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Implementation of Speculative Parallelism in 
Functional Languages 

P.V.R.  Murthy and V. Rajaraman 

Abstract- A compile-time analysis technique is developed to 
derive the probability with which a user-defined function or 
a supercombinator requires each one of its arguments. This 
provides a basis for identifying useful speculative parallelism in a 
program. The performance of speculative evaluation is compared 
with that of lazy evaluation, and the necessary conditions under 
which speculative evaluation performs better are identified. 

Index Terms- Conservative parallelism, speculative parallel- 
ism, lazy evaluation, branch speculation, argument speculation, 
strictness analysis 

I. INTRODUCTION 

ONCURRENCY in lazy implementations of functional C languages is increased by scheduling tasks for the eval- 
uation of the strict arguments along with the function before 
they are actually demanded [2]. A speculative evaluator is one 
that initiates the computation of some expressions before a 
lazy evaluator would have, i.e., before they are known to be 
necessary or unnecessary. If they later tum out to be necessary, 
performance can improve because they were initiated earlier, 
and so can complete earlier (subject to the availability of spare 
processors). If they tum out to be unnecessary, performance 
can decline because the resources they used were wasted. 
This introduces a trade-off. Burton [I]  and Osbome [7] have 
addressed the problem of speculative computation, mainly in 
problems involving parallel search, multiple-approach specu- 
lative computation and order-based speculative computation. 
Osbome shows how the above speculative computation ap- 
proaches may be incorporated into Multilisp and points out 
that speculative computation does yield benefits. 

In this paper, we are mainly concerned with speculative 
evaluation that arises during the reduction of an application of 
a function (supercombinator). A promising expression is one 
whose value is required for a program’s evaluation with a high 
probability. During the reduction of a function application, 
promising nonstrict arguments may be reduced in parallel with 
the strict arguments and the function body. This evaluation 
model is referred to as argument speculation. Assume that 
(equal L1 L2) and Palindrome (Lj  evaluate to true with low 
probabilities (Fig. 1). During the reduction of an application (f 
El E2 E3 E4) (Fig. l(a)), if the reducer has the knowledge 
that L4 is required with a higher probability than L3, then 
the average reduction time can be reduced by reducing the 
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nonstrict argument E4 in parallel with the strict arguments 
El and E2. 

Another speculative evaluation model we discuss in this 
paper is referred to as branch speculation. In branch specula- 
tion, no speculation is done during the reduction of a function 
application, but during the reduction of a conditional expres- 
sion, the more promising branch in a conditional expression 
is reduced in parallel with the predicate. During the reduction 
of the conditional expression (Fig. l(b)), if the reducer has 
the knowledge that Ef is required with a higher probability, 
the average reduction time can be reduced by reducing E f in 
parallel with Palindrome (L).  

This paper is organized as follows. Section I1 suggests that 
branch probabilities be used directly to identify promising 
branches in the case of branch speculation, and that, indirectly, 
a compiler may use branch probabilities to identify promising 
nonstrict arguments for use in argument speculation. Section 
111 provides a compile-time analysis technique to compute the 
probability with which each function in a program requires 
each one of its nonstrict parameters. Section IV shows how 
argument probabilities derived at compile-time may be used 
at run-time in speculatively evaluating promising nonstrict 
arguments of a function. It also discusses about how branch 
probabilities may be used in branch speculation. Section V 
discusses the problems in speculative evaluation and proposes 
some solutions to them. Section VI discusses the termination 
of programs under speculative evaluation. Section VI1 provides 
a further discussion on speculative evaluation models. 

11. BRANCH PROBABILITIES 

To know the more promising branch in a conditional expres- 
sion, we need to know the probability with which the predicate 
in it evaluates to true, which is referred to as the branch 
probability. In another context, branch probabilities have been 
used to obtain closed-form expressions for the execution times 
of Lisp programs [lo]. To identify the more useful nonstrict 
arguments, it is necessary to identify those nonstrict arguments 
occurring in paths that have a greater likelihood of being 
selected during a function’s evaluation. Branch probabilities 
may be obtained through measurement or supplied by the user 
based on experience. 

In functional programs, most functions are defined recur- 
sively. Since the recursive branches are selected most often, 
it is reasonable for the user to specify a large probability of 
selection in favor of the recursive branch. Branch probability 
may be specified by the user as part of the conditional 
expression as follows. In “if E k  then *q* Et else E’’ q 
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f (Ll,LZ,L3,L4)==if (equal L1 LZ) then 

length L3 

else length L4; 

(a) 
Fig. 1. Examples of speculative evaluation. 

is the probability with which the predicate Ec evaluates to 
true. The branch probability q follows the key word “then” 
and is enclosed within *’S. Consider “ f ( L l , L 2 , L 3 )  == 
if (Palindrome L1) then *0.1* (h  L2) else (h  L3)” where 
function h is strict in its argument. It is easy to see that f 
requires L2 with probability 0.1 and L3 with probability 0.9 
for its evaluation. We would like a compiler to derive these 
argument probabilities, which is the topic addressed by the 
next section. 

