
INFORMATION TO USERS

The most advanced technology has been used to photograph and
reproduce this manuscript from the microfilm master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any
type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howell Information C o m p a n y

3 0 0 North Z e e b R o a d . Ann Arbor. Ml 4 8 1 0 6 - 1 3 4 6 U S A
3 1 3 / 7 6 1 - 4 7 0 0 8 0 0 5 2 1 - 0 6 0 0

Order N u m ber 9111827

Job schedu ling on a hypercube

Zhu, Yahui, Ph.D.
The Ohio State University, 1990

U M I
300 N. Zeeb Rd.
Ann Arbor, MI 48106

JOB SCHEDULING ON A HYPERCUBE

DISSERTATION

Presented in Partial Fulfillment of the Requirements for

the Degree Doctor of Philosophy in the Graduate

School of The Ohio State University

By

Yahui Zhu, B.S., M.S.

$ $ $ $ $

The Ohio State University
*

1990

Dissertation Committee:

Prof. Mohan Ahuja

Prof. Ponnuswamy Sadayappan

Prof. Judith D. Gardiner

Approved by

Adviser
Department of Computer
and Information Science

To my family

• •
11

A c k n o w l e d g m e n t s

I would like t r express my greatest thanks to my advisor, Professor Mohan Ahuja,

who guided my research with deep insights and great encouragement. He was always

available whenever I needed his help. To Professor P. Sadayappan and Professor

J. Gardiner, members of my advisory committee, I express my sincere appreciation

for their helpful comments.

1 also like to express my sincere thanks to Professor T. Long, who guided one of

my minor studies in Computer Theory and whose graceful teaching style I will never

forget. My sincere thanks also go to Professor T. Carlson of Mathematics Department,

with whom 1 did the other minor study in Applied Logics. I also wish to thank the

following professors: M. Liu, G. Collins, T. H. Lai, D. Jayasimha, C. K. Chang, and

C. H. Huang, and Dr. Y. N. Lien and Dr. G. I. Chen, for their help and influence in

one way or another.

To many of my fellow students and friends, I express my thanks as well. They

made my study here very enjoyable.

Finally, 1 would like to thank my wife, Jian Li. W ithout her support in numerous

aspects, it would have been impossible for me to finish my study here.

V i t a

November 1964 ... Born, Xian, China

1981-1985 ..B.S., Computer Science, Northwest
Telecommunication Engineering Institute,
Xian, China

1986-1987 ..M.S., Computer and Information Science,
The Ohio State University, Columbus,
Ohio

P u b l ic a t io n s

1. “An O (nlogn) Feasibility Algorithm for Preemptive Scheduling of n Indepen
dent Jobs on a Hypercube,” (with M. Ahuja) Information Processing Letters,
35 (1), 1990, pp. 7-11.

2. “Preemptive Job Scheduling on a Hypercube,” (with M. Ahuja) in Proceedings
o f the International Conference on Parallel Processing, St. Charles, IL, August
13-17, 1990, pp. (I) 301-304.

3. “Job Scheduling on a Hypercube,” (with M. Ahuja) in Proceedings o f the 10th
International Conference on Distributed Computing Systems, Paris, France,
May 28-June 1, 1990, pp. 510-517.

4. “An Efficient Distributed Algorithm for Finding Articulation Points, Bridges,
and Biconnected Components in Asynchronous Networks,” (with M. Ahuja)
in Proceedings o f the 9th Conference on Foundations o f Software Technology
and Theoretical Computer Science, Bangalore, India, December 19-21, 1989,
pp. 99-108.

5. “A New Distributed Algorithm for Minimum Weight Spanning Trees Based
on Echo Algorithms,” (with M. Ahuja) in Proceedings o f the 9th International
Conference on Distributed Computing Systems, Newport Beach, CA, June 5-9,
1989, pp. 3-10.

iv

6. “A New Distributed Algorithm for Biconnected Component Detection in Asyn
chronous Networks,” (with M. Ahuja) in Proceedings o f the First Annual IEEE
Symposium on Parallel and Distributed Processing, Dallas, Texas, May 22-23,
1989, pp. 65-72.

Fields of Study

Major Field: Computer and Information Science

T a b l e o f C o n t e n t s

ACK N O W LED G M EN TS... Hi

V I T A .. iv

LIST OF F IG U R E S .. viii

CHAPTER PAGE

I IN T R O D U C T IO N .. 1

1.1 Parallel P ro cessin g ... 1
1.2 Hypercube System s... 5
1.3 Job S chedu ling .. 13
1.4 Outline and Significance of R e se a rc h ... 16

II NONPREEMPTIVE SCHEDULING ON A H Y PERCU BE......................... 21

2.1 Introduction ... 21
2.2 Previous R e s e a rc h ... 23
2.3 P re lim in aries ... 28
2.4 The LDF Algorithm and Its P e rfo rm a n c e ... 31
2.5 An Absolute Lower B o u n d .. 37
2.6 Conclusion .. 45

III PREEM PTIVE SCHEDULING ON A HYPERCUBE................................. 46

3.1 Introduction ... 46
3.2 Previous R e s e a rc h .. 46
3.3 Definitions ... 48
3.4 Feasibility A lgorithm 49
3.5 Correctness and Analysis 56
3.6 On Searching for the Minimum Finish T im e .. 63

vi

3.7 Conclusion 63

IV A NEW ALGORITHM FOR PREEM PTIVE S C H E D U L IN G 65

4.1 Introduction .. 65
4.2 Megiddo’s Search M e th o d .. 66
4.3 Initial Algorithm D erivation.. 69
4.4 Detailed A lgorithm ... 71
4.5 An Example .. 78
4.6 Correctness and Analysis .. 81
4.7 C o n c lu s io n .. 83

V SUMMARY AND FUTURE R E S E A R C H 85

B IB L IO G R A P H Y .. 89

L i s t o f F i g u r e s

FIGURE PAGE

1 A shared-memory machine and a message-passing one............................. 4

2 Examples of hypercubes.. 6

3 Embedding a 3 x 4 mesh into a 4-dimensional hypercube......................... 8

4 A 4-ary 2-cube. 12

5 Multiprogramming on a hypercube... 17

6 An example of two dimensional bin packing... 25

7 An example of FFDH packing.. 27

8 An example of a stair-like profile... 30

9 The LDF algorithm.. 31

10 An example LDF schedule.. 32

11 The worst case LDF schedule and the corresponding optimal schedule. 35

12 LDF versus FFDH schedules for squares.. 38

13 The optimal schedules.. 41

14 The forced schedule.. 42

15 The feasibility algorithm.. 52

16 The schedule from our feasibility algorithm... 53

17 The schedule from Chen and Lai’s feasibility algorithm........................... 55

18 The profile from our feasibility algorithm after grouping.......................... 57

19 A balanced search tree.. 62

20 The modified feasibility algorithm.. 72

21 The feasible schedule when “found” is returned... 76

22 The search algorithm for minimum finish time schedule........................... 77

23 Finding the m inim um finish time schedule... 79

24 Binary search over an ordered array. ... 83

ix

CHAPTER I

INTRODUCTION

1.1 Parallel Processing

High-performance computers are increasingly in demand in the areas of scientific

and engineering applications such as: structure analysis, weather forecasting, fusion

energy research, medical diagnosis, aerodynamics simulations, artificial intelligence,

and industrial automation. Many of these challenges depend on using superpower

computers to solve them within reasonable time periods. The rapid advance of tech

nology has made it possible to build faster computers. Over the past four decades,

computers have been evolved over four generations: from the first generation (1940-

50s) based on vacuum tubes, to second generation (1950-60s) based on transistors, to

third generation (1960-70s) based on small- and medium-scale integrated (SSI/MSI)

circuits, and to fourth generation (1970s and beyond) based on large- and very-large-

scale integrated (LSI/VLSI) devices. But only limited performance increasing can be

obtained by simply increasing the speed of electronic components and logic circuits.

At most, the electronic signals can be transmitted by the speed of light.

To increase the computing speeds further, parallel processing is needed. It means

the exploitation of concurrent events in the computing process. Concurrency implies

1

2

parallelism, simultaneity, and pipelining. Parallel events may occur in multiple re

sources during the same time interval; simultaneous events may occur at the same

time instant; and pipelined events may occur in overlapped time spans. These con

current events are attainable in a computer system at various processing levels.

Over the years, many parallel computers have been designed for parallel process

ing. They can be classified into three architectural configurations ([36]): pipeline com

puters, array processors, and multiprocessor systems. The three parallel approaches

to computer system design are not mutually exclusive. A pipeline computer overlaps

computations to exploit temporal parallelism. Such computers include earlier vector

processors, such as Control Data’s Star-100 and Texas Instruments’ ASC, and more

recent vector processors, such as Cray-1, Cyber-205, and Fujitsu VP-200. An array

processor uses multiple synchronized arithmetic logic units to achieve spatial paral

lelism. Such computers include Qliac-IV and Burroughs Scientific Processor (BSP).

A multiprocessor system achieves asynchronous parallelism through a set of inter

active processors. Such computers include C.mmp and Cm* systems developed by

Carnegie-Mellon University, IBM 3081, Cray 2, and many newer systems. Pipeline

computers and array processors rely more on very fast components and pipelined

operations. Such machines are quite expensive, and performance improvement is in

creasingly difficult to achieve. In contrast, the performance of multiprocessor systems

can be significantly improved simply by adding more processors, faster processors, and

better interconnections among them. Most of general purpose parallel systems built

today belong to the multiprocessor configuration.

Depending on how the memory modules and processors are interconnected, multi

processors can be further classified into two categories: shared-memory machines and

message-passing machines. Figure 1 shows the difference between a shared-memory

multiprocessor and a message-passing one. A brief discussion of these two types of

systems is given below.

In a shared-memory system, a global memory is shared by all the processors

through an interconnection network. The advantage such a system is that users can

view the system as an extension of the traditional uniprocessor system. But it is very

difficult to build high performance large system using the global memory approach.

One problem arises when two or more processors access the same memory location at

the same time, expensive hardware or software protocols are required to resolve the

conflict among the processors. Another problem is that the memory access time must

be kept small because memory references are very frequent operations of a program.

When the number of processors becomes larger, the two problems become more severe

and they make the design of the interconnection network harder.

In a message-passing system, each processor has its own memory, and proces

sors exchange information through message passing. In a system, each processor is

directly connected to a subset of the other processors (its “neighbors”). Messages

between non-neighbors must be passed through intermediate processors connected by

a network. Because a processor can pass messages more quickly to its neighbors than

to processors not directly connected to it, tasks that need extensive interprocessor

communication should be placed on neighboring processors. If each processor has

Interconnection Network

Shared-memory Machine

Message-passing Network

Message-passing Machine

Figure 1: A shared-memory machine and a message-passing one.

5

most of the data it will need, then the number of messages between processors can be

kept relatively small, and the number of processors in the system can be made large.

This approach overcomes the two problems in a shared-memory system.

It is more difficult to program on a message-passing system than on a shared-

memory system. The placement of data and programs in a message-passing system

plays an important role in its system performance. An interconnection scheme that

makes it easier to achieve such placement is hypercubes. In this dissertation we study

the job scheduling, which is one aspect of the placement, on such systems.

1.2 Hypercube Systems

A binary m-dimensional hypercube (or m-cube) is an undirected graph G = (V, E)

with 2m number of nodes. Each node p € V is represent by a binary number

pmPm-i " ' P i ' Two nodes are connected iff their binary representations differ in

exactly one bit. In a hypercube multiprocessor, each node is a processor that has its

own CPU and local main memory. Two neighboring processors can communicate di

rectly with each other over the edge connecting them. Figure 2 shows the hypercube

topologies for n < 4.

An m-cube can be partitioned into subcubes. A d-dimensional subcube (or d-

subcube), where 0 < d < m , can be described by m — d fixed bits and d “don’t-care”

bits. For example, a 2-subcube in a 5-cube can be described as 01*1*, where “*”

stands for a don’t-care bit. The four processors in the 2-subcube are 01010, 01011,

OHIO, and 01111.

Hypercube structure has been studied by many research and many properties of

6

O

O -dim ensional hypercube

^'dimensional hy

0110

*'dimensional hypercu&e

0 1 0

ooa

100
101

3'dimensional hypercube

LOOP
1 0 0 1

1101

0111

4>dimensional hypercube

F« « e 2.- Example, othn„„,ba

hypercube have been discovered. One important property is the embeddibility. Many

topologies, such as rings, trees [4, 5, 72], meshes [9,34, 48, 61], and pyramids [43], can

be embedded in hypercubes so that neighboring nodes are mapped to closed connected

nodes (sometimes neighbors) in hypercubes. Figure 3 illustrates the embedding of

3 x 4 mesh into a 4-dimensional hypercube.

Programming on hypercubes is made easy by the good embeddibility property.

The communication structures used in the last Fourier transformation, bitonic sort

ing, partial differential equation, and convolution can be embedded similarly into hy

percubes. Since a great many scientific applications use mesh, tree, FFT, or sorting

interconnection structures, the hypercube is a good candidate for a general-purpose

parallel architecture.

Hypercubes have small diameters and rich interconnections. In an m-cube, the

number of nodes is N = 2m and the maximum internode distance (or diameter) is m ,

and each node is connected with m neighbors. Thus, many problems with less regular

communication patterns can still be efficiently mapped into hypercubes. Compared

with a fully connected network K n , the hypercube diameter is larger, but the node

degree (or fanout) is reduced from N — 1 to log2 N . Other standard architectures with

small degree, such as meshes, trees, or bus systems, have either a large diameter (e.g.,

y /N for a mesh) or a resource that becomes a bottleneck in many applications because

too much communication must pass through it (as the root of a tree, or a shared bus).

Thus, hypercube architecture balances node connectivity, communication diameter,

algorithm embeddibility, and program m ing ease. This balance makes them suitable

Figure 3; Embedding a 3 x 4 mock • * „
>»g J x 4 mesh mto a 4-dimensional hypercube.

9

for an unusually broad class of computational problems.

