
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5 . NO. 8, AUGUST 1994 835

Parallel Algorithms for the Longest
Common Subsequence Problem

M i Lu, Senior Member, IEEE. and Hua Lin

Abstruct-A subsequence of a given string is any stling ob-
tained by deleting none or some symbols from the given string.
A longest common subsequence of two strings is a common
subsequence of both that is as long as any other common subse-
quences. The longest common subsequence problem is to find the
longest common subsequence of two given strings. The bound on
the complexity of this problem under the decision tree model
is known as 7nn if the number of distinct symbols that can
appear in strings is infinite, where m and n are the lengths
of the two strings, respectively, and m 5 n. In this paper, we
propose two parallel algorithms for this problem on the CREW-
PRAM model. One takes O(log2 TIL + log n) time with mn/ log m
processors, which is faster than all the existing algorithms on
the same model. The other takes O(log2 TIL log log m) time with
mn/ log’ T ~ L log log m processors when log’ m log log m > log n,
or otherwise O(1og n) time with rnn/ log n processors, which is
optimal in the sense that the time x processors bound matches the
complexity bound of the problem. Both algorithms exploit nice
properties of the LCS problem that are discovered in this paper.

Index Terms- Concurrent-read exclusive-write parallel ran-
dom-access machine (CREW-PRAM), grid directed graph,
longest common subsequence, maximum-cost path, parallel
algorithm, totally monotone array

I. INTRODUCTION

STRING is a sequence of symbols. Given a string, a A subsequence of the string can be obtained from the
string by deleting none or some symbols, but not necessarily
consecutive ones. If string C is a subsequence of both string
A and string B, then C is a common subsequence (CS) of A
and B. String C is a longest common subsequence (LCS) of
string A and B if C is a common subsequence of both and
is as long as any other common subsequences. For example,
string “like” is the longest subsequence of strings “kliuke” and
“allaiiakeu.” In general, there may exist more than one longest
subsequences for two strings. Given two strings A and B with
length m and n, m 5 n, respectively, the LCS problem is
to identify a longest common subsequence of A and B. Fast
solutions for this problem are requested very often in genetic
engineering, data compression, editing error correction, and
syntactic pattern recognition 111, [5], [13].

The lower bound on the time complexity of this problem has
been studied by Aho et al. in [I]. They have shown that under

Manuscript received May 27, 1991; revised October 29, 1993, and January
31, 1994. This work was supported in part by the National Science Foundation
(NSF) under Grant MIP-8809328, and in part by the Texas Advanced
Technology Program.

The authors are with the Department of Electrical Engineering, Texas A&M
University, College Station, TX 77843-3 128 USA; e-mail: mlu@ee.tamu.edu.

IEEE Log Number 9401205.

the decision tree model, in which all decisions concern whether
two positions have the same symbol, the time complexity of
the LCS problem is m n if the number of distinct symbols
that can appear in the strings is infinite. Sequential algorithms
matching this bound can be found, among others, in [8] and

In recent years, exploiting the parallelism of this problem
attracts many research interests and several parallel algo-
rithms have been designed [2], [3], [l l] , [12]. Among them,
Aggarwal and Park [2] and Apostolic0 et al. [3] have in-
dependently shown that this problem (and a more general
problem called the string-editing problem) can be solved
in O(1og m log n) time using mn/ log m processors on the
CREW-PRAM model, on which concurrent reads are allowed,
but on which no two processors can simultaneously attempt
to write in the same memory location. Their algorithms share
the following basic idea: Relate the string editing problem
to the problem of recognizing the shortest path from the
source to the sink on a grid-directed graph. To identify the
path, they use a divide-and-conquer scheme to compute the
“distance matrix,” which records the minimum lengths from
every vertex on the left (or top) boundary of the grid-directed
graph to every vertex on the bottom (or right) boundary. These
two algorithms differed in the “conquer” stage. In [2], an
efficient technique for searching in a totally monotone array
has been applied, whereas in [3], the cascading divide-and-
conquer scheme has been used. These two results have been
the best known ones in terms of the time bound. However, in
terms of the time xprocessors bound, none of them matches
the bound mn.

Similarly to [2] and [3], this paper relates the LCS problem
to the problem of finding the maximum-cost path on a grid
directed graph. However, by defining a totally new concept
for “cost matrix,” we exploit very nice properties of the LCS
problem. ’ h o fast algorithms are developed both on CREW-
PRAM model. The first algorithm task O(log2 m + log n)
time with m n l l o g m processors, which is faster than any
existing algorithms on the same model. (Remember that m 5
n.) The second algorithm takes O(log2 mlogm) time with
mn/ log2 m log log m processors when log2 m log log m >
log n; otherwise, it takes O(1og n) time with m n / log n proces-
sors, which is optimal in the sense that the time xprocessors
bound matches the complexity bound of the problem.

The remainder of this paper is organized as follows. Sec-
tion I1 shows how the LCS problem can be viewed as
the maximum-cost path problem on a grid-directed graph,
and provides an overview of our algorithms. Section 111

191.

1045-9219/94$04,00 0 1994 IEEE

Authorized licensed use limited to: Texas A M University. Downloaded on March 10,2020 at 07:38:37 UTC from IEEE Xplore. Restrictions apply.

mailto:mlu@ee.tamu.edu

836 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 8, AUGUST 1994

Fig. 2. Examples of cost matrix.

- - - - - . . .

1 2 3 4 5 6 7 8 9 1 0 1 1 - 1 2 1 3 -

Fig. 1. The grid DAG associated with strings tcaggatt and gatttatgcagg.

concentrates on exploiting properties of the LCS problem.
Section IV gives the faster algorithm, and Section V presents
the optimal algorithm.

11. SOLVING THE LCS PROBLEM THROUGH GRID DAG

A. The LCS Problem via Grid-Directed Acyclic Graph

An lI x 12 grid directed acyclic graph (DAG) is a DAG
whose vertices are the 11 x 12 grid points of an 11 x 12 grid.
The only edges from vertex (i , j) , the grid point on the ith
row and the j th column, are to vertices (i , j + I) , (i + 1 , j)
and (2' + 1, j + 1). Sometimes they are referred to as horizontal,
vertical, and diagonal edges, respectively. Vertex (1, 1) is the
source, and vertex (1 1 , 1 2) is the sink. Given an instance of
the LCS problem, i.e., string A = a l , a2. . . . , a, and string
B = bl , b2 . . . , b,, the grid DAG, G, associated with A and
B is an (m + 1) x (n + 1) grid DAG such that each diagonal
edge on G, say, from vertex (i , j) to vertex (i + 1, j + l),
is associated with cost 1 if symbol a, and symbol bJ in A
and B are identical, and otherwise associated with cost 0.
The cost of a path on G is defined as the sum of costs on the
path. A maximum-cost path is the one with the maximum cost.
Throughout we presume that 711, the length of A, is a power
of 2. As an example, Fig. 1 shows the grid DAG associated
with strings tcaggatt and gatttatgcagg. The relation between
the LCS problem and the maximum-cost path problem is seen
as follows.

Observation I: Any path with cost 1 on grid DAG G
associated with strings A and B corresponds to a CS with
length 1 of A and B. In particular, the maximum-cost path
between the source and the sink corresponds to the LCS of
A and B.

So, to solve the LCS problem, we need to find only the
maximum-cost path beginning at the source and ending at the
sink on grid DAG G. To find this path, we are actually to find
the maximum-cost paths from every vertex on the top row
to every vertex on the bottom row. Similar to the previous
research [2], [3], those paths will be identified under a divide-
and-conquer scheme. We divide the (m + 1) x (n + 1) grid
DAG, G into two (m / 2 + 1) x (n + 1) grid DAG'S, the
upper half, Gr; and the lower half, GL, and then find the
maximum-cost paths on GLj and GL in a recursive fashion.

A vertex v on the bottom row is the j th breakout vertex with
respect to vertex (1, i) if v is the leftmost vertex on the bottom
row, such that there is a path of cost j from vertex (1, i) to
v. Sometimes we call v a breakout vertex of vertex (1, i) for
short. In Fig. 1 , vertices (9, 2), (9, 3), (9,4), (9, 5), and (9, 13)
are the first, second, third, fourth, and fifth breakout vertices
of the source. Note that there are no fifth breakout vertices
with respect to some vertices, for example, (1, 8), because the
maximum cost from vertex (1, 8) to the bottom row is 4.

A fact about breakout vertices is this: The maximum-cost
path between a vertex, say, v, on the top row and its j th
breakout vertex, say w, on the bottom row on G must have
cost j , if v does have the j th vertex. This is because all of
the cost 1's appear on diagonal edges only. Indeed, if there is
a path between vertex v and w with cost greater than j , then
vertex w must not be a j th breakout vertex of v, because we
can always find a vertex w' to the left of w such that there
exists a path between v and w' with a cost of j . In general,
the maximum-cost path between two vertices is not unique.
Throughout this paper, we are interested only in the leftmost
one among the maximum-cost paths between two vertices, in
the sense that no vertices on the other paths lie to its left.

The maximal possible cost of a path on an (m + l) x (n+ 1)-
grid DAG is m. Hence, any vertex on the top row of the grid
DAG has at most m number of breakout vertices on the bottom
row. The information about breakout vertices can therefore be
stored in an n x m matrix called cost matrix. A cost matrix
associated with grid DAG G, denoted by DG, is defined as
follows: For 1 5 i 5 n and 1 5 j 5 m, D ~ (i , j) = IC if
vertex (m + 1, I C) is the j th breakout vertex of vertex (1, z),
and DG (2, j) = a~ if vertex (1, i) does not have a j th breakout
vertex. Note that an entry in DG is really not a cost, but rather
the location of a breakout vertex on the bottom row of G. By
Db we denote the ith row of DG. Fig. 2 shows the cost
matrices associated with Gu, the upper half of G shown in
Fig. 1, and GL, the lower half of G.

B. The Main Structure of Our Algorithms

algorithms consist of four phases.
Now we give an overview of our algorithms. Basically, both

1) Compute DG, for 1 5 i 5 m, where G; is a 2 x (n + 1)-
grid DAG consisting of the ith and (i + 1)th rows of
G.

2) Recursively compute DG from DG" and DG,.

Authorized licensed use limited to: Texas A M University. Downloaded on March 10,2020 at 07:38:37 UTC from IEEE Xplore. Restrictions apply.

