
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5 , NO. 11, NOVEMBER 1994 1 I97

Implementation of Speculative Parallelism in
Functional Languages

P.V.R. Murthy and V. Rajaraman

Abstract- A compile-time analysis technique is developed to
derive the probability with which a user-defined function or
a supercombinator requires each one of its arguments. This
provides a basis for identifying useful speculative parallelism in a
program. The performance of speculative evaluation is compared
with that of lazy evaluation, and the necessary conditions under
which speculative evaluation performs better are identified.

Index Terms- Conservative parallelism, speculative parallel-
ism, lazy evaluation, branch speculation, argument speculation,
strictness analysis

I. INTRODUCTION

ONCURRENCY in lazy implementations of functional C languages is increased by scheduling tasks for the eval-
uation of the strict arguments along with the function before
they are actually demanded [2]. A speculative evaluator is one
that initiates the computation of some expressions before a
lazy evaluator would have, i.e., before they are known to be
necessary or unnecessary. If they later tum out to be necessary,
performance can improve because they were initiated earlier,
and so can complete earlier (subject to the availability of spare
processors). If they tum out to be unnecessary, performance
can decline because the resources they used were wasted.
This introduces a trade-off. Burton [I] and Osbome [7] have
addressed the problem of speculative computation, mainly in
problems involving parallel search, multiple-approach specu-
lative computation and order-based speculative computation.
Osbome shows how the above speculative computation ap-
proaches may be incorporated into Multilisp and points out
that speculative computation does yield benefits.

In this paper, we are mainly concerned with speculative
evaluation that arises during the reduction of an application of
a function (supercombinator). A promising expression is one
whose value is required for a program’s evaluation with a high
probability. During the reduction of a function application,
promising nonstrict arguments may be reduced in parallel with
the strict arguments and the function body. This evaluation
model is referred to as argument speculation. Assume that
(equal L1 L2) and Palindrome (Lj evaluate to true with low
probabilities (Fig. 1). During the reduction of an application (f
El E2 E3 E4) (Fig. l(a)), if the reducer has the knowledge
that L4 is required with a higher probability than L3, then
the average reduction time can be reduced by reducing the

Manuscript received October 1, 1992; revised October 1, 1993.
The authors are with the Supercomputer Education and Research Centre,

Indian Institute of Science, Bangalore 560 012 India; e-mail: murthy@
serc.iisc.emet.in.

IEEE Log Number 9403101

nonstrict argument E4 in parallel with the strict arguments
El and E2.

Another speculative evaluation model we discuss in this
paper is referred to as branch speculation. In branch specula-
tion, no speculation is done during the reduction of a function
application, but during the reduction of a conditional expres-
sion, the more promising branch in a conditional expression
is reduced in parallel with the predicate. During the reduction
of the conditional expression (Fig. l(b)), if the reducer has
the knowledge that Ef is required with a higher probability,
the average reduction time can be reduced by reducing E f in
parallel with Palindrome (L).

This paper is organized as follows. Section I1 suggests that
branch probabilities be used directly to identify promising
branches in the case of branch speculation, and that, indirectly,
a compiler may use branch probabilities to identify promising
nonstrict arguments for use in argument speculation. Section
111 provides a compile-time analysis technique to compute the
probability with which each function in a program requires
each one of its nonstrict parameters. Section IV shows how
argument probabilities derived at compile-time may be used
at run-time in speculatively evaluating promising nonstrict
arguments of a function. It also discusses about how branch
probabilities may be used in branch speculation. Section V
discusses the problems in speculative evaluation and proposes
some solutions to them. Section VI discusses the termination
of programs under speculative evaluation. Section VI1 provides
a further discussion on speculative evaluation models.

11. BRANCH PROBABILITIES

To know the more promising branch in a conditional expres-
sion, we need to know the probability with which the predicate
in it evaluates to true, which is referred to as the branch
probability. In another context, branch probabilities have been
used to obtain closed-form expressions for the execution times
of Lisp programs [lo]. To identify the more useful nonstrict
arguments, it is necessary to identify those nonstrict arguments
occurring in paths that have a greater likelihood of being
selected during a function’s evaluation. Branch probabilities
may be obtained through measurement or supplied by the user
based on experience.

In functional programs, most functions are defined recur-
sively. Since the recursive branches are selected most often,
it is reasonable for the user to specify a large probability of
selection in favor of the recursive branch. Branch probability
may be specified by the user as part of the conditional
expression as follows. In “if E k then *q* Et else E’’ q

1045-92 19/94$O4.O0 0 I994 IEEE

1198 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 11 . NOVEMBER 1994

f (Ll,LZ,L3,L4)==if (equal L1 LZ) then

length L3

else length L4;

(a)
Fig. 1. Examples of speculative evaluation.

is the probability with which the predicate Ec evaluates to
true. The branch probability q follows the key word “then”
and is enclosed within *’S. Consider “ f (L l , L 2 , L 3) ==
if (Palindrome L1) then *0.1* (h L2) else (h L3)” where
function h is strict in its argument. It is easy to see that f
requires L2 with probability 0.1 and L3 with probability 0.9
for its evaluation. We would like a compiler to derive these
argument probabilities, which is the topic addressed by the
next section.

Care must be taken, as far as possible, to see that branch
probabilities specified in a program do not contradict each
other. A compiler cannot statically detect contradicting branch
probabilities in all cases [5]. Also, in the case of nested
conditionals, the truth value of an inner predicate may de-
pend upon the truth value of an outer predicate, and thus it
is necessary that conditional branch probabilities are speci-
fied.

111. COMPUTING ARGUMENT PROBABILITIES
AT COMPILE-TIME

We first develop rules that a compiler uses to compute
the probability with which a primitive expression requires a
variable for its evaluation. The compiler uses these rules to
compute the probability with which a function requires its
nonstrict parameters for its evaluation. Recursive functions
pose a problem, which we point out in Section 111-B. Also,
we provide a solution based on successive approximation. In
this paper, we confine ourselves to developing the method for
a first-order functional language with nonflat domains. The
extensions necessary to deal with higher-order functions can
be found in [5].

