
222 lltt TRANSA('TI0NS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL. 4. NO. 2. FEBRUARY l Y Y 3  

Data Management and Control-Flow Aspects of 
an SIMD/SPMD Parallel Language/Compiler 

Mark A. Nichols, Member, IEEE, Howard Jay Siegel, Fellow, IEEE, and Henry G. Dietz, Member, IEEE 

Abstract-Features of an explicitly parallel programming lan- 
guage targeted for reconfigurable parallel processing systems, 
where the machine's -1- processing elements (PE's) are capable of 
operating in both the SIMD and SPMD modes of parallelism, are 
described. The SPMD (Single Program-Multiple Data) mode of 
parallelism is a subset of the MIMD mode where all processors ex- 
ecute the same program. By providing all aspects of the language 
with an SIMD mode version and an SPMD mode version that are 
syntactically and semantically equivalent, the language facilitates 
experimentation with and exploitation of hybrid SlMDiSPMD 
machines. Language constructs (and their implementations) for 
data management, data-dependent control-flow, and PE-address 
dependent control-flow are presented. These constructs are based 
on experience gained from programming a parallel machine 
prototype, and are being incorporated into a compiler under 
development. Much of the research presented is applicable to 
general SIMD machines and MIMD machines. 

Zndex Terms- Compilers, fault tolerance, languages, mixed- 
mode parallelism, parallel processing, PASM, reconfigurable ma- 
chines, SIMD, SPMD. 

I. INTRODUCTION 

WO approaches to parallel computation are the SIMD and T MIMD modes of parallelism. In the synchronous SIMD 
(Single Instruction-Multiple Data) [ 181 mode of parallelism, 
the processors are broadcast all of the instructions they are 
to execute and the processors operate in a lock-step fashion. 
In the asynchronous MIMD (Multiple Instruction-Multiple 
Data) [IS] mode of parallelism, each processor functions 
independently using its own program. In the SPMD (Single 
Program-Multiple Data) [ 141, [IS] mode, all processors 
function independently using their own program counters and 
all execute the same program. Because the processors will, in 
general, be operating independently on different data sets. they 
may be taking different control paths through the program. 

On parallel systems capable of operating only in a single 
mode of parallelism, i t  is often impossible to fully exploit 
the parallelism inherent in many application programs. This 
is because different parts of an application program might 

Manuscript received Octoher, 15, I9UO: revised Septcinher I .  I Y Y I .  This 
work was supported by the Oftice of Nakal Research under Grant NO0 Ol4 -YO-  
5-1483, by the National Science Foundation under Grant CDA-90 15h06. and 
hy the Naval Ocean Systems Center under the High Performance ('omputing 
Block, ONT. A preliminary version of portions ot t h i \  material was presented 
at Frontiers '90: The Third Symposium on the Frontier\ of Ma\sively Parallel 
Computation. 

M. A. Nichols is with NC'R, San Diego. CA 92127-180(1. 
H .  J .  Siegel and H. G. Dieti are with the Parallel Processing I.ahoratory. 

School of Electrical Engineering, Purdue University. West Lafayette. IN 
47907- 1285. 

IEEE Log Number 9204618. 

map more closely to different modes of parallelism [ 191, [23]. 
For instance, most parallel systems designed to exploit data 
parallelism operate solely in the SlMD mode of parallelism. 
Because many data-parallel applications require a significant 
number of data-dependent conditionals, SIMD mode is un- 
necessarily restrictive. These types of applications are usually 
better served when using the SPMD mode of parallelism. 
Several parallel machines have been built that are capable of 
operating in both the SIMD and SPMD modes of parallelism. 
Both PASM [9], [17], [51], [52] and TRAC [30], [46] are 
hybrid SIMDiMIMD machines, and OPSILA [2], [3] ,  [16] is 
a hybrid SIMDiSPMD machine. 

The research presented here is applicable to SIMD, SPMD, 
and combined SIMDiSPMD operation. Commercial SIMD 
machines like the Connection Machine [21], [54], DAP [22], 
MasPar [ 8 ] ,  and MPP [5], [6] have shown that developing 
parallel languages for programming and studying the behavior 
of such machines is important. While commercial MIMD 
machines, such as the Butterfly [ 131, iPSC Hypercube [35], and 
NCube system [20], are not restricted to SPMD mode, SPMD 
mode has wide applicability and is simpler to use because only 
one program and its interaction with copies of itself needs to be 
debugged (as opposed to having distinct interacting programs 
on different processors). For joint SIMD/SPMD machines such 
as PASM and OPSILA, because there exist tradeoffs between 
the two modes [7], [47], one can take advantage of both modes 
to attempt to improve performance. 

In addition to allowing the use of the more suitable mode 
when executing a task, being able to utilize two modes of 
parallelism within parallel programs provides more flexibility 
with respect to fault tolerance. Given a task that executes 
more effectively in SIMD mode than in SPMD mode, if a 
processor becomes faulty, the degraded system may be more 
effective in SPMD mode rather than in SIMD. Reasons for this 
may include that the needed redistribution of work among the 
processors will require irregular inter-processor data transfers 
and that the addressing requirements of the degraded system 
may no longer be uniform among the processors. Thus, being 
able to execute the same program both in SIMD mode or 
SPMD mode is needed to facilitate such a fault tolerance 
approach. The language presented here will support this. 

The Explicit Language for Parallelism (ELP)  is an explicitly 
parallel language being designed for programming parallel 
machines where the user explicitly indicates the parallelism 
to be employed. I t  will include constructs for both SIMD 
and MIMD parallelism. Thus, the full ELP language will be 
adaptable to SIMD machines, MIMD machines, and machines 



NICHOLS c’f a/  SlMDiSPMD PARALLEL 1 ANGUAGE- COMPILER ZZZ 

capable of operating in both the SIMD and MIMD modes. An 
ELP application program is able to perform computations that 
use the SlMD and MIMD parallelism modes in an interleaved 
fashion. 

The first target architecture for ELP is the PASM (Partition- 
able SIMDIMIMD) parallel processing system. ELP is cur- 
rently being developed o n  a small-scale 30-processor prototype 
of PASM (with 16 processors in the computational engine). 
PASM is a design for a large-scale reconfigurable system with 
distributed memory that supports mixed-mode parallelism (i.e., 
its processing elements (PE’s) can dynamically switch between 
the SIMD and MIMD modes at instruction level granularity 
with negligible overhead). ELP uses explicit specification of 
parallelism so that programmers can conduct experiments to 
study the use of SIMD, MIMD, and mixed-mode parallelism. 
Thus, the goal of ELP is to facilitate the programming of and 
experimentation with mixed-mode parallel processing systems 
by supporting explicit control of such systems. 

Many parallel algorithm studies have been performed o n  
the PASM prototype. Initially. these studies used assembly 
language, e.g., [SI, [17]. Currently, as a temporary measure. 
a combination of a C language compiler and AWK scripts 
(for pre- and post-processing) is used. Even though this 
permits the high-level specification of parallel programs, i t  is 
very inefficient and inflexible. These practical experiences in 
mixed-mode parallel programming and discussions with mem- 
bers of the PASM user community provided the motivation for 
the development of the ELP languageicompiler. 

This paper focuses on aspects of the joint SlMDiSPMD 
portion of the ELP languageicompiler. Also, the compi- 
lation/linking/loading process is described. In particular, a 
variety of inter-related data management, data-dependent 
control-flow, and PE-address dependent control-flow issues 
are examined. Their specification and implementation are 
discussed. Allowing the user to explicitly program mixed- 
mode SIMDiSPMD operation introduces problems not found 
if just a single mode were used. The language concepts 
presented may be adapted for use in most distributed-memory 
architectures capable of SIMD, SPMD, or SIMDiSPMD 
operation. 

Section I 1  addresses related work and Section 111 describes 
the parallel machine model. Joint SIMD/SPMD data manage- 
ment in ELP is presented in Section IV. Joint SIMDiSPMD 
data-dependent control-flow constructs and joint SlMDiSPMD 
PE-address dependent control-flow constructs are covered in 
Sections V and VI, respectively. In Section VII. SIMDiSPMD 
execution mode specification is discussed. Finally, the com- 
pilation, linking, and loading process for ELP is overviewed 
in Section VIII. 

11. RELATED WORK 

Many parallel languages have been developed o r  proposed 
that are based on either the SPMD mode of parallelism or the 
SIMD mode of parallelism. SPMD-based parallel languages 
include the Force [24], [25], the Uniform System (531, and 
the EPEX/FORTRAN System [ 141, [ 151. SIMD-based parallel 
languages include CFD [ 11, Glypnir (291. Actus (37)-[39), 

DAP Fortran [22], MasPar C and Fortran [ll], Parallel-C 
[28], Parallel Pascal [42], extensions to Ada [12], C* [44], 
and DAPL [43], [ S I .  

Existing parallel languages capable of supporting mixed- 
mode operation include CSL, Hellena, and BLAZE. While 
CSL and Hellena are targeted for the TRAC and OPSILA 
machines, respectively, BLAZE is untargeted. 

CSL (Computation Structures Language) [ lo]  is a PASCAL- 
like explicitly parallel job control language, targeted to TRAC, 
that supports the high-level specification and scheduling of 
SIMD tasks (specified via an “EXECUTE” statement) and 
MIMD tasks (specified via a “COBEGIN . . . COEND” state- 
ment). Dynamic switching between SIMD mode and MIMD 
mode is performed at the task level. 