A good survey of the history of the real implementation of hypercube systems

can be found in [32]. Here we give a summary. In 1962, Squire and Palais at the

University of Michigan carried out a detailed paper design of a hypercube computer

[59]. Around 1975, IMS Associates, an early manufacturer of personal computers, an

nounced a 256-node commercial hypercube based on the Intel 8080 microprocessor,

but the machine was not produced. In 1977, Sullivan and his colleagues at Columbia

University presented a proposal for a large hypercube called the Columbia Homo

geneous Parallel Processor, which would have contained up to a million processors

[67, 68]. In the same year, Pease published a study of the “indirect” binary n-cube

architecture using a multistage interconnection network of the omega type for imple

menting the hypercube topology [54]. These early hypercube designs were impractical

because the circuit technologies at that time could not provide the large number of

logic and memory elements they required.

The situation began to change rapidly in the early 1980’s as powerful 16/32-bit

microprocessors could be implemented on one IC chip, and RAM densities moved

into 100,000 to 1,000,000-bit-per-chip range. The first working hypercube computer

— a 64-node Cosmic Cube at Caltech — was developed in 1983. Since then, Caltech

researchers have built several similar hypercubes and successfully applied them to nu

merous scientific applications, demonstrating impressive performance improvements

over conventional machines of comparable cost [28].

Influenced primarily by the Caltech work, several companies developed the first

10

generation commercial hypercubes around 1985. These are Intel Personal Supercom

puter (or iPSC/1), Ametek’s System/14, and NCUBE Corporation’s NCUBE/ten.

The iPSC/1 has 128 nodes, and each node has a 16-bit 80286/127 CPU as its node

processor. The System/14 hypercube can have up to 256 nodes, each employing an

80286/287-based CPU and an 80186 processor for communication management. The

NCUBE/ten can accommodate up to 1024 nodes, each based on a VAS-like 32-bit

custom processor with a peak performance of 0.5 MFLOPS; thus, a fully configured

NCUBE system has a potential throughput of around 500 MFLOPS. Compared with

a traditional vector supercomputer such as the Cray-1, which has a peak throughput

of 160 MFLOPS, NCUBE/ten can have a much higher performance at a relatively

lower cost. Some later introduced hypercube-style machines with supercomputing

potential include the Caltech/JPL Mark III [55], the Connection Machine [33], and

the Floating Point Systems (FPT) T-series.

The second generation hypercubes, such as iPSC/2 and Ametek 2010, were intro

duced around 1988. The major improvement is the communication speed between

nodes. Since the first generation hypercubes use store-and-forward technique to trans

mit packets, each node along the communication path has to store the entire packet

and retransmit again to the next node. This incurs a lot of overhead. The second

generation hypercubes reduced the overhead by using some new techniques, such as

circuit switching in iPSC/2 [53], and wormhole routing in Ametek 2010 [23]. In circuit

switching, a physical circuit is first established from the source node to the destina

tion node and remains intact till the message transmission is over. Once the circuit

is established, the message transmission time is almost independent of the distance

between the source and destination. In Intel iPSC/2, for example, messages move

between sender and receiver at a speed of 2.8 megabytes per second [53]. The future

generations of hypercube systems are predicted to have even faster communication

speeds [1].

Many current hypercube systems use binary n-cube interconnection networks. It

is a special case of the family of fc-ary n-cubes, i.e., cubes with n dimensions and k

nodes in each dimension. In such a cube system, we use n for the dimension and k

for the radix. Dimension, radix, and number of nodes are related by the equation

N = kn, (k = V N , n = log* N). (1.1)

A node in the fc-ary n-cube can be identified by n-digit radix k address, anan_i • • • a\.

The tth digit of the address, a;, represents the node’s position in the ith dimension.

Each node can forward messages to its upper and lower neighbor in each dimension,

t, with addresses an • • • ai ® 1 • • • a\ and an • • • 0 1 • • • a i, respectively, (© and 0

represent mod k + and — operations). Figure 4 shows a 4-ary 2-cube, which is also

known as a mesh (with wrap-around connections) or a torus. Two dimensional mesh

connections have been employed by several recent commercial systems, such as iWarp

and Ametek 2010. As pointed out by several studies [22, 39, 71], low-dimensional fc-

ary n-cube may be the architecture for future median sized (around 256 processors)

message-passing multiprocessors.

c
c
c
c

3 3

2 3

»-------
13

_ — ■

I________

0 3

3 2

2 2

12

02

W

31

2 1

1 1

___ 4
01 Q

Figure 4: A 4-ary 2-cube.

13

X.3 Job Scheduling

To be able to use any computer systems efficiently, we need to consider many opti

mality issues from various aspects. From operating system point of view, we need

to avoid any wasting of resources in a computer system. One of the most important

resources is the CPU processing time. We would like to avoid the situation that some

processors are idle while others are overloaded. This requires us to study ways to

assign jobs to a computer system. The problem is known as the scheduling problem,

which we will discuss next.

In classical job scheduling theory, a problem can be classified by a 3-field classi

fication a|/3|7 [31]. Suppose that a set of jobs need to be processed on a number of

machines. The three fields are:

• Machine environment: It specifies what kind of machines the jobs are to be

scheduled on. The most frequently studied machine models are identical ma

chines where all the machines have the same execution speed, and uniform

machines where the machines may have different speeds.

• Job characteristics: It specifies what kind of jobs needed to be scheduled. For

example, a job can be preemptive, meaning that the execution of the job can be

interrupted and resumed at a later time; otherwise, it is nonpreemptive; there

may exist precedence relation between the jobs, meaning that some jobs have to

be finished before some other jobs can be started; a job can also have a given

release time and a given deadline, meaning the job cannot be executed until its

14

release time and must be finished by its deadline.

• Optimality criteria: I t refers to what kind of optimality function is used. Usu

ally, the optimality criterion is to minimize the finish time of a job schedule.

By considering the different combination of the above three fields, one can form

various scheduling problems. Many researchers have studied scheduling problems

over the past 30 years, and a large amount of results have been published. It turns

out that many problems are NP-Complete, which means that it is unlikely to find

optimal solutions for them. Some important results can be found in [18, 29, 31].

One important assumption used by the classical scheduling model is that one

job requires one machine. But with the advance of computer network and parallel

computers, this assumption may not be true. As a result, more and more researchers

begin to consider scheduling problems in distributed and parallel systems, where jobs

usually have more requirement than those in the classical scheduling.

A distributed computing system consist of a number of processors. Each processor

is an individual computer, and all the processors are connected through a communi

cation network and can send messages to each others. Here the communication cost

is usually much higher than that in a parallel system. In a distributed system, a job is

modeled as a set of communicating tasks. Each task is able to run on one processor.

If two communicating tasks are assigned to two different processors, then there will

be some time delay for each communication, otherwise, the communication cost is as

sumed to be zero. In order to finish the job efficiently, we need to distribute the tasks

onto different computers. The objective is to distribute the tasks evenly among the

15

processors, and to allocate communicating tasks to the same processor or processors

with close connections. A number of researchers have studied scheduling problems

in distributed systems. The solutions can be classified into three categories: graph

theoretical approaches [57, 65, 6 6], 0-1 integer programming approaches [16, 64], and

heuristic approaches [26, 47].

In a parallel multiprocessor system, whether it is a shared-memory or a massage-

passing machine, one job may require many processors to run at the same time. This

is because parallel programs need more than one processors to explore the parallelism

existing in the applications. In fact, many parallel machines are built to satisfy

this requirement. Many systems, such as the hypercubes, RP3 of IBM, Butterfly

of BBN, Ultracomputer of New York University, and PASM of Purdue University,

are partitionable or have the potential to be partitionable. For a job which requires

certain number of processors, we can partition the system into subsystems and assign

one subsystem with the required number of processors to the job. This creates a new

research direction in scheduling theory.

Therefore, parallel job scheduling is actually done on two levels: process level

and task level. Each level can be further refined into more levels. On process level,

we need to: (i) determine the number of processors needed by the applications, and

(ii) schedule the communicating macro-tasks of one job onto the required number of

processors. Step (i) is called the grain size determination problem, which has been con

sidered by [41, 73]. Step (ii) needs to determine how to balance the computation and

com m unication to achieve good performance. Many techniques used in distributed

16

job scheduling may be applied here as well. Process level scheduling is usually done

by a powerful parallel compiler. Once the process level schedule is done, we need to

do the task level scheduling. On task level, we are given a set of jobs, with each job

requiring certain number of processors for certain amount of time. The objective is

to finish the set of jobs in minimum amount of time. Task level scheduling is usually

done by the operating system.

On a hypercube system, the process level job scheduling as pointed out by Chen

and Shin in [13], consists of three steps: (i) determination of the dimension d of

a subcube required to process the incoming job, (ii) location of an idle subcube of

dimension d, and (iii) assignment of the modules of the job to nodes of the d-subcube.

The first step was formally treated in [14]. The third step is the well known embedding

problem mentioned before. The second step is the subcube allocation problem and

has recently attracted the attention of many researchers [13, 25, 42, 17].

In this study, we will study the task level job scheduling on a hypercube. Next

we will introduce the problem and give an outline of our research presented in the

remaining Chapters.

1.4 Outline and Significance of Research

We assume that the hypercube system supports space-sharing multiprogramming, as

suggested by [1, 32, 55]. Here an entire hypercube is partitioned into subcubes, each

job is assigned to a dedicated subcube and many jobs can be running simultaneously

without interfering with each other. Figure 5 shows a snapshot of three jobs running

on a 4-dimensional hypercube. Then, given a set of jobs with their subcube and their

17

Figure 5: Multiprogramming on a hypercube.

18

running time requirements on such a hypercube system, it is important for the system

to schedule them so that they can be finished as early as possible.

The formal definition of the problem, which has been introduced and studied by

Chen and Lai [1 0 , 1 1], is as follows. Consider an m-cube and a set J of n independent

jobs. Each job J,, where 1 < » < n, is an ordered pair (dj,tj), where d, is an integer

and ti is a rational number satisfying 0 < d, < m and t, > 0. The ordered pair

means that job «/,• requires a d,-subcube (2* processors) for $,• units of time. We wish

to assign dj-subcube(s) to job for all n jobs, so that their overall finish time (the

time at which all jobs are finished) is minimized. In other words, we want to find the

minimum finish time schedule for the given jobs. The minimum finish time is also

called the optimal time, and the minimum finish time schedule is called the optimal

schedule.

In Chapter II, we discuss the scheduling for nonpreemptive jobs, i.e., no job can

be stopped during its execution. The problem is NP-Complete, which means it is

unlikely that one can find an optimal schedule within polynomial time. In this case,

we investigate approximation algorithms. An approximation algorithm is able to

generate a schedule whose finish time is within a constant bound of the optimal time.

We will present a simple approximation algorithm called LDF. We will show that

the algorithm has a bound no worse than 2. The algorithm LDF also possesses some

favorable properties compared with previously proposed algorithms. We will also

show that there exists a (l + \/6)/2 « 1.7247 lower bound for a class of approximation

algorithms including LDF.

19

One important practical advantage of the LDF algorithm is that a system sched

uler can perform very well without knowing the job execution times. This is especially

true when the job execution times are hard to get. The lower bound result means

that it is unlikely to find simple heuristic algorithms that can perform substantially

better than LDF.

In Chapter III, we discuss the scheduling for preemptive jobs, i.e., each job may

be preempted before its completion but will resume its execution at a later time. In

this case, the optimal preemptive schedule can be found in polynomial time. We will

first present an 0 {n log n) feasibility algorithm, which can determine if it is feasible

to finish the job set by a given deadline T. If it is feasible, then the algorithm can

generate a feasible schedule that has at most n —2 preemptions. The optimal schedule

can be found through a binary search over a time interval by calling the feasibility

algorithm repeatedly. We will show that there exists a time interval which is shorter

than the one proposed by the earlier algorithm, the minimum finish time can be

obtained through a binary search over the time interval.

Our feasibility algorithm not only runs faster than a previous algorithm, but also

generates a schedule with fewer number of preemptions. These improvements are

important since many scheduling algorithms require an efficient feasibility algorithm

as a building block. Further, as research presented in the sequel shows, our feasibility

algorithm leads well to the development of an even more efficient algorithm for finding

minimum finish time schedule.

In Chapter IV, we propose a new algorithm with improved running time for finding

20

the optimal preemptive schedule. Compared with the algorithm presented in Chapter

III, whose running time depends on the numerical values of the time requirements

of the jobs, the running time of our new algorithm depends only on the number of

the jobs (i.e., n). Based on an advanced search technique, the new algorithm can be

used to find the optimal schedule in 0(n? log3 n) time.

Finally, in Chapter V, we summarize our contribution and give several future

research directions.

CHAPTER II

NONPREEMPTIVE SCHEDULING ON A
HYPERCUBE

2.1 Introduction

In this chapter, we restrict our attention to nonpreemptive scheduling on a hypercube.

Let us first recapitulate the problem below. Given an m-cube and a set J of n

independent jobs • • •, Jn. Each job Ji is an ordered pair (d*, £,), meaning that job

requires a dj-subcube (2* processors) for ti units of time. Each job is nonpreemptive,

i.e., it cannot be interrupted during its execution. We wish to assign dj-subcube(s)

to job Ji for all n jobs, so that their finish time is minimized.

The problem is NP-Complete because it embeds an identical machine nonpreemp

tive scheduling problem which has been proven as NP-Complete in classical scheduling

[29, 70]. Thus, it is unlikely to find a polynomial time algorithm for the problem un

less P = N P . Thus we need to look for polynomial approximation algorithms that

can find a solution within a constant bound of the optimal one. Since the bound is

one of the most important performance measures of an approximation algorithm, we

would like to find an algorithm whose bound is as small as possible.

The commonly used approximation algorithms are called list scheduling. In list

scheduling, all jobs are first put into a list in a certain order, and each job is scheduled

21

22

one after another in this order. The way a list is constructed is very important, even

for the same algorithm, since different lists may result in very different performance

bounds.

To measure the performance of approximation nonpreemptive scheduling algo

rithms, we use two bounds that have been introduced by Coffman et. al. in [19].