A. Probability with Which a Primitive Expression
Requires a Given Variable

Let E be an expression, and let x be a variable. Let E, and
E: denote the events that “E requires x for its evaluation,”
and “E does not require x for its evaluation,” respectively. Let
P be the probability function that maps E, into a real number
in the interval r0.0, 1.01. Note that all the variables defined
through lets and letrecs are graphically substituted. We now
specify P for each form of expression.

Rule 1 -Probability that a Constant Requires a Variable
2: Let E be a constant. P(E,) = 0. E.g., P(5,) = 0,

Rule 2-Probability that a Variable Requires a Variable x:
Let E be a variable. If E is the same as x, P(E,) = 1 , and
is 0 otherwise. E.g., P(y,) = 0, P (x z) = 1 .

Rule 3-Probability that (el+e2) Requires a Variable x: Let
E be (e l + e2). Assuming that el: and e2, are independent

P((5 : 2 : [I),) = 0.

i f Palindrome(L1 then

Et

else Ef;

(b)

events, we have P(E,) = P(e1,) + (1 - P(el ,))P(eZ,) .
Note that the same rule holds for all strict binary functions
like *, /, div, mod, and so forth. E.g., P (((x * x) + z),) =

Rule 4-Probability that a Conditional Requires a Variable
XI Let E be the expression “if Ec then *q* Et else Ef’
where Ec, Et and Ef are some expressions. Let q be the
probability with which Ec evaluates to true. Let Ect, Ecf
be the events that Ec evaluates to true and that Ec evaluates
to false, respectively.

Assuming (see Section 111-E) the independence of the fol-
lowing:

1) the events Ec; and ((E 2 n Et,) U (Ecf n Ef ,)) , and
2) the events Ect, Et, and that of the events E c f , E f,,

we have P(E,) = P(Ec,) + (1 - P(Ec,))(qP(Et,) +
(1 - q)P(Ef ,)) . E.g. , P((if z then *0.1* y else x),) =

The binary operations AND-OR are not strict. The user may
annotate a binary operation containing AND-OR with the
probability (q) with which the first operand evaluates to true.
These expressions are converted into conditional expressions,
and the above rule is applied.

Rule 5-Probability that (E l : E2) Requires a Variable x:
Let E be (E l : E2), where “:” is the lazy list constructor
that constructs a Cons cell with E l as the head and E2
as the tail, but does not evaluate them. P(E,) = 0. E.g.,

Rule 6- Probability that ((unop) e) Requires a Variable x:
If E is ((unop)e), where (unop) is any unary function such
as negate, not, atom, but not a selector function such as h d or
t l , and if e is some expression, then we have P(E,) = P(e3.) .
(We specify P(E,) if (unop) is a selector function in Rule 8.)
E.g., P((atoms),) = l , P ((n o t b) ,) = 0.

Rule 7-Probability that a User-Dejned Function Appli-
cation Requires a Variable x: E is a user-defined function
application (or a supercombinator application) f e, . . . e,,
where f is defined as f(xl,...x,) =e. el,...,e,, and
e are some expressions. P(E,) = P (E i) , where E’ =
e[el /s l , . . . , e,/x,]. E.g., f(a, b) = a + 6, P((f(z * x) (z *

Rule 8-Probability that (Selector e) Requires a Variable x:
Let E be (selector e) , where selector is hd or t l , and e is some
expression. Note that the evaluation of (hd e) consists of first
reducing e to weak head normal form (WHNF) 181, and then
reducing the head of the resulting Cons cell to WHNF, which
is the result of E. Similarly, the evaluation of (t l e) consists
of first reducing e to WHNF, and then reducing the tail of the
resulting Cons cell to WHNF. Before we specify Rule 8, we
define (e . selector). The expression (selector e) is transformed

P ((x * x),) + (1 - P ((x * x),)) * P(z,) = 1.

P(2,) + (1 - P(z,)) * (0.1 * P(y,) + 0.9 * P(Z,)) = 0.9.

P ((, : [11,) = 0.

Z)),) = P (((x * x) + (z * z)) ,) = 1 .

MURTHY AND RAJARAMAN: SPECULATIVE PARALLELISM IN FUNCTIONAL LANGUAGES 1199

into the expression (e. selector), and the probability function
P is applied on (e. selector).

Definition I: Given an expression e (of the forms men-
tioned below), we define the expression (e. selector), where
selector is either hd or t l , as follows.

Case I : e is e l : e2, where e l and e2 are some expressions.

e. selector = e l ,
= e2,

if selector is h d ,

if selector is t l .

Case 2: e is "if Ec then *y* Et else Ef."

e. selector =

if Ec then * y * (E t . selector) else (E f . selector)

Case 3: e is (fe l . . . en), where el . . .en are some expres-
sions, and f is a supercombinator defined as f (z1, . . . , zn) =
Expr. e. selector = (Ez:pr[e l / z l , .. . , e,/z,]). selector.

Case 4: e is (selector 'e'), where selector' is either hd or
t l and e' is some expression.

e. selector = (e'. selector'). selector.

Dejnition 2: Now we define P(E,), where E is (selector
e).

P((selector e),) = P((e. selector),), if e is not a
parameter,

= 1, if e is a parameter and same as IC,
= 0, if e is a parameter and not the same

as x.

Note that if e is a parameter, it has to be a list-type one,
and to evaluate (selector e), whatever expression is bound
to the parameter at run-time has to be evaluated. E.g., let
f (2) == 1 : z ; P((hd (f IC)),) = P((hd (1 : z)),) =
0. P((tl(f z)),) = P((tl(1 : I C)) z) = P(z,) = 1.

