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Parallel Algorithms for the Longest 
Common Subsequence Problem 

M i  Lu, Senior Member, IEEE. and Hua Lin 

Abstruct-A subsequence of a given string is any stling ob- 
tained by deleting none or some symbols from the given string. 
A longest common subsequence of two strings is a common 
subsequence of both that is as long as any other common subse- 
quences. The longest common subsequence problem is to find the 
longest common subsequence of two given strings. The bound on 
the complexity of this problem under the decision tree model 
is known as 7nn if the number of distinct symbols that can 
appear in strings is infinite, where m and n are the lengths 
of the two strings, respectively, and m 5 n. In this paper, we 
propose two parallel algorithms for this problem on the CREW- 
PRAM model. One takes O(log2 TIL + log n )  time with mn/ log m 
processors, which is faster than all the existing algorithms on 
the same model. The other takes O(log2 TIL log log m )  time with 
mn/ log’ T ~ L  log log m processors when log’ m log log m > log n, 
or otherwise O(1og n )  time with rnn/ log n processors, which is 
optimal in the sense that the time x processors bound matches the 
complexity bound of the problem. Both algorithms exploit nice 
properties of the LCS problem that are discovered in this paper. 

Index Terms- Concurrent-read exclusive-write parallel ran- 
dom-access machine (CREW-PRAM), grid directed graph, 
longest common subsequence, maximum-cost path, parallel 
algorithm, totally monotone array 

I. INTRODUCTION 

STRING is a sequence of symbols. Given a string, a A subsequence of the string can be obtained from the 
string by deleting none or some symbols, but not necessarily 
consecutive ones. If string C is a subsequence of both string 
A and string B, then C is a common subsequence (CS) of A 
and B. String C is a longest common subsequence (LCS) of 
string A and B if C is a common subsequence of both and 
is as long as any other common subsequences. For example, 
string “like” is the longest subsequence of strings “kliuke” and 
“allaiiakeu.” In general, there may exist more than one longest 
subsequences for two strings. Given two strings A and B with 
length m and n, m 5 n, respectively, the LCS problem is 
to identify a longest common subsequence of A and B. Fast 
solutions for this problem are requested very often in genetic 
engineering, data compression, editing error correction, and 
syntactic pattern recognition 111, [5], [13]. 

The lower bound on the time complexity of this problem has 
been studied by Aho et al. in [I]. They have shown that under 
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the decision tree model, in which all decisions concern whether 
two positions have the same symbol, the time complexity of 
the LCS problem is m n  if the number of distinct symbols 
that can appear in the strings is infinite. Sequential algorithms 
matching this bound can be found, among others, in [8] and 

In recent years, exploiting the parallelism of this problem 
attracts many research interests and several parallel algo- 
rithms have been designed [2], [3], [ l l ] ,  [12]. Among them, 
Aggarwal and Park [2] and Apostolic0 et al. [3] have in- 
dependently shown that this problem (and a more general 
problem called the string-editing problem) can be solved 
in O(1og m log n)  time using mn/  log m processors on the 
CREW-PRAM model, on which concurrent reads are allowed, 
but on which no two processors can simultaneously attempt 
to write in the same memory location. Their algorithms share 
the following basic idea: Relate the string editing problem 
to the problem of recognizing the shortest path from the 
source to the sink on a grid-directed graph. To identify the 
path, they use a divide-and-conquer scheme to compute the 
“distance matrix,” which records the minimum lengths from 
every vertex on the left (or top) boundary of the grid-directed 
graph to every vertex on the bottom (or right) boundary. These 
two algorithms differed in the “conquer” stage. In [2], an 
efficient technique for searching in a totally monotone array 
has been applied, whereas in [3], the cascading divide-and- 
conquer scheme has been used. These two results have been 
the best known ones in terms of the time bound. However, in 
terms of the time xprocessors bound, none of them matches 
the bound mn. 

Similarly to [2] and [3], this paper relates the LCS problem 
to the problem of finding the maximum-cost path on a grid 
directed graph. However, by defining a totally new concept 
for “cost matrix,” we exploit very nice properties of the LCS 
problem. ’ h o  fast algorithms are developed both on CREW- 
PRAM model. The first algorithm task O(log2 m + log n)  
time with m n l l o g m  processors, which is faster than any 
existing algorithms on the same model. (Remember that m 5 
n.) The second algorithm takes O(log2 mlogm)  time with 
mn/ log2 m log log m processors when log2 m log log m > 
log n; otherwise, it takes O(1og n)  time with m n /  log n proces- 
sors, which is optimal in the sense that the time xprocessors 
bound matches the complexity bound of the problem. 

The remainder of this paper is organized as follows. Sec- 
tion I1 shows how the LCS problem can be viewed as 
the maximum-cost path problem on a grid-directed graph, 
and provides an overview of our algorithms. Section 111 

191. 
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Fig. 2. Examples of cost matrix. 

- - - - - . . . 

1 2 3 4 5 6 7 8 9 1 0 1 1 - 1 2 1 3 -  

Fig. 1. The grid DAG associated with strings tcaggatt and gatttatgcagg. 

concentrates on exploiting properties of the LCS problem. 
Section IV gives the faster algorithm, and Section V presents 
the optimal algorithm. 

11. SOLVING THE LCS PROBLEM THROUGH GRID DAG 

A. The LCS Problem via Grid-Directed Acyclic Graph 

An lI x 12 grid directed acyclic graph (DAG) is a DAG 
whose vertices are the 11 x 12 grid points of an 11 x 12 grid. 
The only edges from vertex ( i , j ) ,  the grid point on the ith 
row and the j th  column, are to vertices ( i , j  + I) ,  ( i  + 1 , j )  
and (2' + 1, j + 1). Sometimes they are referred to as horizontal, 
vertical, and diagonal edges, respectively. Vertex (1, 1) is the 
source, and vertex ( 1 1 , 1 2 )  is the sink. Given an instance of 
the LCS problem, i.e., string A = a l ,  a2. . . . , a, and string 
B = bl , b2 . . . , b,, the grid DAG, G, associated with A and 
B is an (m + 1) x ( n  + 1) grid DAG such that each diagonal 
edge on G, say, from vertex ( i , j )  to vertex (i + 1, j  + l), 
is associated with cost 1 if symbol a, and symbol bJ in A 
and B are identical, and otherwise associated with cost 0. 
The cost of a path on G is defined as the sum of costs on the 
path. A maximum-cost path is the one with the maximum cost. 
Throughout we presume that 711, the length of A,  is a power 
of 2. As an example, Fig. 1 shows the grid DAG associated 
with strings tcaggatt and gatttatgcagg. The relation between 
the LCS problem and the maximum-cost path problem is seen 
as follows. 

Observation I: Any path with cost 1 on grid DAG G 
associated with strings A and B corresponds to a CS with 
length 1 of A and B. In particular, the maximum-cost path 
between the source and the sink corresponds to the LCS of 
A and B. 

So, to solve the LCS problem, we need to find only the 
maximum-cost path beginning at the source and ending at the 
sink on grid DAG G. To find this path, we are actually to find 
the maximum-cost paths from every vertex on the top row 
to every vertex on the bottom row. Similar to the previous 
research [2], [3], those paths will be identified under a divide- 
and-conquer scheme. We divide the (m + 1) x (n  + 1) grid 
DAG, G into two ( m / 2  + 1) x (n  + 1) grid DAG'S, the 
upper half, Gr; and the lower half, GL,  and then find the 
maximum-cost paths on GLj and GL in a recursive fashion. 

A vertex v on the bottom row is the j th breakout vertex with 
respect to vertex (1, i) if v is the leftmost vertex on the bottom 
row, such that there is a path of cost j from vertex (1, i) to 
v. Sometimes we call v a breakout vertex of vertex (1, i )  for 
short. In Fig. 1 ,  vertices (9, 2), (9, 3),  (9,4), (9, 5), and (9, 13) 
are the first, second, third, fourth, and fifth breakout vertices 
of the source. Note that there are no fifth breakout vertices 
with respect to some vertices, for example, (1, 8), because the 
maximum cost from vertex (1, 8) to the bottom row is 4. 

A fact about breakout vertices is this: The maximum-cost 
path between a vertex, say, v, on the top row and its j th  
breakout vertex, say w, on the bottom row on G must have 
cost j ,  if v does have the j th vertex. This is because all of 
the cost 1's appear on diagonal edges only. Indeed, if there is 
a path between vertex v and w with cost greater than j ,  then 
vertex w must not be a j th  breakout vertex of v, because we 
can always find a vertex w' to the left of w such that there 
exists a path between v and w' with a cost of j .  In general, 
the maximum-cost path between two vertices is not unique. 
Throughout this paper, we are interested only in the leftmost 
one among the maximum-cost paths between two vertices, in 
the sense that no vertices on the other paths lie to its left. 

The maximal possible cost of a path on an ( m + l )  x (n+ 1)- 
grid DAG is m. Hence, any vertex on the top row of the grid 
DAG has at most m number of breakout vertices on the bottom 
row. The information about breakout vertices can therefore be 
stored in an n x m matrix called cost matrix. A cost matrix 
associated with grid DAG G, denoted by DG, is defined as 
follows: For 1 5 i 5 n and 1 5 j 5 m, D ~ ( i , j )  = IC if 
vertex (m + 1, I C )  is the j th  breakout vertex of vertex (1, z), 
and DG (2, j )  = a~ if vertex (1, i)  does not have a j th  breakout 
vertex. Note that an entry in DG is really not a cost, but rather 
the location of a breakout vertex on the bottom row of G. By 
Db we denote the ith row of DG. Fig. 2 shows the cost 
matrices associated with Gu, the upper half of G shown in 
Fig. 1, and GL,  the lower half of G. 

B. The Main Structure of Our Algorithms 

algorithms consist of four phases. 
Now we give an overview of our algorithms. Basically, both 

1) Compute DG, for 1 5 i 5 m, where G; is a 2 x (n + 1)- 
grid DAG consisting of the ith and (i + 1)th rows of 
G. 

2) Recursively compute DG from DG" and DG,. 
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3) Identify vertices on the maximum-cost path between the 

4) Identify the LCS that corresponds to the maximum-cost 

Both algorithms that we designed for the LCS problem share 
the same implementations of Phase 1 and Phase 4, but differ 
in their implementations of Phase 2 and Phase 3. Phase I and 
Phase 4 are simple, so a short description on them is provided 
in the next subsection. The implementations for Phase 3 will 
be stated later in Sections IV and V. The implementations 
of Phase 2, which are critical for both algorithms, are quite 

source and the sink on G. 

path. 

that edge e has a cost of 1 and vertex V k  has column index 2. 