LU AND LIN: LONGEST COMMON SUBSEQUENCE PROBLEM 837

3) Identify vertices on the maximum-cost path between the

4) Identify the LCS that corresponds to the maximum-cost

Both algorithms that we designed for the LCS problem share
the same implementations of Phase 1 and Phase 4, but differ
in their implementations of Phase 2 and Phase 3. Phase I and
Phase 4 are simple, so a short description on them is provided
in the next subsection. The implementations for Phase 3 will
be stated later in Sections IV and V. The implementations
of Phase 2, which are critical for both algorithms, are quite

source and the sink on G.

path.

that edge e has a cost of 1 and vertex V k has column index 2.

The LCS of A and B that corresponds to p can be obtained
by ranking those marked symbols. Since the number of edges
on p is bounded by n + m, and because checking the cost
on an edge takes constant time, marking symbols in A can
be done in constant time with n processors or in O(1ogn)
time with n l l o g n processors. The ranking job can be done
in O(1og n) time with n/ log n processors using a standard
technique [7]. Thus O(log n) time using n log n processors
suffices for Phase 4.

complicated. We provide some basic ideas in Section 11-D, and
leave details to Sections IV and V.

D. Ideas for Implementing phase

A cost matrix contains all information about the costs of

C. The Implementations of Phase I and Phase 4

Our basic strategy for the LCS problem is divide-and-
conquer. Given two strings A and B, to compute cost matrix
DG of G associated with A and B, initially we need to
compute m cost matrices, with each being associated with a
2 x (n + 1)-grid DAG as a base for “merge.” Let us now
discuss the computation of the cost matrix of such a grid
DAG, say, Gh. Suppose G’h consists of the hth and (h + 1)th
rows of G. Let bj , bj,, . . . , bJT the jlth, jpth,. . ., j,th symbols
in B, be all symbols identical to ah, the hth symbols in A,
where j l < j 2 < . . . < j,. The following facts are apparent,
according to the definition of Gh. Any vertex on the top row
of Gh has at most one breakout vertex; any vertex properly to
the right side of vertex (1, j,), the j,th vertex on the top row
of Gh, has no breakout vertex at all; and, finally, any other
vertex (l , j) , 1 5 j 5 j,, has a breakout vertex (2 , jk+ l) , the
(jk + 1)th vertex on the bottom row of Gh, where j k satisfies
j k - 1 < j < j k (j o is defined as 0). In other words, the values
of entries from D G ~ (~ , 1) to D G ~ (j l , 1) are j , + 1, the values
of entries from D ~ ~ (j l + 1 , l) to D ~ ~ (j 2 , l) are j 2 + 1, and
so on. For those entries D G ~ (~ , 1) where j , < j 5 n, the
value is 30. As an example, for grid DAG G‘ shown in Fig.
1, because a1 = t and b3 = bq = b5 = b7 = t , we have
D G ~ = (4 ,4 ,4 ,5 ,6 ,8 ,8 ,0 ,0 , , ,oo ,oo)T.

jl , j2 , . . . , j , can be identified by sorting symbols of B,
which can be done in O(1ogn) time with n processors [6] .
j 1 , j 2 , . . . , j,, or 30 can then be properly assigned to the entries
of D G ~ by the procedure below. D G ~ can be generated in
O(1og n) time by using n/ log n processors; therefore, Phase
1 can be done in O(1og n) time by using mn/ log n processors,
for there are m such matrices to be computed in total.

The procedure for generating D G ~ is as follows.
1) Assign j k - j k - 1 to D ~ ~ (j k - 1 + 1, 1), for 1 < k 5 T ,

and assign j1 + 1 to D G ~ (~ , 1).
2) Compute the prefix for the entries of D G ~ from

D G , (~ , 1) to D G ~ (~ ~ + 1,l) (refer to [7]), that is
DG,, (k , 1) + E,”=, D G ~ (j , l) , for 1 5 k _< j , + 1.

3) Assign 03 to entries of D G ~ from D G ~ (jT + 2 , l) to

Now we tum to Phase 4. In Phase 4, we trace the maximum-
DGh (n, 1).

the maximum-cost paths between vertices on the top row and
vertices on the bottom row of a grid DAG, which allows us
to compute DG, given D G ~ and D c L . Before proposing a
formula for computing DG from D G ~ and D G ~ , we would
like to first examine their relations through the grid DAG.

Consider vertex (1, i) , its j th breakout vertex, say, (m +
l , i ,) , and the maximum-cost path, say, p , between them.
Clearly, the cost of p is j , and i, is the value of entry D G (~ , j) .
Path p intersects the common boundary of Gbr and G L at
some vertex, say, (m/2 + l,Z,). Thus, vertex (m/2 + l , i ,)
partitions path p into two subpaths, say, p l and p2: Path p l
goes from vertex (1,i) to (m/2 + l , i q) with certain cost,
say, k , and path p:! goes from (m/2 + 1, i q) to (m + 1, iv)
with cost j - k . Since p is a leftmost path (we are interested
in only the leftmost paths), each of p1 and p2 must be a
leftmost path also. Consequently, vertex (m/2 + 1, i,) on G
is the kth breakout vertex of (1 , i) on GLI, whereas vertex
(vi + l , i ,) on G is the (k - j)th breakout vertex of (1, i4)
on GL, respectively. In other words, D ~ ~ (i , k) = i, and
D G ~ (~ ~ , k - j) = i,, when k # 0 and k # j . From these
two equations, plus D ~ (i , j) = i,, we have D ~ (i , j) =
D G ~ (D G ~ (~ , ~) , ~ - j) . When k = 0 , p l must go straight
down from (1, i) to (”2 + 1, i,) (again, this is because p is
a leftmost path); thus, i, = i. Consequently, p a , with a cost
of j , must be the maximum-cost path from (m/2 + 1, i) to
(m + 1, iv), implying that D G ~ (2 , j) = 2,. Therefore, we have
D ~ (i , j) = D ~ ~ (i , j) . Similarly, one can prove that when
j = k , we have D ~ (i , j) = D ~ ~ (i , j) .

Theorem I : For 1 5 i 5 n and 1 5 j 5 m, we have the
following condition:

where both D ~ ~ (i , j) and D ~ ~ (i , j) are defined as oc for
j > m/2, and D G ~ (D G ~ (Z , ~) , ~ - k) is also defined as 00

for D G ~ (~ , k) = 30.

As an application of Theorem 1, we can calculate DG (1,3)
from D G ~ and D G ~ , shown in Fig. 2, as follows.

’

cost path p = (wl, w2, . . . , wl) obtained in Phase 3 from
the source to the sink, and check the cost on each edge
e = (v k , w k + l) . Symbol ai in A is to be marked if we find

DG(193) = min{DGLI(lr3),DGL(1,3),DGL
(D G ~ (1 ,1) , 21, D G ~ (D G ~ (1,2) , 1)) = 4.

Authorized licensed use limited to: Texas A M University. Downloaded on March 10,2020 at 07:38:37 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 8. AUGUST 1994

Fig. 3. Illustrating the concept of k o p y

Prooj? The correctness of Theorem I in the normal case
in which the j th breakout vertex of vertex (1,i) exists has
been shown through the above discussion. Now we shall show
that this theorem is also correct when vertex (1, i) does not
have a j th breakout vertex. To do this, it suffices to show that
D G (~ , j) will be assigned DC: under this circumstance.

Obviously, when vertex (1, i) does not have a j th breakout
on G, neither vertex (1, i) on GLI nor vertex (l! i) on GL has
its j th breakout vertex. So, the first two items, DG,, (2 , j) and
D ~ ~ (i , j) , in the above formula must be 00, which leaves us
to show that D G ~ (D G ~ , (i , k) , j - k) = 0;: for 1 5 k 5 j . For
a contradiction, we assume the existence of k , 1 5 k 5 j , such
that D G ~ (D G (, (~ , ~) , ~ - k) = 'il and il is finite. Recalling
the definitions in Theorem 1, we see that D G ~ , (i , k) must be
finite. Let DG,, (2 . k) = 22. Then D G ~ (i 2 , j - k) = 21. In other
words, there exist two paths on G. One has cost k and goes
from vertex (l? i) to (m / 2 + 1, i 2) , and the other has cost j - IC
and goes from vertex (771/2 + 1,&) to (m + 1,il). A path on
G with cost j thus can be obtained by combining these two
paths. The existence of such a path contradicts the fact that

0
A trivial but inefficient algorithm for computing DG is to

apply Theorem 1 directly. Indeed, computing entry DG(Z, j) of
DG from DcI, and D G ~ is nothing more than identifying the
minima among O (m) entries, which can be done in O(1ogm)
time using vi/ log m, processors. However, because there are
in total n x VL entries of DG to be computed, nm2/ logm
processors are needed in order to complete the computation
in O(1ogm) time, which implies a computational time of
O(log2 m) for generating DG with nm2/ log m processors.
We must apply Theorem 1 in a much more efficient way. A
better-organized form of this theorem is proposed below.

A k-copy of a row-vector W of size m is a row-vector
of size 2 m , denoted as C Y [k , W] for some k between 1
and m, such that entries of C Y [k , W] from C Y [k , W] (k) to
C Y [k , W] (m + k - 1) are copies of the entries of W from
W(1) to W (m) , and other entries of C Y [k , W] hold 00 (see
Fig. 3). Given D G ~ and D G ~ , the n x m/2 cost matrices
associated with Gv and GL, we define n matrices M[D&],
for 1 5 i 5 n, as follows (see also Fig. 4).

1) The size of M [D i] is I x ni, where 1 is the number of

2) For 1 5 j 5 I , the j th row of M[D&] is C Y [j +
is the tth row of D G ~

As an example, let D G ~ ~ and D G ~ be two matrices shown
in Fig. 2. Fig. 5 shows matrices M[D&] and M[D:], respec-

vertex (1, i) does not have a j th breakout vertex.

breakout vertices of vertex (1,i) on Gu.

] (here D D " U (i ' j) ' DG";i, (iA
G L

with t = D ~ ~ , . (i , j)) .

Fig. 4. Illustrating the stmcture of M[D&].

tively. Using matrix M[D&], Theorem 1 can be rewritten as
follows.

Corollary I : For 1 5 i 5 n and 1 5 j 5 m, we have the
following condition:

~ G (i , j) = lyi;l { DG,, (i,d1 D G L (i l j) ! ~ [~ & l (k , j) } ,

where 1 is the number of breakout vertices of vertex (1, i) on

The efficient use of this corollary is addressed in Section
IV and Section V, after we exploit some nice properties of
DG and M[D&].

GU.

111. PROPERTIES OF DG AND M[D&]
The objective of this section is to illustrate the information

redundancy in DG and M[D&], called k-variant, as well as
another property of M[D&], called totally monotone. Let us
start with exploiting properties of cost matrix DG.