Let L — (J i , • • •, Jn) be a particular list containing jobs in J in certain order. Let

A (L) be the finish time of the schedule generated by any algorithm A using L. Let

OPT(L) be the optimal finish time, i.e., the finish time of the schedule for the jobs

in L generated from an optimal algorithm.

D efin ition 1 Let tm** be the longest time requirement o f the n jobs, i.e., tm*, =

max{U : 1 < i < n}.

D efin ition 2 Let p be a constant. Then p is called the ab so lu te b o u n d o f algorithm

A, i f for every list L o f jobs in J we have

A(L) < pOPT(L). (2.1)

D efin ition 3 Let p, p1 be constants. Then p is called the a sy m p to tic b o u n d of

algorithm A, i f for every list L o f jobs in J we have

A(L) < pOPT{L) + p'tma*.

The absolute bound appears to be a better measure of performance when the

number of jobs is small, while the asymptotic bound is a better measure when the

number of jobs is large. This is because when the number of jobs is large, the term

containing O PT (T) will be the dominating factor compared with that containing tmmx.

23

In the following, we will first survey earlier related research. Then we will present

and analyze the performance of an approximation algorithm called LDF. We will

also prove a lower bound result for a class of nonpreemptive scheduling algorithms.

Finally we conclude this chapter.

2.2 Previous Research

In [10], Chen and Lai proposed an algorithm, called LDLPT (Largest Dimension

Largest Processing Time). In LDLPT, jobs are ordered by decreasing dimension, and

jobs with same dimensions are ordered by decreasing time. Their algorithm can be

stated as follows:

Let L = (J i , • • •, J„) be a list of the n jobs in LDLPT order. Schedule each

job from X, one after another, to the earliest available smallest indexed

subcube.

Their algorithm is an extension of the famous LPT algorithm proposed by Graham

[30]. In LPT, jobs do not have the dimensional requirement. Graham proved that

LPT has an absolute bound 4/3 — l/(3 m '), where m ' is the number of identical

machines. Extending Graham’s proof, Chen and Lai showed that the absolute bound

of LDLPT is 2 — l /2 m _ 1 for to > 2. For a large cube dimension to, such as a

Connection Machine where m can be as high as 20, the second term will approach

zero, and the absolute bound will be about 2. Although they did not discuss the

asymptotic bound of LDLPT, it can be easily shown to be 1 .

24

Since late 1970s, many researchers have studied the two dimensional bin packing

problem, which is closed related to the hypercube scheduling defined above. Two

dimensional bin packing was first introduced by Baker, Coffman and Bivest [3]. As

illustrated in Figure 6 , we are given an “open-ended” rectangle, or a two dimensional

bin 12, of width w and a set of n rectangles, or pieces, organized into a list L =

(pi,pa, • • • ,pn). Each rectangle is defined by an ordered pair p* = (w,, hi), 1 < i < n,

corresponding to the width (w<) and height (hi). The goal is to pack them into R,

so as to minimize the total height of the packing. The rectangles must be packed

orthogonally, i.e., no rotations are allowed: all rectangles must have their width

parallel to the bottom of R.

This problem can be interpreted as a job scheduling problem as follows. The

height of a piece is the amount of processing time a job requires, and its width is

the amount of processors the job needs. If we restrict the width w of R and the

width of each piece w, to be a power of 2 , then the problem is exactly the same as

hypercube scheduling problem we introduced before. In fact, this restricted case has

been considered before, under the name of strongly divisible by Coffman, Garey and

Johnson in [21]. It is worth mentioning that, as far as we know, no one has related

the hypercube scheduling problem with the two dimensional bin packing before.

In the following, we provide some important results discovered in two dimensional

bin packing. A good survey of this area can be found in [20].

In [3], Baker et. of. considered a variety of packing algorithms based on the

“bottom up left justified” (or BL for short). In a BL packing, rectangles are packed

25

Figure 6: An example of two dimensional bin packing.

26

in turn, and each item being placed as near to the bottom of R as it will fit and then

as far to the left as it can be placed at that bottom-most level. (See Figure 6 , where

the packing is actually done by the BL rule.) Depending on how (if at all) the set

of rectangles is initially preordered, it turns out that only one ordering, decreasing

width (or DW), can have a finite absolute bound. The algorithm, called BLDW, is

proved to have an absolute bound 3. As another measurement of performance, they

considered the special case of squares (h i = W {) . For this case, BLDW has an absolute

bound 2 .

In [19], Coffman, Garey, Johnson, and Tarjan proposed an algorithm called FFDH

(First Fit Decreasing Height) “level” algorithm. FFDH first order the rectangles by

decreasing height. Then the packing is constructed as a sequence of levels, i.e., each

rectangle is placed so that its bottom rests on one of these levels. The first level is

simply the bottom of the bin. Each subsequent level is defined by a horizontal line

drawn through the top of the tallest rectangle on the previous level. Each rectangle

is placed left-justified on the first (i.e., lowest) level if in which it can fit. If none of

the current levels has room, a new level is started. See Figure 7 for an example of an

FFDH packing. The absolute bound of FFDH is proved to be 2.7.

In [58], Sleator developed a very smart algorithm which reduced the absolute

bound to 2.5. His algorithm first packs the rectangles with width greater than half

of the width of R on the bottom of R. Then R is divided into two halves to pack the

remaining rectangles by using a modified FFDH algorithm.

Figure 7: An example of FFDH packing.

28

It is understandable that the performance of the above bin packing algorithms are

worse than similar algorithm for the hypercube job scheduling, because two dimen

sional bin packing is more general that hypercube job scheduling. Later, Coffman,

et. al. considered the FFDH algorithm for strongly divisible case [21] (or for the

hypercube job scheduling). They proved that the absolute bound in this case is less

than 2, which is similar to that of LDLPT.

2.3 Preliminaries

D efin ition 4 A p ro cesso r in te rv a l (or p -in te rv a l) [a, 6] denotes the set of proces

sors [a ,6] = {p € V : a < p < 6 } where a,b £ V and a < b. Processor a and b are

called the s t a r t p o in t and end p o in t o f the p-interval, respectively. Also let |[a ,6]|

be the number o f processors in [a, 6].

Let [u, v] be a p-interval, with u = um • • • u\ and v = vm • • • Vi in binary. It is clear

that [u, v] forms a k-subcube iff

• U r n * ’ * Vk+l = Vm ' ’ ' Vk+1,

o • • • iii = 0 0 • • • 0 , and

• Vfe • • • V\ ~ 11 • • • 1.

In that case, [a, b] is said to be a basic subcube. Note that every k-dimensional basic

subcube [a, 6] can be divided into a number 2h~h of h-dimensional basic subcubes

{h < k) : namely,

[a ,a + 2 fc — 1], [a + 2 \ a + 2 (2 fc) — 1], • • •, [b — 2h + 1 , 6].

29

All the subcubes mentioned later in this paper are basic, so we will omit “basic” for

simplicity.

An m-cube can be described as a p-interval of [0,2m — 1]. The m-cube can also

be divided into a number of consecutive p-intervals. Such division will help us to

describe job scheduling on the cube.

D efin ition 5 Let I > 1. A d iv ision of an m-cube is a list o f I consecutive p-intervals

([oi, &i], • • •, [aj, 6 /]) (for some I > 0) satisfying a\ = 0, 6 j = 2m — 1 , and (Vi : 1 < i <

I : a»+i = bi + 1).

D efin ition 6 A profile o f a schedule is a function F that maps a processor p £ V

to a time f = F(p), meaning that processor p has been busy until time f , and f is

called the finish tim e of p.

A profile records the finish time of all the processors. Such information is needed

by a scheduling algorithm to assign the next job. For hypercube scheduling, a profile

function F maps a p-interval [a, b] to a time / = F([a, 6]), where Vj> 6 [a, 6]: F(p) = / .

Let ([a i,6 i], • • •, [flj, b{\) be a division of an m-cube. We define a profile of a cube

schedule as follows.

D efin ition 7 A profile P o f an m-cube schedule S can be described as a sequence of

I ordered pairs (([®i,&i],/i),- ■ • ,([<*/>&»],/»)) satisfying (Vi : 1 < * < I : F ([a i,6 i]) =

fi) . A sta ir-lik e profile P is a profile that satisfies (Vi : 1 < i < I : / ; + 1 < /,•).

Figure 8 shows an example of a stair-like profile. Stair-like profiles will be used

later for preemptive scheduling.

30

time

3
8 .
C/3
C/3o
>1G/3

I

f3 f2 fl

Figure 8 : An example of a stair-like profile.

31

A lg o rith m LDF;

/* The algorithm LDF receives a job set of n jobs and an m for the m-cube; it returns
the a schedule for the n jobs to be run on the m-cube. */

1. Let L = (J i , J n) be in deceasing dimension.

2. Schedule Ji to the earliest available, smallest indexed dj-subcube.

Figure 9: The LDF algorithm.

2.4 The LDF Algorithm and Its Performance

We propose a new algorithm called LDF (Largest Dimension First) below. Here we

construct L = (J i , • • •, Jn) of the n jobs by decreasing dimension, i.e., di > • • • > dn.

The scheduling part of the algorithm is similar to that of the LDLPT and BLDW

algorithms summarized before. More specificly, when scheduling job Ji, we assign Ji to

the earliest available dt-subcube; if several di-subcubes have the same earliest available

time, Ji is assigned to the one with the smallest index. The formal presentation of

the algorithm is listed in Figure 9.

An example schedule generated by LDF is shown in Figure 10. From Figure 10,

we observe the following property for any LDF schedule. No processor may be idle

before sn - the starting time of J n, the last job scheduled.

Let LDF(£) and OPT(L) be the finish time of the LDF schedule and the optimal

schedule for jobs in L , respectively. We have the following theorem.

T h eo re m 2.4.1 The absolute bound o f LDF is LD F(L)/ OPT(L) < 2 — 1/2TO, and

32

0

*o
§au
V)
O

2m-l

time

Ji

J 2 J 4

J 6

J?
Jg

Figure 10: An example LDF schedule.

33

the bound is tight.

P ro o f: Let J b be the first job in L that finishes at LDF(Z). Then we could just

consider the prefix list V — {J \, • • • ,/*) . Since the remaining jobs in L will not

increase LDF(Z) and will not decrease OPT(X), therefore, considering V will not

decrease the final bound. Let s* be the start time of First, we have

LDF(Z) = sfc + th. (2.2)

By the property that no processor is idle before s&, we obtain

2 % < E 2 * t i. (2.3)
i=l

Any schedule of L' has to take £ * = 1 2dlU area, so we have

h
£ 2 * t < < 2 roOPT(Z). (2.4)
«=1

Then

2mLDF(Z) = 2m(sk + th) (from (2.2)) (2.4)

= 2msb + 2mtb (2.5)
fe—1

< 2 2dHi + 2mt* (from (2.3)) (2.6)
i=l
h

= 2* ti + 2mth - 2d‘ tb (2.7)
* = i

< 2m0P T (Z) + (2m — 2ix)tb. (from (2.4)) (2.8)

Dividing both sides by 2m, and since tmax < OPT(Z), we get

LDF(Z) < OPT(Z) + ((2m — 2dl)/2m)tb (2.9)

34

< O P T (I) + ((2ra - 1)/2m)taua (2.10)

< (2 - l /2 m)O PT(£). (2.11)

Thus we have proved the absolute bound.

To show the tightness of the bound, consider the following job set J = {J< : 1 <

* < 2 2m - 2m + 1 } where

(0 , 1) if 1 < i < 2 3m - 2 m;
(0 , 2 m) if i = 2 2ro - 2 m + 1 .

The list is I = (J i ,- - -). The LDF and the optimal schedules are shown

in Figure 11. In the LDF schedule, the first 23m — 2m jobs in £ fill the m-cube up to

time 2m — 1 completely; and the last job results the final time to be 2m + 1 — 1. In the

optimal schedule, we can assign the last job first on the p-interval [0 , 1] up to time

2m, and use the other jobs to fill the remaining area up to time 2m. (Actually this is

simply the worst case example for list scheduling on 2 m identical processors.) □

C oro lla ry 2.4.2 The LDF algorithm has an optimal asymptotic bound.

P ro o f: By inequation (2.10) above. □

Compared with LDLPT and FFDH, LDF has comparable performance. Our proof

for LDF is much simpler than that for LDLPT, which takes several pages.

Next we compare the performance of LDF with that of FFDH for a special case

when each job is a square, i.e., when each J{ = (<&,£«) satisfies 2* = U. Although

packing squares makes more sense in the context of stock packing rather than job

scheduling, this case is frequently used as another performance measure.

35

2m -1 22m -1
J L"T

“ i r “

2m

-1 1_________

* • • •

• • • •

• • • •

—i r~

Figure 11: The worst case LDF schedule and the corresponding optimal schedule.

36

T h eo rem 2.4.3 The LDF algorithm can generate an optimal schedule for squares,

i.e., when each Ji = (di,U) satisfies 2 * = U.

P ro o f: We prove the result by induction on the number of jobs in a job set J . When

\J\ = 1, the result is obviously true. Suppose that the LDF algorithm is optimal for

any J such that |J | < n. Now consider a job set J with | / | = n , and suppose the jobs

are ordered by decreasing dimension. After scheduling the first n — 1 jobs using LDF,

we will get an optimal schedule by induction hypothesis. Let its profile P{n — 1) be

{([ax,6i],A),-,([««,*«],/»)>■

Since 2* (or U) of each Ji, 1 < i < n — 1 , is a multiple of 2**“ (or tn), one can readily see

the fact that P (n — 1) is stair-like and all the |[« j,6 j]|’s and all the { fj — f j - i)’s, where

1 < j < I (define fo = 0), are multiples of 2** (or in). Let T*_x = fi represent the

largest finish time in P (n — 1). Now consider the scheduling of J„. Let T* represent

the largest finish time in P (n). Two cases arise:

(i) I > 1 in P (n — 1). Since — f \ is a multiple of tn and f x is the smallest finish

time in P{n — 1), Jn is scheduled by LDF onto [a i,a i + 2 ^ — 1] for tn time

without exceeding T%_t . Thus, T* = T®_r Therefore, T* is the optimal finish

time for J since T*_x is already the optimal one for the first n — 1 jobs.