The LCS of A and B that corresponds to p can be obtained 
by ranking those marked symbols. Since the number of edges 
on p is bounded by n + m, and because checking the cost 
on an edge takes constant time, marking symbols in A can 
be done in constant time with n processors or in O(1ogn) 
time with n l l o g n  processors. The ranking job can be done 
in O(1og n) time with n/ log n processors using a standard 
technique [7]. Thus O(log n) time using n log n processors 
suffices for Phase 4. 

complicated. We provide some basic ideas in Section 11-D, and 
leave details to Sections IV and V. 

D. Ideas for Implementing phase 

A cost matrix contains all information about the costs of 

C. The Implementations of Phase I and Phase 4 

Our basic strategy for the LCS problem is divide-and- 
conquer. Given two strings A and B, to compute cost matrix 
DG of G associated with A and B,  initially we need to 
compute m cost matrices, with each being associated with a 
2 x ( n  + 1)-grid DAG as a base for “merge.” Let us now 
discuss the computation of the cost matrix of such a grid 
DAG, say, Gh. Suppose G’h consists of the hth and (h + 1)th 
rows of G. Let bj ,  bj,, . . . , bJT the jlth, jpth,. . ., j,th symbols 
in B, be all symbols identical to ah, the hth symbols in A,  
where j l  < j 2  < . . . < j,. The following facts are apparent, 
according to the definition of Gh. Any vertex on the top row 
of Gh has at most one breakout vertex; any vertex properly to 
the right side of vertex (1, j,), the j,th vertex on the top row 
of Gh, has no breakout vertex at all; and, finally, any other 
vertex ( l , j ) ,  1 5 j 5 j,, has a breakout vertex (2 , jk+ l ) ,  the 
(jk + 1)th vertex on the bottom row of Gh, where j k  satisfies 
j k - 1  < j < j k  ( j o  is defined as 0). In other words, the values 
of entries from D G ~ ( ~ ,  1 )  to D G ~  (j l ,  1) are j ,  + 1, the values 
of entries from D ~ ~ ( j l  + 1 , l )  to D ~ ~ ( j 2 , l )  are j 2  + 1, and 
so on. For those entries D G ~ ( ~ ,  1) where j ,  < j 5 n, the 
value is 30. As an example, for grid DAG G‘ shown in Fig. 
1, because a1 = t and b3 = bq = b5 = b7 = t ,  we have 
D G ~  = (4 ,4 ,4 ,5 ,6 ,8 ,8 ,0 ,0 , , ,oo ,oo)T.  

jl , j2 , .  . . , j ,  can be identified by sorting symbols of B, 
which can be done in O(1ogn) time with n processors [6 ] .  
j 1  , j 2  , . . . , j,, or 30 can then be properly assigned to the entries 
of D G ~  by the procedure below. D G ~  can be generated in 
O(1og n) time by using n/  log n processors; therefore, Phase 
1 can be done in O(1og n) time by using mn/ log n processors, 
for there are m such matrices to be computed in total. 

The procedure for generating D G ~  is as follows. 
1 )  Assign j k  - j k - 1  to D ~ ~ ( j k - 1  + 1, 1), for 1 < k 5 T ,  

and assign j1 + 1 to D G ~ ( ~ ,  1). 
2)  Compute the prefix for the entries of D G ~  from 

D G , ( ~ ,  1 )  to D G ~ ( ~ ~  + 1,l)  (refer to [7]), that is 
DG,, ( k ,  1) + E,”=, D G ~  ( j ,  l ) ,  for 1 5 k _< j ,  + 1. 

3) Assign 03 to entries of D G ~  from D G ~  ( jT  + 2 , l )  to 

Now we tum to Phase 4. In Phase 4, we trace the maximum- 
DGh (n,  1). 

the maximum-cost paths between vertices on the top row and 
vertices on the bottom row of a grid DAG, which allows us 
to compute DG, given D G ~  and D c L .  Before proposing a 
formula for computing DG from D G ~  and D G ~ ,  we would 
like to first examine their relations through the grid DAG. 

Consider vertex (1, i ) ,  its j th  breakout vertex, say, (m + 
l , i , ) ,  and the maximum-cost path, say, p ,  between them. 
Clearly, the cost of p is j ,  and i, is the value of entry D G ( ~ ,  j ) .  
Path p intersects the common boundary of Gbr and G L  at 
some vertex, say, (m/2 + l,Z,). Thus, vertex (m/2 + l , i , )  
partitions path p into two subpaths, say, p l  and p2:  Path p l  
goes from vertex (1,i)  to (m/2 + l , i q )  with certain cost, 
say, k ,  and path p:! goes from (m/2 + 1, i q )  to (m + 1,  iv) 
with cost j - k .  Since p is a leftmost path (we are interested 
in only the leftmost paths), each of p1 and p2 must be a 
leftmost path also. Consequently, vertex (m/2 + 1, i,) on G 
is the kth breakout vertex of (1 , i )  on GLI, whereas vertex 
(vi + l , i , )  on G is the ( k  - j)th breakout vertex of (1, i4 )  
on GL, respectively. In other words, D ~ ~ ( i , k )  = i, and 
D G ~ ( ~ ~ ,  k - j )  = i,, when k # 0 and k # j .  From these 
two equations, plus D ~ ( i , j )  = i,, we have D ~ ( i , j )  = 
D G ~ ( D G ~ ( ~ , ~ ) , ~  - j ) .  When k = 0 , p l  must go straight 
down from (1, i) to (”2 + 1, i,) (again, this is because p is 
a leftmost path); thus, i, = i. Consequently, p a ,  with a cost 
of j ,  must be the maximum-cost path from (m/2 + 1, i )  to 
(m + 1, iv), implying that D G ~  (2 ,  j )  = 2,. Therefore, we have 
D ~ ( i , j )  = D ~ ~ ( i , j ) .  Similarly, one can prove that when 
j = k ,  we have D ~ ( i , j )  = D ~ ~ ( i , j ) .  

Theorem I :  For 1 5 i 5 n and 1 5 j 5 m, we have the 
following condition: 

where both D ~ ~ ( i , j )  and D ~ ~ ( i , j )  are defined as oc for 
j > m/2, and D G ~ ( D G ~ ( Z , ~ ) , ~  - k )  is also defined as 00 

for D G ~ ( ~ ,  k )  = 30. 

As an application of Theorem 1, we can calculate DG (1,3) 
from D G ~  and D G ~ ,  shown in Fig. 2,  as follows. 

’ 

cost path p = (wl, w2, . . . , wl) obtained in Phase 3 from 
the source to the sink, and check the cost on each edge 
e = ( v k , w k + l ) .  Symbol ai in A is to be marked if we find 

DG(193) = min{DGLI(lr3),DGL(1,3),DGL 
( D G ~  (1 ,1 ) ,  21, D G ~  ( D G ~  (1,2) , 1 ) )  = 4. 
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Fig. 3. Illustrating the concept of k o p y  

Prooj? The correctness of Theorem I in the normal case 
in which the j th  breakout vertex of vertex (1,i) exists has 
been shown through the above discussion. Now we shall show 
that this theorem is also correct when vertex (1, i )  does not 
have a j th  breakout vertex. To do this, it suffices to show that 
D G ( ~ ,  j )  will be assigned DC: under this circumstance. 

Obviously, when vertex (1, i) does not have a j th breakout 
on G, neither vertex (1, i )  on GLI nor vertex (l! i )  on GL has 
its j th breakout vertex. So, the first two items, DG,, ( 2 ,  j )  and 
D ~ ~ ( i , j ) ,  in the above formula must be 00, which leaves us 
to show that D G ~ ( D G ~ ,  ( i ,  k ) , j  - k )  = 0;: for 1 5 k 5 j .  For 
a contradiction, we assume the existence of k ,  1 5 k 5 j ,  such 
that D G ~ ( D G ( , ( ~ , ~ ) , ~  - k )  = 'il and il is finite. Recalling 
the definitions in Theorem 1, we see that D G ~ ,  ( i ,  k )  must be 
finite. Let DG,, ( 2 .  k )  = 22. Then D G ~  ( i 2 , j  - k )  = 21. In other 
words, there exist two paths on G. One has cost k and goes 
from vertex ( l? i )  to ( m / 2  + 1, i 2 ) ,  and the other has cost j - IC 
and goes from vertex (771/2 + 1,&) to (m + 1,il). A path on 
G with cost j thus can be obtained by combining these two 
paths. The existence of such a path contradicts the fact that 

0 
A trivial but inefficient algorithm for computing DG is to 

apply Theorem 1 directly. Indeed, computing entry DG(Z, j) of 
DG from DcI, and D G ~  is nothing more than identifying the 
minima among O ( m )  entries, which can be done in O(1ogm) 
time using vi/ log m, processors. However, because there are 
in total n x VL entries of DG to be computed, nm2/ logm 
processors are needed in order to complete the computation 
in O(1ogm) time, which implies a computational time of 
O(log2 m) for generating DG with nm2/ log m processors. 
We must apply Theorem 1 in a much more efficient way. A 
better-organized form of this theorem is proposed below. 

A k-copy of a row-vector W of size m is a row-vector 
of size 2 m ,  denoted as C Y [ k , W ]  for some k between 1 
and m, such that entries of C Y [ k ,  W ]  from C Y [ k ,  W ] ( k )  to 
C Y [ k ,  W ] ( m  + k - 1) are copies of the entries of W from 
W(1) to W ( m ) ,  and other entries of C Y [ k ,  W ]  hold 00 (see 
Fig. 3). Given D G ~  and D G ~ ,  the n x m/2 cost matrices 
associated with Gv and GL,  we define n matrices M[D&],  
for 1 5 i 5 n, as follows (see also Fig. 4). 

1) The size of M [ D i ]  is I x ni, where 1 is the number of 

2)  For 1 5 j 5 I ,  the j th row of M[D&] is C Y [ j  + 
is the tth row of D G ~  

As an example, let D G ~ ~  and D G ~  be two matrices shown 
in Fig. 2. Fig. 5 shows matrices M[D&] and M[D:], respec- 

vertex ( 1, i) does not have a j th breakout vertex. 

breakout vertices of vertex (1,i) on Gu.  

] (here D D " U ( i ' j )  ' DG";i, ( iA  
G L  

with t = D ~ ~ , . ( i , j ) ) .  

Fig. 4. Illustrating the stmcture of M[D&].  

tively. Using matrix M[D&],  Theorem 1 can be rewritten as 
follows. 