Rule 9-Probability with Which a Function Requires a
Parameter: Let f be a supercombinator with 21, . . . , xn as
formal parameters and defined as f(z1,. . . , zn) = e, where
e is some expression. Let (f,;) denote the event that the
supercombinator f requires x i for its evaluation. P (f Z L) =
P(e,;). E.g., f (z , y) == if IC then *0.6* y else 0; P(f ,) =
l ,P(f ,) = 0.6.

To determine the probabilities with which a user-defined
function (or a supercombinator) requires its arguments, the
compiler, after generating the graphs for the functions in a
program(see Section IV-A), uses Rule 1 to Rule 8.

B. Probability with Which a Recursive
Function Requires an Argument

P (f z) for the function f (Fig. 2) is computed below.
P (f z) = (1 -q)*P((f (z -1) (y+z) z) ,) (from Rules 4, 3, 2,
and 1) = (l - y) * (q + (l - y) * P ((f (z - l - l - l) (y+z+z) z) ,))
(from Rule 7) = (1 - q) * (y + (1 - q) * (q + (1 - y) * (.-.))). It
can be seen that P (f z) = (1 - 4) . However, while computing
P (f z) , the compiler may get into an infinite loop. We now
present a successive approximation method to overcome this
problem. We first state the solution informally, and some terms

f (x , y , z) = = i f (x = 0) t h e n + q + y else f (x - 1) (ytz) z ;

Fig. 2. Example for illustrating refinement.

used in this explanation are defined formally later in this
section.

Let fo = if (z = 0); then *q * y; else f (x - 1) (y + z) z.
By expanding the recursive function call in fo, say, we obtain
f ' , In general, obtain f k from f("'), k 2 1, by expanding
the recursive function call present in f (k - l) .

Let f," be the event that f requires the value of z within
the first k expansions of f. We prove later in this section
that fikP1) is a subset of f,", i.e., P (f i k - ") 5 P(f,"). The
compiler computes P(f,") , assuming that the probability with
which a recursive function call in f k requires z to be 0 for
k 2 0. (fk may contain outermost nonrecursive function calls,
and the compiler uses Rule 7 to compute the probabilities with
which they require z.) We show later in this section that the
sequence P(f:) , P (f ;) , . . . converges and that the limit is

The process of obtaining f k from f (k - ') , k 2 0, is called
a refinement. In the case of most recursive expressions, a re-
finement simply consists of expanding the outermost recursive
calls present in them once. The purpose of a refinement of a
recursive expression is to bring the variables present in the
arguments in recursive calls into the nonrecursive portion of
the resulting expression, so that for probability computation
purposes, the rules developed for primitive expressions may
be employed. Thus, a refinement may not simply be a single
expansion of each one of the outermost recursive function calls
in a recursive expression. Repeated expansions of recursive
function calls may take place until such a stage that the
variables present in the arguments of the outermost recursive
calls appear in the nonrecursive portion of the expression. The
above process is a single refinement. With each refinement,
the probability value being computed increases. If it does not
increase, the computation has converged.

Definition 3 (Outermost Expression, Outermost Applica-
tion): Let e be a subexpression of an expression E. The
subexpression e is said to be outermost in E if there exists
at least one occurrence of e in E such that e is not a subex-
pression of an argument in any supercombinator application
in E. If e is a supercombinator application, then we refer to it
as an outermost supercombinator application in E. Consider
the following expressions.

1) Say, E is (IC * y) + (z + y); then z,y. (z + y), (z * y)

2) E is (f e l ea) +g (f e l ea) e3
Here (f e l

P (f z) .

and (z * y) + (z + y) are outermost in E.

e2) occurs twice within E , once not as an
argument in any supercombinator application and once as
an argument in the application of the function g. The first
occurrence of the application (f e2) is outermost in E.
Also, the application (g (f e l e2) e3) is outermost in E.

Definition 4 (Outermost-Exprs(E, S)): Let E be an expres-
sion, and let S be a set containing some or all subexpressions
of E. Outermost-exprs(E,S) = true, if each and every
member of S that is not a constant expression is outermost
in E; otherwise, it is false.

e l

1200 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5 , NO. 1 1 , NOVEMBER 1994

Definition 5 (Instance of a Supercombinator): Let A be
(g el . . .e,), an application of some supercombinator g,
defined as y(z1,. . . , z,) = expr, where e l , . .. !e,, n 2 1 ,
and expr are some expressions. Instance (A) is defined to be
expr[el/zl ,..., e,/z,].

Definition 6: Given an n-ary function f x1 . . . z,, param-
eter IC, is said to be a relevant parameter [6] of f z1 . . . z, iff
there exist values a1 . . . a, such that the following condition
holds:

fa1 . . . a(%-lj I a(,+l) . . a, # f a1 . . ' a, . . ' a,.

For instance, consider the following:

g(z, y, z , p) == if (z = 0) then y else g(z - 1) (y + z) z p .

The parameter p is not relevant, and is referred to as an
irrelevant parameter of g.

In the following, we assume that the parameters of all
supercombinators are relevant. However, we point out the
necessary modifications in the analysis in the presence of
irrelevant parameters later in Section 111-C.

De3nition 7 (Sudace-Exprs(E, S)): Let E be an expres-
sion, and let S be a set containing some subexpressions of
E.

Surface-Exprs(E , S) =if Outermost-exprs(E, S) then E
else Surface-Exprs(E', S)

where E' E[Instance (f a l) / f a l , . . . I Instance (fa,)/
fa,], where { f a l , . . . , f a , } , n 2 1, is the set of all
the outermost supercombinator applications in E that are
not constant expressions. (Here Instance(f a t) / f a, means
that Instance (f a ,) is substituted for the supercombinator
application f at.)