(ii) I — 1 in P (n — 1). Then T* has to be greater than T*_x in any optimal

schedule, and must be a multiple of tn. LDF will schedule Jn on [0,2** — 1].

Then T* = T*_x + tn. But this T* is the smallest multiple of tn following T*_x,

so the schedule must be an optimal one.

37

By induction, the theorem holds. □

On the other hand, FFDH will not perform optimal for this case. Figure 12

illustrates this point. The advantage of LDF over FFDH is thus apparent.

2.5 An Absolute Lower Bound

For approximation solutions, one would also like to know whether the results can be

improved further. In [8], various lower bounds were found for the so called on-line

algorithms. An algorithm is on-line if, given a list of jobs L = (J i , • • •, J n), it

1 . schedules the jobs in the order given by L ,

2 . schedules each job J* without looking ahead at any J > h

3. never moves a job already scheduled.

The above three algorithms LDF, LDLPT, and FFDH are on-line with different pre

ordered job lists.

First we observe that when job lists are not preordered, the absolute lower bound

obtained in [8] (Theorem 1) still applies to hypercube scheduling because the con

struction there does not depend on job widths.

T h eo rem 2.5.1 ([8]) Let A be an on-line algorithm. For any 8 > 0, there is a list

L for which A (L) > (2 - 8)OPT{L).

Thus, when jobs are not properly ordered, every on-line algorithm can perform

so badly that it comes arbitrarily close to doubling the finish time of an optimal

scheduling.

38

_ J

Figure 12: LDF versus FFDH schedules for squares.

39

So far, we have seen algorithms using decreasing dimension (e.g., LDLPT and

LDF) and decreasing time (e.g., FFDH). For hypercube scheduling, two other job

orderings are possible: increasing dimension and increasing time. But it appears

that these two orderings would perform worse than decreasing dimension. Intuitively,

these two ordering can create “hole” easily during the scheduling. Moreover, Baker et.

al. [3], have shown that job orderings by both increasing dimension and increasing

time result in infinite bound for BL algorithm. We shall thus concentrate further

on decreasing dimension. Next we prove an absolute lower bound for the schedules

generated by any on-line algorithm using decreasing dimension lists.

T h eo rem 2.5.2 Let A be any on-line algorithm. There is a list L ordered by decreas

ing dimension such that A (L) > ((1 + y/G)/2)0PT(L) > 1.7247OPT(L).

P ro o f: Consider a 5-cube. Let the list L be L = L\L%L$Li where:

9 L\ consists of 4 jobs of size (3 ,1),

• L% consists of 4 jobs of size (2,2 — x),

• Lz consists of 4 jobs of size (1,2 + x),

• £ 4 consists of 9 jobs of size (0,4).

where 0 < x < 1 .

The strategy may be outlined as follows. Suppose we have an algorithm A which

has an absolute bound A (£)/O PT(A). As we allocate jobs one by one from L using

algorithm A, we need to enforce that all the partial schedules are within the bound.

40

Doing this will force us to schedule the jobs such that the final schedule will have

a finish time greater than a function of x. We then choose x in such a way that

the function takes its largest value. This largest value will be the lower bound. The

problem now is how to choose the value s .

First, we notice that the optimal schedules of lists £ 1 , £ 1 X3 , £ 1 X3 X3 , and X1X3 X3 X4

(or X) are shown in Figure 13. The optimal finish times of these schedules are:

• OPT(Xl) = 1,

• OPT(XiXj) = 2,

• O P T ^iX jX s) = 3 — x,

• O PT(£) = OPT(XiX3 X3 ^4) = 4.

Next, we will show that by enforcing the schedules of £ 1 , £ 1 X3 , £ 1 X3 X3 to satisfy

A (£ i)/O P T (£ i) < i4(X)/OPT(X), (2.13)

A(Xi X3)/OPT(X i X3) < A (£)/O P T (£), (2.14)

and

A(XiXaX3)/O PT(X 1X3X3) < A (£)/O P T (£), (2.15)

we are inevitably led to a schedule of X as shown in Figure 14 such that

j4(£)/O PT (£) = (7 - *)/4. (2.16)

41

Jl Jl Jl

Jl Jl Jl

Jl
J 2
J 2

Jl J 2
J2

Jl

I L
J 2
J 2
J 2

Jl Jl Jl Jl

J 2 J2
J2 - 1

T2„„ I* .
J

— f *-------

Figure 13: The optimal schedules.

Jl
J2
J 2

Jl
J 2
J 2

Jl

Jl

— J3 —

b = J 4 =

Figure 14: The forced schedule.

43

In the following, we shall look for the appropriate value of x so that the final

schedule in Figure 14 is enforced. First, consider the partial scheduling of L\. To

satisfy (2.13), we require

1/1 < A ^ O /O P T ^ O < (7 - as)/4 = A (I)/O PT(2i). (2.17)

Also, the algorithm must not schedule two jobs in L\ above each other. Otherwise,

(2.13) or

2/1 > A (I)/O P T (L) = (7 - as)/4 (2.18)

will be violated. Thus the x that satisfies both of the requirements is

- 1 < x < 3. (2.19)

Next, consider the partial scheduling of L \L i. Because of the schedule of L\

explained above, we have to schedule jobs in £ 3 over jobs in L \. To satisfy (2.14), we

have

(1 + (2 - z))/2 < A(L\L%)/QYT(L\L%) < (7 - *)/4 = A (L)/O P T (I). (2.20)

Also, the algorithm must not schedule two jobs in L% above each other. Otherwise,

(2.14) or

(1 + 2(2 - *))/2 > A (£)/O PT(Ir) = (7 - s) /4 (2.21)

will be violated. Combining the two requirements leads to

- 1 < * < 1. (2.22)

44

Now consider the partial scheduling of £ i£ 3£ 3. Since jobs in £ 3 can only cover

half of the cube, the jobs in £ 3 can still be put on top of jobs in L \. For (2.15), we

require

(1 + (2 + x))/(3 - x) < j4 (£ i£ 2 £ 3)/O P T (£ 1£ a£ 3)

< (7 - x)/4 = A (£)/O P T (£). (2.23)

Again, the algorithm must not schedule two jobs in £ 3 over a job in either £ 3 or £ 3.

Otherwise, (2.15) or

(1 + (2 - x) + (2 + x))/(3 - x) > A (£)/O P T (£) = (7 - x)/4 (2.24)

will be violated. Combining the two inequations, we get

5 - 2 \ / 6 < x < 7 - 2VlO. (2.25)

Combining (2.19), (2.22), (2.25) and 0 < x < 1, we get

5 - 2\/6 < x < 7 - 2VlO. (2.26)

After the above scheduling of £ i£ s £ 3, we can see that jobs in £ 4 are forced

to be scheduled the way we wanted, i.e., at least one job of £ 4 has to be over a

job from £ 3 or £ 3. From (2.16), we see that (7 — x)/4 gets the largest value by

letting x have its smallest value. From (2.26), we can choose x = 5 — 2\/6- Then

A (£)/O P T (£) = (1 + V^)/2.

Thus, we have shown that it is impossible to have

max
f A(LX) A j L M A (L xL ,L 3) M L) 1 ^ . .
I O P T (£i)’ OPT(XiXi)’ O P T tij£ ,£ ,) ’ O PT(I) J '

The theorem is, therefore, proven. °

45

2.6 Conclusion

In this chapter, we have presented an algorithm called LDF. The LDF algorithm

is very simple and has almost the same performance as the earlier algorithms (i.e.,

LDLPT and FFDH). It requires a decreasing dimension job list, and schedules each

job to the earliest available subcube. It has an absolute bound less than 2 and an

optimal asymptotic bound.

One important practical advantage of the LDF algorithm is that a system sched

uler can perform very well without knowing the job execution times. This is especially

true when the job execution times are hard to get.

The LDF algorithm tells us that as long as we can schedule jobs in decreasing

dimension order, we can get an absolute bound less than 2. The asymptotic bound

of LDF being optimal means that as the number of jobs becomes large, the system

tends to be fully utilized by using LDF.

We have also proved a lower bound for the absolute bounds of a class of algorithms

including LDF, LDLPT, and FFDH. This result tells us that it is unlikely to find

simple heuristic algorithms that can perform much better than these algorithms.

CHAPTER III

PREEMPTIVE SCHEDULING ON A
HYPERCUBE

3.1 Introduction

In this chapter, we shall restrict our attention to the preemptive hypercube scheduling

problem. Consider an m-cube and a set J of n independent jobs. Each job J , = (d,-, £;)

is preemptive, i.e., it may be interrupted before its completion, but its execution will

be resumed at a later time, possibly on a different subcube. All the preemptions are

assumed to take no time. In this case, the minimum finish time schedule can be found

in polynomial time. Our goal is to find an algorithm that has fast running time and

can generate a schedule with a small number of preemptions.

This chapter is organized as follows. First, we summarize previous research results.

We also provide related definitions. Next we present a feasibility algorithm. We also

prove the correctness and analyze the time complexity of our feasibility algorithm.

Finally, we give concluding remarks.

3.2 Previous Research

In [6], Blazewicz, Drabowski and Weglarz studied a multiprocessor scheduling model

similar to two dimensional bin packing problem. The difference is that each job, or

46

47

rectangle in two dimensional bin packing, can now be preempted during execution.

More specificly, the problem is as follows

Suppose we have n ' jobs and m! identical machines. Each job may require

p , where 1 < p < m ', machines for t units of time. All the jobs are

independent. The goal is to find an optimal preemptive schedule.

First they studied a restricted case when all the jobs may require either of the two

different numbers of machines, say either pi or pa, where 1 < pi, pa < m'. For this

case, they gave an 0 (n) algorithm. For the general case, when jobs can require any

different number of machines, they formulated the solution as a linear programming

problem. Although this proved that the optimal schedule can be found in polynomial

time, the resulting algorithm is too costly to be used for large values of n and m.

In [11], Chen and Lai also studied the nonpreemptive hypercube scheduling prob

lem. They developed a feasibility algorithm, which is used to decide if it is feasible to

finish all the jobs by a deadline T and generate a schedule (called feasible schedule)

if this can be done. To find the minimum finish time schedule, their algorithm uses

a binary search over a time interval by calling their feasibility algorithm repeatedly.

Their feasibility algorithm may be summarized as follows:

The jobs are ordered according to decreasing dimensions, i.e., d \ > d ^ >

• • • > dn. Job Ji is scheduled on the first d»-subcube. Each of the remain

ing jobs is scheduled in the smallest indexed subcube of its dimension as

early as possible and as long as possible.

48

The feasibility algorithm runs in 0 (n 3) time and it produces a feasible schedule which

can have up to n(n — l) /2 number of preemption. Since the optimal time cannot be

longer than Y%=i *»> the optimal schedule can be found through a binary search over

the time interval. Thus, the total running time for finding the optimal schedule is

0(»2 log(E"=1 *;))•
In the following, we will first develop a faster feasibility algorithm which can also

generates a schedule with much fewer number of preemptions. Also, we will show

that the time interval in the binary search can be slightly reduced.

3.3 Definitions

Since we consider the problem of scheduling a set of jobs J = { J i : 1 < i < »} on an

m-cube to meet a given deadline T, we need a few definitions related to the deadline

T.

D efin ition 8 For a deadline T , the rem a in in g p rocessing tim e (or R P T) o f pro

cessor p is T — / , where f is the finish time o f processor p.

Let P be a profile of an entire cube schedule defined by

(([«i» &i], /i)> * • •, ([“/> &/]»/<))•

For a deadline T , the RPT of a p-interval is defined as:

D efin ition 9 Let be the finish time o f a p-interval [a*, 6 *]. The R P T o f the p-

interval, denoted by r,-, is defined as r< = T — /<.

49

Since the p-intervals with no RPTs left in 5 cannot be used to schedule the

remaining jobs, we may simply keep those p-intervals with nonzero RPTs (i.e., f i < T)

in the profile P . From now no, we use I to stand for the number of such p-intervals

(not necessarily consecutive) in P.

D efin ition 10 Let T be max{(St=i 2*tt-)/2m, t m*x}, i.e., the lower bound for the

finish time o f any schedule.

Clearly, the deadline T given by our feasibility algorithm must satisfy T > T.

3.4 Feasibility Algorithm

We derive below a feasibility algorithm for scheduling a job set J = {J< : 1 < * < n},

where J,- = (d,-, <»•), on an m-cube to meet a given deadline T . Assume that the

jobs have been ordered so that (Vi : 1 < i < n : d{ > di+1). We schedule the jobs

one by one in this order. Let S(i) and P(i) be the schedule and the profile after

Ji is scheduled, respectively. Let 5(0) be the initial schedule when no job has been

scheduled yet, and let the (stair-like) profile 5(0) be P(0) = (([0,2m — 1], 0)). For

ease of presentation, we may view 5(0) as the schedule obtained after a dummy job

J q = (m, 0) is scheduled.

Let I be the number of p-intervals with nonzero RPTs in P (i — 1). If 2 = 0, then

Ji cannot be scheduled. Otherwise, let the profile P (i — 1) be

(([a i M / i) , — ,([««, &<],/<)>

and assume that it is stair-like. Let rj = T — f j be the RPT of [a,-,6 ,-]. Then the

p-intervals in P (i — 1) are also ordered in increasing order of their RPTs.

50

Depending on which one is applicable, J,- = (d,-, tj) is scheduled by applying one

of the following four rules:

R0. If t{ > ri, then J , cannot be scheduled, return “infeasible”.

R l. If U < r i , then Jj is scheduled entirely on subcube [ai,fli + 2 di — 1] from f \ to

f i + U•

R2. If (3j : 1 < j < I : U = rj), then J,- is scheduled entirely on subcube [aj, aj +

2* — 1] to use up all its RPT rj.