Corollary I :  For 1 5 i 5 n and 1 5 j 5 m, we have the 
following condition: 

~ G ( i , j )  = lyi;l { DG,, (i,d1 D G L  ( i l  j ) !  ~ [ ~ & l ( k , j ) } ,  

where 1 is the number of breakout vertices of vertex (1, i )  on 

The efficient use of this corollary is addressed in Section 
IV and Section V, after we exploit some nice properties of 
DG and M[D&].  

GU. 

111. PROPERTIES OF DG AND M[D&] 
The objective of this section is to illustrate the information 

redundancy in DG and M[D&],  called k-variant, as well as 
another property of M[D&],  called totally monotone. Let us 
start with exploiting properties of cost matrix DG. 

A.  Properties of DG 
Here are some simple facts about DG, proofs of which can 

be found in [lo]. 
Proposition 1 : 

1) D ~ ( i , j l )  < D ~ ( i , j z )  if ji < j 2  and D ~ ( i , j i )  # 00. 

2 )  DG(i1 , j )  5 D ~ ( i 2 , j )  if i l  < 22. 

4) If D ~ ( i 1 , j l )  = IC and IC # 00, then there exists j 2  such 

5) If D ~ ( i ~ , j ~ )  = D G ( 2 2 , j a )  = kl, then there exists j 

The importance of Propositions l(4) and l(5) is that they 
suggest the similarity between rows in DG. Moreover, since 
rows in matrix M[D&] are nothing but copies of rows in 
D G ~ ,  they also suggest the similarity among M[D&]'s.  The 
following definitions are helpful in formalizing the information 
redundancy in DG and in M[D&].  Given a row-vector, a 
sub-row-vector of it is obtained from it by deleting none or 
some entries (not necessarily consecutive ones). If a row- 
vector is a sub-row-vector of more than two row-vectors, 
say, W1, W2, . . . , Wl, then it is a common sub-row-vector of 
them. (Without causing misunderstanding, we simply call it 
a common row-vector.) Those Wi's, each with size m, are 
k-variant if there exists a common row-vector of them such 
that the size of it is at least m - I C .  For example, any two 
consecutive row-vectors in DG" and D G ~  shown in Fig. 2 
are 1-variant. 

3) D G ( i  f 1, j )  5 DG(i,j + 1). 

that D G ( i 2 , j Z )  = IC for any 22, i l  < 22 < I C .  

such that D ~ ( i , j )  = IC1 for any i ,  il < i < 22. 
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Fig. 5.  M[D&]  and M[D&].  

Proposition 2: 
1) 0% and D;+:+’, the ith and (i + 1)th row of DG, are 

1-variant for 1 5 i 5 n. 
2) Any k + 1 consecutive rows of DG are k-variant. 

Proof: Proposition 2(2) is an immediate result of Propo- 
sition 2(1), so we prove only the latter. Without loss of 
generality, we assume that 00 exists in both DL and Ilk+:+’. 
We also assume that there are two numbers, 11 and 1 2 ,  such 
that D ~ ( i , l i )  # 00, D ~ ( i , l i  + 1) = ea, D G ( ~  + 1,lz) # 
00, and D G ( ~  + 1 , 1 2  + 1) = 00. To show that D& and D2.j’ 
are 1-variant, it suffices to show that each of these two rows 
contains at most one “finite” entry that is not in the other. 
Noticing that 11 2 22 (suggested by Proposition 1(2)), we 
actually need to show only that there exists at most one finite 
entry that is in D&, but not in 0:“. Three cases need to be 
considered, depending on the first entry in DL and D;+’: 
D G ( ~ ,  1) = D G ( ~  + 1, l), D G ( ~ ,  1) < D G ( ~  + 1, I ) ,  and 

The third case could not occur, according to Proposition 
l(2). Proposition 2(1) is held in the first case. In fact, DL 
is identical to 0;’’ when D G ( ~ ,  1) = D G ( ~  + 1,l). Indeed, 
for instance, if D G ( ~ ,  2) is not 00, then there exists j z  such 
that D G ( ~  + 1, jz )  = D G ( ~ ,  2) according to Proposition 1(4), 
where j z  must be less than or equal to 2. On the other hand, j 2  
should not be 1, because D ~ ( i + l ,  1) = D G ( ~ ,  1) # D G ( ~ ,  2). 
Therefore, we conclude that j 2  = 2; i.e., D G ( ~  + 1,2) = 
D ~ ( i , 2 ) .  Similarly, one can show that if D ~ ( i , 3 )  is not 
00, then D G ( ~  + 1 , 3 )  = D ~ ( i , 3 ) ,  and so on. As for the 
second case, except for D G ( ~ ,  l), all entries in 0% must also 
be in Indeed, since i + 1 5 D G ( ~ ,  1) < D ~ ( i , j )  for 
2 5 j 5 I1 (by Proposition 1(1)), entry D ~ ( i , j )  can be found 

0. 
To structurize the useful information in DG and in M[D&],  

we introduce several concepts. Consider k + 1 consecutive 
row-vectors in DG, say, 0% for il 5 i 5 il + k. Let 
L be a common row-vector of them. L can be partitioned 
into groups, L1, L z , . . .  , L,, such that entries in each 
group are consecutive entries in every Db. The remnant 
of D& with respect to L (the remnant of 0% for short) 
is a row-vector R[D&] = (Ri ,  R i , . - . , R ; + , )  such that 
0% = (Ri,  L I ,  R;, . . . , L,, Et,,). Note that there may be no 
entry in R;. The size of R[D&] is defined as the sum of sizes of 
Rj’s for 1 5 j 5 r + 1. In this paper, we are interested in only 
the largest partition, in the sense that for any two entries from 
two distinct groups, there exists i’, il 5 i’ 5 il + k ,  such that 
these two entries are not consecutive in D$. Clearly, under 
this assumption, the partition for groups are unique. Consider 
the first and second rows of D G ~  in Fig. 2 as an example. 
The common row-vector of them is L = (7,9,12), and the 
remnants of them are R[D&] = (2) and R[D$u]  = (3), 
respectively. 

DG(i ,  1) > DG(i + 1, 1). 

in 0;’:” according to Proposition l(4). 

Proposition 3: 
1) For k + 1 consecutive row-vectors D& of DG, il 5 i 5 

i l  + k ,  common row-vector L of D,?j and D S f k  is a 
common row-vector of the k + 1 row-vectors. 

2) L can be partitioned into at most 2k groups. 
3) Let RID&] = (A!! , . . . ,  R;+,) be the corresponding 

remnant of D&, where r > 0. Then Rfl is a subvector 
of R: when il < a2 and 2 5 j 5 r + 1. 

Proofi To show’ that L is the common row-vector of 
D&’s, for il 5 i 5 il +k ,  we need to show only the following: 

1) Any “finite” entry in L appears in every D&. 
2) The number of “00” entries in L are no more than that 

Statement 1) is true because if, for instance, w is a “finite” 
entry in L, i.e., there exist j l  and j z  such that D ~ ( i 1 , j l )  = 
D ~ ( i l + k , j 2 )  = w, then for any i, i l  < i < il+k, there exists 
j such that D ~ ( i , j )  = w (by Proposition l(5)). Statement 2) 
is true because, in fact, Proposition l(2) suggests that there 
are at least as many 00 entries in D& as in D,?j for il < i. 

L can be obtained from either Dzl or D i l f k  by deleting 
at most k entries; therefore, it should be of no problem to 
partition L into no more than 2k groups such that entries in 
each group correspond to consecutive entries in both D2 and 
D$+k. Now, to show Proposition 3(2), we shall show that 
the partition is valid for D&’s for ,il < i < il + k .  That 
is, if w1, W Z ,  . . . , W h  are h consecutive entries in both Dg 
and Dk+k under this partition, then they are also consecutive 
in any D&, for i l  < i < il + k.  The existence of those 
entries in DL’s is certain by Proposition l(5). To show the 
consecutivity, we assume that there exists entry w in D& such 
that w1 < w < wl+l, 1 5 1 < h, for a contradiction. Since 
w1 is an entry in D2+k, we have il + k: < W I .  Because of 
i < il + k ,  il + k < w1, and w1 < w, we have i < il + k < w. 
By Proposition 1(4), w must be an entry also in D 2 f k .  The 
assumption that w is between wl and W Z + ~ ,  thus implying that 
wt and WZ+I are not consecutive in D2+k, a contradiction. The 
proof of Proposition 3(3) is similar to the proof of Proposition 
3U). 

The following theorem is an immediate result from Propo- 
sition 3. 

Theorem 2: Each row-vector 0% of any k + 1 consecutive 
rows of DG can be represented by a common row-vector of 
these consecutive rows and a remnant such that the common 
row-vector consists of at most 2 k  groups, and the remnant 
contains at most k entries. 

B. Properties of M[D&] 
The information redundancy in matrix M[D&],  along with 

another important property of M[D&],  called torally monotone, 
is illustrated in this section. 

in any D&’s. 
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Let X = (X1,X2,...,Xm) and Y = ( Y 1 , Y Z l . . . , Y m )  
be two matrices of the same size, where X i  and Y i  are the 
ith columns of X and Y ,  respectively. X is obtained from Y 
by k-shift, denoted by X = S [ k , Y ] ,  if there is a number k 
such that X = ( Y m - k + l , . . . , Y m , Y 1 l . . . , Y m - ~ - l , Y m - k )  . 
Let Y1, Y2, . . . , Yq be matrices, all with same number of 
columns. By (Y17 Y2, . . . , Yq)T,  we denote the following 

matrix in this paper: (z) . Matrix M = ( M I ,  . . . , MT)T,  

where Mi's are matnces each with ni columns, is a 
common matrix of 1 matrices A l , A p , .  . . , A l ,  each with 
m columns also, if there exists an integer K ( i , j )  such 
that for any A ; ,  1 5 i 5 I, not only is the new 
matrix ( s [ K ( ~ ,  11, M I ] ,  s [ K ( ~ ,  z), ~ 2 1 ,  . . . , S [ K ( i ,  r ) ,  MTIIT 
a submatrix of Ai, but also the rows in S [ K ( i , j ) , M j ]  are 
consecutive rows in Ai. Matrix Mj in M ,  1 5 j 5 T ,  is 
defined as the jth group of M .  For example, the following 
matrix is a common matrix of M[D&] and M [ D 3  in Fig. 5: 

Yl 

CO CO 00 11 cx) CO CO 0 3 .  

m m 8  1 1 c x ) 0 0 0 0 ~ 0  

00 00 03 CO 13 00 03 cm 1 
In this example, T = 1 and K(1, l )  = K ( 2 , l )  = 0. 