Definition 8 (Arg-tobasicaxprs(Arg)): Let Arg be an ex-
pression, and let k be the nesting depth of calls to super-
combinators in Arg. (For instance, k for the expression E,
(h d (p : z)+f(g (h IC y z))+f(g y)), is 3. If, in an expression,
there do not exist any applications of supercombinators at all,
then IC = 0.) If Ap is an application of a supercombinator,
let vars(Ap) denote the set of all variables present in the
arguments in Ap. Let Applicationsk(Arg) be the set of all the
applications in Arg at the kth nesting level. (In the above
example, Applications3 (E) = { (h z y z) } .)

Arg-to-basic-exprs(Arg) = Bring-vars-to-surface(Arg, k) ,
where Bring-vars-to-surface(Arg,lc) = if k = 0 then Arg
else Bring-vars-to-surface(Arg', k - l), where
Arg' =Arg[Surface-Exprs(Ap1, vars(Apl))/Apl,

Surface-Exprs(Ap,, v a s (Ap,))/Ap,), where
Applicationsk (Arg) = { Ap1, . . . , Ap,} , n 2 1.

Definition 9 (Rep-lns-fn(RA)): Let RA be the application
(Se1 . . . e r a) , where f is a supercombinator. e l , . . . ! e, are
some expressions.

Rep-Ins-fn (RA) =
Surface-Exprs(Instance(f e; . . . eh), {e ; , . . . , e ; })

=

. . . ,

where e\ = Arg-to-basic-exprs(e1),

Definition 10 Rejne(E): Let E be an expression. Let
{ a l , ~ ~ ~ , a , } , n 2 0, be the set of all the outermost
supercombinator applications in E that are not constant
expressions.

(Here Rep-Ins-fn(ai)/a; means that the supercombinator ap-
plication ai is substituted by Rep-Ins-fn(ai).)

Definition 11: Let f be defined as f (xl:...,z,) = E ,
with E being some expression. We define the expression
f k , IC 2 0, as follows:

f * is said to be obtained by performing zero refinements on
f. f ', k 2 0, is said to be obtained by performing k successive
refinements on f . It may be noted that if E is not a recursive
expression, applications of only nonrecursive functions may
be present in E , which would all be expanded into primitive
expressions to obtain f l , and the set of function applications
in f1 would be empty. In this case, each f '. k >= 2, would
be identical to the expression f'.

Lemma I : Let f be a supercombinator with .T as a param-
eter. Then we have f," G f ; b k + ') ! k 2 0.

Proof f," denotes the event that the evaluation of the ex-
pression obtained by performing k successive refinements on
f requires z, without having to evaluate (or before evaluating)
the recursive calls present in fk.

Let the set of the outermost supercombinator applications
present in f IC that are not constant expressions be Af .

Let Af = { a1 , . . . , a,}, n 2 0. Then we have:

f('+') = fk[Rep-Ins-fn(ul)/al,. . . , Rep-Ins-fn(a,)/a,]

Case I: Note that if Af does not contain any recursive
expressions, we have f," = fLk+').

Case 2: Let R f be the set of recursive expressions in Af
that need to be refined to obtain f (k + l) from j k ; i.e., R f g
Af. Let RL denote the event that the evaluation of one or more
of the nonrecursive expressions obtained by refining members
of Rf to form f(lc+') requires IC.

f$'+') occurs if either f," occurs or RL occurs; i.e.,
f;bk+l) = f," U R,f.

0 Hence, f," C f L k + l) , k >= 0.
Theorem I : Let f be a supercombinator with IC as a pa-

rameter. Then we have:

Proof The evaluation o f f requires if the evaluation
of any one of the expressions f a , f ' , . . . , f k , . . . ~ k 2 0 ,
requires 2, without having to evaluate (or before evaluating)
the recursive calls present in each one of them.

That is, f z = U 00 f," (1)
k= 1 e; = Arg-to-basic-exprs(e,).

MURTHY AND RAJARAMAN: SPECULATIVE PARALLELISM IN FUNCTIONAL LANGUAGES 1201

From Lemma 1, we know that the sequence {f,"} is
montonically increasing with I C . Hence, we have the following:

cc

Thus, {f,"} is a convergent sequence of events.
Every probability measure P [111 is sequentially continuous

in the sense that if { A , } is a convergent sequence of events,
then l imn-mP(An) = P(lim,-+ccAn) Since {f,"} is a
convergent sequence of events, we have the following:

From (1) and (2) , we have:

For the function f given in Fig. 2, the sequence
{ P (f ~) , P (f ~) } has a limit, and the limit is P(f,) . Here
the above sequence is a monotonically increasing sequence.

The sequence of successive differences in probability values
follows a geometric progression and is a monotonically
decreasing sequence. The user may specify that when two
successive probability values differ by less than or equal to a
chosen tolerance value (e) , the compiler may stop performing
further refinements on f . For instance, if t = 0.01, then 14
refinements on f are needed to reach the desired accuracy.
P (f i 3) = 0.7560195, P(fi4) = 0.7648156. The actual value
of P (f z) is 0.8 .

(P(f i (k+z)) - P(f ik+1))) 5 (P(f?+l)) - P(ft)),k 2 0.

Consider
member(a, x) ==

if (z = [I) then * 0.1 * False
else

if (a = (hd z)) then *0.5* True
else member a(t1 z);

P(member(l) = 0.9. P(memberA) = 0.9 . For computing
P(member,), only one refinement on member needs to be
performed, because P(memberA) - P(member:) = 0.

C. Rejinement in the Presence of Irrelevant Parameters

We now point out the additions, required in the presence
of irrelevant parameters, to the refinement process already de-
scribed. To detect the formal parameters of a supercombinator
that are not relevant, an analysis called Relevance Information
Analysis [6] may be performed on a given program. Defini-
tions 7 and 8 need to be modified suitably in view of the fact
that an irrelevant argument in a function application cannot be
made outermost in the expression obtained by instantiation.