A. Properties of DG
Here are some simple facts about DG, proofs of which can

be found in [lo].
Proposition 1 :

1) D ~ (i , j l) < D ~ (i , j z) if ji < j 2 and D ~ (i , j i) # 00.

2) DG(i1 , j) 5 D ~ (i 2 , j) if i l < 22.

4) If D ~ (i 1 , j l) = IC and IC # 00, then there exists j 2 such

5) If D ~ (i ~ , j ~) = D G (2 2 , j a) = kl, then there exists j

The importance of Propositions l(4) and l(5) is that they
suggest the similarity between rows in DG. Moreover, since
rows in matrix M[D&] are nothing but copies of rows in
D G ~ , they also suggest the similarity among M[D&]'s. The
following definitions are helpful in formalizing the information
redundancy in DG and in M[D&]. Given a row-vector, a
sub-row-vector of it is obtained from it by deleting none or
some entries (not necessarily consecutive ones). If a row-
vector is a sub-row-vector of more than two row-vectors,
say, W1, W2, . . . , Wl, then it is a common sub-row-vector of
them. (Without causing misunderstanding, we simply call it
a common row-vector.) Those Wi's, each with size m, are
k-variant if there exists a common row-vector of them such
that the size of it is at least m - I C . For example, any two
consecutive row-vectors in DG" and D G ~ shown in Fig. 2
are 1-variant.

3) D G (i f 1, j) 5 DG(i,j + 1).

that D G (i 2 , j Z) = IC for any 22, i l < 22 < I C .

such that D ~ (i , j) = IC1 for any i , il < i < 22.

Authorized licensed use limited to: Texas A M University. Downloaded on March 10,2020 at 07:38:37 UTC from IEEE Xplore. Restrictions apply.

LU AND LIN: LONGEST COMMON SUBSEQUENCE PROBLEM 839

Fig. 5. M[D&] and M[D&].

Proposition 2:
1) 0% and D;+:+’, the ith and (i + 1)th row of DG, are

1-variant for 1 5 i 5 n.
2) Any k + 1 consecutive rows of DG are k-variant.

Proof: Proposition 2(2) is an immediate result of Propo-
sition 2(1), so we prove only the latter. Without loss of
generality, we assume that 00 exists in both DL and Ilk+:+’.
We also assume that there are two numbers, 11 and 1 2 , such
that D ~ (i , l i) # 00, D ~ (i , l i + 1) = ea, D G (~ + 1,lz) #
00, and D G (~ + 1 , 1 2 + 1) = 00. To show that D& and D2.j’
are 1-variant, it suffices to show that each of these two rows
contains at most one “finite” entry that is not in the other.
Noticing that 11 2 22 (suggested by Proposition 1(2)), we
actually need to show only that there exists at most one finite
entry that is in D&, but not in 0:“. Three cases need to be
considered, depending on the first entry in DL and D;+’:
D G (~ , 1) = D G (~ + 1, l), D G (~ , 1) < D G (~ + 1, I) , and

The third case could not occur, according to Proposition
l(2). Proposition 2(1) is held in the first case. In fact, DL
is identical to 0;’’ when D G (~ , 1) = D G (~ + 1,l). Indeed,
for instance, if D G (~ , 2) is not 00, then there exists j z such
that D G (~ + 1, jz) = D G (~ , 2) according to Proposition 1(4),
where j z must be less than or equal to 2. On the other hand, j 2
should not be 1, because D ~ (i + l , 1) = D G (~ , 1) # D G (~ , 2).
Therefore, we conclude that j 2 = 2; i.e., D G (~ + 1,2) =
D ~ (i , 2) . Similarly, one can show that if D ~ (i , 3) is not
00, then D G (~ + 1 , 3) = D ~ (i , 3) , and so on. As for the
second case, except for D G (~ , l), all entries in 0% must also
be in Indeed, since i + 1 5 D G (~ , 1) < D ~ (i , j) for
2 5 j 5 I1 (by Proposition 1(1)), entry D ~ (i , j) can be found

0.
To structurize the useful information in DG and in M[D&],

we introduce several concepts. Consider k + 1 consecutive
row-vectors in DG, say, 0% for il 5 i 5 il + k. Let
L be a common row-vector of them. L can be partitioned
into groups, L1, L z , . . . , L,, such that entries in each
group are consecutive entries in every Db. The remnant
of D& with respect to L (the remnant of 0% for short)
is a row-vector R[D&] = (Ri , R i , . - . , R ; + ,) such that
0% = (Ri, L I , R;, . . . , L,, Et,,). Note that there may be no
entry in R;. The size of R[D&] is defined as the sum of sizes of
Rj’s for 1 5 j 5 r + 1. In this paper, we are interested in only
the largest partition, in the sense that for any two entries from
two distinct groups, there exists i’, il 5 i’ 5 il + k , such that
these two entries are not consecutive in D$. Clearly, under
this assumption, the partition for groups are unique. Consider
the first and second rows of D G ~ in Fig. 2 as an example.
The common row-vector of them is L = (7,9,12), and the
remnants of them are R[D&] = (2) and R[D$u] = (3),
respectively.

DG(i , 1) > DG(i + 1, 1).

in 0;’:” according to Proposition l(4).

Proposition 3:
1) For k + 1 consecutive row-vectors D& of DG, il 5 i 5

i l + k , common row-vector L of D,?j and D S f k is a
common row-vector of the k + 1 row-vectors.

2) L can be partitioned into at most 2k groups.
3) Let RID&] = (A!! , . . . , R;+,) be the corresponding

remnant of D&, where r > 0. Then Rfl is a subvector
of R: when il < a2 and 2 5 j 5 r + 1.

Proofi To show’ that L is the common row-vector of
D&’s, for il 5 i 5 il +k , we need to show only the following:

1) Any “finite” entry in L appears in every D&.
2) The number of “00” entries in L are no more than that

Statement 1) is true because if, for instance, w is a “finite”
entry in L, i.e., there exist j l and j z such that D ~ (i 1 , j l) =
D ~ (i l + k , j 2) = w, then for any i, i l < i < il+k, there exists
j such that D ~ (i , j) = w (by Proposition l(5)). Statement 2)
is true because, in fact, Proposition l(2) suggests that there
are at least as many 00 entries in D& as in D,?j for il < i.

L can be obtained from either Dzl or D i l f k by deleting
at most k entries; therefore, it should be of no problem to
partition L into no more than 2k groups such that entries in
each group correspond to consecutive entries in both D2 and
D$+k. Now, to show Proposition 3(2), we shall show that
the partition is valid for D&’s for ,il < i < il + k . That
is, if w1, W Z , . . . , W h are h consecutive entries in both Dg
and Dk+k under this partition, then they are also consecutive
in any D&, for i l < i < il + k. The existence of those
entries in DL’s is certain by Proposition l(5). To show the
consecutivity, we assume that there exists entry w in D& such
that w1 < w < wl+l, 1 5 1 < h, for a contradiction. Since
w1 is an entry in D2+k, we have il + k: < W I . Because of
i < il + k , il + k < w1, and w1 < w, we have i < il + k < w.
By Proposition 1(4), w must be an entry also in D 2 f k . The
assumption that w is between wl and W Z + ~ , thus implying that
wt and WZ+I are not consecutive in D2+k, a contradiction. The
proof of Proposition 3(3) is similar to the proof of Proposition
3U).

The following theorem is an immediate result from Propo-
sition 3.

Theorem 2: Each row-vector 0% of any k + 1 consecutive
rows of DG can be represented by a common row-vector of
these consecutive rows and a remnant such that the common
row-vector consists of at most 2 k groups, and the remnant
contains at most k entries.

B. Properties of M[D&]
The information redundancy in matrix M[D&], along with

another important property of M[D&], called torally monotone,
is illustrated in this section.

in any D&’s.

Authorized licensed use limited to: Texas A M University. Downloaded on March 10,2020 at 07:38:37 UTC from IEEE Xplore. Restrictions apply.

840 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 8, AUGUST 1994

Let X = (X1,X2,...,Xm) and Y = (Y 1 , Y Z l . . . , Y m)
be two matrices of the same size, where X i and Y i are the
ith columns of X and Y , respectively. X is obtained from Y
by k-shift, denoted by X = S [k , Y] , if there is a number k
such that X = (Y m - k + l , . . . , Y m , Y 1 l . . . , Y m - ~ - l , Y m - k) .
Let Y1, Y2, . . . , Yq be matrices, all with same number of
columns. By (Y17 Y2, . . . , Yq)T, we denote the following

matrix in this paper: (z) . Matrix M = (M I , . . . , MT)T,

where Mi's are matnces each with ni columns, is a
common matrix of 1 matrices A l , A p , . . . , A l , each with
m columns also, if there exists an integer K (i , j) such
that for any A ; , 1 5 i 5 I, not only is the new
matrix (s [K (~ , 11, M I] , s [K (~ , z), ~ 2 1 , . . . , S [K (i , r) , MTIIT
a submatrix of Ai, but also the rows in S [K (i , j) , M j] are
consecutive rows in Ai. Matrix Mj in M , 1 5 j 5 T , is
defined as the jth group of M . For example, the following
matrix is a common matrix of M[D&] and M [D 3 in Fig. 5:

Yl

CO CO 00 11 cx) CO CO 0 3 .

m m 8 1 1 c x) 0 0 0 0 ~ 0

00 00 03 CO 13 00 03 cm 1
In this example, T = 1 and K(1, l) = K (2 , l) = 0.

Intuitively, given A I , A2 , . . . , Al, the larger the size of M , the
more Al , A2, . . . , Al look alike. A1 , Az , . . . , A1 are k-variant
if there exists a common matrix M of them such that for each
Ai, at most k rows of it are not in M . For example, matrices
M[D& and MID&] in Fig. 5 are 1-variant.

Theorem 3: If D& and D& are k-variant, then M[D;]
and M[D;] are k-variant. Moreover, if L = (L1, L z , . . . , L T)
is a common row-vector of D& and D;,, where Lj is the
j th group of L, then a common matrix, (MI, MZ . . . , M T) T ,
of M[D;] and M [D Z] can be constructed as follows: The ith
row of M3 is either C Y [i , Dk:z)] when L j (i) # 00 or a row
of CO's when L j (i) = 00.