Intuitively, given A I ,  A2 , . . . , Al, the larger the size of M ,  the 
more Al , A2, . . . , Al look alike. A1 , Az ,  . . . , A1 are k-variant 
if there exists a common matrix M of them such that for each 
Ai,  at most k rows of it are not in M .  For example, matrices 
M[D& and MID&] in Fig. 5 are 1-variant. 

Theorem 3: If D& and D& are k-variant, then M[D;] 
and M[D;] are k-variant. Moreover, if L = (L1, L z ,  . . . , L T )  
is a common row-vector of D& and D;,, where Lj is the 
j th group of L,  then a common matrix, (MI, MZ . . . , M T ) T ,  
of M[D;]  and M [ D Z ]  can be constructed as follows: The ith 
row of M3 is either C Y [ i ,  Dk:z)] when L j ( i )  # 00 or a row 
of CO's when L j ( i )  = 00. 

Proof: Two things need to be proved. First, 
( M ~ , M ~ , . . . , A , ~ ~ ) ~  is a common matrix of M [ D , ~ ]  
and M [ D 2 ] ;  second, there are at most k rows in each of 
M [D;] and M [ D g ]  that are not in the common matrix. We 
discuss only M[D;]  in this proof; M[D;]  can be handled 
similarly. For the sake of simplicity, we assume that there is 
no 00 entry in L;  the case in which cx) entry exists should 
not be difficult to deal with. 

To prove the first claim, we shall prove that there exists 
K ( i l , j )  such that S [ K ( i l , j ) , M j ]  is a submatrix of M[D;] ,  
where 1 5 j L ' r .  Remember that matrix Mj is decided by 
Lj ,  together with D G ~ ,  as defined in the theorem. Let rj  be 
the size of Lj ,  and let L j ( l ) ,  the first entry in Lj ,  be the 
wlth and wpth entry in D&, and D&,, respectively. We shall 
show that the submatrix, which consists of rj number of rows 
of M [ D g ] ,  from wlth row to (tu1 + rj  - 1)th row, can be 
obtained from Mj by w1-shift. Because of the lack of space, 
we explain only why the wlth row of M [ D i ]  can be obtained 
from the first row of Mj by wl-shift. The other rows are 
handled similarly. Indeed, by the definition of AI[@], the 

wlth row of M[D,%] is CY[wl + l,D~?u(il'wl) 1 .  On the 
other hand, the first row of Mj is CY [l, D2:')], as defined 

because Lj(1) = D ~ ~ ( i l , w ~ ) .  Comparing these two copies 
, one can see that the former is obtained from 

the latter by the wl-shift. 
To prove that at most k rows of M[D$]  are not in 

( M I ,  M z ,  . . . , M T ) T ,  we need to notice only the fact that there 
are at most k entries that are in D&, but not in L. 0 

Corollary 2: Any IC + 1 consecutive matrices, 
M[D&],  M[D;+'], . . . ,  M[D;+:+"], for 1 5 i 5 n - k ,  
are k-variant; moreover, each of them can be represented 
by a common matrix, with at most 2 k  groups, and at most 
k other row-vectors. 

The importance of k-variant of M[D&] can be seen in the 
next two sections, where we shall show how we can get rid of 
redundant information in M[D&] and thus create a new matrix 
that has the same column minima as M[D&],  but contains 
far fewer rows. It is worth pointing out that in both of our 
algorithms, matrix M[D&] is never physically generated for 
the obvious reason: It costs too much. Even matrix M ,  the 
common matrix of M[D&],  is never physically generated, for 
the same reason. More details can be seen in Sections IV and 
V. 

We now tum to the second property of M[D&].  A 2-D 
matrix 2 is monotone if the minimum value in its ith column 
lies below or to the right of the minimum value in its (i - 1)th 
column. (If more than one entry has the minimal value in the 
column, then we take the uppermost one.) In particular, Z is 
totally monotone if every 2 x 2 submatrix of it is monotone 

[ 2 ] .  As an example, matrix 6 4 1 is monotone, but not 

in the theorem, which is equivalent to C Y  [l, D ~ ~ u ( i l ' w l )  1 7  

of Dg,"u ( 2 1  ,w1) 

(: : 1) 
totally monotone, whereas matrix 6 4 1 is not only 

monotone but also totally monotone. 
Among many nice things about this type of matrix, we 

mention only two that are important to our algorithms. Sub- 
matrices of a totally monotone matrix obtained by deleting 
rows and columns are totally monotone, and efficient parallel 
algorithms are available to identify the column minima of a 
totally monotone matrix [ 2 ] .  

(I :) 

Theorem 4: M[D&]  is totally monotone. 
Proof: Consider an arbitrary 2 x 2 submatrix of M[D&]:  

1 (MID&] ( 2 2  , jl M[%] ( i 2  , j z )  ' 
M[D&l(il, j l )  M[D&l(i l ,  j z )  

where il < Z Z  and jl < j 2 .  To prove that M[D&] is totally 
monotone, it suffices to prove that the above submatrix is 
monotone, that is, the following: 

M[D&l(il, jl) > M[D&l(iZ,jl) 
=+ ~ [ D & l ( i l , j Z )  > M[D&](iZ,jZ) (1). 

It can be seen that if (1) can be proved when j:! = jl + 1, 
then it can be proved for any j 2 ,  j ,  > j1, inductively. So, we 
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shall show only the following equation: 

We first discuss the case in which four entries in (2 )  are 
finite, and leave the other cases to the last. For a contradiction, 
we assume that the following is true: 

Let u1, U’,. . . , u,/~ be the entries of D&, from the first one 
to the (m/2)th one. Then the 21th row of M[D&] is CY[i1 + 
1, D;;] by definition. Keeping this in mind, one can see that 
(3) is equivalent to the following: 

and 

vi2 < D G ~  (uil , j l-Zl)  follows immediately from (4), because 
ui2 is always strictly less than D G ~  ( w i z ,  j l  - 2 2 ) .  Thus, there 
exists j ’  such that the following is true: 

See Proposition l(4). On the other hand, applying Proposition 
l(1) to (5 ) ,  we get the following equation: 

Iv. A FAST ALGORITHM FOR THE L c s  PROBLEM 

The purpose of introducing this algorithm in this paper is 
twofold. First, it solves the LCS problem in O(log2 m + log n)  
time, which is the fastest algorithm on the CREW-PRAM ma- 
chine to the best of our knowledge. Second, understanding this 
algorithm is a warmup for understanding our next algorithm, 
which is more complicated but optimal. The four main phases 
of this algorithm have already been described in Section 11, 
and the implementation for Phase 1 and Phase 4 has also 
been addressed there. Here we focus on the implementations 
of Phase 2 and Phase 3. Phase 2, which is to generate cost 
matrix DG, is the most complicated part of this algorithm. 
With a divide-and-conquer strategy applied in generating DG, 
our focus is on the merge stage, i.e., how to compute DG 
based on DG, and D G ~ .  Phase 3, which is to identify the 
maximum-cost path from DG, is relatively easy, and only a 
brief discussion on it is given. At the end of this section, 
we provide an analysis of the complexity of this algorithm. 
A 2-D array is employed to represent a cost matrix in this 
algorithm-a big difference from our next algorithm. 

A. How to Compute DG from DG, and D G ~  
Recall the basic formula for computing DG from D G ~  and 

D G ~  which is described in Corollary 1. This computation 
benefits greatly from the totally monotone property of M[D& 
as well as the k-variant property of both D& and M[D&].  

Observation 2: From [2], the column minima of an m x m 
totally nonotone array 2 can be computed in O(1ogm) time 
with m logm processors on CREW-PRAM. 

Applying this observation to the basic formula for com- 
puting DG immediately results in a trivial algorithm for 
generating DG, given DG, and D G ~ ,  which takes O(1ogm) 
time with mn log m processors. Our first algorithm, however, 
does even better than this in the sense that the number of 

D ~ ~ ( ~ ) i ~ , j l  - 21) < D ~ ~ ( u i ~ , j ~  - i2  + 1). (7) Processors is reduced by a factor of log2 m. Let us first state 
the result. 

Combining (4), (6), and (7) we derive the following equation: Theorem 5: O(log m, time and m n / l O g m  Processors SUf- 
fice to compute cost matrix DG with size n x m from D G ~  

which contradicts the fact that D ~ ~ ( u i ~ , j l  - 22) and 
D G ~  (wiz , jl - 22 - 1) are two consecutive entries of D:;. 

Now we consider the cases in which some entries in ( 2 )  are 
03. In order to be consistent with the definition of monotone 
matrix, we have to distinguish 03 entries. For any two 03 

entries in the same column in M[D&],  the one having a 
smaller index is larger than the one having a larger index 
if both of them are to the right side of some finite entries; 
otherwise, the one having a smaller index is smaller than the 
one having a larger index. We shall show only the case where 
M[D&](Zl , j l )  = 03 and M [ D & ] ( i ~ , j l )  # 03. Othercases are 
handled similarly. By Proposition 1 (  l), M[D&]( i l ,  j 2 )  should 
be CO because of j 1  < j ~ .  If M [ D & ] ( i z , j ~ )  is finite, then we 
have proved the theorem. If M[D&]( i z , j z )  is 00, the theorem 
is also true, because M[D&]( i2 , j l )  and M[D&]( i z , j a )  are 
both to the right side of two finite entries, respectively. Thus, 
we have proved (2). 0 

and D G ~ .  
The scheme for computing DG is this: We partition DG 

into n/ log2 m submatrices, each with log’ m consecutive 
rows of DG, and compute these submatrices independently. 
m log m processors are assigned to each submatrix, and they 
are required to generate the submatrix in O(1ogm) time. 
Without loss of generality, we concentrate on the computation 
of the submatrix, which consists of the first log’m rows 
of DG. Notice that entry D ~ ( i , j )  is the minimum among 
D ~ ~ ( i , j ) ,  D ~ ~ ( 2 , j )  and j th  column minimum of M[D&].  
To show Theorem 5, we need to show only the following. 

Lemma 1: Given cost matrix D G ~  and D G ~ ,  the column 
minima of M[D,&], M[D&],  . . . , M [ D P z  “ 1  can be com- 
puted in O(1og m) time with m log m processors. 