D. Optimizations in Deriving Argument Probabilities

Consider f(. .) == . . . g (. . .) . . . and g(..) == . . .
g (. . .) In this case, the compiler may first compute
the probability with which g requires its arguments and
subsequently use this information while computing the
probabilities with which f requires its arguments. This would

avoid repeatedly scanning the body of g twice. In order to
know the order in which functions may be traversed, a static
call graph may be constructed and traversed backward in a
breadth-first manner. However, the above optimization cannot
always be used, for instance, when f and g are mutually
recursive.

E. Comments on the Independence Assumption

The independence assumptions made in Rule 4 in Section
111-A are not theoretically sound, but are made for pragmatic
reasons. Errors due to the independence assumption can be
minimized by specifying conditional branch probabilities in
the case of nested conditional expressions. Despite the inde-
pendence assumptions, the probability with which a function
requires a nonstrict argument is never incorrectly reported to
be 1, and is always reported to be less than 1 [SI. Also, the
probability with which a function requires a strict argument is
always reported to be 1 [5] .

F. Relationship of Our Method to Strictness Analysis

This method is in fact a generalization of traditional strict-
ness analysis, because it not only can determine strict ar-
guments but also can quantify how strict a function is in
each of its nonstrict arguments. However, just to perform
strictness analysis, a conventional strictness analyzer [2] would
be more efficient. Consider f (z , y) == i f (z = 0) then y
else f(z - 1) y. P(f,) would be computed to be 1 in just
one refinement of f . However, if the branch probability with
which (.: = 0) evaluates to true is quite low, then, in order for
P(fy) to converge to 1, several refinements on f are needed,
whereas a traditional strictness analyzer would detect that f
is strict in y faster.

The problem is that in order for an argument to be declared
strict by our method, a probability value of 1 should be
reached. A value of 0.0 for t has to be specified to achieve
this. The number of refinements performed depends upon the
desired accuracy. But for nonstrict arguments, we are not
interested in their actual probability values. We are interested
only in their relative promise. To determine the relative utility
of nonstrict arguments, a value 0.0 for 6 need not be specified.
For these reasons, we suggest that strict arguments of functions
be determined by a traditional strictness analyzer first, and
then the method proposed in this section may be employed to
determine the relative utility of nonstrict arguments.

IV. SPECULATIVE EVALUATION

The compile-time technique suggested in the previous sec-
tion aids in identifying promising nonstrict arguments of
functions, thereby identifying useful speculative parallelism in
a program. During the speculative evaluation of a functional
program, we need to distinguish between three types of tasks,
namely, the following:

1) mandatory tasks,
2) promising speculative tasks, and
3) speculative tasks reducing expressions with low proba-

bilities of requirement.

1202 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 11 , NOVEMBER 1994

For the sake of convenience, and also to be able to obtain
a fine distinction about the utility of various speculative
tasks, argument probabilities are mapped into the priority
interval [O . . . 101 at compile-time and stored in a function
table in the case of argument speculation. In the case of
branch speculation, branch probabilities are mapped into the
interval [0 . . . 101 at compile-time and stored within the graphs
of conditional expressions. Priority queues corresponding to
levels 0 to 10 may be maintained at each processing element.
A task to reduce the root expression of the program may be
placed in priority queue 10 at processing element 1.

DeJnition 12-Net Priority: Let a program require the re-
sult of an expression E with probability p . Let E require, for
its evaluation, the result of an expression e with probability
q. Then the (parent) task reducing E may spark a (child) task
with a priority proportional to pq. This priority is referred to as
the net priority with which the (child) task runs. The following
are issues that arise during the creation and progress of tasks.

Should speculative tasks with low priorities be created?
If indeed they are created, they may seldom get the
attention of processors if speculative tasks with higher
priorities exist. On what basis should a (threshold)
priority value t be chosen so that only those speculative
tasks with net priorities greater than or equal to t may
be created, so that there are net gains over several runs
of a program?
If a task is scheduled speculatively and later is found to
be useful by its parent, should its priority be upgraded to
that of its parent, and should the corresponding changes
in priorities be propagated transitively to all its descen-
dants? Similarly, should a task sparked speculatively, but
later found to be unnecessary by its parent, be deleted
from the system so that the processors engaged by it
and its descendants are put to better use? Can these
operations be achieved at reasonable costs?

A. Imp lementation

In this section, we describe the graphical representation of
functions, the parallel system simulated, the parallel graph
reduction scheme employed, and the scheduling method used
by us.

Graph Representation: We have designed our own func-
tional language [5] to experiment with the ideas presented in
this paper. The language supports all essential features of a
functional language. Graphs as described in [8] are generated
for programs written in this language by our compiler.

Parallel Graph Reduction: We have implemented parallel
graph reduction (with a global address space) using lazy eval-
uation and speculative evaluation. The graph reduction model
is based on template instantiation [SI. A task is represented
by a pointer to the graph being reduced by it. We have used
notification model for blocking and resumption [9]. Techniques
used by us for task synchronization and other aspects of
parallel graph reduction can be found in [3].

Parallel System: We have simulated a shared memory mul-
tiprocessor system with N processors and N memories con-
nected by a communication network. Copies of the graphs

of functions in a program and a copy of the parallel graph
reducer (lazy or speculative) are available with each processing
element (PE). The graph reducer programs are written in
the C language. Time is accounted for various operations
like traveling down the spine, checking the availability of
arguments, and instantiation. The graph reducer programs are
viewed as a sequence of machine instructions to account for
the time to execute instructions. The timings for instruction
fetch, data access, and ALU operations correspond to those
of Intel 80386 [4]. Delays due to simultaneous requests to a
memory unit are taken care of by queuing the requests.

We discuss the relative performance of speculative eval-
uation and lazy evaluation schemes on a given number of
processors in Section IV-B. Time for garbage collection is not
accounted in both lazy evaluation and speculative evaluation.