R3. If (3 j : I < j < I : U > Tj A U < r,-+i), then Ji is schedtded in subcube

[aj, a j + 2 * — 1] to use up its RPT rj and the remaining time U — rj of Ji is

scheduled on subcube [aj+i ,a j+i + 2* — 1] from fj+i to f j +i + (f,- — rj).

After assigning Ji, the algorithm generates the new schedule S(i). In Section 3.4, we

shall show that the profile P(i) is kept stair-like.

The above four rules are actually inspired by the work of Sahni [62]. In [62], Sahni

gave an algorithm for schedTiling n' jobs with different deadlines on to ' identical

machines. His algorithm first orders the jobs into sets, each set corresponds to a

deadline. The algorithm schedules the set of jobs with the earliest deadline first, then

the set of jobs with the next deadline, and so on. During the scheduling of jobs in

each set, the algorithm uses a number of rules similar to the above ones. But here,

the jobs in our algorithm may require a subcube, while the jobs there only require

one machine.

51

The above ideas are formalized as an algorithm called F-Schedule in Figure 15. We

assume that the n jobs have already been ordered by decreasing dimension. During

the scheduling of job Ji, subroutine Find(di, U, flag , aj, aJ+i) produces a flag which

is a number between 0 and 3 corresponding to the four cases, and two start points aj

and aj+i in P (i — 1). Note that <jj+i is used only for case 3. To illustrate how the

algorithm works, we give an example below.

E xam ple: Consider a 4-cube, a deadline T = 4, and a job set J with five jobs

ordered by decreasing dimension as J \ — (3,2), J% = (2,3), J 3 = (1,3.5), J 4 =

(1,1.5), and Jg = (0,3.5). Figure 16 shows the resulting schedule from our feasibility

algorithm. The scheduling of each job is explained below:

1. Job J i = (3,2) is scheduled on the first 3-subcube by rule R I, and the profile

P (l) is

<([0,7],2),([8,15],0)).

2. Job J i = (2,3) is scheduled by rule R3, and the profile P (2) is

(([4,7], 2), ([8 ,11], 1), ([12,15], 0)).

3. Job Ja = (1,3.5) is also scheduled by rule R3, and the profile P(3) is

{([4,7], 2), ([10,11], 1), ([12,13], 0.5), ([14,15], 0)).

4. Job J 4 = (1 , 1 .5) is scheduled by rule R I, and the profile P(4) is

(([4,5], 3.5), ([6 ,7], 2), ([10,11], 1), ([12,13], 0.5), ([14,15], 0)).

52

A lg o rith m F-Schedide;
/* The algorithm generates a feasible preemptive schedule on an m-cube for a job set
J containing n jobs with deadline T. */

.F([0 , 2 m — 1]) := 0 ; /* all processors are initially free */
for i := 1 to n do

Find(di, t if f la g , a,-, ay+1);
case f la g o f

0 : r e tu rn (‘infeasible’); /* can return before the loop is finished */
1 : print(‘schedule’, Ji, ‘on’, [aji aj + 2 * - 1], ‘from’, /y, ‘to ’, /y + i<);

+ 2* - lj) := /y + U;
2: print(‘schedule’, Ji, ‘on’, [ay, ay + 2* — 1], ‘from’, /y, ‘to’, T);

JF([«y,ay + 2 * - l]) := T ;
3: print(‘schedule’, J,-, ‘on’, [ay, ay + 2* — 1], ‘from’, /y, ‘to’, T);

print(‘schedule’, Ji, ‘on’, [ay+i,ay+i + 2 * — 1], ‘from’, /y+i, ‘to’,
fi+i + (U ~ ry));

F([fly ,ay + 2 * - l]) := T ;
^ ([a i+ i>a j+ i + 2 * — 1]) := /y+ i + (ti — ry)

endcase
en d fo r

Figure 15: The feasibility algorithm.

Figure 16: The schedule from our feasibility algorithm.

54

5. Job Jg = (0,3.5) is scheduled by rule R2, and the profile P(5) is

(([4,5], 3.5), ([6 ,7], 2), ([10,11], 1), ([13,13], 0.5), ([14,15], 0)).

It is instructive to make a comparison here between our feasibility algorithm and

the algorithm by Chen and Lai [11]. Their algorithm maintains a stair-like profile

with consecutive p-intervals throughout the scheduling. Consider the same example

as one in Figure 16 and the use of Chen and Lai’s feasibility algorithm. The resulting

schedule is shown is Figure 17. We see clearly that the profile in Figure 17 is stair-like

and has consecutive p-intervals.

Like Chen and Lai, we realize that it would be difficult to manage each profile

P (i — 1) and to schedule the next job Jj if P (i — 1) were not stair-like. However,

we also observe that a stair-like profile with consecutive p-intervals is unnecessary.

Consider the profiles of the schedules in Figure 16 and Figure 17, each profile consists

of those p-intervals with nonzero RPTs in each figure. They are actually identical, in

the sense that both profiles contain the same number of pairs, and for the jth. pair

([a,-, &,], f j) in one profile, we have the j th pair ([a'-, 6 '], f j) in the other profile such

that |[<!;,&;] | = |[a'-,6 '-]|. This fact becomes more obvious if we compare the space

not occupied by the jobs in Figure 17 and Figure 18, where Figure 18 is obtained

by grouping together those p-intervals with zero RPTs in Figure 16. (Dotted lines

are used to show how Figure 18 is constructed.) The identity of the two profiles is

actually maintained during the entire scheduling session for the two algorithms. By

choosing the appropriate subcube(s) for each job, our algorithm can reduce both the

running time and the number of preemptions. This is what we are going to show

processors

55

l
7

11

15

h 21

tune

J3
JL

3
-+■

J2

J3
J4

J L

Figure 17: The schedule from Chen and Lai’s feasibility algorithm.

56

next.

3.5 Correctness and Analysis

Suppose the next job to be scheduled is Ji, and let S (i — 1) and P (i — 1) be defined

as before.

L em m a 3.5.1 For any 1 < i < n and Ji = (di,ti), (1) for any p-intervai [a, 6] in

P {i — 1), | [a, 6] | is a multiple o f 2*, and (2) after Ji is scheduled, P (i) is stair-like.

P ro o f: The lemma is clearly true when * = 1. For i > 2, suppose that (1) and (2) are

true for any number less than *, we prove that they hold for i. Then by induction,

the lemma is true.

To prove (1), we observe that since [a,b] comes from some p-interval [o', b1] in

P{i — 2) after job Jj_i is assigned, |[a,&]| must be equal to one of the following three:

2Ji~l , | [o', b'\ | — 2di~l , or | [o', 6 '] |. By induction hypothesis, ([a',6'11 is a multiple of

2*-1. Furthermore, d*_i > d;, so 2di~% is a multiple of 2*. Hence claim (1) holds for

i.

To prove (2), we need to check only those p-intervals in P (i—1) that are affected by

the assignment of Ji. If Ji is scheduled by R I or R2, then the proof is straightforward.

Now suppose Ji is scheduled by R3 on the two d,-subcuhes starting at aj and aj+i in

pairs in P (i — 1). Then [aj, aj + 2di — 1] has no RPT left in 5 (i), so it is simply deleted

from P (i). We need to show that the new finish time fj+\ + (i* — rj) of [aJ+i, aJ+i +

2* — 1] is less than f j (the finish time of the remaining p-interval [aj + 2di,bj]). But

57

time
I

: 4

h

h
3 H

J3

E

E
J2 r

J 4

Figure 18: The profile from our feasibility algorithm after grouping.

58

this is true because of the way the two subcubes are chosen. Hence claim (2) holds

for i. □

This lemma shows the importance of scheduling jobs in decreasing dimension

order. By doing so, Ji can be scheduled on the di-subcube starting at any aj in

P (i — 1). The stair-like property will be used in the proof of the next theorem.

T h eo re m 3.5.2 The algorithm generates a feasible schedule i f and only i f the given

jobs can be feasibly scheduled.

P ro o f: We need only to prove the “if” part. Let S be any feasible schedule of the

job set J with deadline T. Assume that in S jobs Jo, Ji, - * •, J»-i are scheduled as in

S (i — 1). Clearly this assumption holds for 3 = 1 . We show that S can be modified

such tha t Ji is also scheduled in S in S(i). Then by induction, 5 can be transformed

to S'(n), the schedule generated by the algorithm.

Let P (i — 1) = (([a i ,6 i] , / i) ,* • • ,([a j ,6 j] ,/ i)) be the profile of S (i — 1). It must be

true that fi + U < T , since in S — S (i — 1) job Ji is scheduled between times ft and

T . Thus, the algorithm is able to schedule J,- and generate schedule S(i).

Suppose in ^(s) job J t- = (d», ti) is scheduled on subcube A = [a,-, aj + 2* — 1]

from f j to H = f j + U by R I (in which case j = 1) or R2, or on subcube A from f j

to T and also on subcube B = [a,+i, aJ+i + 2* — 1] from / J+i to H' = fj+\ + (U — rj)

by R3, where aj, ®j+i, f j , and /j+ i are from P (i — 1). If in S , Ji is scheduled in the

same manner as in S(i), then we are done. Otherwise, we modify S by rearranging

the jobs Ji, ••*, J„ in S’ — S (i — 1) so that Ji is scheduled as in 5 just as in S(i):

59

(1) Divide the time interval [0,T] into intervals of equal length £, with each

interval called a t-interval, so that each job in S is preempted or finished only at an

endpoint of some t-interval. This can always be done by choosing S sufficiently small.

For a t-interval 9, let J(0) = {J* : i < k < n, is scheduled in S over 9 }.

(2) Divide the m-cube into 2m~di di-subcubes across the entire interval [0,T].

Then line up the jobs in J(9) over each t-interval 6 in [0, T], so that no job is scheduled

on two dj-subcubes. (Note that (Vd* € d (0) : d* < d»).)

(3) To achieve the final rearrangement, we first move Ji to time interval [T —ti, T].

We require that T ' = T — U, II, and II' are endpoints of the t-intervals as well. Let

A ' = {91 : 0' is a t-interval on the left of T ' and Ji € «7(0')}, and let A = {9 : 9 is a

t-interval on the right of T ' and ^ J(0)}. Then the sizes of A ' and A must be equal.

Let g be any 1-1 function between A ' and A, i.e., we have A — { 9 :9 = g(9')A9 ' € A'}.

Now we move Ji over t-intervals in A ' to di-subcubes over t-intervals in A. Let

9' € A ', and let 9 — g(0') £ A. By the stair-like property of P (i — 1) (from induction

hypothesis and lemma 3.5.1), the number of di-subcubes in S — S (i — 1) over 9' is

no more than the one over 9. Since Ji is over 9' but not over 9, there are (at least)

2 * processors over 9 occupied either by jobs in J{9) — J{9') or by empty p-intervals.

So over 9, we can either find a di-subcube or arrange one (by moving around jobs in

J(9))y so that it only contains jobs in J(9) — J{9') or empty p-intervals. Thus, we

can interchange job J»- over 9' with the one in the di-subcube over 9.

(4) Finally, we move Ji now in [T',T] to the desired subcubes and time intervals,

depending on the rule used for scheduling Ji in 5(»):

60

If E2 is used, then (T 1 — f j A T = II). For each 9 in [T ',T], we interchange Ji in

its dj-subcube with the one in A and we are done.

If RI is used, then (T ' > f \ A II > / i) . For each 8 in [T ',T], we do the same as

when R2 is used. We swap Ji in subcube A over [T1, T] with the one in A over [/i, II].

Because A extends from f \ to T in S — S (i — 1), the swapping can be done.

If R3 is used, then (/ j > T '> f j+1) A (f j > IF > f j+t). For each 9 in [/j,T], we

do the same as when R2 is used. But for each 9 in [T', /,•], we interchange Ji with

that in B . We swap Ji in subcube B over [T;, fj] with the one in B over [/J+i,n'].
Since B extends from / J+i to T in S — S (i — 1), the swapping can be done. □

T h eo rem 3.5.3 The feasibility algorithm generates a feasible schedule with at most

min{ra — 2 , 2 m — 1 } number o f preemptions.

P ro o f: The first term in the above expression follows almost exactly from the argu

ments in [62]. J i is scheduled with no preemption, and each of the remaining jobs

may have at most one preemption. Hence, the maximum number of preemptions is

n — 1. This number can be reduced to n — 2 by scheduling the first n —1 jobs using the

algorithm and assigning job Jn entirely on the dn-subcube [a/, aj + 2* 1 — 1] starting

at f i in P{n — 1). (Recall that f t has the smallest finish time.)

Each preempted job Ji must occupy a <f;-subcube and finish on deadline T, with

the exception of the dn-subcube for Jn on which no job is preempted. Since there

are at most 2m processors in an m-cube, the theorem is then proven. The worst case

comes when all the preempted jobs plus Jn need 0-subcubes. This can be seen as the

61

worst case for preemptive scheduling on 2m identical processors (see Theorem 2.6 of

[18]). o

Now we examine the running time of the algorithm. The algorithm is implemented

by using a balanced search tree, which can be either an AVL tree or a 2-3 tree [35].

An example balance search tree is shown in Figure 19.

T h eo rem 3.5.4 The feasibility algorithm runs in 0 (n log to) time.

P ro o f: Obviously the task of sorting jobs in decreasing dimension order, if needed,

takes 0 (n log n) time. We shall show that each job assignment can be done in 0 {log n)

time. Then the theorem follows.

Let each node in the search tree have two fields [a, 6] and / , meaning that the

p-interval [a, b] has the finish time / . Initially, there is one node with its two fields as

[0,2TO — 1] and 0. After each job assignment, at most one new / T is resulted (from

R I or R3), and we insert one new node in the search tree with the assigned subcube

and this / as the two fields. When a subcube is used up after a job assignment

(from R2 or R3), we delete the assigned subcube from the p-interval in its original

node. For the case when this deleting results in an empty p-interval, then the node

is deleted from the search tree. Thus, the total number of nodes in the search tree

will be at most n + 1. Each of these node insertions or deletions, together with any

needed rebalancing, can be done in O(log n) time.

