by Zheng and Luh [15], [25]. Dynamic coordinated 
control is studied in [22] in which two control formulations are 
proposed: the closed kinematic chain formulation and the force 
feedback formulation. The first approach abandons the dichotomy of 
two arms, whereas the later emphasizes it. The former method may 
be more useful in tasks in which manipulators rigidly grasp the 
object, whereas the later could be preferred in tasks requiring loose 
coupling of manipulators. More recently, coordinated motion of two 
planar robots has been studied by Hemami and his co-workers [ 1 I]. 
In this work, the forces between the manipulators and the object are 
predicted from the model of the system and the current state, and 
linear state feedback is used for stabilization and control. 

A major shortcoming of all these methods is that they either do 
not address the force distribution (load balancing) issue directly or 
they involve a priori specification of the force distribution to 
combat the redundancy in the system. In the former case, the 
trajectory errors determine the force distribution that can result in 
large internal forces. This is also true when dual arm systems are 
treated as a master arm (leader) and a slave arm (follower). In the 
later case, the fraction of load on a particular actuator or arm is 
specified quite arbitrarily. On the other hand, Orin and Oh [I81 
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describe an optimization method for computing the load distribution 
in robotic systems with closed chains. A linear program was used by 
them to solve the problem effectively, but the computational time 
was prohibitive. Other algorithms for optimal force distributions can 
be found on the literature on multifingered grippers and walking 
vehicle (see [9] for a list of references). These algorithms have been 
generalized to multiple robotic systems interacting with a common 
object [6], [8], [17]. Instead of determining optimal force distribu- 
tions in order to specify the forces exerted by each of the manipula- 
tors on the object, it may be more practical and meaningful to 
actually control the internal forces in order to improve system 
performance. This is because high internal forces can crush the 
grasped object, whereas low internal forces can result in the object 
slipping [13], [16]. This is also reflected in a recent report by 
Pittelkau [ 191 in which a load-sharing force controller for two-armed 
manipulation that uses potential difference (PD) feedback of interac- 
tion forces was developed. 

In the formulation of the control method, the equations governing 
the force distribution are algebraic, whereas the state equations are 
differential equations due to the rigid body assumption. The alge- 
braic nature of the governing equations for forces leads to poten- 
tially unstable situations if the time delay caused by finite sampling 
rate is significant. Very little emphasis has been placed on explicit 
control of the force distribution. 

C. Scope and Methodology 
In this paper, we study the coordinated control of mechanisms 

with redundantly actuated closed chain. In particular, we consider 
manipulations by two-armed planar manipulators. We derive a 
dynamic control model of the system suitable for designing a 
controller in which the position of the grasped object and the 
constraint forces or the interaction forces between the manipulators 
are explicitly controlled. The interaction forces are similar to inter- 
nal forces as defined by Mason and Salisbury [16]. (A more formal 
definition follows in Section 11.) Nonlinear feedback techniques are 
then applied to linearize and decouple the nonlinear dynamic model. 
Standard techniques available for linear systems are employed to 
design the controller. 

We consider, as an example, a planar case with two 2-R robots. 
The complete system can be kinematically modeled as a five-bar 
linkage. Results of a computer simulation on this model are pre- 
sented in support of this coordination scheme. 

II. DYNAMIC MODEL 

We model the system as a closed kinematic chain. The kinematics 
of the two grippers and the grapsed object is modeled as a revolute 
pair. This is valid if the size of the grasped object is small in 
comparison to the link lengths and the interaction between the two 
arms can be reduced to a pure force. The links are assumed to be 
massless in comparison to the mass of the manipulated object. This 
is realistic in applications in which the two arms are used to lift a 
large mass. Thus the system is modeled by a five-bar linkage (as 
shown in Fig. 1) which has a mobility of two. That is, the task 
space is two-dimensional. Since the number of actuators is equal to 
four, we have a redundancy in the control problem. 