Choice of a Threshold Priority Value: It is desirable that
only those expressions whose probability of requirement for
the program’s evaluation is good are speculatively scheduled,
for the following reasons:

To ensure net gains due to speculative evaluation of a
functional program over several runs;
To limit the speculative parallelism generated, particu-
larly when we have only a limited number of processors;
and
Priority change operations are expensive [5], [9]; hence,
expressions with low probabilities of requirement may
not be speculatively sparked, because if priority upgra-
dation on demand for tasks evaluating such expressions
is not performed, they may not get the attention of
processors until all high-priority tasks are completed.
speculative evaluation with static priorities, only those

speculative tasks with net priorities greater than or equal to
a chosen threshold priority value are sparked. An expression
with a net priority less than the threshold value is reduced
only on demand with the priority of the parent requesting its
value. A threshold priority value greater than 5 is, in general,
good enough for most programs, but may not always be so.
The choice of a suitable threshold value is program-specific
[5] and depends on the following parameters:

1) Number of processors in the system,
2) Conservative parallelism that may be generated by a

program that is data-dependent, and
3) Speculative parallelism that may be generated by expres-

sions that are required for the program’s evaluation with
different priorities; this also is data-dependent.

Although it is usually the case that speculative evaluation of
a promising expression yields benefits, it may not always be
so, particularly when the average complexity of the expression
when it is not required is much greater than that when it is
required.

Overheads Due to Speculation: In speculative evaluation
with static priorities, the main overheads are in terms of
computing the net priority of a child task. The net priority
with which a task is running i s stored in a field called the
priority field at the task node.

Scheduling: Mandatory tasks run at priority level 10, and
speculative tasks run at lower priorities. Each processing ele-

MURTHY AND RAJARAMAN: SPECULATIVE PARALLELISM IN FUNCTIONAL LANGUAGES 1203

ment distributes the tasks generated by it onto other processing
elements, and also onto itself, in a round-robin manner. Eleven
priority queues exist (0 . . . lo). Tasks are placed in appropriate
priority queues as dictated by the net priorities assigned to
them. A task to reduce the root expression of the program is
placed in priority queue 10 at PE1 to start with.

Whenever a processing element wants to pick a task for
evaluation, it scans the priority queues in order from queue 10
down to queue 1. A lower-priority queue is scanned to pick a
task only if no task is available in higher-priority queues. Tasks
with priority 0 are not runnable. A nonpreemptive scheduling
scheme is used.

The problem of a mandatory task starving for the attention
of a processor in the event of a speculative task getting
stuck in an infinite loop does not arise, for the following
reasons. Nontermination during the evaluation of well-written
functional programs arises essentially as a result of an attempt
to evaluate the components of an infinite list structure specula-
tively. However, this problem does not arise in our models of
speculative evaluation, because they evaluate the components
of a list structure lazily.

Consider the processing elements PE1 . . . PE,. Imagine that
PE1 is at the left end and that PE, is at the right end. As
mandatory tasks are picked up in preference to speculative
tasks by processors, in order that speculative tasks may get
the attention of processors at least initially, mandatory tasks
are distributed in a round-robin manner from PE1 to PE,, and
speculative tasks are distributed from PE, down to PE1.

B. Comparisons with the Performance of Lazy Evaluation

To illustrate the use of speculative evaluation, we now
present some programs. The programs reported below are run
on the simulated multiprocessor mentioned in Section IV-A,
using both lazy evaluation and speculative evaluation, and
using static priorities with different inputs chosen randomly
conforming to branch probabilities. In the case of list inputs,
lists with varying lengths and different elements are fed as
inputs. Specevalt and Lazyevalt are the average speculative
evaluation time and lazy evaluation time for 30 runs of each
program, respectively, on a given number of processors. The
performance results reported below are the cases in which both
lazy evaluation and speculative evaluation exploit parallelism
at the fine-grain level.

Branch Speculation:
Program 1
h(z. y) == if x > 0 then (h(3: - 1) y) + 2

el se
if z = 0 then 0
else 1 + h y (-x);

psum(low, high) == let
mid = (low + high) div2

in
if low = high then low

else (psum low mid) + (psum (mid + 1) high)
sum(.) == psum 1 n;
g(z, y, z) == if (h 3: z) = 0 then *0.1 * sum y else sum z ;

TABLE I
&RFORMANCE OF BRANCH SPECULATION

4 8 16 32 64 Number of PE's
(SFcevalfiazYevalt) 0.92 0.9 0.83 0.79 0.77

The above program is contrived, but nevertheless suggests
the situations in which branch speculation may be of use. The
root expression is an application of the function 9. Only the
more promising branch (sum z) in g is speculatively evaluated
in parallel with the predicate ((h z z) = 0:). The time
complexity of the predicate is significant for large values of
abs(z) , but little parallelism is generated during its evaluation.
Speculative evaluation of (sum 2) results in a progress of its
evaluation by the time it is selected. The threshold priority
value used to run the above program is 9.

Average speculation overheads per processor for 30 runs
are about 3% with four processors, and they decrease with
an increase in the number of processors. Because the branch
(sum z) is selected in most of the runs of the above program,
the average wasted work per processor is negligible.

Per3'omzance of Argument Speculation:

Program 2 (Singletons program)
member(a,x) == if (z = [I) then *0.l* False

else
if (U = (h d 1:)) then *0.5* True
else member a (t l 2);

z = union (t l z) y
union(:c, y) == let

in
if (z = [I) then y

else
if (member (h d x) z) then z
else (hd x) : z ;

z = difference (t l x) y
difference(z, y) == let

in
if (z = [I) then *0.1* [I

else
if (member (hd z) y) then *0.5 * z
else (hd z) : z ;

set(s) == if (atom s) then s : [I
else union (set (h d s)) (set (t l 8));

singletons(s) == if (atom s) then s : [I
else

(difference (singletons (t l s)) (set (h d s)))

Branch probabilities are shown in only those functions
having nonstrict arguments. P(union,) = 1.0; P(union,) =
1.0; P(singletons,) = 1.0; P(set,) = 1.0; P(difference,) =
1.0; P(difference,) = 0.9.