Hellena (31 is an explicitly parallel preprocessed version 
of PASCAL, targeted to OPSILA, that supports dynamic 
mode-switching at the instruction level. SIMD mode is the 
default mode of execution, and the encapsulation “spmd . . . 
end-spmd” can be used to temporarily switch to SPMD 
mode. 

Unlike the previous two languages, BLAZE (311 (targeted 
for machines capable of SlMD and/or SPMD operation) han- 
dles parallelism in an implicit fashion. Specifically, BLAZE 
supports language constructs that provide multiple levels of 
parallelism that permit a compiler to extract the types of par- 
allelism appropriate for a given architecture, while discarding 
the remainder. 

A mixed-mode language is uriiform with respect to each 
mode i t  supports if all of the language’s constructs, operations, 
statements, etc., have interpretations within each of the modes 
with no difference in syntax or semantics [40]. The first 
parallel language proposed that supported this concept was 
XPC. XPC (explicitly Parallel C) [40], [41] is a C-like lan- 
guage that provides explicit specification and management of 
both the synchronous and asynchronous paradigms of parallel 
programming. XPC does not assume a particular execution 
model (e.g., SIMD machine, MIMD machine, SIMD/MIMD 
machine). 

The syntax of ELP is based on C [ 261 and has been extended 
with parallel constructs and specifiers (building on XPC and 
Parallel-C). The SIMD and SPMD modes of parallelism are 
supported by a full native-code compiler (under development), 
targeted to PASM, that permits these modes to be switched 
dynamically at instruction level granularity. (ELP will be 
extended to include full  MIMD capability.) ELP is a mixed- 
mode language that is uniform with respect to the SIMD and 
SPMD modes of parallelism. This feature allows data-parallel 
algorithms to be coded in a mode-independent manner, after 
which execution mode specifiers (see Section VII) easily can 
be added and changed when the program is to be compiled. It 
also helps support mixed-mode experimentation and reconfig- 
uration for fault tolerance. The mapping of data to memories 
to support this is discussed in  [MI. 

A significant difference between ELP and both CSL and 
Hellena is that ELP is uniform with respect to its modes of 
operation. while CSL and Hellena are highly nonuniform with 
respect to their modes of operation. Additional differences 
among ELP, CSL, and Hellena are: 1) ELP performs mode- 



224 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 2, FEBRUARY 1993 

switching at the instruction level whereas CSL performs it at 
the task level and 2 )  ELP is supported by a full native-code 
compiler whereas Hellena is preprocessed. Because BLAZE 
is an implicitly parallel language, comparisons with ELP’s 
explicit constructs are not appropriate. 

111. PARALLEL MACHINE MODEL 

This section defines the parallel machine model required 
for joint SIMDiSPMD operation in ELP. As discussed, the 
results proposed in this paper can also be applied to single- 
mode machines capable of SIMD or SPMD operation. After 
describing the general model, relevant features of a machine 
representative of this model are provided. 

It is assumed that the machine can operate in both the 
SIMD and SPMD modes of parallelism and that switching 
between these modes can be accomplished at the instruction 
level. An additional requirement is that memory be distributed 
among all processors. In SIMD mode, it is assumed that 
there is a control unit in charge of broadcasting instructions 
to the processors and that it is also capable of performing 
any scalar computations. In SPMD mode, i t  is assumed that 
the processors use their own program counters to execute 
an identical program located within their local memories. 
Special hardware must exist for: 1)  broadcasting data values 
from the control unit to all processors, 2 )  sending a data 
value from an arbitrary processor to the control unit, and 3) 
permitting the control unit to determine whether or not all 
processors possess a particular value. The machine must also 
support efficient SPMD barrier synchronization (i.e., forcing 
all processors to synchronize at a specific program location). 
Lastly, it is assumed that there are N : 2“ PE’s (Processing 
Elements-processor/memory pairs) addressed 0 to N - 1 
and that each PE can access its unique address (or number) 
at execution-time. 

The following material overviews the relevant portions of 
the architecture of the PASM parallel processing system as an 
example of a machine in the class described by the above 
model. The set of N = 2“ PE’s within PASM can be 
partitioned to form one or more independent submachines of 
various sizes (under certain constraints [52]). Each submachine 
has its own “virtual” SIMD CU (Control Unit). In PASM, the 
CU has access to special hardware for determining whether 
or not all PE’s possess a particular value (e.g., an “if-any” 
statement) [45]. Additionally, each PE has execution-time 
access to a memory-mapped location containing its unique 
address (or number). 

Each CU includes an FU (Fetch Unit). In SIMD mode, the 
CU CPU initiates parallel computation by sending blocks of 
SIMD code from the FU memory (which contains the SIMD 
code) to the FU queue. Once in the FU queue, each SIMD 
instruction is broadcast to all PE’s. While the FU is enqueuing 
and broadcasting SIMD instructions to the PE’s and the PE’s 
are executing instructions, the CU CPU can be performing 
its own computations-this phenomenon is called CUIPE 
overlap [27]. The FU queue can also be used to broadcast data 
values from the CU to all PE’s. Many pure SIMD machines 
have a CU/PE overlap capability (e.g., MPP [6], Illiac IV (41). 

In SPMD mode, the PE’s operate independently using 
their own program counters and execute an identical program 
located within their local memories. By performing a barrier 
synchronization, data values can be broadcast from the CU to 
all PE’s via the FU queue. Additionally, data values can be 
transferred from a specific PE to the CU (and vice versa) via 
a specialized hardware bus. 

Switching between SIMD mode and MIMD mode on PASM 
is handled by dividing the PES’ logical address space into 
an MIMD address space, where the PE’s access their own 
local memory, and an SIMD address space, where the PE 
memory requests are satisfied by the FU broadcasting SIMD 
instructions. Therefore, switching a submachine from SIMD to 
MIMD is implemented by broadcasting to the PE’s a branch 
to MIMD space, while switching from MIMD to SIMD is 
implemented by all PE’s independently branching from MIMD 
to SIMD space. Recall that SPMD mode is just a special case 
of MIMD mode. As can be seen, changing execution modes in 
PASM is performed solely by changing the source of control 
for the PE’s (i.e., changing the PES’ source of instructions 
to execute) and everything else (memory, registers, processor 
state, etc.) is unaffected when changing modes. At any point 
in time, all PE’s in a given submachine must be in the same 
execution mode. 

Given an ELP source file, the ELP compiler generates three 
distinct assembly output files. One is for the CU, one is 
for the FU, and one is for the PE’s. The CU file contains 
scalar instructions and data, and commands for broadcasting 
instructions to the PE’s. The FU file contains parallel instruc- 
tions to be broadcast to the PE’s. Lastly, the PE file contains 
instructions to be executed in SPMD mode and data for both 
SIMD and SPMD operation. Further information can be found 
in Section VIII. 

IV. JOINT SIMD/SPMD DATA MANAGEMENT 

This section describes data management issues for a 
distributed-memory program that uses both SIMD mode and 
SPMD mode and switches between the two modes one or 
more times at instruction level granularity. A discussion of 
these issues for programs that execute entirely in either SIMD 
mode or SPMD mode is provided at the end of this section. 

A .  Variable Classes 

All variables defined in ELP have a variable class associated 
with them. A variable defined to be of class mono always 
has a single value with respect to all PE’s, independent 
of execution mode (i.e., a mono variable is scalar-valued); 
whereas a variable defined to be of class poly can have one or 
more values with respect to all PE’s, independent of execution 
mode (i.e., a poly variable is vector-valued). (Execution mode 
specification in ELP is statically scoped and uses the keywords 
s imd and spmd-see Section VII.) Each mono variable 
(whether a global, local, or parameter) has storage allocated 
for it on the CU and all PE’s. If a mono variable is referenced 
while in SIMD mode, its CU storage is active. If a mono 
variable is referenced while in SPMD mode, its PE storage 
is active and all PE copies of the mono variable will have 



NICHOLS er al.: SIMDISPMD PARALLEL LANGUAGEICOMPILER 225 

m o n o  m o d e  

the same value (guaranteed by the compiler). More precisely, 
in SPMD mode mono variables are guaranteed to possess the 
same value across all PE’s at any point in an ELPprogram, 
not necessarily at any point in time. For variables defined to be 
poly, each PE has its own copy with its own value, independent 
of execution mode. 

The use of mono variables in an ELP program has different 
implementations depending on the execution mode employed. 
In SIMD mode, mono variables and operations on mono 
variables permit work to be done on the CU, and they permit 
CU/PE overlap to be explicitly specified. This, in turn, allows 
the user to experiment with load balancing between the CU 
and the PE’s. In SPMD mode, mono variables can be used 
to force if, while, do, and for statements on different 
PE’s to execute in the same fashion on all PES; for example, 
mono variables could be used as the index variable and as 
the common upper bound for a for loop with all PE’s. All 
PE’s must execute the same instructions, but not necessarily 
at the same time as in SIMD mode. Mono variables also 
permit other SPMD operations to be performed in an identical 
fashion across all PE’s, such as having each PE access the 
same element of an array. An example of declaring a mono 
integer variable x is: “mono int x:”. 