Care must be taken, as far as possible, to see that branch 
probabilities specified in a program do not contradict each 
other. A compiler cannot statically detect contradicting branch 
probabilities in all cases [5]. Also, in the case of nested 
conditionals, the truth value of an inner predicate may de- 
pend upon the truth value of an outer predicate, and thus it 
is necessary that conditional branch probabilities are speci- 
fied. 

111. COMPUTING ARGUMENT PROBABILITIES 
AT COMPILE-TIME 

We first develop rules that a compiler uses to compute 
the probability with which a primitive expression requires a 
variable for its evaluation. The compiler uses these rules to 
compute the probability with which a function requires its 
nonstrict parameters for its evaluation. Recursive functions 
pose a problem, which we point out in Section 111-B. Also, 
we provide a solution based on successive approximation. In 
this paper, we confine ourselves to developing the method for 
a first-order functional language with nonflat domains. The 
extensions necessary to deal with higher-order functions can 
be found in [5]. 

A. Probability with Which a Primitive Expression 
Requires a Given Variable 

Let E be an expression, and let x be a variable. Let E, and 
E: denote the events that “E requires x for its evaluation,” 
and “E does not require x for its evaluation,” respectively. Let 
P be the probability function that maps E, into a real number 
in the interval r0.0, 1.01. Note that all the variables defined 
through lets and letrecs are graphically substituted. We now 
specify P for each form of expression. 

Rule 1 -Probability that a Constant Requires a Variable 
2: Let E be a constant. P(E,) = 0. E.g., P(5,) = 0, 

Rule 2-Probability that a Variable Requires a Variable x: 
Let E be a variable. If E is the same as x, P(E, )  = 1 ,  and 
is 0 otherwise. E.g., P(y,) = 0, P ( x z )  = 1 .  

Rule 3-Probability that (el+e2) Requires a Variable x: Let 
E be (e l  + e2). Assuming that el: and e2, are independent 

P((5  : 2 : [ I),) = 0. 

i f  Palindrome(L1 then 

Et 

else Ef; 

(b) 

events, we have P(E,) = P(e1,) + ( 1  - P(el , ) )P(eZ,) .  
Note that the same rule holds for all strict binary functions 
like *, /, div, mod, and so forth. E.g., P ( ( ( x  * x )  + z),)  = 

Rule 4-Probability that a Conditional Requires a Variable 
XI Let E be the expression “if Ec then *q* Et else Ef’ 
where Ec, Et  and Ef are some expressions. Let q be the 
probability with which Ec evaluates to true. Let Ect, Ecf 
be the events that Ec evaluates to true and that Ec evaluates 
to false, respectively. 

Assuming (see Section 111-E) the independence of the fol- 
lowing: 

1 )  the events Ec; and ( ( E 2  n Et,)  U (Ecf n Ef , ) ) ,  and 
2) the events Ect, Et,  and that of the events E c f ,  E f,, 

we have P(E,) = P(Ec,) + (1 - P(Ec,))(qP(Et,) + 
( 1  - q)P(Ef , ) ) .  E.g. ,  P((if z then *0.1* y else x),) = 

The binary operations AND-OR are not strict. The user may 
annotate a binary operation containing AND-OR with the 
probability ( q )  with which the first operand evaluates to true. 
These expressions are converted into conditional expressions, 
and the above rule is applied. 

Rule 5-Probability that ( E l  : E2) Requires a Variable x: 
Let E be ( E l  : E2), where “:” is the lazy list constructor 
that constructs a Cons cell with E l  as the head and E2 
as the tail, but does not evaluate them. P(E,) = 0. E.g., 

Rule 6- Probability that ((unop) e )  Requires a Variable x: 
If E is ((unop)e), where (unop) is any unary function such 
as negate, not, atom, but not a selector function such as h d  or 
t l ,  and if e is some expression, then we have P(E,) = P(e3.) .  
(We specify P(E,) if (unop) is a selector function in Rule 8.) 
E.g., P((atoms),) = l , P ( ( n o t  b ) , )  = 0. 

Rule 7-Probability that a User-Dejned Function Appli- 
cation Requires a Variable x: E is a user-defined function 
application (or a supercombinator application) f e, . . . e,, 
where f is defined as f(xl,...x,) =e. el,...,e,, and 
e are some expressions. P(E,) = P ( E i ) ,  where E’ = 
e[el /s l , .  . . , e,/x,]. E.g., f(a, b)  = a + 6, P((f(z * x ) ( z  * 

Rule 8-Probability that (Selector e )  Requires a Variable x: 
Let E be (selector e) ,  where selector is hd or t l ,  and e is some 
expression. Note that the evaluation of (hd e) consists of first 
reducing e to weak head normal form (WHNF) 181, and then 
reducing the head of the resulting Cons cell to WHNF, which 
is the result of E.  Similarly, the evaluation of ( t l  e )  consists 
of first reducing e to WHNF, and then reducing the tail of the 
resulting Cons cell to WHNF. Before we specify Rule 8, we 
define ( e .  selector). The expression (selector e )  is transformed 

P ( ( x  * x),) + ( 1  - P ( ( x  * x),)) * P(z,) = 1. 