The column minima of M[D&] are computed by pro- 
cedure ColMin, which takes as input DG, and DG=. 
Procedure ColMin takes advantage of the information 
redundancy in M[D&].  According to Corollary 1, matrices 
M[D&],  M[D;],  . . . , M [ D z 2  ”1  are (log’ m - 1)-variant, 
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and each of them can be represented by their common matrix, 
together with at most (log’, - 1) other row-vectors. The 
key idea used in procedure ColMin is to compute the column 
minima of every group of the common matrix, and thus to 
reduce the size of M[D&] by replacing the submatrices that 
correspond to groups of the common matrix with the column 
minima of the submatrices. 

For a formal description, we introduce some notations. Let 
M = (MI, . . . , MT)T be the common matrix of M[D&] for 
1 5 i 5 log’m, in which groups are constructed following 
the rule given in Theorem 3. Let X [ i , j ]  be the submatrices of 
M[D&], corresponding to Mj,  i.e., X[i,j] = S [ K ( i , j ) ,  Mj] .  
By vector Cmin[Z], we denote the column minima of matrix 
Z, i.e., Cmin[Z](i) is referred to as the minimum of the ith 
column of matrix Z. 

In procedure ColMin, matrix MID&] is reduced to a new 
matrix, denoted by M’[D&], by replacing its submatrix X [ i ,  j ]  
with Cmin[X[i,j]]. It should be clear that the new matrix 
shares the same column minima with the original one, i.e., 
Cmin[M[D&]] = Cmin[M’[D&]]. Listed below are three nice 
things about the new matrices. First, they are small in size. 
Indeed, applying Corollary 2, readers can easily see that 
the number of rows in each of M’[D&]’s are bounded by 
310g2m, instead of m/2 for the original ones. Second, to 
generate M’[D&]’s for 1 5 i 5 log’ m, we need to compute 
Cmin[Mj]’s only for 1 5 j 5 T ,  instead of computing 
Cmin[X[i,j]]’s for 1 5 i, 5 log’ m and 1 5 j 5 T ,  inde- 
pendently. This is because Cmin[X[i, j]] can be obtained from 
Cmin[Mj] by K(i,j)-shift,  because X[i,j] = S [ K ( i , j ) ,  Mj]. 
Finally, it can be seen that M’[D&]’s are totally monotone. 
Next additional notations are given before procedure ColMin 
is presented. 

Let L = (L1, La, ... , LT) be a common row-vector of 
row-vectors Wi, for 1 5 i 5 1, where L j  is the jth group 
of L. The position of L j  in the row-vector W;, denoted 
by Pos[Wi,Lj], is defined as the index of the entry in W;, 
which is identical to Lj(1). P[W;, L] is defined as a function 
such that P[W;, L]( j )  = Pos[W;, Lj]. Similarly, let Y = 
( Y I , Y ~ , . . . , % ) ~  be a common matrix of 2;’s for 1 5 i 5 1, 
where Yj is the j th  group of Y. The position of Yj in matrix 
Zi, denoted by Pos[Zi, q ] ,  is defined as the index of the row- 
vector in 2; which is obtained from the first row in Yj by 
certain shifting. P[Zi ,Y] is defined as a function such that 

Procedure ColMin {Find column minima of M[D&]’s, for 

Input: cost matrix D G ~ ,  and D G ~ .  
Output: c m i n [ ~ [ ~ & ] ] ’ s  for 1 5 i 5 log’m. 
I )  Identify common row-vector L of 0%” for 1 5 i 5 

P[ZZ, Y](j) = POS[Zi, y3]. 

1 5 i 5 log’m} 

 IO^' m: 

a) 
b) 

Compute L = ( L l , .  . . , L,); and 
Compute P[D&”, L], for 1 5 i 5 log’ m. 

2) Identify common matrix M of M[D&] for 1 5 i 5 

Compute P[M[D&],  MI, for 1 5 i 5 log’ m; and 

log’ m: 

a) 

b) Compute K ( i , j )  such that X [ i , j ]  = 
S[K( i , j ) ,Mj ] ,  for 1 5 i 5 log2m and 
1 5 j l r .  

3) Compute Cmin[Mj], for 1 5 j 5 T ;  

4) Compute c m i n [ ~ [ ~ & ] ]  for 1 5 i 5 log’m. 

B. The Analysis of Procedure ColMin 
We prove Lemma 1 by claiming that O(1og m) time suffices 

for completing each step in ColMin with m log m processors. 
Lemma 2: Common row-vector L of D&s, for 1 5 i 5 

log’ m, can be identified in O(1ogm) time using m/2 pro- 
cessors. 

Common row-vector L of D&”s can be computed from 
D& and D Z Z m ,  according to Proposition 3(1). This com- 
putation takes advantage of the fact that entries in D& and 

are monotonely increasing in value (by Proposition 
1( 1)). One processor is assigned to each entry in D,& . Typi- 
cally, processor P, assigned to entry TI of D& independently 
executes a binary search on D Z *  m, and marks if it finds an 
entry w that is identical to U .  Clearly, those marked entries are 
entries shared by both D&” and D,!$,, and therefore L is 
obtained simply by ranking them. In order to further partition 
L into groups, L1, Lp, . . . , L,, we search and mark every pair 
of consecutive entries of L, say, 11 and 1 2 ,  such that they 
are not consecutive in D z 2  m. Since the entries in the same 
group should be consecutive in D Z 2  m, 11 and 12 must belong 
to two groups, and, moreover, 11 must be the last entry in some 
group Li, and 12 be the first entry in group L;+l. Thus, we 
partitioned L into groups. It is easily seen that the above tasks 
can be done in O(1ogm) time with m/2 processors. 

P[D&”, L] is to be computed by identifying the position of 
Lj(1)s in D&” for 1 <_ j 5 T .  Since the number of groups 
T is bonded by log’ m (see Corollary I ) ,  and since there are 
log’m such functions to be computed in total, Step I(b) can 
be done in O(1ogm) time with log4 m processors. 

Lemma 3: Given common row-vector L = (L1, ... , L,) 
of DLU’s for 1 5 i 5 log’m, the corresponding position 
functions P[M[D&],M]’s  and K ( i , j ) ’ s  for 1 5 i 5 log’m 
and 1 5 j 5 T can be identified in O(1) time with log4m 
number of processors. 

As a matter of fact, once L = (L1, L z , . . .  , L T )  is 
obtained, M = (MI , .  . . , can be constructed fol- 
lowing the rule in Theorem 3. As for the computation 
of P[M[D&],  MI, recall that the (Pos[DkU, Lj])th row of 
M[D&] is C Y [ P O S [ D ~ ~ ,  Lj]  + 1, D2:”] (from the definition 
of M[D&]), and also recall that the first row of M j  is 
GY[1, D$:’)] (from Theorem 2). So, the former can be 
obtained from the latter by (Pos[D&, Lj])-shift, implying 
Pos[M[D&], Mj] = Pos, [D&,, Lj]. Thus, in general, we have 
P[M[D&], M] = P[D&,, , L]. Since P[D&,  L] has already 
been computed in Step l(b), Step 2(b) can be obtained in 
constant time. This analysis also implies that K ( i , j )  = 
Pos[D&”, Lj]. Constant time with log4 m processors should 
suffice to identify the common matrix of M[D&]’s. 
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Lemma 4: Given DG”, D G ~  , P[M[D&] ,  MIS and 
K(i , j ) ’ s  for 1 5 i 5 log2m and 1 5 j 5 T ,  Cmin[Mj]’s can 
be computed in O(1ogm) time with mlogm processors. 

For the sake of simplicity, without loss of generality, we 
assume that any group Mj has no more than m/ log2 m 
rows; otherwise, we partition the larger groups into several 
smaller groups, and the total number of groups should still 
be bounded by O ( m /  log2 m). Consider the computation of 
Cmin[M.]. For the worst case, we assume that it is of size 
(mllog m) x m. We first compute Cmin[Z] where Z is 
an (m/log2m) x (m/ log2m)  matrix consisting of every 
(log2 m) column of ~ 3 .  Clearly, z is totally monotone, 
because M j  is totally monotone, and thus Aggarwal and 
Park’s algorithm [2] is applicable to compute Cmin[Z]. By 
Observation 2, this computation can be done in O(1og m) 
time by using m/ log m processors. Then applying Aggarwal 
and Park’s algorithm, the remaining minima of MJ can be 
computed in O(1og m) time, also using m/ log m processors. 
In total, all Cmin[Mj]’s for 1 5 j 5 T can be computed in 
O(1og m) time with m log m processors. 

Lemma 5: Given DG”, DGL, cmin[Mj]’s, 
P[M[D&],M]’s ,  and K ( i , j )  for 1 5 i 5 log’m and 
1 5 j 5 T ,  Cmin[M[D&]’s for 1 5 i 5 log’m, can be 
computed in O(1ogm) time with mlogm processors. 

Instead of computing Cmin[M[D&]] directly, we compute 
Cmin[M’[Di]], a much smaller matrix. Recall that M’[D&] 
consists of row-vectors Cmin(X[i,j]’s for 1 5 j 5 log2 m and 
at most log2, other row-vectors from M[D&]. Also recall 
that Cmin[X[i,j]] is obtained from Cmin[Mj] by K ( i , j ) -  
shift. The construction of M’[D&]’s should be easy under 
the assistance of P [ M [ D & ] ,  MI. Since M’[D&]’s are totally 
monotone, the similar approach we just used for computing 
Cmin[Mj]’s can be used to compute Cmin[hf’[D&]]’s using 
the required time and number of processors. Thus, we have 
completed the proof of Lemma 1, and have proved Theorem 
5. 

d 

C. The Implementation of Phase 3 

The objective of this section is to describe a scheme to 
identify vertices on the maximum-cost path between the source 
and the sink of the ( m  + 1) x ( n  + I) grid DAG G, given 
DG. For a maximum-cost path from the source to the sink 
on G, say, p = (q. w z , . .  . , v l } ,  there could be more than one 
vertex of p that are on the same row of G, because m 5 n. A 
vertex, say, w;, on p is a cross-vertex if vi is the leftmost one 
to the left of vertices on p .  We denote the cross-vertex on the 
j t h  row of G as w [ j ]  to distinguish cross-vertices from other 
vertices on p .  Clearly, u1 = v[l] .  Phase 3 in the main structure 
described in Section 11-B is implemented by two stages. 