In a nonpartitionable machine, a poly variable declaration 
invokes a variable on each PE. If the target machine is 
partitionable, the extent of parallelism is the number of PE’s 
specified by the user to be in the submachine. On a partition- 
able machine, if an ELP program does not use any selector 
statements (defined in Section VI), it can be executed with 
many different extents of parallelism and a particular extent 
does not need to be specified until load-time. Specifically, 
the user is required to specify the submachine size (extent 
of parallelism) when loading an ELP program. ELP programs 
that employ selector statements must be recompiled whenever 
a different extent of parallelism is desired; this is discussed 
further in Section VI. An example of declaring a poly array 
variable y is: “poly char y [ 10 ] ; ”. This declaration would 
allocate an array of ten characters on each PE within the extent 
of parallelism specified at load-time. 

The keywords mono and poly are used in both C* (tar- 
geted solely for SIMD mode) and XPC (a machine-independent 
language). ELP’s interpretation of these keywords differs from 
these languages due to ELP’s explicit nature and target of 
distributed-memory SIMD/SPMD machine architectures. 

P o l y  

B. Assignment Statements 

Code generation for an assignment statement in ELP is 
dependent on the execution mode, the variable class of the 
Lvalue (left side of the statement), and the variable class of 
the Rvalue (right side of the statement). Tables I and I1 describe 
the code generated for assignment statements in SIMD mode 
and SPMD mode, respectively. 

ELP assignment statements in SIMD mode are similar to 
assignment statements proposed in the SIMD portion of the 
Parallel-C language [28]. In SIMD mode, when the Lvalue 
and Rvalue are both mono, a standard assignment is performed 
within the CU. Similarly, when the Lvalue and Rvalue are 

the CU L 
V 

sent to CU and stored 

at Lvalue location 

I Rvalue from exactly I one selected PE is 
assignment is I 

1 ~ ~ _ _ _ ~  

e 
U 

P o l y  

mono Rvalue on 

CU is broadcast to 

PES and stored 

at Lvalue location 

assignment is 
performed within 

each PE 

S P M D  

m o d e  

R v a l u e  

m o n o  P o l y  
1 

m o n o 

L 
V 

assignment is ansignment is 

performed within 

each PE each PE 

force barrier across PES 

and b’east unique selected 

PE’s Rvalue to Lvalue 

location on other PES 

ansignment is 

performed within 

each PE 

both poly, a standard assignment instruction is broadcast to 
(and subsequently performed within) each PE. In SIMD mode, 
when the Lvalue is poly and the Rvalue is mono, the Rvalue 
computed on the CU is broadcast to the PE’s and stored at the 
Lvalue location on the PE’s. For a SIMD mode assignment of 
a poly Rvalue to a mono Lvalue, it is undefined to have more 
than one PE selected. (PE selection is discussed in Sections 
V and VI.) When such an assignment is defined, the unique 
selected PE sends the Rvalue it computed to the CU, where it 
is stored at the Lvalue location. 

ELP assignment statements in SPMD mode are performed 
locally within each of the PE’s, except for assigning a poly 
Rvalue to a mono Lvalue. When such an assignment is 
performed, a barrier is forced across all PE’s so that a unique 
selected PE can broadcast the Rvalue it computed to all the 
other PE’s; the Rvalue is then stored at the Lvalue location 
on each of the other PE’s. Similar to the SIMD mode case, a 
SPMD mode assignment of a poly Rvalue to a mono Lvalue 
is undefined if more than one PE is selected. In SPMD mode, 
PE selection is done via a conditional statement (Section V) 
or a selector statement (Section VI) that allows only one PE 
to write to the mono variable under consideration. 

In ELP, it is required that all variables in an Rvalue ex- 
pression possess the same variable class (i.e., variable classes 



226 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL. 4, NO. 2 ,  FEBRUARY 1993 

must either all be mono or all be poly). If such a constraint did 
not exist, variables would have to be implicitly cast from one 
variable class to the other during the course of an expression 
evaluation. In SIMD mode this would entail the transfer of 
data from the CU to the PE’s or vice versa, and in SPMD 
mode a barrier across all PE’s is required when converting 
to mono. Therefore, in both execution modes, the overhead 
for performing such an implicit cast can be quite expensive. 
Due to the fact that ELP is an explicit language, casts between 
mono and poly values are required to be explicitly specified at 
the assignment level rather than implicitly at the operation 
level. Forcing explicit casting helps make the programmer 
more aware of these operations to facilitate their avoidance, 
when it is possible, when they are costly. 

C. Constants 

Constants in ELP do not have an explicit variable class 
associated with them. The ELP compiler implicitly determines 
(via a semantic analysis of the intermediate code) the variable 
class of a constant based on its context. Even though ELP is an 
explicit language, its support of constants does not involve any 
execution-time overhead and it is very straightforward for the 
programmer. The latter is shown with the help of examples. 

Given the following ELP code segment, the compiler would 
implicitly determine that the variable class of the constant was 
mono due to the fact that the variable class of the variable m 
is mono and because variables in an Rvalue expression must 
possess the same variable class. 

mono int m; 
poly int p; 

p = m + 4 ;  

If the above code segment was executed in SIMD mode, the 
constant would be required on the CU; for SPMD mode, the 
constant would be required on the PE’s. 

If the Rvalue expression contains constants and no variables, 
the compiler assigns the constants the variable class of the 
Lvalue. Within the next ELP code segment, the string constant 
is assigned the variable class mono (which is the variable class 
of the Lvalue); therefore, if the assignment below was executed 
in SIMD mode the string constant would be allocated only on 
the CU and if the assignment was executed in SPMD mode 
the string constant would be allocated only on each PE. 

mono char *m; 

m = ”Hello”; 

If an ELP program executes solely in SPMD mode, all 
constants will be stored on the PE’s. If an ELP program 
executes some code in SIMD mode, constants could be stored 
on both the CU and on the PE’s. 

D. Update Statements 

For joint SIMD/SPMD operation, a mono variable can 
have two distinct values-one on the CU and one on the 
PE’s-because all mono variables have storage allocated on 

the CU for when they are accessed in SIMD mode and storage 
allocated on the PE’s for when they are accessed in SPMD 
mode. The user is forced to keep track of these “dual” values 
because ELP is an explicitly parallel language. Often times a 
programmer will want to compute a mono value in a particular 
mode (SIMD or SPMD) and then want to “update” the “other 
value” before switching to the “other mode.” The static rule 
for when an update is necessary is as follows. If a mono is 
used as an Lvalue in SIMD mode and at a subsequent time as 
an Rvalue in SPMD mode (or vice versa), it must be updated. 

The syntax for an update statement is the following: 
“update list-of-mono-variables;”. If this statement is 
executed in SIMD mode, each of the listed mono variable’s CU 
value is transferred to all the PE’s to update the PE (SPMD) 
value. Similarly, if this statement is executed in SPMD mode, 
each of the listed mono variable’s PE value is transferred to 
the CU to update the CU (SIMD) value. In the latter case, at 
least one PE must be selected (discussed in Sections V and 
VI); if two or more PE’s are selected, an arbitrary selected 
PE’s value is transferred (all PE’s are guaranteed to have the 
same value). 

Due to the implementation of mono variables in SPMD 
mode (each PE maintains an identically-valued copy of each 
mono variable), a concern arises that the scalar-valued property 
of mono variables in SPMD mode could possibly be corrupted 
during the course of SPMD execution. By construction, an 
ELP assignment statement employed in SPMD mode ensures 
that when mono variables are used as Lvalues, the mon. vari- 
ables always remain scalar-valued (i.e., the mono varl ,ble’s 
value on all PE’s is identical). Similarly, an update statement 
that changes the PE (SPMD) version of a mono variable, by 
construction, maintains its scalar-valued integrity. Because the 
only way to change the value of a mono variable in ELP is 
via an assignment statement or via an update statement, in 
SPMD mode (and trivially in SlMD mode) all mono variables 
are guaranteed to remain scalar-valued. 

To ensure that mono variables are identically-valued across 
all PE’s in SPMD mode, the use of mono variables as Lvalues 
in SPMD mode is disallowed within the scope of a poly 
conditional statement (Section V) or a selector statement 
(Section VI). For example, the following is not allowed 
because it will violate the scalar-valued integrity of the mono 
variable ml: 

poly int p; 
mono int ml, m2, m3; 

if (p > 0) 
ml = m2; 

else 
ml = m3; 

This constraint does not apply to SIMD mode because mono 
variables are stored on the CU when executing in SIMD. 

E. Arra). Indexing 

Arrays can be declared as either mono or poly and a pointer 
variable pointing into the array would need to be of the same 



NICHOLS et al .:  SIMDiSPMD PARALLEL LANGUAGE/COMPILER 221 

m o n o  

B 
a 
S 

e 

TABLE 111 TABLE IV 
CODE GENERATION FOR ELP INDEXIVG OPERATION I \  SIMD  MOD^ CODt GEN~RATION FOR ELP INDEXING OPERATION IN SPMD MODI- 

force barrier across PES, 

b’cast unique selected PE’s 

offset to other PES, perform 

indexing within each PE 

indexing operation 

is performed 

within each PE 

indexing operation indexing operation 

O f f s e t  E x p r e s s i o n  

P o l y  I 

m o n o  

B 

O f f s e t  E x p r e s s i o n  

I P o l y  m o d e  

send unique selected 

PE’s offset to CU and 

perform indexing 

operation within CU 

indexing operation 

is performed 

within the CU 

1 I I 

S 

e 

P o l y  

mono offset expression is 

broadcast to each PE and 

indexing operation is 

indexing operation 

is performed 

within each PE 
performed within each PE 

is performed 

within each P E  

is performed 

within each PE 

variable class as the array. A pointer variable used to access 
an array is considered to be a base address variable. Code 
generation for an array indexing operation in ELP is dependent 
on the execution mode, the variable class of the base address 
variable (either an array variable or a pointer variable as is 
allowed in the C language), and the variable class of the offset 
expression. Tables Ill and IV describe the code generation 
for the array indexing operation performed in SIMD mode 
and SPMD mode, respectively. The code generated for ELP 
indexing operations in both SIMD mode and SPMD mode is 
analogous to that generated for ELP assignment statements in 
both modes. 