P(2,) + ( 1  - P(z,)) * (0.1 * P(y,) + 0.9 * P(Z,)) = 0.9. 

P ( ( ,  : [ 11,) = 0. 

Z)),) = P ( ( ( x  * x) + ( z  * z ) ) , )  = 1 .  
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into the expression (e. selector), and the probability function 
P is applied on (e. selector). 

Definition I: Given an expression e (of the forms men- 
tioned below), we define the expression (e. selector), where 
selector is either hd or t l ,  as follows. 

Case I :  e is e l  : e2, where e l  and e2 are some expressions. 

e. selector = e l ,  
= e2, 

if selector is h d ,  

if selector is t l .  

Case 2: e is "if Ec then *y* Et else Ef." 

e. selector = 

if Ec then * y * (E t .  selector) else ( E f .  selector) 

Case 3: e is ( fe l  . . . en), where el  . . .en are some expres- 
sions, and f is a supercombinator defined as f (z1,  . . . , zn )  = 
Expr. e. selector = (Ez:pr[e l / z l ,  .. . , e,/z,]). selector. 

Case 4: e is (selector 'e'), where selector' is either hd or 
t l  and e' is some expression. 

e. selector = (e'. selector'). selector. 

Dejnition 2: Now we define P(E,), where E is (selector 
e). 

P(( selector e),) = P((e. selector),), if e is not a 
parameter, 

= 1, if e is a parameter and same as IC, 
= 0, if e is a parameter and not the same 

as x. 

Note that if e is a parameter, it has to be a list-type one, 
and to evaluate (selector e), whatever expression is bound 
to the parameter at run-time has to be evaluated. E.g., let 
f ( 2 )  == 1 : z ;  P((hd (f IC)),) = P((hd (1 : z)),) = 
0. P((tl(f z)),) = P((tl(1 : I C ) ) z )  = P(z,) = 1. 

Rule 9-Probability with Which a Function Requires a 
Parameter: Let f be a supercombinator with 21, . . . , xn as 
formal parameters and defined as f(z1,. . . , zn) = e, where 
e is some expression. Let (f,;) denote the event that the 
supercombinator f requires x i  for its evaluation. P ( f Z L )  = 
P(e,;). E.g., f ( z , y )  == if IC then *0.6* y else 0; P( f , )  = 
l ,P( f , )  = 0.6. 

To determine the probabilities with which a user-defined 
function (or a supercombinator) requires its arguments, the 
compiler, after generating the graphs for the functions in a 
program(see Section IV-A), uses Rule 1 to Rule 8. 

B. Probability with Which a Recursive 
Function Requires an Argument 

P ( f z )  for the function f (Fig. 2) is computed below. 
P ( f z )  = (1 -q )*P( ( f ( z -1 )  (y+z) z) , )  (from Rules 4, 3, 2, 
and 1) = ( l - y ) * ( q + ( l - y ) * P ( ( f ( z - l - l - l )  (y+z+z) z ) , ) )  
(from Rule 7)  = (1 - q )  * ( y +  (1 - q )  * ( q +  (1 - y) * (.-.))). It 
can be seen that P ( f z )  = (1 - 4 ) .  However, while computing 
P ( f z ) ,  the compiler may get into an infinite loop. We now 
present a successive approximation method to overcome this 
problem. We first state the solution informally, and some terms 

f ( x , y , z )  = =  i f  ( x = 0 )  t h e n  + q +  y else f ( x - 1 )  (ytz) z ; 

Fig. 2. Example for illustrating refinement. 

used in this explanation are defined formally later in this 
section. 

Let fo = if (z = 0); then *q * y; else f (x - 1) (y + z )  z. 
By expanding the recursive function call in fo, say, we obtain 
f ' ,  In general, obtain f k  from f("'), k 2 1, by expanding 
the recursive function call present in f ( k - l ) .  

Let f," be the event that f requires the value of z within 
the first k expansions of f. We prove later in this section 
that fikP1) is a subset of f,", i.e., P ( f i k - " )  5 P(f,"). The 
compiler computes P(f,") ,  assuming that the probability with 
which a recursive function call in f k  requires z to be 0 for 
k 2 0. (fk may contain outermost nonrecursive function calls, 
and the compiler uses Rule 7 to compute the probabilities with 
which they require z.) We show later in this section that the 
sequence P(f:) ,  P ( f ; ) , . . .  converges and that the limit is 

The process of obtaining f k  from f ( k - ' ) , k  2 0, is called 
a refinement. In the case of most recursive expressions, a re- 
finement simply consists of expanding the outermost recursive 
calls present in them once. The purpose of a refinement of a 
recursive expression is to bring the variables present in the 
arguments in recursive calls into the nonrecursive portion of 
the resulting expression, so that for probability computation 
purposes, the rules developed for primitive expressions may 
be employed. Thus, a refinement may not simply be a single 
expansion of each one of the outermost recursive function calls 
in a recursive expression. Repeated expansions of recursive 
function calls may take place until such a stage that the 
variables present in the arguments of the outermost recursive 
calls appear in the nonrecursive portion of the expression. The 
above process is a single refinement. With each refinement, 
the probability value being computed increases. If it does not 
increase, the computation has converged. 