Determining which rule to apply for each job also takes O(logn) time. This

includes no more than a constant number of searches on the tree. □

Figure 19: A balanced search tree.

63

3.6 On Searching for the Minimum Finish Time

Next we show that to And the minimum finish time, we can do a binary search over a

time interval from T to 2T. Recall that T = max{ £ ”= 1 2diU/2m, i.e., the lower

bound for the finish time of any schedule. This time interval is less than the time

interval from T to £ "=i U, used by Chen and Lai algorithm.

T h eo rem 3.6.1 The minimum finish time schedule can be found by calling the fea

sibility algorithm no more than O (logT) times.

P ro o f: First we prove that it is feasible to schedule J with deadline 2T. From

inequation (2.4) in the proof of Theorem 2.4.1 in Chapter II, we have

Tl d f < (£ 2 dlti)/2m + ((2TO - 2 *) /2 " % (3.1)
«=i

< (]T 2dlU)/2m + ((2m - l) /2 m)th (3.2)
t = i

< T + ((2m - l) / 2 m)T (3.3)

< 2 T. (3.4)

Thus, the finish time of the LDF schedule for J is no greater than 2T. Then by

Theorem 3.5.2, J can be scheduled with deadline 2T. Using a binary search, we see

that the minimum finish time can be found by calling the feasibility algorithm no

more than O(log T) times. □

3.7 Conclusion

In this chapter, we have studied the problem of preemptive scheduling of n inde

pendent jobs on an m-cube. A new feasibility algorithm is presented that runs

64

in 0 (n logn) time and generates a schedule with at most min{n — 2 , 2 "* — 1 } pre

emptions, while a previous known feasibility algorithm runs in 0 (n a) time and pro

duces a schedule with up to n(n — l) / 2 preemptions. The minimum finish time

schedule is obtained through a binary search over a time interval of length T =

max{E"=i 2dlti/2 m,m ax{ti : 1 < i < n}}. This length is less than **)> w^ich

is used by the previous algorithm. Thus, the total running time for finding the mini

mum finish time schedule is 0 (n log n logT).

Since feasibility testing is one of the basic operation in job scheduling and many

scheduling algorithms require an efficient feasibility algorithm as a building block,

improvements resulting from our feasibility algorithm are important. Further, as

research presented in the sequel shows, our algorithm leads well to the development

of a polynomial algorithm for finding minimum finish time schedule.

It appears unlikely to reduce the running time of our feasibility algorithm even

further. Since scheduling job by decreasing dimension appears to play a fundamental

role in both nonpreemptive and preemptive scheduling, any algorithm would need a

sorting procedure which takes 0 (n log n) time.

In our studies, we have assumed that preemption takes no time. Although the

assumption is very common in scheduling theory, it would be interesting to consider

the case where job preemption cost is not negligible.

CHAPTER IV

A NEW ALGORITHM FOR PREEMPTIVE
SCHEDULING

4.1 Introduction

From the studies in the previous chapter, we have learned that we can find the

minimum finish time through a binary search over a time interval. The problem with

such a binary search is that the number of calls to the feasibility algorithm depends on

the numerical values of the job times tj*s, and finding the exact value of the minimum

finish time may take a long time. So, the complexity of the resulting algorithm for

finding the minimum finish time schedule is not a polynomial in n, the number of

jobs to be scheduled.

We show below that through an advanced search technique due to Megiddo [50],

the exact value of the minimum finish time can be found by calling our feasibility

algorithm no more than O (nlogn) times. The total running time for finding the

m inim um finish time schedule will be shown to be n 2 log2 n. The time complexity now

depends only on n. Therefore, such an algorithm has a truly polynomial complexity

in n.

In the following, we will first introduce Megiddo’s search technique. We will apply

the technique to find the minimum finish time schedule for the problem at hand.

65

66

4.2 Megiddo’s Search Method

Many combinatorial optimization problems can be formulated as linear minimiza

tion problems subjected to certain constraints. In [50], Megiddo considered a linear

minimization problem (called problem A) and a ratio minimization problem (called

Problem B).

Problem A:

Minimize ciX\ + . . . + cnx n

such that x = (x \ , . . . , xn) £ J3,

Problem B:

Minimize (a<j + a& i + . . . + onx„)/(6 0 + &i*i + • • • + bnx n)

such that x £ D.

where D is assumed to be the solution space of vectors of length n for the problems.

An example of a practical ratio minimization problem is that of minimizing cost-

to-time ratio. Megiddo proved the following relationship between the time complexity

of problem B and that of problem A.

T h eo re m 4.2.1 I f problem A is solvable within 0(p(n)) comparisons and 0(g(n))

additions then problem B is solvable in time 0(p(n)(g(n) + K w)))-

The proof given in [50] is constructive and leads to an algorithm for solving prob

lem B. This result is not directly related to our hypercube scheduling problem. But

67

technique he developed is very general and applicable to solving hypercuhe scheduling

problem. In his case, he solved problem B by calling the algorithm for problem A.

In our case, we will try to find the minimum finish schedule by calling our feasibility

algorithm. Therefore, we will explain the technique in his proof. This technique will

be used later for developing an algorithm for our problem.

Meggido explored the following rather standard trick for solving ratio minimization

problems. Given problem B, pick a real number t and get the following equation:

(do + dl*l + . . . + ®n*n)/(&o + 6 1 * 1 + . . . + bnxn) = t, (4.1)

or

(0 1 - bit)® 1 + b„t)®„ = tbo - a0. (4.2)

Next solve problem A with parameters c< = a* — tb<, where 1 < » < ».

Suppose that v is the optimal value of problem A. Then depending on the value

of t, we can have the following three cases:

® If v = tbo — ao, then t is the optimal value of problem B; and the optimal

solution vector x for problem A (for achieving the optimal value v) is also an

optimal solution vector for problem B.

• If v < tbo — do, then we know that a smaller t should be picked.

• If v > tbo — do, then we know that a greater t should be picked.

This procedure continues until the “correct” value t* is found. The question is how

to limit the number of tests of t before the “correct” t* is found. Assume we already

68

have an algorithm for problem A, called A-algorithm. Then the question becomes

how to use A-algorithm to search for this t*.

Depending on the value of t, the A-algorithm may follow different paths when

solving A with parameters q = a<—<6 ,-, 1 < t < n. These paths form a directed search

tree where branching points correspond to comparisons made by the A-algorithm.

At the beginning the parameters are linear functions (possibly constants) of t.

Consider the first comparison made by the A-algorithm. Since the algorithm compares

two linear functions of t, the outcome of the comparison may depend on t. However,

in any case there will be at most one critical value, say t j , such that for all t < <i,

one of the functions compared is greater than or equal to the other, and for t > t\

the other function is greater than or equal to the first one. Thus, the comparison

may partition the real line into two halves: [—oo,ti] and [ti,oo]. The comparison

corresponds to a branching point with an outgoing degree of 2 , and the two subtrees

correspond to the two halves: [—oo,ti] and [<i,oo].

As A-algorithm continues its execution, more comparisons are made. Each com

parison in the algorithm introduces a branching point in the search tree. In general,

a comparison occurs when the search in a subtree over an interval [e ,/] , where e and

/ are some real numbers satisfying — oo < e < / < oo. Since the comparison involves

two linear functions of t, there will be a critical value t' in [e, /] and the corresponding

branching point will have two subtrees corresponding to the two subintervals [e, t ']

and [$',/].

69

The above observation gives the following algorithm for solving problem B: solve

problem A parametrically over an interval which reduces throughout the computation,

and search for the “correct” value t*. At each branching point reached in the tree of

the A-algorithm, the corresponding critical value of t is tested by running A-algorithm

with t fixed at the critical value. Then the appropriate branch is selected and the

next branching point is considered. At the end, the optimal value of problem A will

be given in the form of a linear function v(t) defined over an interval [e, /] which

contains t*. The value t* is then calculated by solving v(t) = tbo — ®o-

4.3 Initial Algorithm Derivation

We have introduced Megiddo’s search technique above. The method is very general

and very powerful. In fact, it has been used before by Martel for a classical scheduling

problem [49]. We will use the search technique for our preemptive hypercube job

scheduling problem, and the new algorithm to be developed will be called the search

algorithm.

Let T* denote the minimum finish time needed to schedule the n jobs J<’s in J

on the m-cube. To find the minimum finish time schedule, we only need to find T*.

Since once we know T®, we can obtain the minimum finish time schedule by running

the feasibility algorithm with T* as the deadline.

We will search for this T* as an unknown deadline by calling the feasibility algo

rithm as a guide. Whenever we need to do a comparison that depends on the unknown

deadline, we generate a testing value, T , such that if T* < T then the comparison

will be true and if T* > T then the comparison will be false. To determine the result

70

of the comparison, we call the feasibility algorithm with a deadline T. This is similar

to determining which branch to take at a branching point in Megiddo’s algorithm for

problem B.

But how can we determine the optimal value T* for our problem? In Megiddo’s

algorithm, the final value of t* is found by solving an equation. Here we make the

following important observation for our case. The actual value of T* is found iff the

feasibility algorithm running with the testing deadline T can successfully schedule

all the jobs and it completes some job, say J ,, using the entire longest RPT of the

profile P (i — 1), i.e., t{ = r*. (Similar observation is made in [49] as well.) This fact

is apparent. Suppose we are given a smaller deadline T , then we will not be able to

schedule Ji since the longest RPT will be too short. On the other hand, if we are

given a larger T, then the longest RPT will be too long for any job to use all of it.

Therefore, in the search algorithm to be developed, we will try to detect this condi

tion. We need to make some modifications to our feasibility algorithm for this. When

the feasibility algorithm is called with a deadline T , the modifications corresponds to

the three cases that may arise:

1. T = T*, the above fact will be detected. We make the feasibility algorithm

return “found” ;

2. T < T*, then one of the jobs in J will not be able to finish within T . We make

the feasibility algorithm return “infeasible” ;

3. T > T*t then all the jobs in J can be scheduled before T . We make the feasibility

algorithm return “feasible”.

71

The modified feasibility algorithm is listed in Figure 20.

4.4 Detailed Algorithm

The search algorithm basically works in a similar manner as the feasibility algorithm

does. Before, the feasibility algorithm can determine where to schedule each job by

comparing <» of a job J{ with the RPTs of the current profile. Since we do not know

the X*, the search algorithm will make calls to the modified feasibility algorithm to

determine where and how to schedule each job. Each call will generate a testing

deadline X, and such a call is referred as a tes t Eventually, one of these testing

deadlines will cause the feasibility algorithm to return “found” . Once “found” is

returned, we know the feasible schedule generated by the feasibility algorithm is the

minimnm finish time schedule.

During the computation, the nonzero RPT values r, of the p-intervals in a profile

will be recorded as linear functions of T*. Initially, r i = X*. (Recall that P(0) =

(([0,2m —1],0)>.) After J\ is scheduled, we will have two p-intervals with their RPTs

being r% = T* —t\ and r% = X®, respectively. So after each job J< is scheduled, the re

values in P (i — 1) are updated (as we will describe), and a new set of linear functions

of X* will be formed in P{i).

Now assume that after the jobs J j , • • •, J i-i have been scheduled, we have a stair

like profile P (i — 1) (for 1 > 1)

(([« i » h] , / i) » • • * > ([< * / > M » / *)) •

Each /», where 1 < » < /, is a linear function of X*. Since = X* — /<, we shall use

72

A lgo rithm F*-Schedvle\
/* The algorithm generates a feasible preemptive schedule on an m-cube for a job
set J containing n jobs with deadline T . It also returns a message which can be:
infeasible, feasible, found */

f'1([0,2m — 1]) := 0; /* all processors are initially free */
message := ‘feasible’;
for i := 1 to n do

Find(di, U, fla g , o,-, oi+i);
case f la g o f

0: r e tu rn (‘infeasible’); /* can return before the loop is finished */
1: print(‘schedule’, J ;, ‘on’, [a;,a ; + 2* — 1], ‘from’, f j , ‘to’, f j + t,)',

F([aj, aj + 2* - 1]) := f j + t<;
2: print(‘schedule’, J*, ‘on’, [aj, a j -f 2* — 1], ‘from’, f j , ‘to’, T);

F([ai ,a J + 2 * - l]) := T;
if j = I th e n message := ‘found’; /* the minimum finish time is detected */

3: print(‘schedule’, J ,, ‘on’, [aj, aj + 2* — 1], ‘from’, f j , ‘to’, T);
print(‘schedule’, J,, ‘on’, [aJ+i ,a J+i + 2** — 1], ‘from’, fj+1 , ‘to’,

/i+ i + (U ~ rj))i
F{[aj ,a j + 2di - 1]) := T;
^ ([ai+i>aj+i + 2* - 1]) := /i+ i + (t* - Tj)

endcase
endfor;
return(m essage); /* reach here only if not returned in case 0 */

Figure 20: The modified feasibility algorithm.

73

both the r\ and the /* of [a*, bi\ in expressing our results. Let r* = z<T* + (and

f i = T* — T*i = (1 — ®j)T* + Jfi)* Hence, both r,- and / ; are linear functions of T* and

can be represented by an ordered pair So when we refer to the updates of r*

and we mean the updates of the values of z* and y{.

Now we describe the search algorithm to schedule J{.

First we do a test on the first p-interval to determine whether t* < r\ = x\T* + y\.

We call the feasibility algorithm with a testing deadline T = (i* — yi)/®i. Depending

upon the message returned, we have three different cases:

Case (1). The test returns “infeasible” , we know that U < r j. Job should be

scheduled on the first p-interval, we schedule Jj on [a i,a i + 2* — 1] by using rule R1

in the feasibility algorithm. We obtain P{i) by updating the first element ([ai,& i],/i)

in P (i — 1) as follows:

• if a i+2*** — 1 = &i, then the element is replaced by one new element ([m, &i], / i +

• else the element is replaced by two new elements ([<*i, ai + 2* — 1], f \ + U) and

([ai + 2di,5 i] ,/i) .