In the call to union in the else-branch in the function
singletons, both arguments are calls to function difference, and
in argument speculation, they are reduced by tasks running
with net priority 10. In each one of the calls to difference,
the first argument runs with net priority 10, and the second

union (difference (singletons (h d s)) (set (t l s)))

1204 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5 . NO. I I , NOVEMBER 1994

TABLE I1
PERFORMANCE OF ARGUMENT SPECULATION

4 8 16 32 64 Number of PE’s
(SPwevalfiazYevalt) 0.87 0.85 0.84 0.82 0.81

argument runs with net priority 9. The threshold value used
to run the program is 9.

Average speculation overheads per processor for 30 runs
are about 4% with four processors, and they decrease with
an increase in the number of processors. Interestingly, no
wasted work is done during the evaluation of this program
under speculative evaluation, because the call to the function
difference in the body of singletons always needs to reduce
its second argument y. However, a strictness analyzer would
not be able to detect this.

Reduction in time using argument speculation is due to
the fact that when an application of function difference is
being reduced, a lazy evaluator spends considerable time
evaluating the predicate (a: = [I) , where a: may be bound to
(singletons (hd s)) or (singletons (t l s)), before the value of
the nonstrict argument y is demanded. We would expect that
with an increase in the number of processors, there should
be significant reduction in the ratio (specevaltAazyevalt). But
this is not the case, as shown by Table 11. Considerable
decrease in the ratio (specevaltllazyevalt) with an increase
in the number of processors is possible if the conservative
parallelism generated by a program is not much, but the spec-
ulative parallelism generated is significant. For the singletons
program, there is considerable parallelism generated, even
under lazy evaluation.

Using a coarser grain size wherein tasks, whether mandatory
or speculative, are sparked only for supercombinator applica-
tions, tasking overheads as well as speculation overheads are
reduced. As a result, lower ratios of (specevaltnazyevalt) are
observed [5] .

C. Priority Change Operations

The goal of minimizing the costs of priority upgradation
or deletion of irrelevant tasks is not quite consistent with
the necessary conditions that a program needs to satisfy for
speculation to perform better than lazy evaluation [5]. This is
because if the complexities of predicates in conditionals are
significant, speculative evaluation of expressions can give rise
to a huge tree of descendant tasks by the time it is known
whether they are necessary. Transitively propagating priority
change operations at this stage is costly, particularly when the
chosen grain size is not coarse. With a coarse grain size, these
costs can be reduced considerably.

v. PROBLEMS WITH SPECULATION

In the case of branch speculation, it appears as if non-
termination may occur when a recursively defined function
like factorial is reduced. However, nontermination does not
occur, because the net priorities with which speculative tasks
for the recursive branches are created keep decreasing with
the depth of recursion, and ultimately they become 0. Note

that nontermination occurs in branch speculation only when
the (branch) probability, with which the recursive branch is
selected in a recursive function, is specified to be I . Tasks
with priority 0 are not runnable.

Consider f (a) == if a = 0 then 0 else l / a . Using branch
speculation can result in an attempt to perform the operation
(U O) . It is possible to allow speculation to be used in situations
such as these if the system does not abort the program in error
situations such as (l/O), but merely retums a special error value
to the calling function. The program may be aborted only if the
result computed by a speculative task that causes an error such
as (l /O) is actually demanded for the program’s evaluation.
Similar problems arise in argument speculation, too; but they
occur more often in branch speculation.

VI. TERMINATION OF PROGRAMS

As a consequence of the Church-Rosser theorem [SI, it
follows that the order of evaluation of subexpressions in an
expression is irrelevant, because whatever order is chosen, if
the evaluation terminates, the normal form reached would be
the same. It can be ensured that the evaluators based on branch
speculation and argument speculation would terminate on the
same set of programs on which a lazy evaluator would. This
can be achieved by ensuring that some progress is always made
on the normal-order spine, even while evaluating speculative
tasks, all of which may not be needed. Nontermination due
to speculative evaluation of infinite lists does not arise in our
speculation models, because lists are evaluated lazily.

VII. FURTHER DISCUSSION

In this paper, we have proposed two models of speculative
evaluation, namely, branch speculation and argument specu-
lation. Programs that satisfy the following properties can run
faster using speculative evaluation.

1) The conservative parallelism generated by a program
cannot keep all the processors in a system busy.

2) Evaluation of a program using branch speculation per-
forms better than lazy evaluation if it has conditional
expressions in some or all of which the complexities of
predicates are significant, and in some or all of which
one of the branches has a higher probability of selection
than the other.

Evaluation of a program using argument speculation performs
better if the program has at least some function applications
that satisfy the following condition. If a lazy evaluator spends
significant time before it may demand the result of a promising
nonstrict argument during the reduction of a user-defined
function application, and if the complexity of the argument is
not trivial, it is worth speculatively evaluating the argument.
The extent to which we gain as a result of branch speculation
or argument speculation depends not only upon the availability
of spare processors but also on the complexities of predicates
in conditional expressions.

The overheads due to speculation using a static priority
scheme are quite small, and, moreover, speculative tasks, how-
ever promising they are, do not compete with mandatory tasks.
For these reasons, if there exist highly promising branches or

MURTHY AND RAJARAMAN: SPECULATIVE PARALLELISM IN FUNCTIONAL LANGUAGES 1205

nonstrict arguments in a program, speculative evaluation may
be used even if there are only a limited number of processors.