Definition 3 (Outermost Expression, Outermost Applica- 
tion): Let e be a subexpression of an expression E. The 
subexpression e is said to be outermost in E if there exists 
at least one occurrence of e in E such that e is not a subex- 
pression of an argument in any supercombinator application 
in E. If e is a supercombinator application, then we refer to it 
as an outermost supercombinator application in E. Consider 
the following expressions. 

1) Say, E is (IC * y) + (z + y); then z,y. (z + y), (z * y) 

2) E is (f e l  ea) +g (f e l  ea) e3 
Here (f e l  

P ( f z ) .  

and (z * y) + (z + y) are outermost in E. 

e2) occurs twice within E ,  once not as an 
argument in any supercombinator application and once as 
an argument in the application of the function g. The first 
occurrence of the application (f e2) is outermost in E.  
Also, the application ( g ( f  e l  e2) e3) is outermost in E. 

Definition 4 (Outermost-Exprs(E, S)): Let E be an expres- 
sion, and let S be a set containing some or all subexpressions 
of E. Outermost-exprs(E,S) = true, if each and every 
member of S that is not a constant expression is outermost 
in E; otherwise, it is false. 

e l  
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Definition 5 (Instance of a Supercombinator): Let A be 
(g el . . .e,), an application of some supercombinator g, 
defined as y(z1,. . . , z,) = expr, where e l , .  .. !e,, n 2 1 ,  
and expr are some expressions. Instance ( A )  is defined to be 
expr[el/zl ,..., e,/z,]. 

Definition 6: Given an n-ary function f x1 . . . z,, param- 
eter IC, is said to be a relevant parameter [6] of f z1 . . . z, iff 
there exist values a1 . . . a, such that the following condition 
holds: 

fa1 . . . a(%-lj I a(,+l) . . a, # f a1 . . ' a, . . ' a,. 

For instance, consider the following: 

g(z, y, z , p )  == if (z = 0) then y else g(z - 1) (y + z )  z p .  

The parameter p is not relevant, and is referred to as an 
irrelevant parameter of g. 

In the following, we assume that the parameters of all 
supercombinators are relevant. However, we point out the 
necessary modifications in the analysis in the presence of 
irrelevant parameters later in Section 111-C. 

De3nition 7 (Sudace-Exprs(E, S)): Let E be an expres- 
sion, and let S be a set containing some subexpressions of 
E.  

Surface-Exprs( E ,  S) =if Outermost-exprs(E, S) then E 
else Surface-Exprs(E', S) 

where E' E[Instance (f a l ) /  f a l ,  . . . I Instance (fa,)/ 
fa,], where { f a l , . . . ,  f a , } , n  2 1, is the set of all 
the outermost supercombinator applications in E that are 
not constant expressions. (Here Instance( f a t ) /  f a, means 
that Instance ( f a , )  is substituted for the supercombinator 
application f at.) 

Definition 8 (Arg-tobasicaxprs(Arg)): Let Arg be an ex- 
pression, and let k be the nesting depth of calls to super- 
combinators in Arg. (For instance, k for the expression E, 
( h d ( p  : z)+f(g (h  IC y z))+f(g y)), is 3. If, in an expression, 
there do not exist any applications of supercombinators at all, 
then IC = 0.) If Ap is an application of a supercombinator, 
let vars(Ap) denote the set of all variables present in the 
arguments in Ap. Let Applicationsk(Arg) be the set of all the 
applications in Arg at the kth nesting level. (In the above 
example, Applications3 ( E )  = { ( h  z y z ) } . )  

Arg-to-basic-exprs( Arg) = Bring-vars-to-surface(Arg, k) ,  
where Bring-vars-to-surface(Arg,lc) = if k = 0 then Arg 
else Bring-vars-to-surface(Arg', k - l), where 
Arg' =Arg[Surface-Exprs(Ap1, vars(Apl))/Apl, 

Surface-Exprs( Ap,, v a s (  Ap,))/Ap,), where 
Applicationsk (Arg) = { Ap1, . . . , Ap,} ,  n 2 1. 

Definition 9 (Rep-lns-fn(RA)): Let RA be the application 
(Se1 . . . e r a ) ,  where f is a supercombinator. e l , .  . . ! e,  are 
some expressions. 