Consider indexing operations in SIMD mode (Table 111). 
If the base is mono, the array elements are stored on the 
CU, and if the base is poly, the array elements are stored 
on the PE’s. ELP indexing operations in SIMD mode require 
that the base and the result of the offset expression either 
both be on the CU or both be on each of the PE’s before 
the indexing operation can take place. When the base and the 
offset expression are both mono;a standard indexing operation 
is performed within the CU. Similarly, when the base and the 
offset expression are both poly, a standard indexing operation 
instruction is broadcast to (and subsequently performed within) 
each PE. When the base has variable class poly and the offset 
expression has variable class mono, first the value of the offset 
expression computed on the CU is automatically broadcast to 
the PE’s, and then instructions for performing the indexing 
operation with the CU computed offset are broadcast to the 
PE’s. For an SIMD mode indexing operation consisting of 
a mono base coupled with a poly offset expression, it is 
undefined to have more than one PE selected. (PE selection 
is discussed in Sections V and VI.) When such an indexing 
operation is defined, the operation is performed within the CU 
once the selected PE has sent the offset value to the CU. 

ELP indexing operations in SPMD mode (Table 1V) are, 
except for one case, performed locally on each of the PE’s. 
Similar to the SIMD case, an SPMD mode indexing operation 
consisting of a mono base coupled with a poly offset expres- 
sion is undefined if more than one PE is selected. When such 
an indexing operation is defined, a barrier is forced across 
all PE’s so that the unique selected PE can broadcast the poly 

offset it computed to all the other PE’s; the indexing operation 
is then performed within each PE. 

F. Inter-Processor Communication 

All inter-processor communication in ELP is handled with 
library routines. Because ELP is uniform, all inter-processor 
communication library routines must have an SIMD version 
and an SPMD version that are functionally equivalent. Con- 
sequently, inter-processor communication library routines in 
SIMD mode utilize network permutations, while the SPMD 
mode versions utilize one-to-one network connections. Further 
details are outside the scope of this paper. 

G. Single-Mode Operation 

For programs that execute entirely in SIMD mode, mono 
variables are allocated with a CU (SIMD) value and without 
a PE (SPMD) value, and Tables Wand IV no longer apply. 
Similarly, for programs that execute entirely in SPMD mode, 
mono variables are allocated with a PE (SPMD) value and 
without a CU (SIMD) value, and Tables I and 111 are no 
longer applicable. 

Along with ELP programs that are explicitly specified to 
operate solely in SIMD mode or solely in SPMD mode, the 
ELP compiler will provide users with an option for default 
single-mode operation. Given any ELP program, the compiler 
can be instructed to generate SIMD code solely or SPMD code 
solely, independent of any simd or spmd execution mode 
keywords (see Section VII) used within the program. 

V. JOINT SIMD/SPMD DATA-DEPENDENT 
CONTROL-FLOW CONSTRUCTS 

This section discusses control-flow constructs that are data- 
dependent (i.e., based on the values of data items), whereas 
Section VI discusses control-flow constructs that are based 
solely on PE numbers (addresses). The following terms are 
utilized by both Sections V and VI. PE’s that are specified 
to participate in the execution of a particular code block, 
independent of execution mode, are selected PE’s. A PE 
selection scope is a block of code that is to be executed by a 
certain set of selected PE’s, independent of execution mode. 



228 

i f  statement is 

performed 

within each PE 

IFFF TRANSACTION< ON PARALLFI AND DISTRIBUTED SYSTEMS. VOL 4. NO 2, FEBRUARY 1993 

i f  statement is 

performed 

within each PE 

if 

statement 

SIMD 

m o d e  

S P M D  

m o d e  

TABLE V 
CODE G ~ N ~ K A T I O N  FOK ELP IF S I A T t M E N l  

Variable Class of Conditional Expression 

m o n o  I P o l y  

compute poly conditional 

- b’cast PES where true 
if statement is 

performed 

within the CU 
“then” before b’casting 

PES where false “else” 

I 

The two basic control-flow constructs for PE selection in ELP 
(i.e., PE selection constructs) are the if statement employing 
a poly conditional expression (addressed in this section) and 
the selector statement (addressed in the next section). Both of 
these constructs are applied to either one or two static (i.e., 
known at compile-time) PE selection scopes. 

In the C language, data-dependent control-flow constructs 
include the if, while, do, and for statements. ELP supports 
control-flow statements such as if’s, while’s, do’s, and 
for’s by applying different parallel interpretations to them 
depending on the variable class of the conditional expression 
and the execution mode. Only the if and while statements 
will be discussed; the do and f o r  statements in ELP are 
closely related to the ELP while statement (the same is 
true in the C language). As with Rvalue expressions in  
ELP, variables within conditional expressions are required to 
possess the same variable class (i.e., variable classes must 
either all be mono or all be poly). The reasoning here is the 
same as that used in Section IV-B concerning the constraint 
on Rvalue expressions. 

A .  I f  Statements 

Code generation for the if statement in ELP, as shown in 
Table V, is dependent on the execution mode and the variable 
class of the conditional expression. The syntax for an if 
statement in ELP is the same as for an if statement in the 
C language. 

For a mono conditional expression in SIMD mode, a stan- 
dard if statement is performed within the CU. Similarly, for 
a mono or a poly conditional expression in SPMD mode, a 
standard if statement is performed within each PE. 

For the last case in Table V, a poly conditional expression 
in SIMD mode, an if statement is generated that performs 
data-dependent masking by executing the “then” clause PE 
selection scope with all PE’s that satisfy the poly conditional 
(i.e., all initially selected PE’s), succeeded by executing the 
“else” clause PE selection scope with all PE’s that do not 
satisfy the poly conditional (i.e., all initially unselected PE’s). 
One implementation for the support of nesting in this case is 
to maintain an activity stuck on each PE whose top-of-stack 

contains the current PE selection bit.’ If the top-of-stack bit 
for a PE’s activity stack is cleared (= 0) and an instruction 
is broadcast to the PE, the PE is unselected and does not 
execute the instruction. Similarly, if the top-of-stack bit for a 
PE’s activity stack is set (= 1) and an instruction is broadcast 
to the PE, the PE is selected and executes the instruction. 
Thus, the activity stacks are execution-time stacks that are 
used to keep track of the data-dependent PE selection patterns 
that occur at different control-flow nesting levels during the 
course of an ELP program. It is assumed that all PE’s in the 
submachine perform the push and pop operations associated 
with the activity stacks, independent of their selection status. 

To demonstrate the management of the activity stacks, 
consider a poly conditional if statement that possesses an 
“else” clause PE selection scope. The CU will command the 
FU to broadcast the following sequence of instructions to the 
PE’s. The “AND” operations below are for handling nested 
conditionals. 

1 )  perform the poly conditional expression so that a data- 
dependent PE selection bit is produced within each PE; 

2) copy (not remove) the top of the activity stack into 
“temp,” logically AND “temp” with the complement of 
the (just computed) PE selection bit, and push the result 
onto the activity stack (this result will control which 
PE’s execute the “else” clause); 

3) logically A N D  “temp” with the PE selection bit and push 
the result onto the activity stack (this result will control 
which PE’s execute the “then” clause); 

4) the “then” clause; 
5 )  pop and discard the top of the activity stack; 
6) the “else” clause; 
7) pop and discard the top of the activity stack. 
This stack management scheme is more fully described in 

[32]. 

B. While Stutements 

Similar to the if statement, code generation for the while 
statement in ELP, as shown in Table VI, is dependent on 
the execution mode and the variable class of the conditional 
expression. For a mono conditional expression in SIMD mode, 
a standard while statement is performed within the CU. 
Similarly, for a mono or a poly conditional expression in 
SPMD mode, a standard while statement is performed within 
each PE. 

For the last case in Table VI, a poly conditional expression 
in SIMD mode, the size of the set of selected PE’s decreases 
monotonically with the number of loop iterations of the 
while statement as a result of the conditionals between 
loop iterations. When the set of selected PE’s is null, the 
while statement terminates. This interpretation of the while 
statement obviously requires the use of the activity stacks and 
has been proposed in SIMD languages such as Actus [37]-[39] 
and Parallel-C [28]. 

’ This corresponds to the planned PASM prototype hardware enhancements 
1321. and differs somewhat from the current prototype implementation of this 
construct. 