1) Identify cross vertices v [ i ]  on p ,  for 1 5 i 5 m + 1. 
2) Identify the other vertices on p.  
We start with the first stage. All cross-vertices on a 

maximum-cost path can be obtained as the side effect of 
computing cost matrix DG. Suppose we are computing 
D ~ ( i , j ) ,  that is, identifying in G the j-breakout vertex, 
denoted as y, of vertex ( l , i ) ,  denoted as 2. Let p be the 
maximum-cost path from z to y, and let vertex q be the 

cross-vertex of p on the boundary betwen GU and GL, 
meaning q = v[m/2 + 11. By side effect, we mean that q 
can be identified in Phase 2 without spending extra time. 
In fact, according to Theorem 1, D ~ ( i , j )  is the minimum 
among D G o ( i r j j , D G L ( i , j ) ,  and D G ~ ( D G ~ ( ~ , ~ ) . ~  - kj’s, 
for 1 <_ k 5 j .  If D ~ ( i , j )  = D ~ , , ( i , j ) ,  then obviously q is 
vertex (m/2+ l ,D~[ , (z , j ) )  on G. If D ~ ( i , j )  = D ~ ~ ( z , j ) ,  
then q is vertex (m/2 + 1: i) on G. Otherwise, suppose 
that D ~ ( i , j )  = D G ~ ( D C ~ ( ~ , I C ) , ~  - k ) ;  then q is the 
(m/2 + 1, D G ~ ,  ( 2 ,  k))th vertex on G. Those cross-vertices 
such as q are stored in a global matrix. Thus, given two 
vertices x and y, we can print out the corresponding cross- 
vertex q in constant time. Recursively, the cross-vertices on the 
maximum-cost path between source and sink can be printed 
out in O(log m) time using m/ log m processors. 

The second stage is simple. Suppose that IJ[Z] and v [ i +  11 are 
vertex ( i , j l )  and vertex ( i  + 1 7 j g )  on G, respectively. Then 
vertices on the ith row of G from (i, j l  + 1) to ( i ,  J‘Z - 1) must 
be all the vertices between v[i] and v[i  + I] on p.  So, once 
all cross-vertices have been identified through the first stage, 
there should be no difficulty in printing out all vertices on p 
in O(1ogn) time with n processors. 

D. The Complexity of the Algorithm 

We first state the result. 
Theorem 6: O(log2m + logn) time with mn/logm proces- 

sors suffices to identify the LCS of A and B with lengths m 
and n, respectively, where rri 5 n. 

Recall the four phases described in Section 11-B. We have 
shown in Section 11-C that Phase 1 can be done in O(1ogn) 
time with m71/ log n processors, and that Phase 4 can be done 
in O(1og n)  time with n/ log n processors. We have just shown 
in Section IV-C that O(1ogn) time and n, processors suffice 
for Phase 3.  So, to show Theorem 6, we shall show that 
O(log2 m) time and mn/ logrn processors suffice for Phase 
2. Let T ( k )  be the time taken to generate a cost matrix of 
size ( k  + 1) x (n + 1). The execution time of Phase 2, which 
is O(log2 m), can be obtained from the following recurrence 
suggested by Theorem 5:  

T ( k )  5 T ( k / 2 )  + c1 l ogk ,  

where T(k /2 )  is the time taken to generate the two smaller 
cost matrices, and c1 log k is the time taken for merge. T(2)  
is defined as 0, because time T(2)  is charged on Phase 1. In 
order to use no more than m n / l o g m  processors throughout 
the algorithm, Brent’s principle [4] must be applied in Phase 
2. Notice that Phase 2 is a recursive process, and has logm 
merge stages, each costing O ( m n )  operations. Therefore, these 
operations in each stage can be performed in O(1ogm) time 
using mn/ log m processors, according to Brent’s principle. 

v .  AN OPTIMAL ALGORITHM FOR THE L c s  PROBLEM 

The four phases of this algorithm are described in Section II- 
B, in which Phase 1 and Phase 4 are shared with the previous 
algorithm. In this section, we focus on the implementations of 
Phase 2 and Phase 3. The fundamental difference between this 
algorithm and the previous one lies in the data structure used 
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for representing cost matrices. In the previous algorithm 2-D 
arrays are used to implement cost matrices; unfortunately, this 
approach would destroy any hope of achieving optimality. To 
see this, just think about computing and storing 0 ( m / 2 i )  cost 
matrices, each of size 7~ x O(22) at ( i  + 1)th merge stage of 
Phase 2, where each matrix corresponds to an O(ai) x ( n +  1)- 
grid DAG. Obviously, this stage alone costs at least O(mn)  
operations. The fact that there are O(1ogm) merge stages 
in Phase 2 implies that at least O(mn1ogm) operations are 
needed, which is larger than our desired bound, mn. For this 
reason, a very efficient data structure is adopted for DG in our 
optimal algorithm. 

A. The Data Structure for DG 
We use common vectors and remnants to represent cost 

matrix DG. Specifically, for every consecutive k + 1 rows 
of m x n cost matrix DG, say, D& for 1 5 i 5 k +  1, we use 
an 1-D array to represent their common row-vector L, and use 
k+l 1-D arrays to represent k+l remnants R[D,k]'s. Besides, 
position functions P[D& L]'s and P[D&,  R[D&]]'s defined in 
the previous section are also used in order to access any entry 
of DG on this data structure very fast. It is not hard to see 
that with the help of position functions and binary search, any 
read or write operation on DG can be simulated in O(1ogk) 
time sequentially on this data structure. As an example, when 
k = 2, the first three row-vectors of DG, which are D& = 
(2,3,4,5,13,0~,~~,~0), D: = (3,4,5,11,13,~0,~0,~), 
and Db = (4 ,5 ,6 ,11 ,13 ,~0 ,  CM, CO), will be represented by 
the following data structure: 

L = (4,5, 13, m,m, x), 

R[D&] = (2,3), R[D&] = (3; 11), R[D&] = (6,ll); 

P[Dg,  L] = (2,5), 
P[D& L] = (1,5): 

in which L1 = (4, 5), L2 = (13,00, CO, CO); 

P[D& L] = (3,5), P[D&, E[D&]l = (1); 
P[Dg,  R[D:]] = (1: 4); 

P[D&, R[D&]] = (3). 

Throughout this section, we presume that any cost matrix is 
represented by the above data structure. So, by computing DG, 
we mean computing the common row-vectors, corresponding 
remnants, and position functions. 

Now we would like to make a short comment on why 
the above representation of DG can help us to achieve our 
objective. Note that by Theorem 2, k + 1 consecutive rows 
of DG with size n x m can be represented by their common 
vector L with a size of at most m: and k + 1 remnants, each 
with size of at most k ;  hence, O(mn/k+nk)  space suffices to 
store all information in DG. By this representation, not only 
is the redundant information in DG removed, and thus storage 
space is cut a great deal, but also the number of entries to 
be computed is greatly reduced. Two simple facts about the 
position function are stated as follows. 

Proposition 4: Let Lh be the hth group of L,  the common 
row-vector of Oh's for il I i 5 il + k .  

1) Pos[D$+k, Lh] 5 Pos[D& Lh] 5 Pos[D& Lh]. 
2 )  POS[D2+k, Lh] 2 Pos[D&, Lh] - k .  

Proof: Let P O S [ D ~ , L ~ ]  = j1 ,  POS[D&,L~] = j 2 ,  
and Pos[D$+',L~hl = jJ. In other words, D ~ ( i 1 , j l )  = 
D ~ ( i , j z )  = D ~ ( i 1  + k , j g )  = L k ( 1 ) .  According to Propo- 
sition 1(2), we have jl 5 j~ 5 j s ,  because il 5 i 5 
il + k.  As for Proposition 4(2), noticing D ~ ( i l  + l,jl - 
1) 5 D~(Z1,jl - 1) = Lh(1) (see Proposition l(3); hence, 
we have P o s [ D $ + ~ , L ~ ]  _> j ,  - 1. Applying Proposition 
l(3) repeatedly, we get Pos[D$+~,L+] 2 jl - k ,  which is 

U equivalent to POS[D$+~, L ~ I  2 P~S[D;, L ~ I  - IC. 

B. The Algorithm for Computing DG 
We first establish the time bound for computing DG from 

DG,, and D G ~ ,  and then provide the proof in the next 
subsection. 

Theorem 7: Given D G ~  and D G ~ ,  O(logmlog1ogm) time 
with mlogm processors suffices for computing i ~ g ~ ~  consec- 
utive row-vectors in cost matrix DG of size n x m. 

Corollary 3: Given DG" and D G ~  , O(logm1og logm) 
time with mn/log3m processors suffices to generate cost 
matrix DG of size n x m. 

Similarly to our first algorithm, DG is partitioned into 
n /  log4 m submatrices, each with log4 m consecutive rows 
of DG, and m l o g m  processors are assigned to each sub- 
matrix. Those submatrices are required to be generated in 
O(10g m log log m) time. Differently from our first algorithm, 
this time we take advantage of not only the k-variant property 
of M[D&]'s but also the k-variant property of D&. For 
the sake of simplicity, we explain only how the submatrix, 
which consists of the first log4 m rows of DG. is computed; 
other submatrices are handled in exactly the same way. The 
computation of the submatrix contains three steps. 

1) Compute the common row-vector L of 0;s for 1 5 i 5 
iog4m as follows: 

a) Compute D& and D 2 1 m ;  
b) Compute common row-vector L of D&, DEg4 m; 

c) Compute corresponding position functions 
P[D&,  L] and P[Dgg4 m ,  L];  

2) Compute remnants R[D&], for 1 5 i 5 log4 m; 
3)  Compute position functions P[D&,  L] and 

To avoid possible confusion on Step 1, we would like 
to remind readers the fact that common row-vector L of 
D&, DEg4 is the common row-vector of the log4 m rows 
(see Propostion 3(1)). 

P[D&,  R[D&]], for 1 5 i 5 log4 m. 

C. The Proof of Theorem 7 

We prove Theorem 7 by providing implementation and 
corresponding analysis for each of these three steps. Step 1 
can be implemented similarly to Step 1 of ColMin. The only 
difference is the data structure of DG. Keeping this in mind, 
one should have no difficulty in seeing that Step 1 can be done 
in O( log m log log m )  time with m log m processors. We leave 
this for readers to calculate as an exercise. 

Step 2, which generates the remnants, is the most 
complicated part of the whole algorithm. Let R[D&] = 
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(R i , .  . . , Ri+,) be the remnant of 0%. We shall show only 
how to compute remnant group R;, the bth group of R[D&],  
where 1 5 a 5 10g4m and 1 5 b 5 T + 1; other remnant 
groups can be handled in exactly the same way. We assume 
that L contains at least one entry that is not CO; the case 
in which L contains only CO's should be easy to deal with. 
Two facts should be noted: Any finite entry in R;, b 2 2, 
exists also in (see Proposition 3(3)), and CO entries 
are always on the right side of finite entries in DE. Thus, 
removing CO entries from Ry4"' will not affect generating 
finite entries in R;. Without loss of generality, we assume 
that there is no 00 entry in R p 4 m .  