Rep-Ins-fn (RA) = 
Surface-Exprs( Instance(f e; . . . eh), {e ; ,  . . . , e ; } )  

= 

. . .  , 

where e\ = Arg-to-basic-exprs(e1), 

Definition 10 Rejne(E): Let E be an expression. Let 
{ a l , ~ ~ ~ , a , } , n  2 0, be the set of all the outermost 
supercombinator applications in E that are not constant 
expressions. 

(Here Rep-Ins-fn(ai)/a; means that the supercombinator ap- 
plication ai is substituted by Rep-Ins-fn( ai).) 

Definition 11: Let f be defined as f (xl:...,z,) = E ,  
with E being some expression. We define the expression 
f k ,  IC 2 0,  as follows: 

f * is said to be obtained by performing zero refinements on 
f. f ', k 2 0, is said to be obtained by performing k successive 
refinements on f .  It may be noted that if E is not a recursive 
expression, applications of only nonrecursive functions may 
be present in E ,  which would all be expanded into primitive 
expressions to obtain f l ,  and the set of function applications 
in f1 would be empty. In this case, each f '. k >= 2, would 
be identical to the expression f'. 

Lemma I :  Let f be a supercombinator with .T as a param- 
eter. Then we have f," G f ; b k + ' ) !  k 2 0. 

Proof f," denotes the event that the evaluation of the ex- 
pression obtained by performing k successive refinements on 
f requires z, without having to evaluate (or before evaluating) 
the recursive calls present in fk. 

Let the set of the outermost supercombinator applications 
present in f IC that are not constant expressions be Af .  

Let Af = { a1 , . . . , a,}, n 2 0. Then we have: 

f('+') = fk[Rep-Ins-fn(ul)/al,. . . , Rep-Ins-fn(a,)/a,] 

Case I: Note that if Af does not contain any recursive 
expressions, we have f," = fLk+'). 

Case 2: Let R f  be the set of recursive expressions in Af 
that need to be refined to obtain f ( k + l )  from j k ;  i.e., R f  g 
Af.  Let RL denote the event that the evaluation of one or more 
of the nonrecursive expressions obtained by refining members 
of Rf to form f(lc+') requires IC. 

f$'+') occurs if either f," occurs or RL occurs; i.e., 
f;bk+l) = f," U R,f. 

0 Hence, f," C f L k + l ) ,  k >= 0. 
Theorem I :  Let f be a supercombinator with IC as a pa- 

rameter. Then we have: 

Proof The evaluation o f f  requires if the evaluation 
of any one of the expressions f a ,  f ' , .  . . , f k , .  . . ~ k 2 0 ,  
requires 2, without having to evaluate (or before evaluating) 
the recursive calls present in each one of them. 

That is, f z  = U 00 f," ( 1 )  
k= 1 e; = Arg-to-basic-exprs(e,). 
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From Lemma 1, we know that the sequence {f,"} is 
montonically increasing with I C .  Hence, we have the following: 

cc 

Thus, {f,"} is a convergent sequence of events. 
Every probability measure P [ 111 is sequentially continuous 

in the sense that if { A , }  is a convergent sequence of events, 
then l imn-mP(An) = P(lim,-+ccAn) Since {f,"} is a 
convergent sequence of events, we have the following: 

From (1) and (2) ,  we have: 

For the function f given in Fig. 2, the sequence 
{ P ( f ~ ) , P ( f ~ ) . . . . }  has a limit, and the limit is P(f,) .  Here 
the above sequence is a monotonically increasing sequence. 

The sequence of successive differences in probability values 
follows a geometric progression and is a monotonically 
decreasing sequence. The user may specify that when two 
successive probability values differ by less than or equal to a 
chosen tolerance value (e) ,  the compiler may stop performing 
further refinements on f .  For instance, if t = 0.01, then 14 
refinements on f are needed to reach the desired accuracy. 
P ( f i 3 )  = 0.7560195, P( fi4) = 0.7648156. The actual value 
of P ( f z )  is 0.8 . 

(P(f i (k+z))  - P(f ik+1)  )) 5 (P(f?+l)) - P(ft)),k 2 0. 

Consider 
member(a, x) == 

if (z = [ I )  then * 0.1 * False 
else 

if ( a  = (hd z)) then *0.5* True 
else member a(t1 z); 

P(member(l) = 0.9. P(memberA) = 0.9 . For computing 
P(member,), only one refinement on member needs to be 
performed, because P(memberA) - P(member:) = 0. 

C. Rejinement in the Presence of Irrelevant Parameters 

We now point out the additions, required in the presence 
of irrelevant parameters, to the refinement process already de- 
scribed. To detect the formal parameters of a supercombinator 
that are not relevant, an analysis called Relevance Information 
Analysis [6] may be performed on a given program. Defini- 
tions 7 and 8 need to be modified suitably in view of the fact 
that an irrelevant argument in a function application cannot be 
made outermost in the expression obtained by instantiation. 