Proof: Two things need to be proved. First,
(M ~ , M ~ , . . . , A , ~ ~) ~ is a common matrix of M [D , ~]
and M [D 2] ; second, there are at most k rows in each of
M [D;] and M [D g] that are not in the common matrix. We
discuss only M[D;] in this proof; M[D;] can be handled
similarly. For the sake of simplicity, we assume that there is
no 00 entry in L; the case in which cx) entry exists should
not be difficult to deal with.

To prove the first claim, we shall prove that there exists
K (i l , j) such that S [K (i l , j) , M j] is a submatrix of M[D;] ,
where 1 5 j L ' r . Remember that matrix Mj is decided by
Lj , together with D G ~ , as defined in the theorem. Let rj be
the size of Lj , and let L j (l) , the first entry in Lj , be the
wlth and wpth entry in D&, and D&,, respectively. We shall
show that the submatrix, which consists of rj number of rows
of M [D g] , from wlth row to (tu1 + rj - 1)th row, can be
obtained from Mj by w1-shift. Because of the lack of space,
we explain only why the wlth row of M [D i] can be obtained
from the first row of Mj by wl-shift. The other rows are
handled similarly. Indeed, by the definition of AI[@], the

wlth row of M[D,%] is CY[wl + l,D~?u(il'wl) 1 . On the
other hand, the first row of Mj is CY [l, D2:')], as defined

because Lj(1) = D ~ ~ (i l , w ~) . Comparing these two copies
, one can see that the former is obtained from

the latter by the wl-shift.
To prove that at most k rows of M[D$] are not in

(M I , M z , . . . , M T) T , we need to notice only the fact that there
are at most k entries that are in D&, but not in L. 0

Corollary 2: Any IC + 1 consecutive matrices,
M[D&], M[D;+'], . . . , M[D;+:+"], for 1 5 i 5 n - k ,
are k-variant; moreover, each of them can be represented
by a common matrix, with at most 2 k groups, and at most
k other row-vectors.

The importance of k-variant of M[D&] can be seen in the
next two sections, where we shall show how we can get rid of
redundant information in M[D&] and thus create a new matrix
that has the same column minima as M[D&], but contains
far fewer rows. It is worth pointing out that in both of our
algorithms, matrix M[D&] is never physically generated for
the obvious reason: It costs too much. Even matrix M , the
common matrix of M[D&], is never physically generated, for
the same reason. More details can be seen in Sections IV and
V.

We now tum to the second property of M[D&]. A 2-D
matrix 2 is monotone if the minimum value in its ith column
lies below or to the right of the minimum value in its (i - 1)th
column. (If more than one entry has the minimal value in the
column, then we take the uppermost one.) In particular, Z is
totally monotone if every 2 x 2 submatrix of it is monotone

[2] . As an example, matrix 6 4 1 is monotone, but not

in the theorem, which is equivalent to C Y [l, D ~ ~ u (i l ' w l) 1 7

of Dg,"u (2 1 ,w1)

(: : 1)
totally monotone, whereas matrix 6 4 1 is not only

monotone but also totally monotone.
Among many nice things about this type of matrix, we

mention only two that are important to our algorithms. Sub-
matrices of a totally monotone matrix obtained by deleting
rows and columns are totally monotone, and efficient parallel
algorithms are available to identify the column minima of a
totally monotone matrix [2] .

(I :)

Theorem 4: M[D&] is totally monotone.
Proof: Consider an arbitrary 2 x 2 submatrix of M[D&]:

1 (MID&] (2 2 , jl M[%] (i 2 , j z) '
M[D&l(il, j l) M[D&l(i l , j z)

where il < Z Z and jl < j 2 . To prove that M[D&] is totally
monotone, it suffices to prove that the above submatrix is
monotone, that is, the following:

M[D&l(il, jl) > M[D&l(iZ,jl)
=+ ~ [D & l (i l , j Z) > M[D&](iZ,jZ) (1).

It can be seen that if (1) can be proved when j:! = jl + 1,
then it can be proved for any j 2 , j , > j1, inductively. So, we

Authorized licensed use limited to: Texas A M University. Downloaded on March 10,2020 at 07:38:37 UTC from IEEE Xplore. Restrictions apply.

LU AND LIN: LONGEST COMMON SUBSEQUENCE PROBLEM 841

shall show only the following equation:

We first discuss the case in which four entries in (2) are
finite, and leave the other cases to the last. For a contradiction,
we assume that the following is true:

Let u1, U’,. . . , u,/~ be the entries of D&, from the first one
to the (m/2)th one. Then the 21th row of M[D&] is CY[i1 +
1, D;;] by definition. Keeping this in mind, one can see that
(3) is equivalent to the following:

and

vi2 < D G ~ (uil , j l-Zl) follows immediately from (4), because
ui2 is always strictly less than D G ~ (w i z , j l - 2 2) . Thus, there
exists j ’ such that the following is true:

See Proposition l(4). On the other hand, applying Proposition
l(1) to (5) , we get the following equation:

Iv. A FAST ALGORITHM FOR THE L c s PROBLEM

The purpose of introducing this algorithm in this paper is
twofold. First, it solves the LCS problem in O(log2 m + log n)
time, which is the fastest algorithm on the CREW-PRAM ma-
chine to the best of our knowledge. Second, understanding this
algorithm is a warmup for understanding our next algorithm,
which is more complicated but optimal. The four main phases
of this algorithm have already been described in Section 11,
and the implementation for Phase 1 and Phase 4 has also
been addressed there. Here we focus on the implementations
of Phase 2 and Phase 3. Phase 2, which is to generate cost
matrix DG, is the most complicated part of this algorithm.
With a divide-and-conquer strategy applied in generating DG,
our focus is on the merge stage, i.e., how to compute DG
based on DG, and D G ~ . Phase 3, which is to identify the
maximum-cost path from DG, is relatively easy, and only a
brief discussion on it is given. At the end of this section,
we provide an analysis of the complexity of this algorithm.
A 2-D array is employed to represent a cost matrix in this
algorithm-a big difference from our next algorithm.

A. How to Compute DG from DG, and D G ~
Recall the basic formula for computing DG from D G ~ and

D G ~ which is described in Corollary 1. This computation
benefits greatly from the totally monotone property of M[D&
as well as the k-variant property of both D& and M[D&].

Observation 2: From [2], the column minima of an m x m
totally nonotone array 2 can be computed in O(1ogm) time
with m logm processors on CREW-PRAM.

Applying this observation to the basic formula for com-
puting DG immediately results in a trivial algorithm for
generating DG, given DG, and D G ~ , which takes O(1ogm)
time with mn log m processors. Our first algorithm, however,
does even better than this in the sense that the number of

D ~ ~ (~) i ~ , j l - 21) < D ~ ~ (u i ~ , j ~ - i2 + 1). (7) Processors is reduced by a factor of log2 m. Let us first state
the result.

Combining (4), (6), and (7) we derive the following equation: Theorem 5: O(log m, time and m n / l O g m Processors SUf-
fice to compute cost matrix DG with size n x m from D G ~

which contradicts the fact that D ~ ~ (u i ~ , j l - 22) and
D G ~ (wiz , jl - 22 - 1) are two consecutive entries of D:;.

Now we consider the cases in which some entries in (2) are
03. In order to be consistent with the definition of monotone
matrix, we have to distinguish 03 entries. For any two 03

entries in the same column in M[D&], the one having a
smaller index is larger than the one having a larger index
if both of them are to the right side of some finite entries;
otherwise, the one having a smaller index is smaller than the
one having a larger index. We shall show only the case where
M[D&](Zl , j l) = 03 and M [D &] (i ~ , j l) # 03. Othercases are
handled similarly. By Proposition 1 (l), M[D&](i l , j 2) should
be CO because of j 1 < j ~ . If M [D &] (i z , j ~) is finite, then we
have proved the theorem. If M[D&](i z , j z) is 00, the theorem
is also true, because M[D&](i2 , j l) and M[D&](i z , j a) are
both to the right side of two finite entries, respectively. Thus,
we have proved (2). 0

and D G ~ .
The scheme for computing DG is this: We partition DG

into n/ log2 m submatrices, each with log’ m consecutive
rows of DG, and compute these submatrices independently.
m log m processors are assigned to each submatrix, and they
are required to generate the submatrix in O(1ogm) time.
Without loss of generality, we concentrate on the computation
of the submatrix, which consists of the first log’m rows
of DG. Notice that entry D ~ (i , j) is the minimum among
D ~ ~ (i , j) , D ~ ~ (2 , j) and j th column minimum of M[D&].
To show Theorem 5, we need to show only the following.

Lemma 1: Given cost matrix D G ~ and D G ~ , the column
minima of M[D,&], M[D&], . . . , M [D P z “ 1 can be com-
puted in O(1og m) time with m log m processors.

The column minima of M[D&] are computed by pro-
cedure ColMin, which takes as input DG, and DG=.
Procedure ColMin takes advantage of the information
redundancy in M[D&]. According to Corollary 1, matrices
M[D&], M[D;], . . . , M [D z 2 ”1 are (log’ m - 1)-variant,

Authorized licensed use limited to: Texas A M University. Downloaded on March 10,2020 at 07:38:37 UTC from IEEE Xplore. Restrictions apply.

842 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 8, AUGUST 1994

and each of them can be represented by their common matrix,
together with at most (log’, - 1) other row-vectors. The
key idea used in procedure ColMin is to compute the column
minima of every group of the common matrix, and thus to
reduce the size of M[D&] by replacing the submatrices that
correspond to groups of the common matrix with the column
minima of the submatrices.

For a formal description, we introduce some notations. Let
M = (MI, . . . , MT)T be the common matrix of M[D&] for
1 5 i 5 log’m, in which groups are constructed following
the rule given in Theorem 3. Let X [i , j] be the submatrices of
M[D&], corresponding to Mj, i.e., X[i,j] = S [K (i , j) , Mj] .
By vector Cmin[Z], we denote the column minima of matrix
Z, i.e., Cmin[Z](i) is referred to as the minimum of the ith
column of matrix Z.

In procedure ColMin, matrix MID&] is reduced to a new
matrix, denoted by M’[D&], by replacing its submatrix X [i , j]
with Cmin[X[i,j]]. It should be clear that the new matrix
shares the same column minima with the original one, i.e.,
Cmin[M[D&]] = Cmin[M’[D&]]. Listed below are three nice
things about the new matrices. First, they are small in size.
Indeed, applying Corollary 2, readers can easily see that
the number of rows in each of M’[D&]’s are bounded by
310g2m, instead of m/2 for the original ones. Second, to
generate M’[D&]’s for 1 5 i 5 log’ m, we need to compute
Cmin[Mj]’s only for 1 5 j 5 T , instead of computing
Cmin[X[i,j]]’s for 1 5 i, 5 log’ m and 1 5 j 5 T , inde-
pendently. This is because Cmin[X[i, j]] can be obtained from
Cmin[Mj] by K(i,j)-shift, because X[i,j] = S [K (i , j) , Mj].
Finally, it can be seen that M’[D&]’s are totally monotone.
Next additional notations are given before procedure ColMin
is presented.