Case (2). The test returns “feasible”, then U > r\. We need to do more tests on

other p-intervals in P (i — 1) to determine which p-interval(s) J , should be scheduled

on. We claim that if j , where 1 < j < I, is the largest indexed p-interval which cause

the feasibility algorithm to return “feasible” , then the job should be scheduled on the

j th and (j + l) th p-intervals. Two questions need to be clarified in this claim:

74

• The first one is why we need to select this largest j t h p-interval. It will be easy

to understand this claim if we connect a test call on an p-interval in the search

algorithm with a comparison operation in the feasibility algorithm. Actually, a

“feasible” test of Ji on a p-interval with RPT Tj (a linear function of T*) in the

search algorithm is exactly like a U < Tj comparison in the feasibility algorithm.

Hence, the two p-intervals suggested for the search algorithm in the above claim

are exactly the same two p-intervals the feasibility algorithm would choose.

• The second one is how we can make sure that there exits a (j + l) th p-interval.

The answer is that the execution of the search algorithm is actually a run

of feasibility algorithm with a deadline T*. All the jobs must be able to be

scheduled by this deadline, so there must be a (j + l) th p-interval whose rJ+i

is greater than

Now we need to find the j th p-interval. To determine whether U < T j = X j T* + V j ,

we call the feasibility algorithm with a testing deadline T = (£< — y j) / x j . If the

feasibility algorithm returns “infeasible” , then ti < Tj and the desired index is greater

than j . If the feasibility algorithm returns “feasible” , we know that U > T j , and the

desired index is a t most j . Continue to do such tests until the desired j is found.

Once the index j is found, we know Jj should be scheduled on subcube [a,-, a j +

2* — 1] and subcube [a,-+i, aj+i + 2* — 1] by using rule R3 in the feasibility algorithm.

We obtain P (i) by updating both the j th and the (j + l) th elements of P (i — 1) as

follows:

• for the j th element ([o j,6 j],/j),

75

— if a j + 2* — 1 = bj , then the element is simply deleted,

— else the element is replaced by one new element ([a,- + 2*, &,],/,);

• for the (j + l) th element ([a,+ i,6i+ i],/i+ i),

— if + 2* — 1 = bj+i, then the element is replaced by one new element

([&j+i»&j+i]>/j+i + (U — r j))»

— else the element is replaced by two new elements ([aJ+i , aJ+i + 2^ — 1], f j + 1 +

— T j)) and ([flj+i + 2<fi,6J+ i] ,/J+i).

Case (3). The test returns “found”. This means we have found the optimal T*

on the first test, i.e., U — r j and T* = T = (U — y i)/x i.

Notice that a “found” can also be returned by a test during the search in case (2).

Suppose a “found” returned in a test of Ji on an E PT , say (1 < k < I). Then we

have U = Tk and T* = T = (t* — yk)/zh■ We should be careful about what causes the

return of a “found”. If k = I, then Ji used the entire longest RPT, and the “found”

should be returned by the feasibility algorithm. If k < 1, then we must have a later

job, say J j, that has its tj equal to the longest RPT of the profile P (j — 1). This is

because the feasibility algorithm returns a “found” iff there is a job that uses entire

longest RPT. This situation is described in Figure 21.

A complete high level description of the search algorithm, called Optimal-Schedule,

is given in Figure 22.

76

Figure 21: The feasible schedule when “found” is returned.

77

A L G O R IT H M Optimal-Schedule;

/* The algorithm can generate an minimum finish time preemptive schedule on an
m-cube for a job set J containing n jobs. */

1. Sort the n jobs in J by decreasing dimension.

2. « := 1; P (0) := <([0,2- - 1],0)>.

3. if “found” is returned during the search,
th e n goto step 5 immediately;
else schedule J i on the p-interval(s) and update the corresponding element(s)
in P (i — 1) to get P(*).

4. I f i < n, th e n i := i + 1 , and goto step 3.

5. Return the feasible schedule from the feasibility algorithm as the minimum
finish time schedule.

Figure 22: The search algorithm for minimum finish time schedule.

4.5 An Example

We will trace through a detailed example in this section to show how the algorithm

works.

E xam ple . Consider a 4-cube, and live jobs ordered by decreasing dimension as

J i = (3,4), = (2,4), J$ = (2,3.5), J 4 = (1,3.5), and J6 = (1,3.5). The scheduling

of each job, together with the updating of RPTs, is illustrated in Figure 23. The

steps are explained below:

a) Initially, we have a profile P(Q) which is

<([0,15],0))

with t*i = T*.

b) To schedule job J\ = (3,4), the search algorithm uses T = (4 — G)/l = 4

which causes the feasibility algorithm to return “infeasible” . So the algorithm

schedules J\ on the first p-interval (actually the only one). The new profile P (l)

is

{([0,7], 4), ([8,15],0)>

with r 1 = T* — 4, and r 2 = T*.

c) To schedule job Ja = (2,4), the search algorithm tries on the first p-interval

by setting T = (4 — (—4))/l = 8 . This test causes the feasibility algorithm

to return “feasible” . But a test on the second p-interval returns “infeasible” .

Hence, the first p-interval is the largest p-interval tested “feasible”. So the

processors

c)
Af

ter
 J

ob

2
sc

he
du

le
d.

d)

Af
ter

 J
ob

3
sc

he
du

le
d.

Fi
gu

re

23
:

Fi
nd

in
g

the

m
in

im
um

fin

ish

tim
e

sc
he

du
le

.

80

search algorithm schedules Ji to use up the RPT of the first p-interval and

schedules the remaining 4 — (T* — 4) = 8 — T* time of J i on the second p-

interval. The new profile P(2) is

<([4,7],4), ([8 ,1 1] ,8 - I ”), ([12,15], 0))

with Ti = T* — 4, r% = 2T* — 8, and 7*3 = T*.

d) To schedule job J 3 = (2,3.5), the search algorithm tests the three p-intervals by

calling the feasibility algorithm three times, and finds out that the second one is

the largest p-interval that causes the feasibility algorithm to return “feasible” .

So the search algorithm schedules J% on the second and third p-intervals. The

update profile P(3) is

(([4,7], 4), ([8 , 1 1], 1 1 .5 -2 7 "))

with r i = T* — 4, and 7*3 = 3T* — 11.5.

e) To schedule J 4 = (1,3.5), the search algorithm tests on the two p-intervals. The

first one causes the feasibility algorithm to return “feasible” and the second one

“found” . So the search algorithm finds out T* = T = (3.5 — (—11.5))/3 = 5

after the second test call. Thus the search algorithm finds the minimum finish

time even before the last job J 5 has been tested.

f) The minim 11m finish time schedule is the schedule generated by the feasibility

algorithm in step e).

81

4.6 Correctness and Analysis

From the above example, it is easy to observe that the search algorithm schedules each

job in exactly the same way as the feasibility algorithm does. The difference between

the two algorithms is that the feasibility algorithm uses a known deadline T and

can determine where to schedule a job, while the search algorithm use an unknown

deadline T* and has to rely on the feasibility algorithm to determine where to schedule

a job and to decide if the schedule is an optimal schedule. This relationship between

the two algorithms is evident in the derivation of the search algorithm. Therefore,

the search algorithm can always find the minimum finish schedule for a job set. We

summarize the result in the following theorem.

T h eo re m 4.6.1 For a given job set, the search algorithm always generates the min

imum finish time schedule.

We now consider the time complexity of the search algorithm.

T h eo re m 4.6.2 The search algorithm runs in 0(to3 log3 to) time.

P ro o f: Consider the search algorithm listed in Figure 22. Step 1 takes 0 (n log to)

time. But the time complexity of the algorithm will be determined by step 3, which

we will analyze in detail below.

Step 3 needs to efficiently do search, insertion, and deletion of tuples in a profile

. Although the balanced search tree used in the feasibility algorithm appears to be

a good choice, it cannot not be used here. This is because the finish time s in the

82

profiles of the search algorithm are linear functions of T*. They cannot serve as the

keys in the nodes of the search tree.

The data structure we use here is an ordered linear array. The size of the array

could be at most n + 1 , since the profiles used by the search algorithm could have at

most n + l p-intervals. Each array element is a record with 4 fields, which are used

to store a 4-tuple, say (aj, bj, Xj, yj). The first two numbers in the tuple represent the

j th p-interval, while the remaining two represent the parameters of the linear function

for Tj. To schedule job Ji, we need to search for the appropriate p-interval stored in

the array. Since the array is ordered and it has at most % elements corresponding

to the * p-intervals in the current profile P (i — 1), we can use a binary search over

the array elements to locate the desired p-interval within 0(log i) steps. Each binary

search step makes one test call to the feasibility algorithm. So the cost of finding the

p-interval is O(log t) calls to the feasibility algorithm. (See Figure 24.)

Once we have located the p-interval(s), Ji can be scheduled and we can update

the array through changing, deleting, or inserting element(s) as described in the

search algorithm while maintaining the ordering. Such updating takes O(t) time. To

schedule all of the n jobs, we need

0(1) + 0(2) + • • • + 0 (n) = 0 (» 3) (4.3)

time for array updatings, and at most a total number of

0(log 1) + 0(log 2) + -----1- 0(log t j) = 0 (n log n) (4.4)

calls to the feasibility algorithm. These calls dominate the time complexity of the

algorithm. Hence, the minimum finish time schedule can be found in 0 (n 3 log3 n)

83

n+1

Ki K2 k 3 Kl

Figure 24: Binary search over an ordered array.

time.

4.7 Conclusion

In this chapter, we have further studied the preemptive hypercube scheduling. We

have developed a new algorithm that can generate the minimum finish time schedule

in 0 (n 9 log9 n) time. The search algorithm follows the idea of our feasibility algorithm

to schedule each job in an decreasing dimensional order. During the scheduling of

each job, the algorithm tries to search the minimum finish time. The searching of the

m inim um finish time needs to make calls to our feasibility algorithm. The advantage

of the new search algorithm is that the time complexity is independent of the times

required by the job set.

One possible further research may be to find faster algorithms for the minimum

84

finish time schedule. One possible approach is to find ways to compute the mini

mum finish time directly. For a special case where all jobs have only two different

dimensional requirements, there exists a formula to compute T* [6, 7].

CHAPTER V

SUMMARY AND FUTURE RESEARCH

We have studied scheduling of n independent jobs on an m-dimensional hypercube

computer system. Each job is allowed to require a d,-subcube for U units of time.

We have considered finding the minimum finish time schedule for a given set of n

independent jobs. Jobs can be preemptive or nonpreemptive. We have developed

new algorithms for both scheduling problems. The contributions of this study are as

follows.

• For nonpreemptive scheduling:

— We have proposed an approximation algorithm called LDF. It has an ab

solute bound less than 2 and an optimal asymptotic bound. An important

practical advantage of the LDF algorithm is that as long as we can schedule

jobs by decreasing dimension, we can have more than 50 percent system

efficiency.

— We have proved a lower bound for the absolute bound of a class of algo

rithms including LDF, LDLPT, and FFDH. This result tells us that it is

unlikely to find simple heuristic algorithms in this class that can perform

much better than these algorithms.

85

86

• For preemptive scheduling:

— We have developed a feasibility algorithm that runs in O(nlog n) time and

generates a schedule with at most min{n — 2,2m — 1} preemptions.

— We have presented an algorithm that can generate the minimum finish time

schedule in 0 (n 2 log3 n) time. The algorithm is based on our feasibility

algorithm and Megiddo’s search technique which can avoid the drawbacks

of binary search method.

Compared with the classical scheduling theory, the area of scheduling jobs on

hypercubes, or on other message-passing multiprocessors, is rather new and very few

problems have been studied. As hypercubes and message-passing systems become

more and more popular, we believe that scheduling problems on such systems will

attract more and more attention. The following directions appear to be interesting

areas for future research.

The first direction is to consider extending hypercube scheduling problems in

“classical” manners. As we stated in Chapter 1, jobs may have many characteristics

in the classical scheduling theory. This is certainly true for hypercube scheduling.

For nonpreemptive hypercube scheduling, we may consider cases where jobs have

precedence relation. For preemptive hypercube scheduling, we may consider cases

where jobs have different deadlines, release times, or resource constraints. For ex

ample, Plehn have recently proposed a linear programming solution for cases where

jobs have different release times and deadlines [56]. But his algorithm is of very high

order of polynomial complexity. Reducing the complexity of his algorithm could be

87

an interesting research topic.

The second direction is to solve fragmentation problem. When a cube becomes

fragmented, even if there is a sufficient number of processors available in the cube,

they may not form a subcube large enough to accommodate an incoming job. The

fragmentation problem does not occur in our scheduling algorithms because we use

decreasing dimension. This situation may cause serious problems in dynamic hy

percube scheduling, where jobs come and go randomly. Our work may be extended

to dynamic scheduling. Thus efficient methods for reducing fragmentation must be

developed. Some methods, such as job migration [15], compaction [37], and virtual

cube [12], have been suggested. But solutions proposed so far are only for simple

cases. Many open problems in this area still need to be solved.

The third direction is to consider studying the scheduling on hypercube systems

with folding capability. In some systems, such as the Connection Machine, jobs can

be executed under virtual-machine model [69]. A user program may require a 20-

cube with V = 2ao processors. Depending on the available hardware, the system may

allocate P = 210 physical processors. The virtualprocessor ratio is V fP — 16. In

other words, we fold the required subcube into a smaller one, and the user program

will run at about of 1/16 the speed of the physical processor. Doing this increases the

user program execution time by about 16 times. But from the system point of view,

doing this may reduce the idle smaller subcubes in the system so that the the system

utilization is increased. For such systems, one needs to consider ways of incorporating

this folding capability of jobs into our scheduling algorithms.

88

Finally, the fourth direction is to consider job scheduling on k -ary n-cubes. Low

dimensional k -ary n-cubes have several advantages such as message-passing efficiency

over the binary cubes. They have been suggested for future median sized cube sys

tems, and several commercial systems based on meshes (or k -ary 2-cubes) have been

built. So far, only special cases of job scheduling on fc-ary n-cubes have been studied,

for example, job scheduling on binary cubes and job scheduling for mesh systems [46].