The dynamic equations of motion can be easily obtained using 
Lagrange multipliers to account for the constraints induced by the 
closed chain: 

~ 
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Fig. 1. Manipulation with two planar arms. 

where H is the 2 x 2 inertia matrix, C is the 2 x 1 vector of 
Coriolis and centrifugal forces, G is the 2 x 1 vector of gravita- 
tional forces, 7 , ,  72, 7 3 ,  and 74 are the four joint torques, XI and 
X, are the two Lagrange multipliers, and I', and r2 are the Jacobian 
matrices for the left and right arms, respectively. We consider the 
special case in which I ,  = I, = I, = I, = l4 = 1. If Ci, Si, Ci j ,  
and Si j  are used to denote case,, sin0;, cos(Oi + 0,) and sin 
(ei + e,), respectively, and the mass of the object is m, then 

+ "I 1 
H = m('[ 2(1 + c 2 )  

1 + c, 
c, + c,, 

= mg/i c,, ] 
I -2e,e,s, - e$, c = m12 

r, = I [ - ( s 3  + s 3 4 )  

c 3  + c 3 4  c 3 4  

h, and X, are related to the constraint forces in the system. 
Referring to Fig. 2, if F, and F2 are forces exerted on the object by 
the left and the right arm, respectively, 

XI = F 2 x  X, = F 2 y .  (3) 

Equations (1)-(3) can be written compactly in the form: 

[ill = A 7 + B  (4) 

where 

A = [~ - l~ - ' r ,~ ( r : ) - ' ]  ( a 2  x 4matrix) 

B = - H - ' ( C  + G) 

7 = [ 7 1 7 2 7 3 7 4 ]  '. 
The interaction force F, between the two manipulators [9] is defined 
as shown in Fig. 2: 

F, = F, - F2. ( 5 )  

Clearly, the larger interaction force components, the more the 
object is squeezed. 

Using (3) we can rewrite this as 

F I X  - F2x  

F l y  - F 2 y  
F,= [ ] =D7 

where D, a 2 x 4 matrix, is defined by 

T -,- - 
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Fig. 2.  Forces acting on the object. 

From Fig. 2, the equations of motion for the object may be written 
as 

F, + F, - m g  = m .. [ :;] ( 7 )  

where p ,  and p y  are the coordinates of the object. In this cqaation, 
there are four unknowns (FIX, F,,, F l y ,  F,,,), but there are only 
two equations. At this stage, a computed torque scheme is not 
feasible, as for a given acceleration, we cannot determine Fl and F, 
uniquely. Alternatively, from a different view point, we cannot 
uniquely determine the joint torques (inputs) from (4). The redun- 
dancy in actuation (mobility = 2, but the number of actuators = 4) 
can be seen in (4) and (7). 

Note that if a desired interaction force is specified, the redun- 
dancy is automatically resolved. As discussed earlier, trying to 
maintain a desired interaction force is meaningful, since low interac- 
tion forces may result in instability of the grasp [16], whereas high 
interaction forces may damage the object. 

In Section III, we propose a coordination scheme that exploits the 
redundancy in the control problem effectively, so that it is possible 
to control the interaction forces us well as the trajectory. 

III. NONLINEAR FEEDBACK CONTROL 

In Section II we derived the motion equations of the closed 
kinematic chain formed by the two manipulators. The objective here 
is to design a control system to control the trajectory as well as the 
interaction forces in the system. The equations of motion are 
nonlinear and coupled and the need to control the interaction forces 
further complicates the system of equations. In the past, lineariza- 
tion of the model about an operating point has been used to reduce 
the design of the controller to determining a linear state feedback 
[ 111, leading to unacceptable performance at points far away from 
the operating point. We propose a method that is more exact and 
therefore more robust. 

An effective way of attacking control problems in robotics is to 
simplify -or more precisely -linearize, the motion equations by 
using nonlinear feedback. The computed torque method designed 
for position control of robot manipulators achieves linearization by 
simply canceling the nonlinearity in the motion equations. In this 
case, however, both position and force are to be controlled and it is 
not easy to cancel the nonlinearity in the motion equations. There- 
fore, we apply systematic nonlinear feedback techniques to this 
problem-the objective is to find a nonlinear feedback to linearize 
the motion equations of the closed chain. 

In the problem formulation, we introduce the following state 
variables (the rationale for the choice is explained later): 

X I  = e ,  
x3  = e ,  

X ,  = e, 
x4 = e, 

x5 = 7, 
x7 = 7 3  

X 6  = 7, 
X 8  = 74. 

We also use the following block notation 

x 3  = [ x g  x6 x7 xg]' 

x =  [ ( X I ) '  (x')' (x')'] ' .  

Using the notation above, the motion equations (4) of the two 
manipulators can be written as 

More compactly, 

x = f ( x )  + gu (9) 

where f ( x )  and g can be easily identified, matrices A and B are 
defined in Section 11, and U(= x') is the reference input to the 
system. To control the position of the object and the forces applied 
by manipulators, output equations must contain quantities represent- 
ing the position and the forces. In our case we choose 8, and 0 ,  in 
order to control position, and F I X  - F,,, and F l y  - F,,,, the two 
interaction force components. That is, the output equations are 

where 

h' = 

and D ,  and D ,  are the 
previous section. 