Note that since D& D F 4  "' and L have already been com- 
puted, it should be easy to compute R[D&] and R [ D 9 4 m ] .  
Other remnants are computed from them. There are two cases 
to be considered: b = 1 and b 2 2. By Proposition 3(3), 
when b 2 2R; is a subvector of Rp4"',  which, together 
with the monotonality of DE, implies that Rt must be the 
largest common subvector of DE and RF4 m. Therefore, if 
DE is given, then R; can be obtained by identifying the largest 
common subvector of DE and Rp4 "'. Unfortunately, DE is 
unknown. Instead of DE, we are going to compute a subrow 
of DE, denoted as SD[a,b], such that 1) RE is a subvector 
of SD[a, 61, and 2)  the size of it is bounded by O(10g4 m). 
Leaving the question of how to get SD[a, b] for now, we first 
examine the computation time for R;, supposing that SD[a, b] 
is available. Notice that the size of R [ D p 4  " 1  is bounded by 
log4 m, and so is the size of RFg4 "'. Hence, the method we 
used in Step 1 (a) of procedure ColMin can be used to compute 
RE, and the following time bound should be quite clear. 

Lemma 6: Suppose that SD[a, b] is given, where b 2 2, and 
that the size of SD[a, b] is bounded by O(log4m). R; can be 
computed in O(log1ogm) time with log4m processors. 

When b = 1, it can be shown by applying Proposition l(3) 
that the size of R;" is bounded by log%. So, we define SD[a, I] 
as the first log4m entries of DE. Let k be the size of R;"; then 
RY consists of the first k entries of SD[a, 11, and the ( I C +  1)th 
entry of SD[a,  11 is identical to Ll(1). From this, we draw the 
following conclusions. 

Lemma 7: Suppose that SD[a, 11 and L(l)  are given, then 
log4m processors suffice to identify R;" in constant time. 

From Lemmas 6 and 7, together with the fact that T ,  the 
number of groups of L, is bounded by log4m, we further 
draw the following conclusions. 

Corollary 4: Suppose that SD[i, j ]  and L( 1) are given, and 
that the size of SD[i,j] is bounded by log4m. Then Rj's, for 
1 5 i 5 log4m and 1 5 j 5 T ,  can be obtained in O(1oglogm) 
time by using logl'm processors. 

Since &(1) has already been computed in Step l(b), in 
the remainder of this section, we concentrate on the critical 
problem of how to find SD[a, b] with b 2 2 such that R; is a 
subvector of it and such that its size is bounded by O(10g4 m). 

The basic formula described in Corollary 1 is applied to 
generate SD[a, b]. (Remember that SD[a, b] is nothing but a 
subrow of DE.) We first discuss the issue of which entries 
of DE should be included in SD[a, b]. A vector, Ind[SD[a, b]], 

is used to record their original positions in DE for entries in 
SD[a, b] ,  as follows: 

Ind[SD[a,b]](i) = 1 if SD[a ,  b ] ( i )  = DE(1). 

Understanding the following relation between Pos[D$ ! R;] 
and Pos [DF4  "', Rp4 " '1 ,  i.e., the relation between the po- 
sition of the first entry of R; in DE and the position of the 
first entry of RP" in Dgg4 *, is the key to figure out how 
to find Ind[SD[a, b]],  

I 5 POS[D;, R;] 5 I + log4 m, 

where 1 = P O S [ D ~ ~  m ,  R p 4  " 1 .  This inequality is derived 
from Proposition 4. Remember that there are no more than 
logam entries in R;, so we can choose the subrow of D&, 
from entry D ~ ( a , l )  to entry D ~ ( a , l  + 210g4m - l ) ,  as 
SD[a, b]. Surely, Rt must be contained in SD[a, b] according 
to the above inequality. Ind[SD[a, b]] therefore can be found 
as follows. For 1 5 i 5 210g4mm, 

Ind[SD[a, b ] ] ( z )  = Pos[DP4 "', Rfg4 "1 + i - 1. (8) 

The next issue is how to compute SD[a,  b] from D G ~  and 
DG". Clearly, we need to identify only the (Ind[SD[a, b]](i))th 
column minima in M[D;] for 1 5 i 5 210g4m. Let 
M[SD[a,  b]]  be a submatrix of M[DE] obtained by removing 
those columns that are not in SD[a, b] .  Readers may have al- 
ready noticed the following important fact about M[SD[a ,  b ] ] :  
First, M[SD[a,b]] is totally monotone. Second, the size of 
M[SD[a ,  b]] is very small, which in fact is bounded by (m/2)  x 
(2  log4 m). Unfortunately, the size of M[SD[a,  b]] is still not 
small enough for us to identify the column minima of M[D$] 
by directly applying Corollary 1 on it. For further reducing the 
computation, we introduce another matrix M'[SD[a,  b]] that 
has the same column minima as M[SD[a,b]], but with far 
fewer rows. (Remember that we play the same game in our 
first algorithm.) For a formalized description of M'[SD[a,  b]], 
a few more notations are needed. 

Let L' = ( L ; , . . . ;  Lkl)  be the common row-vector of 
D&,'s for 1 5 i 5 log4 m. Let M = ( M I , .  . . ! M,,)T be the 
common matrix of M[D&]'s,  for 1 5 i 5 log4 m, constructed 
following the rule in Theorem 3 (that is, M j  .= CY[i,  DG', I). 
Again, let X [ z ,  k]  be the submatrix of M[D&],  corresponding 
to Mk (i.e., X [ i , k ]  = S [ K ( i , k ) , M k ]  for some K ( i ,  k)). By 
SM[SD[i, j] ,k],  we refer to the submatrix of both M[SD[i , j]]  
and X [ i ,  k]  such that SM[SD[i ,  j ] ,  k ]  has the maximum number 
of columns and rows. See Fig. 6. Matrix M'[SD[a,b]] is 
defined as the matrix obtained from M[SD[a,  b]]  by replacing 
matrices SM[SD[a, b ] ,  k]  with cmin[SM[SD[a, b ] ,  k]] 's  for 1 5 
k 5 T I .  The following facts about M'[SD[a, b]]  are obvious. 

L' (i) 

Proposition 5: 
1) Cmin[M'[SD[a, b ] ] ]  = Cmin[M[SD[a, b ] ] ] .  
2) The size of M'[SD[a,b]] is bounded by (210g'm) x 

Corollaty 5: Suppose that we have already obtained 
M'[SD[i, j]] 's ,  for 1 5 i 5 log4m and 1 5 j 5 T ,  

which are represented by arrays, then Cmin[M[SD[i, j ] ] ] ' s ,  
for 1 5 i I log4m and 1 5 j 5 T ,  can be computed 

( 2 1 0 g ~ ~ ) .  
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in O(log1og m) time using polylogarithmic number of 
processors. 

Now we state the objective for the rest of the section. 
Lemma 8: SD[a, b] can be generated in O(1og mloglog m) 

time using polylogarithmic number of processors. 
Noticing that once Cmin[M[SD[a, b]]] is obtained, SD[a, b] 

can then be easily generated by performing just a few more 
comparisons (see Corollary l ) ,  to show Lemma 8, we shall 
show that M’[SD[a, b]] can be generated in O(1oglogm) 
time using polylogarithmic number of processors. Recall 
that M’[SD[a,b]] is defined as the matrix obtained from 
M[SD[a,  b]] by replacing its submatrices SM[SD[a, b], k]’s 
with Cmin[SM[SD[a, b], k]]’s for 1 5 k 5 T .  The numbers of 
rows and columns of M’[SD[a, b]] are bounded by (2 log4 m) x 
(2 log4 m) (see Proposition 5(2)). Each entry of M’[SD[a, b]], 
except those entries belonging to Cmin[SM[SD[a, b], k]], can 
be obtained from D G ~ ,  and D G ~  in O(log1ogm) time using 
polylogarithmic number of processors. Therefore, we can 
make the following observation. 

Observation 3: Suppose Cmin[SM[SD[a, b], k]]’s, for 1 5 
k 5 q .  are given; then Cmin[M[SD[a, b]]] can be obtained in 
the required time with polylogarithmic number of processors. 

Now we narrow our discussion further down to how 
to generate Cmin[SM[SD[u. b]. k]]’s in O(log1ogm) 
time using polylogarithmic number of processors. A 
little calculation will show that it is unaffordable to 
compute Cmin[SM[SD[a, b], k]]’s by identifying the 
column minima of SM[SD[a, b], k ] s  individually. The 
following two facts help us to further reduce the 
computational time: Cmin[SM[SD[a, b], k]] is a subvector 
of Cmin[X[u, k]]; Cmin[X[n, k]] can be obtained from 
Cmin[Mk] by K(a,k)-shift for 1 5 k 5 T I ,  where Mk is the 
kth group of common matrix M (since X[a ,  k] is obtained 
from Mk by K ( a ,  k)-shift). 

Because of these two facts, instead of generating all 
Cmin[SM[SD[u. b]. k]]’s individually, we generate all 
Cmin[X[a. k]]’s. Moreover, instead of generating all 
Cmin[X[a, k]]’s individually, we generate all Cmin[Mk]’s for 
1 5 k 5 T I .  Although the computation has been generally 
reduced so far, it is still too expensive. Indeed, there could 
be O(log4”)Mk’s each with size (m/ log4m)  x m. It 
is impossible to compute all column minima of them in 
O(log m log log m) time just by using m log m processors. 
Fortunately, not all entries of Cmin[Mk]’s are useful for 
generating M’[SD[a,b]]. We define a submatrix SMk of Mk 

by removing those columns of Mk that are irrelevant to 
generate Cmin[SM[SD[a, b], k]]’s. Let Ind[SMk] be the vector 

that records their original positions in Mk for each column in 

Ind[SMk] is dependent on Ind[SD[a,b]] and K ( a , k ) .  The 

Procedure Ind[SMk] 
Suppose that K ( a ,  k )  is the coefficient such that X[a ,  k] = 

1) For 1 5 h 5 210g4m processor Ph is assigned to 

SMk; that is, hld[SMk](h) = if Skfk(h) = Mk(f!). 

procedure that generates Ind[SMk] is described as follows. 

S [ K ( a ,  IC), Mk]. 

compute Ind[SMk](h): 

Ind[SMk] (h )  = 

Ind[SD[a, bll(h) - K(a ,  IC), 
if Ind[SD[a, b]](h) - K ( a ,  k )  2 1, { m - K ( a ,  k )  + Ind[SD[a, b]](h), otherwise. 