NICHOLS et al.:  SlMDiSPMD PARALLEL LAN(;UAGEi<‘OMPIl.ER 229 

S I M D  

m o d e  

TABLE VI 
COIIF G L N E R A I I O ~  IOK E1-P WHILE S l A l t M l  h l  

consisting of l’s, O’s, and X’s (don’t care’s) that selects all 
PE’s whose physical address matches the PE-address mask. 

conditional tests are per- 

formed in each iteration 

- number of enabled PES 

decreases monotonically 

wh i 1 e statement 

is performed 

within the CU 

while 

statement 

Variable Class of Conditional Expression 1 m o n o  I P o l y  

S P M D  

m o d e  

while statement while statement 

is performed is performed 

within each PE within each PE 

For each iteration of a poly conditional while statement, 
the CU will command the FU to broadcast the following 
sequence of instructions to the PE’s (recall that all PE’s must 
perform the push and pop operations): 

1) perform the current iteration’s poly conditional expres- 
sion so that a data-dependent PE selection bit is produced 
within each selected PE; 

2) pop the current top of the activity stack into “temp,” 
logically AND “temp” with the current iteration’s (just 
computed) PE selection bit. and push the result onto the 
activity stack; 

3) the “body” of the while statement. 
The CU orchestrates the loop iterations and therefore needs 

to know when all of the PE’s are unselected so that i t  can 
terminate the statement. Because the PE selection information 
is held within the activity stacks on the PE’s, special hardware 
for an “if-any” operation is required to permit the CU to obtain 
this information. 

Code generated for ELP do and f o r  statements is very 
similar to that generated for the ELP while statement. The 
syntax for while, do, and for statements in ELP is the same 
as for while, do, and for statements in the C language. 

VI. JOINT SIMD/SPMD PE-ADDRESS 
DEPENDENT CONTROL-FLOW CONSTRUCTS 

Discussion in the previous section centered around control- 
flow constructs that are data-dependent (i.e., based on the value 
of data items). This section considers control-flow constructs 
that are based solely on PE numbers (addresses). Assuming 
the N PE’s in a system are numbered (addressed) from 0 to 
N - 1, the PE numbers are used as a basis for selecting PE’s. 

A. Selector Statements 

The construct that ELP uses to support PE-address depen- 
dent control-flow is the selector statement. The PE \election 
scope for selector statements is the block of code immediately 
following the statement, and the statement’s syntax and se- 
mantics are independent of the execution mode in which i t  is 
called. For ?V = 2“ PE’s addressed 0 to N-1, the specification 
format used is an 71-position PE-addre\c mayk (481. (SO] 

PE-address masks are a convenient notation for specifying PE 
selection patterns on large-scale parallel machines; examples 
of their use in the specification of common parallel algorithms 
are provided in [32], [49]-[51]. In SIMD mode, selector 
statements resemble the selector concept proposed in Parallel- 

The syntax for a selector statement that selects the even- 
numbered PE’s (for N = 16) is: “ [ X X X 0 ] ; ”. Within 
a PE-address mask, a repetition factor can be applied to a 
particular position. For instance, by using a repetition factor 
of 3 applied to the X, the following selector statement is 
equivalent to the previous one: “ [  ( 3 ) X  0 ] ;”. The use of 
mono variables as repetition factors is currently under study. 
Negative PE-address masks select all PE’s whose numbers do 
not match the mask; they are specified like regular PE-address 
masks except prepended with a minus sign. Given 16 PE’s 
numbered 0 to 15 executing in SIMD mode, the following 
code segment can be used to store the value of PE 5’s poly 
integer variable p into the CU’s mono integer variable m: 

C [28]. 

mono int m; 
poly int p; 

[ O  1 0 11; 

m = p; 
1 

As with data-dependent PE selection, PE-address dependent 
selection scopes can be nested (and a PE is selected only if it 
is selected by all PE-address masks in  the nesting). 

Code generation for the selector statement is based on 
the execution mode in effect when the selector statement is 
called. In SPMD mode, each PE (independently) determines 
at execution-time whether its address matches the PE-address 
mask used in the selector statement. If a PE determines that 
i t  has a match (i.e., the PE is selected), the PE proceeds to 
execute the corresponding PE selection scope (i.e., block of 
one or more ELP statements); if a PE determines that it does 
not have a match (i.e., the PE is not selected), the PE proceeds 
to branch around the corresponding PE selection scope. 

One way to implement this is as follows. The compiler 
generates an whit value hl, where bit i = 0 if position i 
of the mask is X, and bit i = 1 otherwise. The compiler 
also generates an whit value Q ,  where bit i is the value 
of position i of the mask for each non-X position, and bit 
i = 0 otherwise. It is assumed that each PE knows its own 
number, and at execution-time, each PE uses its own PE 
number, N U M ,  to compute (either in hardware or software) 
S = (Nr-Af G (2) A M .  If the result is zero, the PE has a 
match and is selected. 

Consider the following code segment for N = 16: 

[X x 0 11; 

/ *  PE selection scope * /  
} 



230 IEFF TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 2, FEBRUARY l Y Y 3  

Specifically, focus on the operation of PE 9 = (lOOl), as it 
executes the code segment. First, the compiler determines via 
the PE-address mask [ X X 0 1 ] that M = 0011 and that 
Q = 0001. Then at execution-time with N U M  = 1001, PE 9 
will generate 5’ as follows: 5’ = (1001 (E 0001)AOOll = 0000. 
Thus, PE 9 does have a match and is selected to execute the 
PE selection scope. 

In SIMD mode, when both data-dependent selection (dis- 
cussed in the previous section) and PE-address dependent 
selection are used, a PE is active only if i t  is selected by 
both selection schemes. For example, if AV = 8,  and only in 
PE’s 0 and 1 is the poly variable A > 0, then given the code: 

[ X  x 01; 

{ 

} 

if (A > 0 )  

/ *  PE selection scope * /  

only PE 0 is selected by both schemes and executes the PE 
selection scope. One way to implement this is to broadcast 
the M and Q representation of the PE-address mask to the 
PE’s and all currently selected PE’s compute (in hardware or 
software) 5’ = ( N U M  3 (2) A M .  Then the above example is 
processed by effectively executing: 

if (S == 0) { 
if (A > 0 )  { 

/ *  PE selection scope * /  
1 

} 

performing the activity stack manipulations described in the 
previous section. 

Due to the small size of the PASM prototype, the CU 
converts PE-address masks into 16-bit vectors, where bit t 

is 1 if PE i is to be selected, and PE I is sent bit I of the 
vector. For large N ,  this approach is inappropriate. 

As stated in Section IV, selector statements are dependent on 
the extent of parallelism that the user intends to employ during 
program execution. In general, given that an ELP program 
will be executed on a machine or independent submachine 
with P = 2 P  PE’s, all selector statements used in the program 
must contain exactly p PE-address mask positions (l’s,  O’s, or 
X’s). If the value of p changes, the selector statements must be 
modified accordingly so that the program’s parallel execution 
scales properly. 

B. Multiselect Statements 

A multiway selector statement incorporates the use of 
multiple PE-address masks into a single language construct. 
The syntax of the statement is demonstrated with the following 
example (assuming N = 16): 

poly int p; 

multiselect { 
[ X X X O ] : p = O ;  
[X x 0 11 : p = 1; 

break; 

default : p = 2; 
1 

As can be seen, the multiselect statement is very 
similar to the switch statement in the C language. How- 
ever, where the switch statement has integer cases, the 
multiselect statement uses PE-address masks. Like the 
switch statement, the multiselect statement permits 
control to proceed through the cases until a break statement 
is reached. 

Each PE tries to match its address with the given PE-address 
masks in the order specified within the multiselect state- 
ment. Once a PE’s address matches a PE-address mask, the 
PE executes the associated statements (i.e., the associated PE 
selection scopes) until it reaches a break statement or until 
it reaches the end of the multiselect. Thus, within a 
multiselect statement, a PE executes the ELP statements 
associated with the PE-address mask it  matched and those 
below that until encountering either a break statement or 
the end of the multiselect. When it  encounters a break 
statement, it exits the multiselect statement. In the above 
example, all even-numbered PE’s will execute the “p = 0;” 
statement. The set of PE’s that will execute the “p = 1;” 
statement are all PE’s that either match PE-address mask 
[X X X 0 1  or match PE-address mask [ X  X 0 11. 
The default statement is executed by all PE’s that have not 
executed a break statement. In the above example, the set of 
PE’s that will take the default are all PE’s that match the 
PE-address mask [X X 1 11. 

Code generation for the multiselect statement, like the 
selector statement, depends on the execution mode in effect 
when the statement is called. In SPMD mode, code generation 
amounts to performing a series of selector statements (one 
for each PE-address mask). Each PE needs to maintain a 
flag (initialized to false) that indicates whether its number 
has matched a PE-address mask (flag is true) or not (flag is 
false). If the flag is false, a PE branches over that mask’s 
associated statements and to the next PE-address mask. If the 
flag is true, a PE executes the multiselect’s statements 
(beginning with those associated with the mask it  matched) 
until it reaches a break statement (or until it reaches the end 
of the multiselect). Once a break statement is reached, 
a PE branches to the end of the multiselect. If a PE 
reaches the default (because it has not executed a break 
statement), i t  proceeds to execute the statements associated 
with the default . 