Let L = (L1, La, ... , LT) be a common row-vector of
row-vectors Wi, for 1 5 i 5 1, where L j is the jth group
of L. The position of L j in the row-vector W;, denoted
by Pos[Wi,Lj], is defined as the index of the entry in W;,
which is identical to Lj(1). P[W;, L] is defined as a function
such that P[W;, L](j) = Pos[W;, Lj]. Similarly, let Y =
(Y I , Y ~ , . . . , %) ~ be a common matrix of 2;’s for 1 5 i 5 1,
where Yj is the j th group of Y. The position of Yj in matrix
Zi, denoted by Pos[Zi, q] , is defined as the index of the row-
vector in 2; which is obtained from the first row in Yj by
certain shifting. P[Zi ,Y] is defined as a function such that

Procedure ColMin {Find column minima of M[D&]’s, for

Input: cost matrix D G ~ , and D G ~ .
Output: c m i n [~ [~ &]] ’ s for 1 5 i 5 log’m.
I) Identify common row-vector L of 0%” for 1 5 i 5

P[ZZ, Y](j) = POS[Zi, y3].

1 5 i 5 log’m}

 IO^' m:

a)
b)

Compute L = (L l , . . . , L,); and
Compute P[D&”, L], for 1 5 i 5 log’ m.

2) Identify common matrix M of M[D&] for 1 5 i 5

Compute P[M[D&], MI, for 1 5 i 5 log’ m; and

log’ m:

a)

b) Compute K (i , j) such that X [i , j] =
S[K(i , j) ,Mj] , for 1 5 i 5 log2m and
1 5 j l r .

3) Compute Cmin[Mj], for 1 5 j 5 T ;

4) Compute c m i n [~ [~ &]] for 1 5 i 5 log’m.

B. The Analysis of Procedure ColMin
We prove Lemma 1 by claiming that O(1og m) time suffices

for completing each step in ColMin with m log m processors.
Lemma 2: Common row-vector L of D&s, for 1 5 i 5

log’ m, can be identified in O(1ogm) time using m/2 pro-
cessors.

Common row-vector L of D&”s can be computed from
D& and D Z Z m , according to Proposition 3(1). This com-
putation takes advantage of the fact that entries in D& and

are monotonely increasing in value (by Proposition
1(1)). One processor is assigned to each entry in D,& . Typi-
cally, processor P, assigned to entry TI of D& independently
executes a binary search on D Z * m, and marks if it finds an
entry w that is identical to U . Clearly, those marked entries are
entries shared by both D&” and D,!$,, and therefore L is
obtained simply by ranking them. In order to further partition
L into groups, L1, Lp, . . . , L,, we search and mark every pair
of consecutive entries of L, say, 11 and 1 2 , such that they
are not consecutive in D z 2 m. Since the entries in the same
group should be consecutive in D Z 2 m, 11 and 12 must belong
to two groups, and, moreover, 11 must be the last entry in some
group Li, and 12 be the first entry in group L;+l. Thus, we
partitioned L into groups. It is easily seen that the above tasks
can be done in O(1ogm) time with m/2 processors.

P[D&”, L] is to be computed by identifying the position of
Lj(1)s in D&” for 1 <_ j 5 T . Since the number of groups
T is bonded by log’ m (see Corollary I) , and since there are
log’m such functions to be computed in total, Step I(b) can
be done in O(1ogm) time with log4 m processors.

Lemma 3: Given common row-vector L = (L1, ... , L,)
of DLU’s for 1 5 i 5 log’m, the corresponding position
functions P[M[D&],M]’s and K (i , j) ’ s for 1 5 i 5 log’m
and 1 5 j 5 T can be identified in O(1) time with log4m
number of processors.

As a matter of fact, once L = (L1, L z , . . . , L T) is
obtained, M = (MI , . . . , can be constructed fol-
lowing the rule in Theorem 3. As for the computation
of P[M[D&], MI, recall that the (Pos[DkU, Lj])th row of
M[D&] is C Y [P O S [D ~ ~ , Lj] + 1, D2:”] (from the definition
of M[D&]), and also recall that the first row of M j is
GY[1, D$:’)] (from Theorem 2). So, the former can be
obtained from the latter by (Pos[D&, Lj])-shift, implying
Pos[M[D&], Mj] = Pos, [D&,, Lj]. Thus, in general, we have
P[M[D&], M] = P[D&,, , L]. Since P[D&, L] has already
been computed in Step l(b), Step 2(b) can be obtained in
constant time. This analysis also implies that K (i , j) =
Pos[D&”, Lj]. Constant time with log4 m processors should
suffice to identify the common matrix of M[D&]’s.

Authorized licensed use limited to: Texas A M University. Downloaded on March 10,2020 at 07:38:37 UTC from IEEE Xplore. Restrictions apply.

LU AND LIN: LONGEST COMMON SUBSEQUENCE PROBLEM 843

Lemma 4: Given DG”, D G ~ , P[M[D&] , MIS and
K(i , j) ’ s for 1 5 i 5 log2m and 1 5 j 5 T , Cmin[Mj]’s can
be computed in O(1ogm) time with mlogm processors.

For the sake of simplicity, without loss of generality, we
assume that any group Mj has no more than m/ log2 m
rows; otherwise, we partition the larger groups into several
smaller groups, and the total number of groups should still
be bounded by O (m / log2 m). Consider the computation of
Cmin[M.]. For the worst case, we assume that it is of size
(mllog m) x m. We first compute Cmin[Z] where Z is
an (m/log2m) x (m/ log2m) matrix consisting of every
(log2 m) column of ~ 3 . Clearly, z is totally monotone,
because M j is totally monotone, and thus Aggarwal and
Park’s algorithm [2] is applicable to compute Cmin[Z]. By
Observation 2, this computation can be done in O(1og m)
time by using m/ log m processors. Then applying Aggarwal
and Park’s algorithm, the remaining minima of MJ can be
computed in O(1og m) time, also using m/ log m processors.
In total, all Cmin[Mj]’s for 1 5 j 5 T can be computed in
O(1og m) time with m log m processors.

Lemma 5: Given DG”, DGL, cmin[Mj]’s,
P[M[D&],M]’s , and K (i , j) for 1 5 i 5 log’m and
1 5 j 5 T , Cmin[M[D&]’s for 1 5 i 5 log’m, can be
computed in O(1ogm) time with mlogm processors.

Instead of computing Cmin[M[D&]] directly, we compute
Cmin[M’[Di]], a much smaller matrix. Recall that M’[D&]
consists of row-vectors Cmin(X[i,j]’s for 1 5 j 5 log2 m and
at most log2, other row-vectors from M[D&]. Also recall
that Cmin[X[i,j]] is obtained from Cmin[Mj] by K (i , j) -
shift. The construction of M’[D&]’s should be easy under
the assistance of P [M [D &] , MI. Since M’[D&]’s are totally
monotone, the similar approach we just used for computing
Cmin[Mj]’s can be used to compute Cmin[hf’[D&]]’s using
the required time and number of processors. Thus, we have
completed the proof of Lemma 1, and have proved Theorem
5.

d

C. The Implementation of Phase 3

The objective of this section is to describe a scheme to
identify vertices on the maximum-cost path between the source
and the sink of the (m + 1) x (n + I) grid DAG G, given
DG. For a maximum-cost path from the source to the sink
on G, say, p = (q. w z , . . . , v l } , there could be more than one
vertex of p that are on the same row of G, because m 5 n. A
vertex, say, w;, on p is a cross-vertex if vi is the leftmost one
to the left of vertices on p . We denote the cross-vertex on the
j t h row of G as w [j] to distinguish cross-vertices from other
vertices on p . Clearly, u1 = v[l] . Phase 3 in the main structure
described in Section 11-B is implemented by two stages.

1) Identify cross vertices v [i] on p , for 1 5 i 5 m + 1.
2) Identify the other vertices on p.
We start with the first stage. All cross-vertices on a

maximum-cost path can be obtained as the side effect of
computing cost matrix DG. Suppose we are computing
D ~ (i , j) , that is, identifying in G the j-breakout vertex,
denoted as y, of vertex (l , i) , denoted as 2. Let p be the
maximum-cost path from z to y, and let vertex q be the

cross-vertex of p on the boundary betwen GU and GL,
meaning q = v[m/2 + 11. By side effect, we mean that q
can be identified in Phase 2 without spending extra time.
In fact, according to Theorem 1, D ~ (i , j) is the minimum
among D G o (i r j j , D G L (i , j) , and D G ~ (D G ~ (~ , ~) . ~ - kj’s,
for 1 <_ k 5 j . If D ~ (i , j) = D ~ , , (i , j) , then obviously q is
vertex (m/2+ l ,D~[, (z , j)) on G. If D ~ (i , j) = D ~ ~ (z , j) ,
then q is vertex (m/2 + 1: i) on G. Otherwise, suppose
that D ~ (i , j) = D G ~ (D C ~ (~ , I C) , ~ - k) ; then q is the
(m/2 + 1, D G ~ , (2 , k))th vertex on G. Those cross-vertices
such as q are stored in a global matrix. Thus, given two
vertices x and y, we can print out the corresponding cross-
vertex q in constant time. Recursively, the cross-vertices on the
maximum-cost path between source and sink can be printed
out in O(log m) time using m/ log m processors.

The second stage is simple. Suppose that IJ[Z] and v [i + 11 are
vertex (i , j l) and vertex (i + 1 7 j g) on G, respectively. Then
vertices on the ith row of G from (i, j l + 1) to (i , J‘Z - 1) must
be all the vertices between v[i] and v[i + I] on p. So, once
all cross-vertices have been identified through the first stage,
there should be no difficulty in printing out all vertices on p
in O(1ogn) time with n processors.

D. The Complexity of the Algorithm

We first state the result.
Theorem 6: O(log2m + logn) time with mn/logm proces-

sors suffices to identify the LCS of A and B with lengths m
and n, respectively, where rri 5 n.