YO rows of the matrix D defined in the 

By writing the motion equations in the form of (9), we have 
introduced an integrator in each input channel. The reason for doing 
so is to eliminate the direct input terms in output equations as shown 
below. Nonlinear feedback techniques are developed for systems 
whose outputs depend only on states. Since we had included forces 
in the output equations, the expressions for the output contained 
terms which were (direct) functions of the torques. We enlarged the 
state space by introducing integrators in input channels so that our 
output equation (10) depended only on the state. This now allows us 
to use standard algorithms to derive the required nonlinear feedback 
for system linearization. 

We now have an affine nonlinear system described by the state 
equation, (9), and output equation, (10). Nonlinear feedback tech- 
niques may be applied to linearize the system if it is known that the 
system is, in fact, linearizable. There are necessary and sufficient 
conditions regarding linearizability to affine nonlinear systems [4], 
[20] that can be checked for the present system. However, these 
conditions are very tedious. Instead, we directly derive a nonlinear 
feedback and verify that the nonlinear feedback does indeed lin- 
earize the system. 

The derivation of the nonlinear feedback requires the computation 
of the so-called decoupling matrix. We first define the notation of 
Lie derivatives. If f( x )  is a vector field and h( x )  is a function, the 
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fi Lie derivative of h along f is defined as [4] 

p , = m i n { s ~ L , L ~ ~ ' h , # O } ,  i =  1 , 2 , 3 , 4 .  (11) 

The decoupling matrix of the system is then defined by [4] motion equations of the two manipulators are converted into the 
following linear and decoupled systems. 

(18) 

(19) 

y ,  = [ l  0 012' (20) 

0 1 0  We carry out the computation of the decoupling matrix for the two 
manipulators as follows. 0 0 0  

z' = [ I ' ]  = 0 l][i;] + [ # J l  

ah' 
L,hl = ~ ax g = 0 

ah' 
ax 

L,Lfh' = - g = o  

L,h' = - f = x2  

aL,h' 

ax 

aLfh' 
ax 

L2fhl = - f = A(X')X3 + B ( x ' ,  x ')  

aL2fh' 
L,L$h' = - g = A ( x ' )  

ax 

ah2 
ax 

L,h2 = -g = D ( x ' )  

Therefore, the decoupling matrix for the present system is 

Having obtained the decoupling matrix, the required nonlinear 
feedback is [4] (see Fig. 3 for a block diagram) 

U = a(.) + p ( x ) u  (14) 
with a ( x )  and p(x )  being defined by 

@ ( x ) a ( x )  = - [:::I 
@ ( x ) p ( x )  = z. (16) 

As long as the decoupling matrix + ( x )  is nonsingular, a ( x )  and 
p(x )  are well defined. To simultaneously achieve output decou- 
pling, we need to transform the state space by using a diffeomorphic 
transformation [4], which, in our case, is defined as 

z = T ( x )  

= [ h ,  L f h ,  LZ/h, h, L f h ,  L$h2 h, h4] (17) 

where z is the new state variables for the state space in which the 
system will be linear and output decoupled. Applying the nonlinear 
feedback (14) and employing the nonlinear transformation (17), the 

24 

z 2  = [GI  

0 1 0  
z z = [ ~ ~ ] = [ o  o o o z 6  0 l][::]+[;]u2 (22) 

y, = [ l  0 0122 (23) 

i 7 =  [ o ] z ~ +  [ 1 ] ~ 3  (24) 

Y3 = 2 7  (25) 

i,= [o]z,+ [iIu4 (26) 

Y4 = 28. (27) 

To verify that we do obtain the linear system above after applying 
the nonlinear feedback, let us compute the derivative of the state z 
with respect to time. 

T -,- - 
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that is, 
z ,  = 22 

z 2  = z3 

i3 = L;h, + L,L2fh,u 

Likewise, we have 

z4 = z g  

2 5  = 26 

i6 = L;h, + L,L2fh2u. 

We also have 

d dh, ah,  dx ah,  
i l =  - z l =  - = - - - - - ( f ( x )  + gu) 

d t  d t  ax d t  ax 
= L f h 3  + L g h 3 u  

is = L f h 4  + L,h4u .  

We now write the equations for i , ,  i 6 ,  i,, and z8  together 

= [:;:I + *(x)(..(x) + fl(.).) 