The only difference between the SIMD mode implementa- 
tion and the SPMD mode implementation is that instead of 
“branching over” instructions or statements that are not to be 
executed, the PE’s ignore them even though they are broadcast. 
The SIMD implementation of the multiselect statement 
is presented algorithmically. Each PE needs to maintain two 
single bit flags: one (“sflag”) that indicates whether it has 
matched a PE-address mask (flag is one) or not (flag is zero), 
and one (“bflag”) that indicates whether it has been broadcast 
a break statement (flag is zero) or not (flag is one). Let 
“top” be the single bit value currently on top of a PE’s local 
activity stack and let “push x” and “pop” be the local activity 



NICHOLS ef U / .  SIMDISPMD PARALLkL LANGUAGE COMPILFR 23 I 

[ sflag 0 ] 
[ bflag + 1 ] 
f o r  (every PE-address mask I from top to bottom) { 

[ computation of S, ] 
[ sflag - sflag V 7, ] 
[ push (top A sflag A bflag) ] 
[ 4(0l” , ] 
if (break encountered at end of \, o p  ) 

[ bflag - 0 ] 

POP 1 
} 

Fig 1 Code generotion tor multiselect \ t “mcn t  in SIMD mode 

stack operations of push the single bit value “x” and pop, 
respectively. From Section V-A, i t  is assumed that U / /  PE’s 
perform the local activity stack “push x” and “pop” operations, 
even if currently unselected. The default is treated as 
the bottom mask [ {n}x]  (for N = 3” PE’s) within the 
multiselect. Lastly, let S ,  and sc~o iw ,  be the “S” value 
(defined in Section VI-A) and PE selection scope. respectively, 
for the ith PE-address mask in the multiselect from top 
to bottom. Without loss of generality, assume that any break 
statement in .sujpcl must occur as the last statement. 

Fig. 1 depicts the SIMD implementation algorithm for the 
multiselect statement. If a statement is enclosed in square 
brackets, i t  signifies that the CU is to broadcast the statement’s 
instructions to all selected PE’s. Because a multiselect 
statement can be nested within another PE selection con- 
struct, there may be unselected PE’s prior to starting the 
multiselect’s execution. First, the CU broadcasts (to all 
selected PE’s) instructions for initializing “sflag” to zero and 
“bflag” to one. Then, the CU iterates over all consecutive PE- 
address masks from top to bottom within the multiselect. 
(Recall that the bottom PE-address mask is the default’s.) 
For PE-address mask i ,  the following is performed. The CU 
broadcasts (to all selected PE’s) instructions for computing 
S, and for storing in “sflag” the logical OK of “sflag” and 
S,. Therefore, a PE’s “sflag” value is one only if the PE has 
matched at least one of the PE-address masks from the top 
to %. (Recall from Section VI-A that a PE is selected only 
if “S” equals zero.) Broadcasting (to all PE’s) a push of the 
logical AND of both flags and the top-of-stack value selects 
only those PE’s who: 1 )  were selected prior to entering the 
multiselect, 2) have matched at least one PE-address 
mask, and 3) have not yet encountered a break statement. 
Such a selection pattern is the one required when broadcast- 
ing s c o p Z ’ s  instructions to the PE‘s. If, when broadcasting 
s c o p e , ’ ~  instructions, a break statement is encountered by 
the CU, the CU immediately broadcasts (to all selected PE‘s) 
instructions for setting “bflag” to zero. Based on the previously 
mentioned push operation, if a PE’s “bflag” value is zero, the 
PE will be unselected during the broadcasts of all remaining 
s c o p c , ’ ~ .  The ith iteration is concluded after a pop of the 
current PE selection status is broadcast (to ull PE’s). This 
restores the PE selection status in effect prior to entering the 
mu 1 ti select . 

ELP compiler c-c 7; 
linker 

cu.out 

loader loader 9 
Fig. 2. Flow chart going from ELP source to PASM. 

switches between the two modes one or more times at in- 
struction level granularity. More information on SIMDiSPMD 
execution mode management in ELP can be found in [34]. 

SlMDiSPMD execution mode specification is statically 
scoped and uses the keywords simd and spmd. Specification 
can be done on a per-block basis as 

simd { . . . }  spmd { . .  . }  

or on a per-function basis when a function is declared as 

,function-name ( ( . . . ) : s imd function-name ( ( . . . ) : spmd 
{ . ‘ . }  { . ‘ . }  

Execution mode specifiers can be nested and are kept 
track of with a compile-time stack. Recall that all PE’s in 
a machine (or in an independent submachine if the system is 
partitionable) must be in the same mode. 

To support simd functions and spmd functions in ELP, 
execution-time stacks for parameters and local variables must 
be maintained both on the CU and on each PE. Specifically, 
poly parameters and poly locals are pushed onto each PE’s 
execution-time stack (independent of execution mode); mono 
parameters and mono locals within an simd function are 
pushed onto the CU’s execution-time stack; and mono param- 
eters and mono locals within an spmd function are pushed 
onto each PE’s execution-time stack. Both simd and spmd 
functions can be executed within the scope of control-flow 
constructs that select a subset of PE’s to execute a block of 
ELP code. 

VlII. O V E K V l E b  OF THE 
C~MPILATION/LINKIrU(i/LOADING PROCESS 

Fig. 2 provides an outline of the process for going from 
an ELP source file to downloading machine code onto the 
PASM prototype. Boxes are utility programs and ellipses are 

input and output files. A dashed arrow indicates that only the 
file’s symbol table is input to the utility program. 

VII. SIMDiSPMD EXECUTION MODE Sf’EC’lFI~’ATl0N intermediate code files, solid indicate utility program 
This section describes execution mode specification for a 

program that uses both SIMD mode and SPMD mode and 



232 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 4, NO. 2, FEBRUARY 1993 

#define IN-SIZE 100 / *  input signal size * /  

poly int pInSignal[ INSIZE 1; / *  input signal * /  
poly int pOutSignal[ INSIZE-2 I ; / *  output signal * /  

MedianFilterO: simd 
{ 
mono int @os; / *  current window position * /  
poly int pW1, pW2, pW3; / *  current three window points * I  

for (mPOS = 1; mPOS < (IN-SIZE-1); “OS = @OS + 1 )  { 
pW1 = pInSignal[ mPos - 1 1; / *  obtain * /  
pW2 = pInSignal[ mPos 1; / *  window * /  
pW3 = pInSignal[ mpos + 1 1; / *  values * /  
update mpos; 
spmd { / *  determine median window value * /  

if ( ((pw1 <= pw2) & &  (pw2 <= pw3)) 1 1  
((PW3 <= PW2) & &  (pW2 <= PWl)) ) 

else if ( ((pw2 <= pw1) & &  (pw1 <= pw3)) I I 
poutsignal[ mpos 1 = pW2; 

((pW3 <= PW1) & &  (pW1 <= PW2)) ) 
poutsignal[ mpos ] = pW1; 

poutsignal[ mPos ] = pW3; 
else 

} 
1 

1 

main(): simd 
{ 

} 

MedianFilterO; 

Fig. 3. Sample ELP program for performing median filtering 

Before being input to the ELP compiler, an ELP source 
file is first modified by a standard C language preprocessor, 
which substitutes in constant values and expands macros. The 
ELP compiler generates three distinct serial assembly source 
files, each of which is assembled using the standard Unix 
System V 68000 assembler. One file is for the CU and contains 
SIMD mono global variable storage and SIMD mono variable 
computation code, another file is for the FU and contains 
SIMD poly variable computation code, and the last file is for 
the PE’s and contains SPMD mono global variable storage, 
SIMD/SPMD poly global variable storage, and all SPMD 
computation code. Data files to be processed are loaded into 
the PE’s by the memory management system. 

After the three distinct assembly source files have been as- 
sembled, the resulting three object files need to go through the 
linking process totally ordered in time. Specifically, the PES’ 
object file must be linked before the FU’s object file because 
the SIMD poly variable computations need to know the ad- 
dresses of the SIMD poly variables. The FU’s object file must 
be linked before the CU’s object file because the CU needs 
to know the addresses of the SIMD poly code blocks it will 
be sending from the FU memory to the FU queue. Thus, the 
symbol table information pertaining to the PE memory image 
is required during the FU’s linking process, and the resulting 
symbol table information pertaining to the FU memory image 
is required during the CU’s linking process. (The standard 
Unix System V 68000 linker has an option for incorporating 
an object file’s symbol table while ignoring its code and data 
segments.) After the three distinct object files have each been 
linked, the resulting CU, FU, and PE memory image files 
are downloaded onto the CU, FU, and all PE’s, respectively, 
within the PASM prototype, and execution can commence. 

All library routines have an SIMD version (invoked by 
the CU) and an SPMD version (invoked by the PE’s) that 
are semantically equivalent. Therefore, an ELP library is 
decomposed into three portions: a CU portion consisting of the 
SIMD routines’ mono codeldata, an FU portion consisting of 
the SIMD routines’ poly code, and a PE portion consisting of 
the SIMD routines’ poly data and the SPMD routines’ mono 
codeldata and poly code/data. Each portion of the library is 
linked during the corresponding linking process in Fig. 2. 

The ELP compiler’s scanner and parser were generated 
using the Purdue Compiler Construction Tool Set [36]. The 
ANTLR parser-generator included within the tool set builds a 
top-down parser and provides a flexible interface for manipu- 
lating inherited attributes, as well as a clean, concise, notation 
for action and rule specification. 