Compared with the special cases, job scheduling problem on general fc-ary n-cubes

appears to be much harder.

B i b l i o g r a p h y

[1] W. C. Athas and C. L. Seitz, “Multicomputers: message-passing concurrent
computers,” IEEE Computer, Vol. 21, No. 8, pp. 9-24, Aug. 1988.

[2] M. Ahuja and Y. Zhu, “An 0 (n log n) feasibility algorithm for preemptive schedul
ing of n independent jobs on a hypercube” , Inform. Process. Letters, 35 (1),
pp. 7-11, 1990.

[3] B. S. Baker, £ . G. Coffman, Jr., and R. L. Rivest, “Orthogonal packings in two
dimensions,” SIA M J. Comput., vol.9, pp. 846-855, 1980.

[4] S. N. Bhatt and I. C. F. Ipsen, “How to embed trees in hypercubes,” TR-443,
Yale University, Dec. 1985.

[5] S. N. B hatt, F. Chung, T. Leighton, and A. Rosenberg, “Optimal simulations of
tree machines,” Proc. 27th Annu. Symp. Foundations Comp. Sci., pp. 274-282,
Oct. 1986.

[6] J. Blazewicz, M. Drabowski and J. Weglarz, “Scheduling independent 2-processor
tasks to minimize schedule length,” Inform. Process. Letters, 18 (5), pp. 267-263,
June 1984.

[7] J. Blazewicz, M. Drabowski and J. Weglarz, “Scheduling multiprocessor tasks
to minimize schedule length,” IEEE Trans, on Comp., 35 (5), pp. 389-393, May
1986.

[8] D. J. Brown, B. S. Baker, and H. P. Katseff, “Lower bounds for on-line two-
dimensional packing algorithms,” Acta Informat., vol.18, pp. 207-225, 1982.

[9] T. F. Chan and Y. Saad, “Multigrid algorithms on the hypercube multiproces
sor,” IEEE Trans, on Comp., C-35, No. 11, pp. 969-977, Nov. 1986.

[10] G. I. Chen, and T. H. Lai, “Scheduling independent jobs on hypercubes,” in
Proc. 5th Symp. on Theo. Aspects o f Comp. Set., LNCS 294, pp. 273-280,
1988.

[11] G. I. Chen, and T. H. Lai, “Preemptive scheduling of independent jobs on a
hypercube,” Inform. Process. Letters, vol. 28, pp. 201-206, 1988.

89

90

[12] G. I. Chen, and T. H. Lai, “ of independent jobs on a hypercube,” Proc. Internal.
Conf. on Parallel Processing, pp. II 73-76, 1989.

[13] M. S. Chen, and K. G. Shin, “Processor allocation in an N-cube multiprocessor
using Gray codes,” IEEE Trans. Comput., C-36, pp. 1396-1407, 1987.

[14] M. S. Chen, and K. G. Shin, “On relaxed squashed embedding of graphs into a
hypercube,” SIAM J. Comput., Vol. 18, No. 6, pp. 1226-1244, Dec. 1989.

[15] M. S. Chen, and K. G. Shin, “Subcube allocation and task migration in hyper-
cube multiprocessor,” IEEE Trans. Comput., Vol. 39, No. 9, pp. 1146-1155,
Sept. 1990.

[16] W. W. Chu, L. J. Holloway, M. T. Lan, and K. Efa, “Task allocation in dis
tributed data processing,” IEEE Computer, 13 (11), pp. 57-69, Nov. 1980.

[17] P.J. Chuang and N.F. Tzeng, “Dynamic processor allocation in hypercube com
puters,” Proc o f Intemat. Symp. on Computer Architecture, pp. 40-49, 1990.

[18] E. G. Coffman, Jr. (ed.), Computer and Job Shop Scheduling Theory, New York:
John Wiley & Sons, 1979.

[19] E. G. Coffman, Jr., M. R., Garey, D. S. Johnson, and R. E. Tarjan, “Perfor
mance bounds for level-oriented two-dimensional packing algorithms,” SIAM J.
Comput., vol. 9, pp. 808-826, 1980.

[20] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson, “Approximation algorithms
for bin-packing - an updated survey,” in Algorithm Design for Computer System
Design, (G. Ausiello, M. Lucertini, P. Serahni, ed.), pp. 49-106. New York:
S pringer-Verlag, 1984.

[21] E. G. Coffman, Jr., M. R. Garey, and D. S. Johnson, “Bin packing with divisible
item sizes,” Journal o f Complexity, no. 3, pp. 406-428, 1987.

[22] W. J. Dally, “Performance analysis of k -ary n-cube interconnection networks,”
IEEE Trans, on Comp., Vol. 39, No. 6, pp. 775-785, June 1990.

[23] W. J. Dally and C. L. Seitz, “Deadlock-free message routing in multiprocessor
interconnection networks,” IEEE Trans, on Comp., pp. 547-553, May 1987.

[24] D. Z. Djokovic, “Distance-preserving subgraphs of hypercubes,” J. Combinato
rial Theory Theory Ser. B, 14 (3), pp. 143-146, 1977.

[25] S. D utt and J. P. Hayes, “On allocating subcubes in a hypercube multiprocessor,”
Proc. o f 3rd Conf. on Hypercube Computers and Applications, pp. 801-810, Jan.
1988.

91

[26] K. Efe, “Heuristic models of task assignment scheduling in distributed systems,”
IEEE Computer, Vol. 15, pp. 50-56, 1982.

[27] S. Foldes, “A characterization of hypercubes,” Discrete Math., 17 (2), pp. 155-
159, 1977.

[28] G. Fox, “The performance of the Caltech hypercube in scientific calculations,”
Report CALT-68-1298, California Institute of Technology, Apr. 1985.

[29] M. R. Garey, and D. S. Johnson, Computers and Intractability, a Guide to the
Theory o f NP-completeness, San Francisco: W. H. Freeman, 1979.

[30] R. L. Graham, “Bounds on multiprocessing timing anomalies,” SIA M J. Appl.
Math., vol. 17, pp. 416-429, 1969.

[31] R. L. Graham, E. L. Lawer, J. K. Lenstra and A. H. G. Rinnooy Kan, “Optimiza
tion and approximation in deterministic sequencing and scheduling: a survey,”
Proc. o f Discrete Optimization, 1977.

[32] J. P. Hayes, T. N. Mudge, Q. F. Stout, S. Colley, and J. Palmer, “A microproces
sor based hypercube supercomputer,” IEEE Micro, vol. 6, no. 5, pp. 6-17, Oct.,
1986.

[33] W. D. Hills, The connection machine, Cambridge, Mass.: MIT Press, 1985.

[34] C. T. Ho and S. L. Johnsson, “On the embedding of arbitrary meshes in boolean
cubes with expansion two dilation two,” Proc. o f the 1987 Intemat. Conf. on
Parallel Processing, pp. 188-191, 1987.

[35] E. Horowitz, and S. Sahni, Fundamentals o f Data Structures, Potomac, Md.:
Computer Science Press, 1976.

[36] K. Hwang, and F. A. Briggs, Computer Architecture and Parallel Processing,
McGraw-Hill, New York, 1984.

[37] C. H. Huang and J. Y. Juang, “A partial compaction scheme for processor al
location in hypercube multiprocessors,” Proc. Intemat. Conf. on Parallel Pro
cessing, pp. (I) 211-217, 1990.

[38] D. S. Johnson, “Fast algorithms for bin packing,” J. Comp. Sys. Sci., vol. 8,
p p . 272-314, 1974.

[39] S. L. Johnsson, “Communication efficient basic linear algebra computations on
hypercube architectures,” J. o f Parallel and Distributed Processing, 4 (2), pp. 133-
172, Apr. 1987.

92

[40] D. G. Kafura, and V. Y. Shen, “Task scheduling on a multiprocessor system with
independent memories,” SIA M J. Comput., vol. 6, pp. 167-187, 1977.

[41] B. Kruatrachue and T. Lewis, “Grain Size Determination for parallel processing,”
IEEE Software, 5 (1), pp. 23-33, Jan. 1988.

[42] J. Kim, C.R. Das, and W. Lin, “A processor allocation scheme for hypercube
computers,” Proc. Intemat. Conf. on Parallel Processing, pp. (II) 231-238,
1989.

[43] T. H. Lai and W. White, “Mapping pyramid algorithms into hypercubes,” OSU-
CISRC-1 / 89-TR 4, Ohio State University, 1989.

[44] K. Li and K. H. Cheng, “Complexity of resource allocation and job scheduling
problems in partitionable mesh connected systems,” Proc. First IEEE Symp. on
Parallel and Distributed Processing, pp. 358-365, 1989.

[45] K. Li and K. H. Cheng, “Job scheduling in partitionable mesh connected sys
tems,” Proc. Intemat. Conf. on Parallel Processing, pp. (II) 65-72, 1989.

[46] K. Li and K. H. Cheng, “Job scheduling in PMCS using a 2DBS as the system
partitioning scheme,” Proc. Intemat. Conf. on Parallel Processing, pp. (i)
119-122, 1990.

[47] V. M. Lo, “Heuristic algorithms for task assignment in distributed systems,”
IEEE Trans, on Comp., C-37 (11), pp. 1384-1397, 1988.

[48] Y. E. Ma and L. Tao, “Embedding among toruses and meshes,” Proc. o f the
1987 Intemat. Conf. on Parallel Processing, pp. 178-187, 1987.

[49] C. Martel, “Preemptive scheduling to minimize maximum completion time on
uniform processors with memory constraints,” Oper. Res., vol. 33, no. 6, 1360-
1380, 1985.

[50] N. Megiddo, “Combinatorial optimization with rational objective functions,”
Math. Oper. Res., vol. 4, 414-424, 1979.

[51] M. Mulder, “(0,A)-graphs and n-cubes,” Discrete Math., 28 (2), pp. 179-188,
1979.

[52] M. Mulder, “n-cubes and median graphs,” J. Graph Theory, 4 (1), pp. 107-110,
1980

[53] S. F. Nugent, “The iPSC/2 direct-connect communications technology,” Proc.
o f 3rd Conf. on Hypercube Computers and Applications, pp. 56-60, Jan. 1988.

93

[54] M. C. Pease, “The indirect binary n-cube microprocessor array,” IEEE Trans.
Comp., C-26, No. 5, pp. 458-473, May 1977.

[55] J. C. Peterson, J. 0 . Tuazon, D. Lieberman, and M. Pneil, “The Mark III
hypercube-ensemble concurrent computer,” in Proc. Intemat. Conf. on Parallel
Processing, pp. 71-75, 1985.

[56] J. Plehn, “Preemptive scheduling of independent jobs with release times and
deadlines on a hypercube,” Inform. Process. Letters, 34, pp. 161-166, 1990.

[57] G. S. Rao and H. S. Stone, “Assignments of tasks in a distributed processor
system with limited memory,” IEEE Trans, on Comp., C-28 (4), pp. 291-299,
1979.

[58] D. K. D. B. Sleater, “A 2.5 times optimal algorithm for bin packing in two
dimensions,” Inform. Process. Letters, 10, pp. 37-40, 1980.

[59] J. S. Squire and S. M. Palais, “Programming and design considerations for a
highly parallel computer,” AFIPS Conf. Proc., Vol. 23, pp. 395-400, 1963.

[60] Y. Saad and M. H. Schultz, “Data communication in hypercubes,” TR 428, Yale
University, Oct. 1985.

[61] Y. Saad and M. H. Schultz, “Topological properties of hypercubes,” IEEE Trans,
on Comp., 37 (7), pp. 867-872, 1988.

[62] S. Sahni, “Preemptive scheduling with due dates,” Oper. Res., vol. 27, no. 5,
pp. 925-934, 1979.

[63] C. L. Seitz, “The cosmic cube,” Comm. ACM, vol. 20, pp. 22-33, 1985.

[64] J. B. Sinclair, “Efficient computation of optimal assignments for distributed
tasks,” Journal o f Parallel and Distributed Computing, Vol. 4, pp. 342-361,
1987.

[65] H. S. Stone, “Multiprocessor scheduling with the aid of network flow algo
rithms,” , IEEE Computer, 10 (1), pp. 85-93, June 1977.

[66] H. S. Stone and S. H. Bokhari, “Control of distributed processes,” IEEE Com
puter, 11 (7), pp. 97-106, July 1978.

[67] H. Sullivan and T. R. Bashkow, “A large scale homogeneous, fully distributed
parallel machine, I,” Proc. J t̂h Ann. Symp. on Comp. Architecture, pp. 105-117,
1977.

94

[68] H. Sullivan, T. R. Bashkow, and D. Klappholz, “A large scale homogeneous, fully
distributed parallel machine, II,” Proc. 4th Ann. Symp. on Comp. Architecture,
pp. 118-124, 1977.

[69] T. W. Tucker and G. G. Robertson, “Architecture and applications of the Con
nection Machine,” IEEE Computer, Vol. 21, No. 8, pp. 26-38, Aug. 1988.

[70] J. D. Ullman, “NP-Complete scheduling problems,” J. Comp. Sys. Sci., vol. 10,
pp. 384-393, 1975.

[71] P. M. B. Vitanyi, “Locality, communication, and interconnect length in multi
computers,” SIA M J. Comp., 17 (4), pp. 659-672, Aug. 1988.

[72] A. Y. Wu, “Embedding of tree networks into hypercubes,” Journal o f Parallel
and Distributed Computing, 2 (3), pp. 238-249, August 1985.

[73] M. Y. Wu and D. D. Gajski, “Hypertool: a programming aid for message-passing
systems,” IEEE Trans, on Parallel and Distributed Systems, Vol.l, No.3, pp.
330-343, July 1990.

[74] Y. Zhu and M. Ahuja, “Job scheduling on a hypercube,” Proc. 10th Internal.
Conf. on Distributed Computing Systems, pp. 510-517, 1990.

[75] Y. Zhu and M. Ahuja, “Preemptive Job scheduling on a hypercube,” Proc. In
ternal. Conf. on Parallel Processing, pp. (I) 301-304, 1990.