= [:3;:] + * ( x ) ( - W ' ( x )  [:::I 
+ * - 1 ( x ) u )  = U 

which shows that the system of the two manipulators is linearized 
and decoupled, and the linearized system has the structure as stated 
above. Now the controller design for the two manipulators reduces 
to the familiar design problem for linear systems as shown in Fig. 3. 
Note that the force control loop is first order. The integrator in the 
loop acts as a causal filter, which enhances the stability of the 
system and decreases the adverse effect of time delay (large sam- 
pling interval) on the performance of the system. 

IV. SIMULATION 

A .  General 

We consider as an example the cooperative manipulation of a 
10-kg mass with two manipulators as shown in Fig. 1. The length of 
each of the links is 1 m, whereas their mass is assumed to be zero. 
We specify interaction force components to be 1 N in the x-direc- 
tion and 1.5 N in the y direction, respectively. We demonstrate the 
performance of the control scheme with two examples. 

In the first example, we consider a case in which the desired 
trajectory is a straight line from (0.1, 0.1) to (0.9, 0.1) with an 
initial position of (0.05, 0.05) as shown in Fig. 4. (All length units 
are in meters.) As a second example, the manipulator is commanded 

0.2 

0.15] 

0.05 1 
0 '  I 1 I I I 

0 0 2  0.4 0.6 0.8 1 
X 

Fig. 4. Straight line trajectory. 

to move the object in a circle with the center at (0.5, 1.55) with a 
radius 0.25. The initial position is (0.8, 1.55), which does not lie on 
the circle as shown in Fig. 10. 

In the next subsection, we briefly describe the rationale behind 
the design of the linear feedback, K (see Fig. 3). We then discuss 
the results of the simulation. 

B. Pole Placement 

As we showed earlier, application of nonlinear feedback trans- 
formed the nonlinear dynamics of the two-arm chain into a linear 
and decoupled system. For proper system performance, we apply a 
constant linear feedback to the linearized system in order to place 
poles in the desired locations. 

The subsystems controlling the interaction forces are of first 
order. We simply use a proportional feedback for these two subsys- 
tems. The proportional feedback gains are taken as 300 in these two 
loops. The subsystems controlling position are of third order. The 
basic approach we adopt in designing the feedback, is to make the 
subsystems appear as first order systems. To this end, the three 
poles are placed at - 10, 86.67 + j50,  86.67 - j50. 

C. Results and  Discussion 
Figs. 4- 10 illustrate the performance of the proposed scheme for 

two cases. In Fig. 4, a simple straight line trajectory is considered, 
whereas Fig. 10 depicts the performance for a circular trajectory. 
Notice that, in both cases, the control algorithm converges to the 
desired trajectory in spite of the fact that the actual initial starting 
location is not on the desired trajectory. 

In the first example, the time interval for the straight line path is 
specified to be 1 s. As seen from Figs. 4-9, the control algorithm 
brings the object to the desired trajectory within one third of a 
second, after which the desired and actual paths are identical. The 
steady-state error is virtually zero. Figs. 7 and 8 show the torque 
requirements for the four actuators. In the simulation, limits were 
placed on the actuator torques to simulate a real-world system with 
actuators of finite capacity. This limit was chosen to be 150 Nm. 
Since the system starts from rest, the torque requirements are 
initially high. The saturation for the torque at joint 1 (at 150 Nm) 
can be seen from Fig. 7. Also, from Fig. 9 it can be seen that the 
interaction force components are maintained at the desired values, 
except for the first tenth of a second. 

In the second example, the circular trajectory in Figs. 10-15 is 
traced in 2 s. The system converges to the desired trajectory within 
half a second after which a steady state is reached. Once more the 
desired interaction forces are maintained. 

The system robustness and its sensitivity to modeling imperfec- 
tions were tested by letting the actual mass differ from the nominal 
mass. Simulations were conducted by setting the actual mass 10% to 
200% different from the nominal mass. In all cases, trajectory 
tracking errors are insensitive to the load perturbation. Results of 
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0 0.5 1 
Time (in scconds) 

Fig. 5. Velocity in x direction for the straight line trajectory (solid 
line-desired trajectory, dotted line-actual trajectory). 

I I I 
0 0.5 1 

Time (in seconds) 

Fig. 6. Velocity in y direction for the straight line trajectory (solid 
line-desired trajectory, dotted line-actual trajectory). 

150 

Torquc 1 (dotted) 
Torque 2 (solid) 

Solid --Desired Trqectory 

Dotted -- Aclual Trajectory 

1.4 1, 
I I 

0.2 0.4 0.6 0.8 

Actual and desired circular trajectory. 
X 

Fig. 10. 