IX. SAMPLE ELP PROGRAM-MEDIAN FILTERING 

Median filtering is a one-dimensional windowing operation 
where for each position the window is applied across some 
digital input signal: the corresponding digital output signal 
value is simply the median value within the current input 
window. Fig. 3 illustrates a parallel median filtering program 
where an input signal is subdivided among all of the PE’s 
in the submachine. Due to the fact that the program does 
not contain any PE-address dependent control-flow constructs 
(i.e., selector statements or multiselect statements), the 
desired submachine size does not need to be specified until 
load-time. Each PE computes its local portion of the output 
signal by applying a window of size three to its local portion 
of the input signal. The PE’s function independently from one 
another because it is assumed that their local portions of the 



NICHOLS et al.: SIMDiSPMD PARALLEL LANGUAGE,COMPILER 

input signal are overlapped on both ends by two input signal 
points (as a result of a prior inter-PE data transfer). 

To keep track of whether a variable is mono or poly, the 
following variable naming convention is employed (although 
not required): all mono variable names are prepended with 
a lower case “m” and all poly variable names are prepended 
with a lower case “p.” Both the signal arrays pInSignal 
and poutsignal along with the current three window values 
pW1, pW2, and pW3 are declared to be poly variables because 
they all will be instantiated with different values on different 
PE’s. The windowing index mPos is declared a mono variable 
due to the fact that the windowing will proceed in an identical 
fashion across all PE’s, independent of execution mode. 

The MedianFilter routine starts and finishes in SIMD 
mode due to the declaration: “MedianFilter ( ) : simd.” 
Both the for statement employing a mono conditional ex- 
pression and the indexing necessary for obtaining the current 
three window values are performed in SIMD mode. Because 
in SIMD mode pInSigna1 is stored on the PE’s and 
mPos is stored on the CU, the array indexing operation 
“pInSignal [ mpos - 1 1’’ must broadcast the value of the 
mono expression “mPos - 1” to the PE’s so that they can 
use the value to offset into pInSignal (this was introduced 
in Section IV-E). Within the routine, only the data conditionals 
used to determine the median value within each window are 
performed in SPMD mode. An update statement is used to 
transfer the current value of mPos from the CU to the PE’s in 
preparation for switching from SIMD mode to SPMD mode 
via the spmd { . . . } encapsulation. 

X. CONCLUSION 

When trying to harness parallelism, it is useful to be 
able to employ multiple modes of parallelism within an 
application [19]. Features of an explicitly parallel language and 
corresponding compiler that combine the parallelism modes 
of SIMD and SPMD were presented. The proposed language 
is completely uniform with respect to the SIMD and SPMD 
modes of parallelism, is capable of switching modes at in- 
struction level granularity, and is to be supported by a full 
native-code compiler (currently under development). Due to 
the language’s uniform nature with respect to SIMD mode 
and SPMD mode, a given parallel program can be compiled 
to execute solely in SIMD mode (ignoring all mode specifiers), 
solely in SPMD mode (ignoring all mode specifiers), or 
utilizing both modes (adhering to all mode specifiers). Such 
a parallel language is important because: 1) it provides users 
with the ability to explicitly control different facets of mixed- 
mode parallel processing systems; 2) i t  serves as a foundation 
for the design of a compiler that automatically determines and 
specifies the best mode for code segments; 3) it simplifies 
mixed-mode programming by employing a single program 
model for both modes of parallelism; and 4) it facilitates the 
use of reconfiguration for fault tolerance. 

Specific language features addressed included data manage- 
ment, data-dependent control-flow, and PE-address dependent 
control-flow. For each of these language features, a clear 
specification and an efficient implementation were provided. 

233 

These features were developed as a result of experiences 
programming the prototype. All language concepts presented 
herein can be applied to distributed-memory machines capable 
of SIMD, SPMD, or SIMD/SPMD operation. 

There is a great deal that needs to be learned about the 
programming and design of mixed-mode parallel computers. 
An explicitly parallel language, such as ELP, provides a 
vehicle for the exploration of and experimentation with mixed- 
mode parallelism, and thus aids in this learning process. 

ACKNOWLEDGMENT 

The authors acknowledge many useful discussions with W. 
Cohen, S.-D. Kim, C. Krauskopf, J. Kuehn, W. Nation, T. 
Parr, P. Pero, D. Quammen, and J. Stuhlmacher. 

REFERENCES 

Ames Research Center, CFD: a FORTRANbased language for  Illiac 
IV, NASA, 1974. 
M. Auguin and F. Boeri, “The OPSILA computer,” in Parallel Lan- 
guages and Architectures, M. Consard, Ed. Holland, Elsevier Science, 
1986, pp. 143-153. 
M. Auguin, F. Boeri, J. P. Dalban, and A. Vincent-Carrefour, “Experi- 
ence using a SIMDiSPMD multiprocessor architecture,” Microprocess- 
ing and Microprogramming, vol. 21, Aug. 1987, pp. 171-177. 
G. H. Barnes, R. Brown, M. Kato, D. J. Kuck, D. L. Slotnick, and R. 
A. Stokes, “The llliac IV computer,” IEEE Trans. Comput., vol. C-17, 
no. 8, pp. 746-757, Aug. 1968. 
K. E. Batcher, “Design of a massively parallel processor,” IEEE Trans. 
Comput., vol. C-29, no. 9, pp. 836-844, Sept. 1980. 
-, “Bit serial parallel processing systems,” IEEE Trans. Comput., 
vol. C-31, no. 5, pp. 377-384, May 1982. 
T. B. Berg and H. J .  Siegel, “Instruction execution trade-offs for 
SIMD vs. MIMD vs. mixed-mode parallelism,” in Proc. Int. Parallel 
Processing Symp., May 1991, pp. 301-308. 
T. Blank, “The MasPar MP-1 architecture,” in Proc. IEEE Compcon, 
Feb. 1990, pp. 20-24. 
E. C. Bronson, T. L. Casavant, and L. H. Jamieson, “Experimental 
application-driven architecture analysis of an SIMD/MIMD parallel 
processing system,” IEEE Trans. Parallel Distributed Syst., vol. 1, no. 
2, pp. 195-205, Apr. 1990. 
J. C .  Browne, A. R. Tripathi, S. Fedak, A. Adiga, and R. N. Kapur, “A 
language for specification and programming of reconfigurable parallel 
computation structures,” in Proc. 1982 Int. Conf Parallel Processing, 

P. Christy, “Software to support massively parallel computing on the 
MasPar MP-1,” in Proc. IEEE Compcon, Feb. 1990, pp. 29-33. 
C. L. Cline and H. J .  Siegel, “Augmenting Ada for SIMD parallel 
processing,” IEEE Trans. Software Eng., vol. SE-I 1, no. 9, pp. 970-977, 
Sept. 1985. 
W. Crowther, J .  Goodhue, R. Thomas, W. Milliken, and T. Blackadar, 
“Performance measurements on a 128-node butterfly parallel processor,” 
in Proc. 1985 Int. Conf: Parallel Processing, Aug. 1985, pp. 531-540. 
F. Darema-Rodgers, D. A. George, V. A. Norton, and G. F. Pfister, 
Environment and System Interface for VMIEPEX, Res. Rep. RCl l381  
(#51260), IBM T. J .  Watson Research Center, 1985. 
F. Darema, D. A. George, V. A. Norton, and G. F. Pfister, “A single- 
program-multiple-data computational model for EPEXIFORTRAN,” 
Parallel Comput., vol. 7, no. 1, pp. 11 -24, Apr. 1988. 
P. Duclos, F. Boeri, M. Auguin, and G. Giraudon, “Image processing on 
a SIMDiSPMD architecture: OPSILA,” in Proc. Ninth Int. Conf Pattern 
Recognition, Nov. 1988, pp. 430-433. 
S. A. Fineberg, T. L. Casavant, and H. J .  Siegel, “Experimental analysis 
of a mixed-mode parallel architecture using bitonic sequence sorting,” 
J .  Parallel Distributed Comput., vol. 11, no. 3, pp. 239-251, Mar. 1991. 
M. J. Flynn, “Very high-speed computing systems,” Proc. IEEE, vol. 
54. no. 12. LID. 1901-1909. Dec. 1966. 

Aug. 1982, pp. 142-149. 

. .. 
[ 191 R. F. Freund, “Optimal selection theory for superconcurrency,” in Proc. 

Supercomput. ‘89, Nov. 1989, pp. 699-703. 
[20] J. P. Hayes and T. N. Mudge, “Hypercube supercomputers,” Proc. IEEE, 

vol. 77, no. 12, pp. 1829-1841, Dec. 1989. 
[21] W. D. Hillis, The Connection Machine. Cambridge, MA: M.I.T. Press, 

1985. 



234 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL. 4. NO. 2, FEBRUARY 1993 

[22] D. J. Hunt, “AMT DAP-A processor array in a workstation environ- 
ment,” Comput. Syst. Sri. and Eng., vol.  4, no. 2, pp. 107- 114, Apr. 
1989. 

1231 L. H. Jamieson, “Characterizing parallel algorithms,“ in The Characrer- 
istics of Parallel Algorithms, L. H. Jamieson. D. B. Gannon, and R. J. 
Douglass, Eds. 

[24] H. F. Jordan, “Structuring parallel algorithms in an MIMD, shared 
memory environment,” Parallel Comput.. vol. 3, no.  2. pp. 93- 1 IO. 
May 1986. 

[25]  -, “The Force,” in The Characteristics of Pal-allel Algorithms, L. 
H. Jamieson, D. B. Gannon, and R. J. Douglass. Eds. Cambridge, MA: 
M.I.T. Press, 1987, pp. 395-436. 