D. Optimizations in Deriving Argument Probabilities 

Consider f( . .)  == . . . g ( . . . ) . . .  and g(..) == . . .  
g ( .  . .) . . .. In this case, the compiler may first compute 
the probability with which g requires its arguments and 
subsequently use this information while computing the 
probabilities with which f requires its arguments. This would 

avoid repeatedly scanning the body of g twice. In order to 
know the order in which functions may be traversed, a static 
call graph may be constructed and traversed backward in a 
breadth-first manner. However, the above optimization cannot 
always be used, for instance, when f and g are mutually 
recursive. 

E. Comments on the Independence Assumption 

The independence assumptions made in Rule 4 in Section 
111-A are not theoretically sound, but are made for pragmatic 
reasons. Errors due to the independence assumption can be 
minimized by specifying conditional branch probabilities in 
the case of nested conditional expressions. Despite the inde- 
pendence assumptions, the probability with which a function 
requires a nonstrict argument is never incorrectly reported to 
be 1, and is always reported to be less than 1 [SI. Also, the 
probability with which a function requires a strict argument is 
always reported to be 1 [ 5 ] .  

F. Relationship of Our Method to Strictness Analysis 

This method is in fact a generalization of traditional strict- 
ness analysis, because it not only can determine strict ar- 
guments but also can quantify how strict a function is in 
each of its nonstrict arguments. However, just to perform 
strictness analysis, a conventional strictness analyzer [ 2 ]  would 
be more efficient. Consider f ( z , y )  == i f (z  = 0) then y 
else f(z - 1) y. P(f,)  would be computed to be 1 in just 
one refinement of f .  However, if the branch probability with 
which (.: = 0) evaluates to true is quite low, then, in order for 
P(fy) to converge to 1, several refinements on f are needed, 
whereas a traditional strictness analyzer would detect that f 
is strict in y faster. 

The problem is that in order for an argument to be declared 
strict by our method, a probability value of 1 should be 
reached. A value of 0.0 for t has to be specified to achieve 
this. The number of refinements performed depends upon the 
desired accuracy. But for nonstrict arguments, we are not 
interested in their actual probability values. We are interested 
only in their relative promise. To determine the relative utility 
of nonstrict arguments, a value 0.0 for 6 need not be specified. 
For these reasons, we suggest that strict arguments of functions 
be determined by a traditional strictness analyzer first, and 
then the method proposed in this section may be employed to 
determine the relative utility of nonstrict arguments. 

IV. SPECULATIVE EVALUATION 

The compile-time technique suggested in the previous sec- 
tion aids in identifying promising nonstrict arguments of 
functions, thereby identifying useful speculative parallelism in 
a program. During the speculative evaluation of a functional 
program, we need to distinguish between three types of tasks, 
namely, the following: 

1) mandatory tasks, 
2 )  promising speculative tasks, and 
3) speculative tasks reducing expressions with low proba- 

bilities of requirement. 
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For the sake of convenience, and also to be able to obtain 
a fine distinction about the utility of various speculative 
tasks, argument probabilities are mapped into the priority 
interval [ O .  . . 101 at compile-time and stored in a function 
table in the case of argument speculation. In the case of 
branch speculation, branch probabilities are mapped into the 
interval [0 . . . 101 at compile-time and stored within the graphs 
of conditional expressions. Priority queues corresponding to 
levels 0 to 10 may be maintained at each processing element. 
A task to reduce the root expression of the program may be 
placed in priority queue 10 at processing element 1. 

DeJnition 12-Net Priority: Let a program require the re- 
sult of an expression E with probability p .  Let E require, for 
its evaluation, the result of an expression e with probability 
q. Then the (parent) task reducing E may spark a (child) task 
with a priority proportional to pq.  This priority is referred to as 
the net priority with which the (child) task runs. The following 
are issues that arise during the creation and progress of tasks. 

Should speculative tasks with low priorities be created? 
If indeed they are created, they may seldom get the 
attention of processors if speculative tasks with higher 
priorities exist. On what basis should a (threshold) 
priority value t be chosen so that only those speculative 
tasks with net priorities greater than or equal to t may 
be created, so that there are net gains over several runs 
of a program? 
If a task is scheduled speculatively and later is found to 
be useful by its parent, should its priority be upgraded to 
that of its parent, and should the corresponding changes 
in priorities be propagated transitively to all its descen- 
dants? Similarly, should a task sparked speculatively, but 
later found to be unnecessary by its parent, be deleted 
from the system so that the processors engaged by it 
and its descendants are put to better use? Can these 
operations be achieved at reasonable costs? 

A. Imp lementation 

In this section, we describe the graphical representation of 
functions, the parallel system simulated, the parallel graph 
reduction scheme employed, and the scheduling method used 
by us. 

Graph Representation: We have designed our own func- 
tional language [5] to experiment with the ideas presented in 
this paper. The language supports all essential features of a 
functional language. Graphs as described in [8] are generated 
for programs written in this language by our compiler. 