Velocity in 
X Direction '4 \ 

I 
I I I I 

0 0.5 1 1.5 2 
Time (in scconds) 

Fig. 11. Velocity in x direction for the circular trajectory (solid line-de- 
sired trajectory, dotted line-actual trajectory). 

'1 

I 
0 0.5 

Timc (in seconds) 

I 
1 

Fig. 7. Joint torques of the left ann for the straight line trajectory. 
L 

I I I I 
0 0.5 1 1.5 2 

Time (in seconds) 

Velocity in y direction for the circular trajectory (solid line-de- Fig. 12. 
sired trajectory, dotted line-actual trajectory). 

I I I 
0 0.5 1 

Time (in seconds) 

Fig. 8. Joint torques of the right ann for the straight line trajectory. 

FIX (dotted) 
F,y (solid) 

I 
I I 

0 0.5 1 
Timc (in seconds) 

Fig. 9. Interaction forces for the straight line trajectory. The desired values 
of FIX and FIy are 1 .O and 1.5, respectively. 

Torque 1 (dotted) 
Torque 2 (solid) 

I 
I I I I 

0 0.5 1 1.5 2 
Time (in seconds) 

Fig. 13. Joint torques of the left ann for the circular trajectory. 

such a simulation with the actual mass being 100% different from 
the nominal mass are seen in Figs. 16 and 17. It is evident from the 
figure that the difference between the commanded trajectory and the 
response is insignificant. However, the interaction force during the 
first tenth of a second becomes large as the load perturbation 
increases. 

The first-order response for the interaction forces is to be ex- 
pected, since the subsystems controlling the interaction forces are of 
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1 
I I I I 

0 0.5 1 1.5 2 
Time (in seconds) 

Joint torques of the right arm for the circular trajectory. Fig. 14. 

1 I I I I 

0 0 5  1 1.5 2 
Time (in seconds) 

Fig. 15. Interaction forces for the circular trajectory. The desired values of 
FIX and FIy are 1 .O and 1.5 respectively. 

I I I I 
0.2 0.4 0.6 0.8 

x 

Fig. 16. Actual and desired circular trajectory with 100% error in mass of 
the load. 

I I I I I 
0 0 5  1 1.5 2 

Time (in seconds) 

constraints together with the redundancy in actuation make the 
control of such a device a formidable problem. The approach 
presented in this paper embodies three key ideas. First, the surplus 
control inputs are used to control the interaction or constraint 
forces. In general, in a closed chain with n actuators and mobility 
m ,  only m actuators (inputs) are required to control the trajectory 
and the other n-m actuators can be utilized to control the force 
distribution. Second, nonlinear feedback techniques were used to 
deal with the complex, nonlinear coupled model. This is in contrast 
to simplified linearized models with constant linear feedback that 
have been used in the past for problems in robotics. Finally, the 
explicit control of interaction forces results in a first-order system of 
equations, thus alleviating instability problems. 

A simulation of a simplified model of a planar model has been 
presented to illustrate some of the advantages of this scheme. The 
assumption of massless links is not overly restrictive if we consider 
high strength to weight ratio arms, which are fast becoming a 
reality. Furthermore, it is possible to perform the same analysis 
with links with finite mass-the equations only become more cum- 
bersome. Since this does not serve to improve our insight into the 
problem, we have presented a relatively simple case. Similarly, the 
modeling of the gripper-object interaction by a revolute joint is only 
for the sake of simplicity. The possibility of these equations becom- 
ing more complicated naturally brings up the point of computational 
loads in a single-processor environment. Currently, this problem is 
under investigation. 

Preliminary numerical experiments performed by varying the 
actual mass demonstrated that the scheme is fairly insensitive to 
modeling imperfections. However, more work needs to be done in 
order to verify this. Also, the fact that the system converges to the 
desired trajectory from a point away from the trajectory is encourag- 
ing, once more indicative of robustness. 

This work is a preliminary study on robotic system with closed 
chains and redundancy. The general ideas presented here could be 
applied to multifingered grippers, walking vehicles, or any other 
system with parallelism in actuation. 

Fig. 17. Interaction forces for the circular trajectory with 100% percent 
error in mass of the load. Desired values of FIX and Fly are 1.0 and 1.5, 
respectively. 

first order. Although it is somewhat less obvious from the figure, 
I91 
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the trajectory exhibits the response of a third-order system. 

A coordination scheme for cooperative manipulation with two 
arms was presented in this paper. The kinematic and dynamic 1121 
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