[26] R. W. Kernighan and D. M. Ritchie, The C‘  Programming Language. 
Englewood Cliffs, NJ: Prentice-Hall, 197X. 

1271 S. D. Kim, M. A. Nichols. and H. J. Siegel, “Modeling overlapped 
operation between the control unit and processing elements in an 
SlMD machine,” J. Parallel and Distributed Comput.. Special Issue on 
Modeling of Parallel Computers, vol. 12, no .  4, pp. 329-342, Aug. 
1991. 

[28] J. T. Kuehn and H .  J. Siegel, “Extensions to the C programming lan- 
guage for SIMDiMIMD parallelism,” in Proc. IYNS In / .  Cotif Parallel 
Processing, Aug. 1985, pp. 232-235. 

1291 D. H. Lawrie, T. Layman, D. Baer, and J .  M. Randall. “Glypnir-A 
programming language for llliac IV,” Commun. AC’M. vol. 1X. no. 3. 
pp. 357-164, Mar. 1975. 

[30] G. J. Lipovski and M. Malek. Parallel Computing: Theory uiid Com- 
parisons. New York: Wiley, 1987. 

[31] P. Mehrotra and J. Van Rosendale, ”The BLAZE language: A parallel 
language for scientific programming,” Parallel Comput.. vol. 5 .  no. 3 ,  
pp. 339-361, Nov. 1987. 

[32] W. G. Nation, S. A. Fineberg, M. D. Allemang, T .  Schwederski. T. 
L. Casavant, and H. J. Siegel, “Efficient masking techniques for large- 
scale SlMD architectures,” in Proc. Frontiers ’YO: Third Symp. Frontier-s 
Massively Parallel Computatioii. Oct. 1990, pp. 259-264. 

[33] M. A. Nichols, H. J. Siegel, H. G. Dietz. R. W. Quong, and W. 
G. Nation, “Eliminating memory fragmentation within partitionable 

IEEE Trans. Parallel Di.stributecl Syvtems, 
Special Issue on Parallel Languages and Compilers. vol. 2. no. 3, pp, 
290-303. July 1991. 

[34] M. A. Nichols. H. J.  Siegel, and H .  G. Dietz. “Execution mode 
management in an SIMDiSPMD parallel languagc/compiler,” in Pror. 
COMPSAC ‘91: Fifteenth Annu. I n / .  Comput. Softwarc and Appl. Conf, 
Sept. 1991, pp. 392-397. 

[35] S. F. Nugent, “The iPSCI2 direct-connect communications technology.” 
in Proc. Third Conf: Hypercube C’ompuf. arid Appl., Jan. 1988, pp. 
c 1 - (41 

Cambridge, MA: M.I.T. Press, 19x7. pp. 65- 100. 

[47] H. J. Siegel, J. B. Armstrong, and D. W. Watson, “Mapping computer- 
vision-related tasks onto reconfigurable parallel processing systems,” 
I€&E Comput. Mag., Special lssue on Parallel Processing for Computer 
Vision and Image Understanding, vol. 25, no. 2, pp. 54-63, Feb. 1992. 

1481 H. J. Siegel. “Analysis techniques for SlMD machine interconnection 
networks and the effects of processor address masks,” IEEE Trans. 
Comput., vol. C-26, no. 2. pp. IY-161,  Feb. 1977. 

[49] -, “A model of SIMD machines and a comparison of various 
interconnection networks,” IEEE Trails. Comput., vol. C-28, no. 12, pp. 
907-917, Dec. 1979. 

[SO] - . Iiiterconnrctiori Networks for Lar,ge-Scale Parallel Processing: 
Theory and Case Studiea, second cd. New York: McCraw-Hill, 1990. 

1511 H. J. Siegel, L. J .  Siegel, F. C. Kemmerer, P. T. Mueller, Jr., H. E. 
Smalley, Jr., and S. D. Smith, “PASM: A partitionable SIMDiMIMD 
system for image processing and pattern recognition,” IEEE Trans. 
Comput.. vol. C-30, no. 12. pp. 934-947, Dec. 1981. 

1521 H. J. Siegel, T. Schwederski, J .  T. Kuehn, and N. J. Davis IV, 
“An overview of the PASM parallel processing system,” in Computer 
Architecture, D. D. Gajski. V. M. Milutinovic, H. J. Siegel, and B. P. 
Furht, Eds. Washington. DC: IEEE Computer Society Press, 1987, pp. 
387-407. 

[53] R. H. Thomas and W. Crowther, The Uniform System: An approach tu 
runtime support for large scale shared memory parallelproce.ssor.s, BBN 
Advanced Computers, Inc., Cambridge. MA, 1 987. 

[54] L. W. Tucker and G. G. Robertson, “Architecture and applications of the 
Connection Machine,” IEE€ Compur. Mag., vol. 21, no. 8, pp. 26-38, 
Aug. 1988. 

[SS] P. Y. Wang, S. B. Seidman, M. D. Rice, and T. E. Gerasch, “An object- 
method programming language for data parallel computation,” in Proc. 
22nd Hawaii In/. Conf Sy.st. Sci., vol. 2, Jan. 1989, pp. 745-750. 

Mark A. Nichols (S’8h-M’91) received the B S 
degree in 19x5 with a triple major of electrical en- 
gineering, computer engineering, and mathematics 
(computer seienLe) trom Carnegie Mellon Univer- 
sity In 1986 he received the M.S.E E degree from 
the GeOrgid h t i t u t e  of Technology and in 1991 
completed the Ph D degree at Purdue University 
in electrical engineering 

He is currently with NCR, San Diego, CA While 
at Purdue, he was employed as the project leader 
for the design and implementation of a parallel 

. , I  ,,~,. 
1361 T. J. Parr, H. <;. Dietr. and W. E. (‘ohen, ”Purdue Compiler-Conatructlon 

~ “ ~ 1  set.” Tech. R ~ ~ ,  TR-EE 9 ~ 1 4 .  School of ~ 1 ~ ~ .  . purdue univ,, 
1990. 

1371 R. H. perrott, R. w. Lyttle, and p. s. Dhillon. .‘The design and imple. 
mentation of a Pascal-based language for array processor architectures.” 
1. Parallel Llistributed Comput., vol. 4, no. 3, pp. 266-7X7. June 3987. 

(381 R. H. Perrott. “A language for array and vector processors.” ACM Tram. 
Programming Languages and S w t . .  vol. I .  no. 2. pp. 177- 105. Oct. 
1979. 

[391 -, Paralkd Programmiiig. Reading. MA: Addison-Wesley. 1987. 
[40] M. J .  Phillip and H. G. Dietz, “Toward semantic \elf-consistency in 

explicitly parallel languages.” in Proc. Fourth I t i t .  C’onf Supercompur.. 
May 1989, pp. 398 4 0 7 .  

[41] M. J. Phillip, “Unification of synchronous and asynchronous models 
for parallel programming languages,” M.S.E.E. thesis, School of Elec. 

language and compiler for the reconfigurable PASM parallel processing system 
prototype. His research interests include parallel languageicompiler design, 
parallel architecture modeling, and interconnection networks. 

Dr. Nichols is a member of the IEEE Computer Society and the Association 
for Computing Machinery. 

Howard J~~ siege] ( M ’ 7 7 - S ~ ‘ 8 2 - ~ ’ 9 ( ) ) ,  for a photograph and biography, 
see the January issue of this TRANSACTIONS, p. 2. 

[451 

Enf., Purdue f n i v . ,  198’). - - 
A. P. Reeves, “Parallel Pascal: An cxtended Pascal for parallel com- 
puters,” J. Parallel Distributed Coinput.. vol. 1.  no. I ,  pp. 64-80, Aug. 
1984. 
M. D. Rice, S. B. Seidman, and P. Y. Wang. “A high-level language for 
SlMD computation,” in Proc. CONPAR 88, Sept. I Y X X ,  pp. 3x4-301. 
J. R. Rose and G. L., Jr. Steele, “C*: An extended C language for data 
parallel programming.” in Proc. Second Irir. Cimf Supercoinput.. vol. 2. 
May 1987. pp. 2-16. 
T. Schwederski. W. G. Nation, H. J. Siegel, and D. G. Meyer. “Design 
and implementation of the PASM prototype control hierarchy.” in Proc. 
Second Int. C o r i f :  Suuercomnut., vol. 1. Ma\ 1987. DO. 41X-427. 

Henry G. Dietz (M’91) received the B.S., M.S., 
and Ph.D. degrees in computer science from the 
Polytechnic Institute of New York. 

In 1986, he joined the faculty at Purdue 
University, West Lafayette, IN, where he is 
an Assistant Professor of Electrical Engineering 
(Computer Engineering). He has co-authored over 
40 technical papers primarily in compiler opti- 
mizationiparallelization and parallel architecture. He 
founded and leads CARP, the Compiler-oriented 
Architecture Research group at Purdue. Other - .  

[46] M. C. Sejnowski. E. T. Upchurch, R. N. Kapur, D. P.‘S. Charlu. and G. J .  
Lipovski, “An overview of the Texas Reconfigurablc Array Computer.“ 
in Proc. AFIPS 1080 Nut. Comput. Conf. June 19x0. pp. 631 -641. 

current research activities include development of PCCTS, the Purduc 
Compiler-Construction Tool Set. a collection of public domain software tools 
for construction of optimizing/parallelizing compilers. 