Recall the four phases described in Section 11-B. We have
shown in Section 11-C that Phase 1 can be done in O(1ogn)
time with m71/ log n processors, and that Phase 4 can be done
in O(1og n) time with n/ log n processors. We have just shown
in Section IV-C that O(1ogn) time and n, processors suffice
for Phase 3. So, to show Theorem 6, we shall show that
O(log2 m) time and mn/ logrn processors suffice for Phase
2. Let T (k) be the time taken to generate a cost matrix of
size (k + 1) x (n + 1). The execution time of Phase 2, which
is O(log2 m), can be obtained from the following recurrence
suggested by Theorem 5:

T (k) 5 T (k / 2) + c1 l ogk ,

where T(k /2) is the time taken to generate the two smaller
cost matrices, and c1 log k is the time taken for merge. T(2)
is defined as 0, because time T(2) is charged on Phase 1. In
order to use no more than m n / l o g m processors throughout
the algorithm, Brent’s principle [4] must be applied in Phase
2. Notice that Phase 2 is a recursive process, and has logm
merge stages, each costing O (m n) operations. Therefore, these
operations in each stage can be performed in O(1ogm) time
using mn/ log m processors, according to Brent’s principle.

v . AN OPTIMAL ALGORITHM FOR THE L c s PROBLEM

The four phases of this algorithm are described in Section II-
B, in which Phase 1 and Phase 4 are shared with the previous
algorithm. In this section, we focus on the implementations of
Phase 2 and Phase 3. The fundamental difference between this
algorithm and the previous one lies in the data structure used

Authorized licensed use limited to: Texas A M University. Downloaded on March 10,2020 at 07:38:37 UTC from IEEE Xplore. Restrictions apply.

844 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5. NO. 8, AUGUST 1994

for representing cost matrices. In the previous algorithm 2-D
arrays are used to implement cost matrices; unfortunately, this
approach would destroy any hope of achieving optimality. To
see this, just think about computing and storing 0 (m / 2 i) cost
matrices, each of size 7~ x O(22) at (i + 1)th merge stage of
Phase 2, where each matrix corresponds to an O(ai) x (n + 1)-
grid DAG. Obviously, this stage alone costs at least O(mn)
operations. The fact that there are O(1ogm) merge stages
in Phase 2 implies that at least O(mn1ogm) operations are
needed, which is larger than our desired bound, mn. For this
reason, a very efficient data structure is adopted for DG in our
optimal algorithm.

A. The Data Structure for DG
We use common vectors and remnants to represent cost

matrix DG. Specifically, for every consecutive k + 1 rows
of m x n cost matrix DG, say, D& for 1 5 i 5 k + 1, we use
an 1-D array to represent their common row-vector L, and use
k+l 1-D arrays to represent k+l remnants R[D,k]'s. Besides,
position functions P[D& L]'s and P[D&, R[D&]]'s defined in
the previous section are also used in order to access any entry
of DG on this data structure very fast. It is not hard to see
that with the help of position functions and binary search, any
read or write operation on DG can be simulated in O(1ogk)
time sequentially on this data structure. As an example, when
k = 2, the first three row-vectors of DG, which are D& =
(2,3,4,5,13,0~,~~,~0), D: = (3,4,5,11,13,~0,~0,~),
and Db = (4 ,5 ,6 ,11 ,13 ,~0 , CM, CO), will be represented by
the following data structure:

L = (4,5, 13, m,m, x),

R[D&] = (2,3), R[D&] = (3; 11), R[D&] = (6,ll);

P[Dg, L] = (2,5),
P[D& L] = (1,5):

in which L1 = (4, 5), L2 = (13,00, CO, CO);

P[D& L] = (3,5), P[D&, E[D&]l = (1);
P[Dg, R[D:]] = (1: 4);

P[D&, R[D&]] = (3).

Throughout this section, we presume that any cost matrix is
represented by the above data structure. So, by computing DG,
we mean computing the common row-vectors, corresponding
remnants, and position functions.

Now we would like to make a short comment on why
the above representation of DG can help us to achieve our
objective. Note that by Theorem 2, k + 1 consecutive rows
of DG with size n x m can be represented by their common
vector L with a size of at most m: and k + 1 remnants, each
with size of at most k ; hence, O(mn/k+nk) space suffices to
store all information in DG. By this representation, not only
is the redundant information in DG removed, and thus storage
space is cut a great deal, but also the number of entries to
be computed is greatly reduced. Two simple facts about the
position function are stated as follows.

Proposition 4: Let Lh be the hth group of L, the common
row-vector of Oh's for il I i 5 il + k .

1) Pos[D$+k, Lh] 5 Pos[D& Lh] 5 Pos[D& Lh].
2) POS[D2+k, Lh] 2 Pos[D&, Lh] - k .

Proof: Let P O S [D ~ , L ~] = j1 , POS[D&,L~] = j 2 ,
and Pos[D$+',L~hl = jJ. In other words, D ~ (i 1 , j l) =
D ~ (i , j z) = D ~ (i 1 + k , j g) = L k (1) . According to Propo-
sition 1(2), we have jl 5 j~ 5 j s , because il 5 i 5
il + k. As for Proposition 4(2), noticing D ~ (i l + l,jl -
1) 5 D~(Z1,jl - 1) = Lh(1) (see Proposition l(3); hence,
we have P o s [D $ + ~ , L ~] _> j , - 1. Applying Proposition
l(3) repeatedly, we get Pos[D$+~,L+] 2 jl - k , which is

U equivalent to POS[D$+~, L ~ I 2 P~S[D;, L ~ I - IC.

B. The Algorithm for Computing DG
We first establish the time bound for computing DG from

DG,, and D G ~ , and then provide the proof in the next
subsection.

Theorem 7: Given D G ~ and D G ~ , O(logmlog1ogm) time
with mlogm processors suffices for computing i ~ g ~ ~ consec-
utive row-vectors in cost matrix DG of size n x m.

Corollary 3: Given DG" and D G ~ , O(logm1og logm)
time with mn/log3m processors suffices to generate cost
matrix DG of size n x m.

Similarly to our first algorithm, DG is partitioned into
n / log4 m submatrices, each with log4 m consecutive rows
of DG, and m l o g m processors are assigned to each sub-
matrix. Those submatrices are required to be generated in
O(10g m log log m) time. Differently from our first algorithm,
this time we take advantage of not only the k-variant property
of M[D&]'s but also the k-variant property of D&. For
the sake of simplicity, we explain only how the submatrix,
which consists of the first log4 m rows of DG. is computed;
other submatrices are handled in exactly the same way. The
computation of the submatrix contains three steps.

1) Compute the common row-vector L of 0;s for 1 5 i 5
iog4m as follows:

a) Compute D& and D 2 1 m ;
b) Compute common row-vector L of D&, DEg4 m;

c) Compute corresponding position functions
P[D&, L] and P[Dgg4 m , L];

2) Compute remnants R[D&], for 1 5 i 5 log4 m;
3) Compute position functions P[D&, L] and

To avoid possible confusion on Step 1, we would like
to remind readers the fact that common row-vector L of
D&, DEg4 is the common row-vector of the log4 m rows
(see Propostion 3(1)).

P[D&, R[D&]], for 1 5 i 5 log4 m.

C. The Proof of Theorem 7

We prove Theorem 7 by providing implementation and
corresponding analysis for each of these three steps. Step 1
can be implemented similarly to Step 1 of ColMin. The only
difference is the data structure of DG. Keeping this in mind,
one should have no difficulty in seeing that Step 1 can be done
in O(log m log log m) time with m log m processors. We leave
this for readers to calculate as an exercise.

Step 2, which generates the remnants, is the most
complicated part of the whole algorithm. Let R[D&] =

Authorized licensed use limited to: Texas A M University. Downloaded on March 10,2020 at 07:38:37 UTC from IEEE Xplore. Restrictions apply.

LU AND LIN: LONGEST COMMON SUBSEQUENCE PROBLEM 845

(R i , . . . , Ri+,) be the remnant of 0%. We shall show only
how to compute remnant group R;, the bth group of R[D&],
where 1 5 a 5 10g4m and 1 5 b 5 T + 1; other remnant
groups can be handled in exactly the same way. We assume
that L contains at least one entry that is not CO; the case
in which L contains only CO's should be easy to deal with.
Two facts should be noted: Any finite entry in R;, b 2 2,
exists also in (see Proposition 3(3)), and CO entries
are always on the right side of finite entries in DE. Thus,
removing CO entries from Ry4"' will not affect generating
finite entries in R;. Without loss of generality, we assume
that there is no 00 entry in R p 4 m .

Note that since D& D F 4 "' and L have already been com-
puted, it should be easy to compute R[D&] and R [D 9 4 m] .
Other remnants are computed from them. There are two cases
to be considered: b = 1 and b 2 2. By Proposition 3(3),
when b 2 2R; is a subvector of Rp4"', which, together
with the monotonality of DE, implies that Rt must be the
largest common subvector of DE and RF4 m. Therefore, if
DE is given, then R; can be obtained by identifying the largest
common subvector of DE and Rp4 "'. Unfortunately, DE is
unknown. Instead of DE, we are going to compute a subrow
of DE, denoted as SD[a,b], such that 1) RE is a subvector
of SD[a, 61, and 2) the size of it is bounded by O(10g4 m).
Leaving the question of how to get SD[a, b] for now, we first
examine the computation time for R;, supposing that SD[a, b]
is available. Notice that the size of R [D p 4 " 1 is bounded by
log4 m, and so is the size of RFg4 "'. Hence, the method we
used in Step 1 (a) of procedure ColMin can be used to compute
RE, and the following time bound should be quite clear.

Lemma 6: Suppose that SD[a, b] is given, where b 2 2, and
that the size of SD[a, b] is bounded by O(log4m). R; can be
computed in O(log1ogm) time with log4m processors.

When b = 1, it can be shown by applying Proposition l(3)
that the size of R;" is bounded by log%. So, we define SD[a, I]
as the first log4m entries of DE. Let k be the size of R;"; then
RY consists of the first k entries of SD[a, 11, and the (I C + 1)th
entry of SD[a, 11 is identical to Ll(1). From this, we draw the
following conclusions.

Lemma 7: Suppose that SD[a, 11 and L(l) are given, then
log4m processors suffice to identify R;" in constant time.

From Lemmas 6 and 7, together with the fact that T , the
number of groups of L, is bounded by log4m, we further
draw the following conclusions.

Corollary 4: Suppose that SD[i, j] and L(1) are given, and
that the size of SD[i,j] is bounded by log4m. Then Rj's, for
1 5 i 5 log4m and 1 5 j 5 T , can be obtained in O(1oglogm)
time by using logl'm processors.