2 )  Sort all entries in Ind[SMk] for 1 5 k 5 T I ,  and mark 
an entry if it is the leftmost one among those that have 
the same value. 

3) Ind[SMk] is obtained by ranking those marked entries. 
Step 1 in this procedure guarantees that all those columns 

in Mk that may be used in generating SD[a,b] are identified. 
Step 2 and Step 3 are used to get rid of those entries that 
should not belong to Ind[SMk]. Step 1 takes constant time 
using O(10g4 m) processors, whereas Step 2 and Step 3 take 
O(1og log m) time using O(log4 m) processors, because the 
size of Ind[SMk] is bounded by O(10g4 m). Hence, to compute 
Ind[SMk]’s, for 1 5 k 5 T I ,  O(log1ogm) time suffices with 
polylogarithmic number of processors. 

Since Mk is totally monotone, so is SMk. In order to cal- 
culate the time bound for computing Cmin[SMk] by applying 
Aggarwal and Park’s algorithm, we bring readers’ attention to 
the size of SMk’s. The number of columns in each SMk is 
bounded by O(10g4 m); the total number of rows in all SMk’s 
for 1 5 k 5 T I  is bounded by m/2. Without loss of generality, 
we can assume that there are at most (m/2)/  log4 m rows in 
SMk; otherwise, we can divide the larger SMk into several 
smaller ones, each consisting of at most (m/2)/  log4 m rows, 
and the total number of SMk’s will not be more than 27-1. 

According to Observation 2, m log m processors suffice to 
compute Cmin[SMk]’s for 1 5 k 5 r1 in O(logmlog1ogm) 
time. 

Once Cmin[SMk] is generated, any entry of 
Cmin[SM[SD[a, b], k]] can then be obtained from 
it in O(log1ogm) time. Indeed, the hth entry of 
Cmin[SM[SD[a, b], k]] is the Ind[SD[a, b]](h)th entry of 
Cmin[X[a, k]], i.e., the (Ind[SD[a, b]](h) - K ( a ,  k))th entry 
of Cmin[Mk] if Ind[SD[a, b]](h) - K(a ,  k )  2 1, or, otherwise, 
is the ( m - K ( a , k ) + l n d [ S D [ a , b ] ] ( h ) ) t h  entry of Cmin[Mk]. 
With the help of Ind[SMk], we can locate the hth entry 
of Cmin[SM[SD[a, b], k]] in Cmin[SMk] through a binary 
search. Since the number of columns in Skfk is bounded by 
O(10g4 m), such a search takes O(log1ogm) time. 

Once Cmin[SM[SD[a, b], k]]’s are computed, 
Cmin[M[SD[a, b]]] can then be computed in the required time, 
as mentioned by Observation 3. Thus, we have completed 
the proof of Lemma 8. Corollary 4, together with Lemma 8, 
suggests that Step 2(b) can be done in required time using 
the required number of processors. Finally, once R[D&], 
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for 1 5 i 5 log4 m, are computed, there will not be any 
difficulty in computing P[DL, L]’s and P[DL, R[D&]]’s, 
for 1 5 i 5 log4 rn, because the number of groups of L 
and R[D;] are bounded by a polylogarithm. Thus, we have 
completed the proof of Theorem 7. 

As for the time bound, T(m) ,  of CrossVertex(v[l], 7i[m + 
11) .  T(m)  = O(log2 7n) is suggested by Lemma 9, which can 
be found by the similar recurrence we used in Section IV-E. 
The number of processors needed is bounded by n. Thus, we 
have completed the proof of Theorem 8. 

D. The Implementation of Phase 3 

is implemented by two stages: 
Like our first algorithm, Phase 3 in our optimal algorithm 

1)  Identify cross vertex ~ [ i ]  on p ,  for 1 5 i 5 m + 1. 
2) Identify other vertices on p.  

Obviously, the discussion about the second stage in our first 
algorithm is still applicable. Unfortunately, the discussion 
about the first stage in that algorithm is no longer applicable 
here. Remember that in the first algorithm, all cross-vertices 
are computed and stored as the side effect of Phase 2. Since the 
method of computing cost matrices in our optimal algorithm is 
totally different, the side effect has not been preserved. A new 
method is needed. In what follows, we first state the result. 

Theorem 8: Suppose that all cost matrices are given. Then 
cross-vertices on p ,  ~ i [ i ] ,  for 1 5 i 5 ‘rri + 1, can be identified 
in O(log2 rri) time with 71 processors. 

The claim is to be shown by presenting a procedure called 
Crossvertex( [ i l l ,  ~ ( 2 2 1 ) .  Procedure CrussVertex( w [ill, PI [%2]) 

takes cost matrices obtained from Phase 2 as input, and 
returns cross-vertices on p between ~ t [ i ~ ]  and v [ i 2 ] .  

E. The Complexity of the Algorithm 

Theorem 9: The LCS problem can be solved in 
O(logzmlog m) time with rr~n/log~mloglog m processors, 
when 1og2r,loglog m > log n, or otherwise in O(logn) time 
with rrirr/log TI. processors. 

To prove this, we need to examine the complexity for 
each of the four phases. We deal with only Phase 1 and 
Phase 2; the discussion of Phase 1 is applicable to Phase 
3 and Phase 4. We have proved in Section 11-C that Phase 
1 can be done in O(1og n)  time with nin/ log 71 processors. 
To be consistent with Theorem 9, we just point out that 
when log2 m log log 7r1 > log I?,, instead of using mn/ log n 
processors, we can use mn/ log2 7ri log log rn processors only. 
By applying Brent’s principle, the procedure for Phase 1 can 
be simulated by using 7nn/ log2 711 log log m processors in 
o(log2 rri log log nr) time. 

As for Phase 2, we shall show that it can be done in 
O(10g2 7ri log log nr) time with 7rin/ log2 m, log log 7r1 proces- 
sors. From this result, by applying Brent’s principle, read- 
ers can easily see that O(1ogn) time suffices for Phase 
2 if rrin/Iogn,  processors are used, where rrinllogn < 
nin/ log’ m log log v i .  

Consider the ith stage of O(1ogrri) stages in Phase 2. 
We have 0 ( ~ 1 1 / 2 ~ )  grid DAG’s to deal with, each of size 
( ) ( a i )  x (71 + 1 ) .  Denote O(m,/2;) as 9;. By Corollary 3, 
for any of those DAG’s, the corresponding cost matrix can 

Procedure Crossvertex ( ~ [ i l ] :  i i [ i 2 ] )  

1) ?i[(.il + i 2 ) / 2 ]  + B ( V [ i l ] , V [ i 2 ] ) .  

2) Call Crossvertex ( , o [ i l ] :  *u[( i i  4- i2)/2]) and Crossvertex 
(,u[(il + i2)/2]. i i [ i 2 ] )  if i1 # %2. 

Function 8(1i[i1], , u [ i z ] )  calculates the location of the cross- 
vertex that is in the middle of ii[il] and i i [ i 2 ] .  Initially, we 
call Crossvertex ( ~ [ l ] ,  v[m + 11). To explain how 8() works, 
we take only H(u[l],v[rn + 11) as an example, without loss 
of generality. 

Lemma 9: O(log 711) time using n, processors suffices 
to compute B(ii[l],v[rr~ + 11) (i.e., to identify cross-vertex 

v [ l ]  is the source, and 7 i [ m  + 11 is a vertex on the bottom 
row of G. We assume that I is the cost of the maximum-cost 
path between them. According to our discussion in Section II- 
B, cross-vertex v[m,/2 + 11 should be a breakout vertex of ~ [ l ]  
on GLT, and v [ 7 n +  11 should be the (1 - k)th breakout vertex of 
v[m/2+1] on GL if the maximum cost from ~ [ l ]  to ,u[rr/,/2+1] 
is k .  To identify v[m,/2 + I], we assign one processor to each 
breakout vertex of 21[1] on GU. Processor Pi, which is assigned 
to the ith breakout vertex of i i[ l] ,  does the following. With the 
help of the position functions. f‘; first reads entry D G ~ ,  (1. Z) 
in O(log log 713) time. Then, in another O(1og log 7 n )  time, 
Pi checks whether vertex (m, + 1: D G ~  ( D G ~ )  (1, i ) ,  1 - ,i)) is 
identical to cross-vertex v[rrL + 11, and marks vertex ( m / 2  + 
1, D G ~  (1,i))  on G if it is. Finally, the leftmost one among 
those marked vertices is identified in O(logm) time with T I L  

processors. Thus, CrossVertex(v[l], v [ r r i +  11) can be computed 
in O(log m) time using m, processors. 

v[nL/2 + 11). 

be computed in t ,  time by using p;  number of processors, 
where t ,  = 0(log(22) loglog(2‘)) and p ;  = 2in/log3(2i). 
Since a total of P number of processors are available, where 
P = win/ log2 7ri log log 711, we can compute s i  cost matrices 
simultaneously, where s, = P/p;. On the other hand, because 
there are a total of ,y; cost matrices to compute, when y; > si 

holds (i.e., ,i < (/log2 7r~log log rn,/ log3 2) O((y;/s;)ti) time 
suffices, and when g; 5 s1 holds, t ;  time is enough for this 
stage. This discussion, together with the fact that there are 
O ( l o g 7 r ~ )  stages in Phase 2, results in the time bound T for 
Phase 2, which can be found as follows: 

1 1  CL log ni 

z = 1  

= 0(log2 rri log log r r ~ ) ,  

where il = i/log2 rri log log m,/ log3 2. Thus, we have proved 
that O(log2 m log log m) time suffices for Phase 2 using 
m 7 1 /  log2 7 r ~  log log rn. processors. 
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VI. CONCLUSION [ 1 I ]  M. Lu, “A parallel algorithm for longest-common-subsequence comput- 
ing,” Proc. Int. Con$ Computing and Inform., 1990, pp. 372-317. 

[ 121 T. Mathies, “A fast parallel algorithm to determine edit distance,” Tech. 
Rep. CMU-CS-88-130, Dept. of Comput. Sci., Carnegie Mellon Univ., 
Pittsburgh, PA, 1988. 

Advances in Applied Microbiology, vol. 30, pp. 169-195, 1984. 

We gave two CREW-PRAM algorithms for the Lcs prob- 
lem, based upon exploiting nice properties of the problem. One 

the sense of achieving the lower bound of time x processors. 
is fast and efficient, and the Other is Optima’ in I 131 J. Modelevsky, “Computer applications in applied genetic engineering,” 
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