Parallel Graph Reduction: We have implemented parallel 
graph reduction (with a global address space) using lazy eval- 
uation and speculative evaluation. The graph reduction model 
is based on template instantiation [SI. A task is represented 
by a pointer to the graph being reduced by it. We have used 
notification model for blocking and resumption [9]. Techniques 
used by us for task synchronization and other aspects of 
parallel graph reduction can be found in [3]. 

Parallel System: We have simulated a shared memory mul- 
tiprocessor system with N processors and N memories con- 
nected by a communication network. Copies of the graphs 

of functions in a program and a copy of the parallel graph 
reducer (lazy or speculative) are available with each processing 
element (PE). The graph reducer programs are written in 
the C language. Time is accounted for various operations 
like traveling down the spine, checking the availability of 
arguments, and instantiation. The graph reducer programs are 
viewed as a sequence of machine instructions to account for 
the time to execute instructions. The timings for instruction 
fetch, data access, and ALU operations correspond to those 
of Intel 80386 [4]. Delays due to simultaneous requests to a 
memory unit are taken care of by queuing the requests. 

We discuss the relative performance of speculative eval- 
uation and lazy evaluation schemes on a given number of 
processors in Section IV-B. Time for garbage collection is not 
accounted in both lazy evaluation and speculative evaluation. 

Choice of a Threshold Priority Value: It is desirable that 
only those expressions whose probability of requirement for 
the program’s evaluation is good are speculatively scheduled, 
for the following reasons: 

To ensure net gains due to speculative evaluation of a 
functional program over several runs; 
To limit the speculative parallelism generated, particu- 
larly when we have only a limited number of processors; 
and 
Priority change operations are expensive [5], [9]; hence, 
expressions with low probabilities of requirement may 
not be speculatively sparked, because if priority upgra- 
dation on demand for tasks evaluating such expressions 
is not performed, they may not get the attention of 
processors until all high-priority tasks are completed. 
speculative evaluation with static priorities, only those 

speculative tasks with net priorities greater than or equal to 
a chosen threshold priority value are sparked. An expression 
with a net priority less than the threshold value is reduced 
only on demand with the priority of the parent requesting its 
value. A threshold priority value greater than 5 is, in general, 
good enough for most programs, but may not always be so. 
The choice of a suitable threshold value is program-specific 
[5] and depends on the following parameters: 

1) Number of processors in the system, 
2) Conservative parallelism that may be generated by a 

program that is data-dependent, and 
3) Speculative parallelism that may be generated by expres- 

sions that are required for the program’s evaluation with 
different priorities; this also is data-dependent. 

Although it is usually the case that speculative evaluation of 
a promising expression yields benefits, it may not always be 
so, particularly when the average complexity of the expression 
when it is not required is much greater than that when it is 
required. 

Overheads Due to Speculation: In speculative evaluation 
with static priorities, the main overheads are in terms of 
computing the net priority of a child task. The net priority 
with which a task is running i s  stored in a field called the 
priority field at the task node. 

Scheduling: Mandatory tasks run at priority level 10, and 
speculative tasks run at lower priorities. Each processing ele- 
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ment distributes the tasks generated by it onto other processing 
elements, and also onto itself, in a round-robin manner. Eleven 
priority queues exist (0 . . . lo).  Tasks are placed in appropriate 
priority queues as dictated by the net priorities assigned to 
them. A task to reduce the root expression of the program is 
placed in priority queue 10 at PE1 to start with. 

Whenever a processing element wants to pick a task for 
evaluation, it scans the priority queues in order from queue 10 
down to queue 1. A lower-priority queue is scanned to pick a 
task only if no task is available in higher-priority queues. Tasks 
with priority 0 are not runnable. A nonpreemptive scheduling 
scheme is used. 

The problem of a mandatory task starving for the attention 
of a processor in the event of a speculative task getting 
stuck in an infinite loop does not arise, for the following 
reasons. Nontermination during the evaluation of well-written 
functional programs arises essentially as a result of an attempt 
to evaluate the components of an infinite list structure specula- 
tively. However, this problem does not arise in our models of 
speculative evaluation, because they evaluate the components 
of a list structure lazily. 

Consider the processing elements PE1 . . . PE,. Imagine that 
PE1 is at the left end and that PE, is at the right end. As 
mandatory tasks are picked up in preference to speculative 
tasks by processors, in order that speculative tasks may get 
the attention of processors at least initially, mandatory tasks 
are distributed in a round-robin manner from PE1 to PE,, and 
speculative tasks are distributed from PE, down to PE1. 

B. Comparisons with the Performance of Lazy Evaluation 

To illustrate the use of speculative evaluation, we now 
present some programs. The programs reported below are run 
on the simulated multiprocessor mentioned in Section IV-A, 
using both lazy evaluation and speculative evaluation, and 
using static priorities with different inputs chosen randomly 
conforming to branch probabilities. In the case of list inputs, 
lists with varying lengths and different elements are fed as 
inputs. Specevalt and Lazyevalt are the average speculative 
evaluation time and lazy evaluation time for 30 runs of each 
program, respectively, on a given number of processors. The 
performance results reported below are the cases in which both 
lazy evaluation and speculative evaluation exploit parallelism 
at the fine-grain level. 