Since &(1) has already been computed in Step l(b), in
the remainder of this section, we concentrate on the critical
problem of how to find SD[a, b] with b 2 2 such that R; is a
subvector of it and such that its size is bounded by O(10g4 m).

The basic formula described in Corollary 1 is applied to
generate SD[a, b]. (Remember that SD[a, b] is nothing but a
subrow of DE.) We first discuss the issue of which entries
of DE should be included in SD[a, b]. A vector, Ind[SD[a, b]],

is used to record their original positions in DE for entries in
SD[a, b] , as follows:

Ind[SD[a,b]](i) = 1 if SD[a , b] (i) = DE(1).

Understanding the following relation between Pos[D$! R;]
and Pos [DF4 "', Rp4 " '1 , i.e., the relation between the po-
sition of the first entry of R; in DE and the position of the
first entry of RP" in Dgg4 *, is the key to figure out how
to find Ind[SD[a, b]],

I 5 POS[D;, R;] 5 I + log4 m,

where 1 = P O S [D ~ ~ m , R p 4 " 1 . This inequality is derived
from Proposition 4. Remember that there are no more than
logam entries in R;, so we can choose the subrow of D&,
from entry D ~ (a , l) to entry D ~ (a , l + 210g4m - l) , as
SD[a, b]. Surely, Rt must be contained in SD[a, b] according
to the above inequality. Ind[SD[a, b]] therefore can be found
as follows. For 1 5 i 5 210g4mm,

Ind[SD[a, b]] (z) = Pos[DP4 "', Rfg4 "1 + i - 1. (8)

The next issue is how to compute SD[a, b] from D G ~ and
DG". Clearly, we need to identify only the (Ind[SD[a, b]](i))th
column minima in M[D;] for 1 5 i 5 210g4m. Let
M[SD[a, b]] be a submatrix of M[DE] obtained by removing
those columns that are not in SD[a, b] . Readers may have al-
ready noticed the following important fact about M[SD[a , b]] :
First, M[SD[a,b]] is totally monotone. Second, the size of
M[SD[a , b]] is very small, which in fact is bounded by (m/2) x
(2 log4 m). Unfortunately, the size of M[SD[a, b]] is still not
small enough for us to identify the column minima of M[D$]
by directly applying Corollary 1 on it. For further reducing the
computation, we introduce another matrix M'[SD[a, b]] that
has the same column minima as M[SD[a,b]], but with far
fewer rows. (Remember that we play the same game in our
first algorithm.) For a formalized description of M'[SD[a, b]],
a few more notations are needed.

Let L' = (L ; , . . . ; Lkl) be the common row-vector of
D&,'s for 1 5 i 5 log4 m. Let M = (M I , . . . ! M,,)T be the
common matrix of M[D&]'s, for 1 5 i 5 log4 m, constructed
following the rule in Theorem 3 (that is, M j .= CY[i, DG', I).
Again, let X [z , k] be the submatrix of M[D&], corresponding
to Mk (i.e., X [i , k] = S [K (i , k) , M k] for some K (i , k)). By
SM[SD[i, j] ,k], we refer to the submatrix of both M[SD[i , j]]
and X [i , k] such that SM[SD[i , j] , k] has the maximum number
of columns and rows. See Fig. 6. Matrix M'[SD[a,b]] is
defined as the matrix obtained from M[SD[a, b]] by replacing
matrices SM[SD[a, b] , k] with cmin[SM[SD[a, b] , k]] 's for 1 5
k 5 T I . The following facts about M'[SD[a, b]] are obvious.

L' (i)

Proposition 5:
1) Cmin[M'[SD[a, b]]] = Cmin[M[SD[a, b]]] .
2) The size of M'[SD[a,b]] is bounded by (210g'm) x

Corollaty 5: Suppose that we have already obtained
M'[SD[i, j]] 's , for 1 5 i 5 log4m and 1 5 j 5 T ,

which are represented by arrays, then Cmin[M[SD[i, j]]] ' s ,
for 1 5 i I log4m and 1 5 j 5 T , can be computed

(2 1 0 g ~ ~) .

Authorized licensed use limited to: Texas A M University. Downloaded on March 10,2020 at 07:38:37 UTC from IEEE Xplore. Restrictions apply.

846 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5 , NO. 8, AUGUST 1994

in O(log1og m) time using polylogarithmic number of
processors.

Now we state the objective for the rest of the section.
Lemma 8: SD[a, b] can be generated in O(1og mloglog m)

time using polylogarithmic number of processors.
Noticing that once Cmin[M[SD[a, b]]] is obtained, SD[a, b]

can then be easily generated by performing just a few more
comparisons (see Corollary l) , to show Lemma 8, we shall
show that M’[SD[a, b]] can be generated in O(1oglogm)
time using polylogarithmic number of processors. Recall
that M’[SD[a,b]] is defined as the matrix obtained from
M[SD[a, b]] by replacing its submatrices SM[SD[a, b], k]’s
with Cmin[SM[SD[a, b], k]]’s for 1 5 k 5 T . The numbers of
rows and columns of M’[SD[a, b]] are bounded by (2 log4 m) x
(2 log4 m) (see Proposition 5(2)). Each entry of M’[SD[a, b]],
except those entries belonging to Cmin[SM[SD[a, b], k]], can
be obtained from D G ~ , and D G ~ in O(log1ogm) time using
polylogarithmic number of processors. Therefore, we can
make the following observation.

Observation 3: Suppose Cmin[SM[SD[a, b], k]]’s, for 1 5
k 5 q . are given; then Cmin[M[SD[a, b]]] can be obtained in
the required time with polylogarithmic number of processors.

Now we narrow our discussion further down to how
to generate Cmin[SM[SD[u. b]. k]]’s in O(log1ogm)
time using polylogarithmic number of processors. A
little calculation will show that it is unaffordable to
compute Cmin[SM[SD[a, b], k]]’s by identifying the
column minima of SM[SD[a, b], k] s individually. The
following two facts help us to further reduce the
computational time: Cmin[SM[SD[a, b], k]] is a subvector
of Cmin[X[u, k]]; Cmin[X[n, k]] can be obtained from
Cmin[Mk] by K(a,k)-shift for 1 5 k 5 T I , where Mk is the
kth group of common matrix M (since X[a , k] is obtained
from Mk by K (a , k)-shift).

Because of these two facts, instead of generating all
Cmin[SM[SD[u. b]. k]]’s individually, we generate all
Cmin[X[a. k]]’s. Moreover, instead of generating all
Cmin[X[a, k]]’s individually, we generate all Cmin[Mk]’s for
1 5 k 5 T I . Although the computation has been generally
reduced so far, it is still too expensive. Indeed, there could
be O(log4”)Mk’s each with size (m/ log4m) x m. It
is impossible to compute all column minima of them in
O(log m log log m) time just by using m log m processors.
Fortunately, not all entries of Cmin[Mk]’s are useful for
generating M’[SD[a,b]]. We define a submatrix SMk of Mk

by removing those columns of Mk that are irrelevant to
generate Cmin[SM[SD[a, b], k]]’s. Let Ind[SMk] be the vector

that records their original positions in Mk for each column in

Ind[SMk] is dependent on Ind[SD[a,b]] and K (a , k) . The

Procedure Ind[SMk]
Suppose that K (a , k) is the coefficient such that X[a , k] =

1) For 1 5 h 5 210g4m processor Ph is assigned to

SMk; that is, hld[SMk](h) = if Skfk(h) = Mk(f!).

procedure that generates Ind[SMk] is described as follows.

S [K (a , IC), Mk].

compute Ind[SMk](h):

Ind[SMk] (h) =

Ind[SD[a, bll(h) - K(a , IC),
if Ind[SD[a, b]](h) - K (a , k) 2 1, { m - K (a , k) + Ind[SD[a, b]](h), otherwise.

2) Sort all entries in Ind[SMk] for 1 5 k 5 T I , and mark
an entry if it is the leftmost one among those that have
the same value.

3) Ind[SMk] is obtained by ranking those marked entries.
Step 1 in this procedure guarantees that all those columns

in Mk that may be used in generating SD[a,b] are identified.
Step 2 and Step 3 are used to get rid of those entries that
should not belong to Ind[SMk]. Step 1 takes constant time
using O(10g4 m) processors, whereas Step 2 and Step 3 take
O(1og log m) time using O(log4 m) processors, because the
size of Ind[SMk] is bounded by O(10g4 m). Hence, to compute
Ind[SMk]’s, for 1 5 k 5 T I , O(log1ogm) time suffices with
polylogarithmic number of processors.

Since Mk is totally monotone, so is SMk. In order to cal-
culate the time bound for computing Cmin[SMk] by applying
Aggarwal and Park’s algorithm, we bring readers’ attention to
the size of SMk’s. The number of columns in each SMk is
bounded by O(10g4 m); the total number of rows in all SMk’s
for 1 5 k 5 T I is bounded by m/2. Without loss of generality,
we can assume that there are at most (m/2)/ log4 m rows in
SMk; otherwise, we can divide the larger SMk into several
smaller ones, each consisting of at most (m/2)/ log4 m rows,
and the total number of SMk’s will not be more than 27-1.

According to Observation 2, m log m processors suffice to
compute Cmin[SMk]’s for 1 5 k 5 r1 in O(logmlog1ogm)
time.

Once Cmin[SMk] is generated, any entry of
Cmin[SM[SD[a, b], k]] can then be obtained from
it in O(log1ogm) time. Indeed, the hth entry of
Cmin[SM[SD[a, b], k]] is the Ind[SD[a, b]](h)th entry of
Cmin[X[a, k]], i.e., the (Ind[SD[a, b]](h) - K (a , k))th entry
of Cmin[Mk] if Ind[SD[a, b]](h) - K(a , k) 2 1, or, otherwise,
is the (m - K (a , k) + l n d [S D [a , b]] (h)) t h entry of Cmin[Mk].
With the help of Ind[SMk], we can locate the hth entry
of Cmin[SM[SD[a, b], k]] in Cmin[SMk] through a binary
search. Since the number of columns in Skfk is bounded by
O(10g4 m), such a search takes O(log1ogm) time.

Once Cmin[SM[SD[a, b], k]]’s are computed,
Cmin[M[SD[a, b]]] can then be computed in the required time,
as mentioned by Observation 3. Thus, we have completed
the proof of Lemma 8. Corollary 4, together with Lemma 8,
suggests that Step 2(b) can be done in required time using
the required number of processors. Finally, once R[D&],

Authorized licensed use limited to: Texas A M University. Downloaded on March 10,2020 at 07:38:37 UTC from IEEE Xplore. Restrictions apply.