The differences between branch speculation and argument
speculation are as follows. Branch speculation can be used
even if all functions in a program are strict in all their argu-
ments, but contain conditionals. Also, in branch speculation,
larger expressions are scheduled for speculative evaluation,
since an entire branch in a conditional expression is scheduled
for speculative evaluation. An argument usually is only a
subexpression of a branch. Thus, more losses may be incurred
in branch speculation, in general, if speculation is incorrect.

The compile-time analysis discussed in Section 111 is a
generalization of traditional strictness analysis and aids in
identifying useful speculative parallelism in the case of ar-
gument speculation. Recursive functions may need a number
of refinements, as discussed in Section 111; but since we are
interested in only the relative utility of nonstrict arguments
for a function’s evaluation, usually not more than 10 to
15 refinements are necessary, and these are compile-time
overheads. The following are some interesting extensions that
are possible:

1) To develop a scheme to dynamically adjust the threshold

2) TO incorporate speculative evaluation into the parallel

3) To study the possibility of using recurrence equations to

value,

G-machine, and

derive argument probabilities.

ACKNOWLEDGMENT

The authors thank K. Ravikanth and P.S. Sastry for their
many helpful discussions.

REFERENCES

[I] F. W. Burton, “Speculative computation, parallelism, and functional
programming,” IEEE Trans. Comput., vol. C-34, pp. 1190-1 193. Dec.
1985.

121 C. Clack and S.L. Peyton Jones, “A practical approach to strictness
analysis,” in Functional Programming Languages and Computer Archi-
tecture, in Lecture Nates in Comput. Sci. 201. New York: Springer-
Verlag, 1985, pp. 190-203.

13 1 -, “The four-stroke reduction engine,” Proc. ACM ConJ Lisp
Functional Programming, 1986, pp. 220-232.

(41 Intel Corp., Intel 80386 Programmer’s Reference Manual. Santa Clara,
CA: 1986.

151 P. V. R. Murthy, “A study of the implementation of speculative paral-
lelism in functional languages,” Ph.D. dissertation, Indian Inst. of Sci.,
Bangalore, India, 1991.

[6] S. Ono, “Relationships among strictness-related analyses for applicative
languages,” in K. Fuchi and L. Kott, Eds., Programming of Future
Generation Computers , vol. 11. Amsterdam, Netherlands: Elsevier
(North-Holland), 1988, pp. 257-283.

171 R. B. Osborne, “Speculative computation in Multilisp,” in Parallel Lisp:
hngucrge.~ crnd Sysfems. in T. Ito and R. H. Halstead, Eds., Lecture

Notes in Comput. Sci. 441. New York: Springer-Verlag. 1989, pp.

[SI S. L. Peyton Jones, The Implementation of Functional Programming
Languages. Englewood Cliffs, NI: Prentice-Hall, 1987.

[9] -, “Parallel implementations of functional programming lan-
guages,”Comput. J . , vol. 32, pp. 175-186, Feb. 1989.

[IO] B. Wegbreit, “Mechanical program analysis,” Commun. ACM, vol. 18,
pp. 528-539, Sept. 1975.

[I I1 E. Wong and B. Haiek, Srochastic Processes in Engineering Systems.

103-137.

Prop. 4-1, Ch. I . New York: Springer-Verlag, 1985.

P. V.R. Murthy received the M.Sc.(Tech.) degree
in computer science in 1982 from Birla Institute of
Technology and Science, Pilani. India, and the Ph.D.
degree in computer science from the Indian Institute
of Science, Bangalore, India, in 1991.

He is currently a Senior Scientific Officer at
the Supercomputer Education and Research Centre.
Indian Institute of Science, Bangalore. India. His
research interests are in parallel processing and
programming languages.

V. Rajaraman received the B.Sc. (with honors) in
physics from Delhi University, India, in 1952; the
DIISC and AIISC degrees from the Indian Institute
of Science, Bangalore, India, in 1955 and 1957,
repsectively; the S.M. degree in electrical engineer-
ing from the Massachusetts Institute of Technology,
Cambridge, MA, USA; and the Ph.D. degree from
the University of Wisconsin, Madison, WI, USA, in
1961.

Currently, he is IBM Professor of Information
Technology at the Jawaharlal Nehru Centre for

Advanced Scientific Research Bangalore, India. He was an Assistant Professor
of Statistics at the University of Wisconsin in 1961-62. He then joined the
Indian Institute of Technology (IIT), Kanpur, India, as an Assistant Professor
of Electrical Engineering in 1963, and in 1973 he became a Senior Professor of
Electrical Engineering and Computer Science there. He headed the Computer
Centre at ET Kanpur from 1967 until 1972 and again from 1976 until 1979.
He also initiated the computer science educational programme and guided its
growth from 1966 to 1979. From 1982 to 1994, he was Professor of Computer
Science and Chairman of Supercomputer Education and Research Centre at
the Indian Institute of Science, Bangalore, India. During 1965-66, he was a
Visiting Assistant Professor of Computer Science and Electrical Engineering
at the University of California, Berkeley, CA, USA, and during 1972-73, he
was a Visiting IBM Research Fellow at the Systems Development Institute,
Canberra, Australia. He has also been active as a consultant to industry.

Dr. Rajaraman pioneered computer science education and research in India,
and in recognition of this, he was awarded the Shanti Swarup Bhatnagar
Prize in 1976 and the Fellowship of the Computer Society of India in 1981.
He was awarded the Homi Bhabha Prize for research in applied sciences
by the University Grants Commission, India, in 1986, and a National Award
for Excellence in Computer Engineering by the Indian Societj for Technical
Education in 1988. He was a member of the Electronics Commission from
1979 until 1982. He has published many technical papers and is the author
of 12 books on computer science. He is a Fellow of the Indian National
Science Academy, the Indian Academy of Sciences, and the Indian National
Academy of Engineering. He is an Honorary Professor at the Indian Institute
of Science, Bangalore, India.