LU AND LIN: LONGEST COMMON SUBSEQUENCE PROBLEM 847

for 1 5 i 5 log4 m, are computed, there will not be any
difficulty in computing P[DL, L]’s and P[DL, R[D&]]’s,
for 1 5 i 5 log4 rn, because the number of groups of L
and R[D;] are bounded by a polylogarithm. Thus, we have
completed the proof of Theorem 7.

As for the time bound, T(m) , of CrossVertex(v[l], 7i[m +
11) . T(m) = O(log2 7n) is suggested by Lemma 9, which can
be found by the similar recurrence we used in Section IV-E.
The number of processors needed is bounded by n. Thus, we
have completed the proof of Theorem 8.

D. The Implementation of Phase 3

is implemented by two stages:
Like our first algorithm, Phase 3 in our optimal algorithm

1) Identify cross vertex ~ [i] on p , for 1 5 i 5 m + 1.
2) Identify other vertices on p.

Obviously, the discussion about the second stage in our first
algorithm is still applicable. Unfortunately, the discussion
about the first stage in that algorithm is no longer applicable
here. Remember that in the first algorithm, all cross-vertices
are computed and stored as the side effect of Phase 2. Since the
method of computing cost matrices in our optimal algorithm is
totally different, the side effect has not been preserved. A new
method is needed. In what follows, we first state the result.

Theorem 8: Suppose that all cost matrices are given. Then
cross-vertices on p , ~ i [i] , for 1 5 i 5 ‘rri + 1, can be identified
in O(log2 rri) time with 71 processors.

The claim is to be shown by presenting a procedure called
Crossvertex([i l l , ~ (2 2 1) . Procedure CrussVertex(w [ill, PI [%2])

takes cost matrices obtained from Phase 2 as input, and
returns cross-vertices on p between ~ t [i ~] and v [i 2] .

E. The Complexity of the Algorithm

Theorem 9: The LCS problem can be solved in
O(logzmlog m) time with rr~n/log~mloglog m processors,
when 1og2r,loglog m > log n, or otherwise in O(logn) time
with rrirr/log TI. processors.

To prove this, we need to examine the complexity for
each of the four phases. We deal with only Phase 1 and
Phase 2; the discussion of Phase 1 is applicable to Phase
3 and Phase 4. We have proved in Section 11-C that Phase
1 can be done in O(1og n) time with nin/ log 71 processors.
To be consistent with Theorem 9, we just point out that
when log2 m log log 7r1 > log I?,, instead of using mn/ log n
processors, we can use mn/ log2 7ri log log rn processors only.
By applying Brent’s principle, the procedure for Phase 1 can
be simulated by using 7nn/ log2 711 log log m processors in
o(log2 rri log log nr) time.

As for Phase 2, we shall show that it can be done in
O(10g2 7ri log log nr) time with 7rin/ log2 m, log log 7r1 proces-
sors. From this result, by applying Brent’s principle, read-
ers can easily see that O(1ogn) time suffices for Phase
2 if rrin/Iogn, processors are used, where rrinllogn <
nin/ log’ m log log v i .

Consider the ith stage of O(1ogrri) stages in Phase 2.
We have 0 (~ 1 1 / 2 ~) grid DAG’s to deal with, each of size
() (a i) x (71 + 1) . Denote O(m,/2;) as 9;. By Corollary 3,
for any of those DAG’s, the corresponding cost matrix can

Procedure Crossvertex (~ [i l] : i i [i 2])

1) ?i[(.il + i 2) / 2] + B (V [i l] , V [i 2]) .

2) Call Crossvertex (, o [i l] : *u[(i i 4- i2)/2]) and Crossvertex
(,u[(il + i2)/2]. i i [i 2]) if i1 # %2.

Function 8(1i[i1], , u [i z]) calculates the location of the cross-
vertex that is in the middle of ii[il] and i i [i 2] . Initially, we
call Crossvertex (~ [l] , v[m + 11). To explain how 8() works,
we take only H(u[l],v[rn + 11) as an example, without loss
of generality.

Lemma 9: O(log 711) time using n, processors suffices
to compute B(ii[l],v[rr~ + 11) (i.e., to identify cross-vertex

v [l] is the source, and 7 i [m + 11 is a vertex on the bottom
row of G. We assume that I is the cost of the maximum-cost
path between them. According to our discussion in Section II-
B, cross-vertex v[m,/2 + 11 should be a breakout vertex of ~ [l]
on GLT, and v [7 n + 11 should be the (1 - k)th breakout vertex of
v[m/2+1] on GL if the maximum cost from ~ [l] to ,u[rr/,/2+1]
is k . To identify v[m,/2 + I], we assign one processor to each
breakout vertex of 21[1] on GU. Processor Pi, which is assigned
to the ith breakout vertex of i i[l] , does the following. With the
help of the position functions. f‘; first reads entry D G ~ , (1. Z)
in O(log log 713) time. Then, in another O(1og log 7 n) time,
Pi checks whether vertex (m, + 1: D G ~ (D G ~) (1, i) , 1 - ,i)) is
identical to cross-vertex v[rrL + 11, and marks vertex (m / 2 +
1, D G ~ (1,i)) on G if it is. Finally, the leftmost one among
those marked vertices is identified in O(logm) time with T I L

processors. Thus, CrossVertex(v[l], v [r r i + 11) can be computed
in O(log m) time using m, processors.

v[nL/2 + 11).

be computed in t , time by using p; number of processors,
where t , = 0(log(22) loglog(2‘)) and p ; = 2in/log3(2i).
Since a total of P number of processors are available, where
P = win/ log2 7ri log log 711, we can compute s i cost matrices
simultaneously, where s, = P/p;. On the other hand, because
there are a total of ,y; cost matrices to compute, when y; > si

holds (i.e., ,i < (/log2 7r~log log rn,/ log3 2) O((y;/s;)ti) time
suffices, and when g; 5 s1 holds, t ; time is enough for this
stage. This discussion, together with the fact that there are
O (l o g 7 r ~) stages in Phase 2, results in the time bound T for
Phase 2, which can be found as follows:

1 1 CL log ni

z = 1

= 0(log2 rri log log r r ~) ,

where il = i/log2 rri log log m,/ log3 2. Thus, we have proved
that O(log2 m log log m) time suffices for Phase 2 using
m 7 1 / log2 7 r ~ log log rn. processors.

Authorized licensed use limited to: Texas A M University. Downloaded on March 10,2020 at 07:38:37 UTC from IEEE Xplore. Restrictions apply.

848 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 8. AUGUST 1994

VI. CONCLUSION [1 I] M. Lu, “A parallel algorithm for longest-common-subsequence comput-
ing,” Proc. Int. Con$ Computing and Inform., 1990, pp. 372-317.

[121 T. Mathies, “A fast parallel algorithm to determine edit distance,” Tech.
Rep. CMU-CS-88-130, Dept. of Comput. Sci., Carnegie Mellon Univ.,
Pittsburgh, PA, 1988.

Advances in Applied Microbiology, vol. 30, pp. 169-195, 1984.

We gave two CREW-PRAM algorithms for the Lcs prob-
lem, based upon exploiting nice properties of the problem. One

the sense of achieving the lower bound of time x processors.
is fast and efficient, and the Other is Optima’ in I 131 J. Modelevsky, “Computer applications in applied genetic engineering,”

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewer
for hisher helpful comments.

REFERENCES

A. Aho, D. Hirschberg, and J . Ullman, “Bounds on the complexity of
the longest common subsequence problem,” J . Assoc. Comput. Mach.,
vol. 23, no. 1, pp. 1-12, Jan. 1976.
A. Aggarwal and J. Park, “Notes on searching in multidimensional
monotone arrays,” Proc. 29th Ann. IEEE Symp. Foundations of Comput.
Sci., 1988, pp. 497-512.
A. Apostolico, M. Atallah, L. Larmore, and S. Mcfaddin, “Efficient
parallel algorithms for string editing and related problems,” SIAM J.
Computing, vol. 19, pp. 968-988, Oct. 1990.
R. Brent, “The parallel evaluation of general arithmetic expressions,” J.
Assoc. Comput. Mach., vol. 21, pp. 201-206, 1974.
V. Chavatal, D. Klarner, and D. Knuth, ‘Selected combinatorial research
problem,” Tech. Rep. STAN-‘2-72-292, Stanford Univ., p. 26, 1972.
R . Cole, “Parallel merge sort,” Proc. 27th Ann. IEEE Symp. on Founda-
tions of Comput. Sri., 1986, pp. 51 1-516.
A. Gibbons and W. Rytter, Eficienr Parallel Algorithms. Cambridge,
UK: Cambridge University Press, 1988.
W. Hsu and M. Du, “New algorithms for the LCS problem,” J . Comput.
Sysr. Sri., vol. 29, pp. 133-152, 1984.
D. Hirschberg, “Algorithms for the longest common subsequence prob-
lem,” J. Assoc. Comput. Much., vol. 24, no. 4, pp. 664-675, Oct.
1977.
H. Lin and M. Lu, “Solving the longest common subsequence problem
on the CREW-PRAM machine,” Tech. Rep. TAMU-ECE-93-09, Dept.
of Elec. Eng., Texas A k M Univ., College Station, TX, 1993.

M. Lu (S’87-M’87-SM’94) received the B.S.E.E.
degree from the Shanghai Institute of Mechanical
Engineering, People’s Republic of China, in 1981,
and the M.S. and Ph.D. degrees in electrical and
computer engineering from Rice University, Hous-
ton, TX, USA, in 1984 and 1987, respectively.

She joined the Department of Electrical Engineer-
ing, Texas A&M University in 1987, where she
is currently an Associate Professor. Her research
interests include parallel computing, distributed pro-
cessing, parallel computer architectures and applica-

Dr. Lu has published more than 50 technical papers in her areas of research,
tions, computational geometry, and very large scale integration algonthms.

and I$ a member of the IEEE Computer Society.

H. Lin received the B.S. and M.S. degrees in elec-
trical engineering from Fudan University, People’s
Republic of China, in 1983 and 1986, respectively.

Beginning in 1986, he taught for three years in
the Department of Electronics Engineering at Fudan
University as a Lecturer, and he is currently a Ph.D.
candidate in the Department of Electrical Engineer-
ing at Texas A&M University, College Station, TX,
USA. His research interests include the design and
analysis of parallel algorithms for combinatorial
optimization problems, and the parallizing compiler.

Authorized licensed use limited to: Texas A M University. Downloaded on March 10,2020 at 07:38:37 UTC from IEEE Xplore. Restrictions apply.