Branch Speculation: 
Program 1 
h(z. y)  == if x > 0 then (h(3: - 1 ) y )  + 2 

el se 
if z = 0 then 0 
else 1 + h y (-x); 

psum(low, high) == let 
mid = ( low + high ) div2 

in 
if low = high then low 

else (psum low mid) + (psum (mid + 1) high) 
sum(.) == psum 1 n; 
g(z, y, z )  == if ( h  3: z) = 0 then *0.1 * sum y else sum z ;  

TABLE I 
&RFORMANCE OF BRANCH SPECULATION 

4 8 16 32 64 Number of PE's 
(SFcevalfiazYevalt) 0.92 0.9 0.83 0.79 0.77 

The above program is contrived, but nevertheless suggests 
the situations in which branch speculation may be of use. The 
root expression is an application of the function 9. Only the 
more promising branch (sum z )  in g is speculatively evaluated 
in parallel with the predicate ( ( h  z z) = 0:). The time 
complexity of the predicate is significant for large values of 
abs(z) ,  but little parallelism is generated during its evaluation. 
Speculative evaluation of (sum 2) results in a progress of its 
evaluation by the time it is selected. The threshold priority 
value used to run the above program is 9. 

Average speculation overheads per processor for 30 runs 
are about 3% with four processors, and they decrease with 
an increase in the number of processors. Because the branch 
(sum z )  is selected in most of the runs of the above program, 
the average wasted work per processor is negligible. 

Per3'omzance of Argument Speculation: 

Program 2 (Singletons program) 
member(a,x) == if (z = [I) then *0.l* False 

else 
if (U = ( h d  1:)) then *0.5* True 
else member a ( t l  2); 

z = union ( t l  z) y 
union(:c, y) == let 

in 
if (z = [ I )  then y 

else 
if (member ( h d  x )  z )  then z 
else (hd x) : z ;  

z = difference ( t l  x )  y 
difference(z, y)  == let 

in 
if (z = [ I )  then *0.1* [ I  

else 
if (member (hd z) y)  then *0.5 * z 
else (hd z) : z ;  

set(s) == if (atom s) then s : [I 
else union (set ( h d  s ) )  (set ( t l  8)); 

singletons(s) == if (atom s) then s : [ I  
else 

(difference (singletons ( t l  s)) (set ( h d  s))) 

Branch probabilities are shown in only those functions 
having nonstrict arguments. P(union,) = 1.0; P(union,) = 
1.0; P(singletons,) = 1.0; P(set,) = 1.0; P(difference,) = 
1.0; P(difference,) = 0.9. 

In the call to union in the else-branch in the function 
singletons, both arguments are calls to function difference, and 
in argument speculation, they are reduced by tasks running 
with net priority 10. In each one of the calls to difference, 
the first argument runs with net priority 10, and the second 

union (difference (singletons ( h d  s ) )  (set ( t l  s))) 
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TABLE I1 
PERFORMANCE OF ARGUMENT SPECULATION 

4 8 16 32 64 Number of PE’s 
(SPwevalfiazYevalt) 0.87 0.85 0.84 0.82 0.81 

argument runs with net priority 9. The threshold value used 
to run the program is 9. 

Average speculation overheads per processor for 30 runs 
are about 4% with four processors, and they decrease with 
an increase in the number of processors. Interestingly, no 
wasted work is done during the evaluation of this program 
under speculative evaluation, because the call to the function 
difference in the body of singletons always needs to reduce 
its second argument y. However, a strictness analyzer would 
not be able to detect this. 

Reduction in time using argument speculation is due to 
the fact that when an application of function difference is 
being reduced, a lazy evaluator spends considerable time 
evaluating the predicate (a: = [ I ) ,  where a: may be bound to 
(singletons (hd s)) or (singletons ( t l  s)), before the value of 
the nonstrict argument y is demanded. We would expect that 
with an increase in the number of processors, there should 
be significant reduction in the ratio (specevaltAazyevalt). But 
this is not the case, as shown by Table 11. Considerable 
decrease in the ratio (specevaltllazyevalt) with an increase 
in the number of processors is possible if the conservative 
parallelism generated by a program is not much, but the spec- 
ulative parallelism generated is significant. For the singletons 
program, there is considerable parallelism generated, even 
under lazy evaluation. 

Using a coarser grain size wherein tasks, whether mandatory 
or speculative, are sparked only for supercombinator applica- 
tions, tasking overheads as well as speculation overheads are 
reduced. As a result, lower ratios of (specevaltnazyevalt) are 
observed [5 ] .  

C. Priority Change Operations 

The goal of minimizing the costs of priority upgradation 
or deletion of irrelevant tasks is not quite consistent with 
the necessary conditions that a program needs to satisfy for 
speculation to perform better than lazy evaluation [5]. This is 
because if the complexities of predicates in conditionals are 
significant, speculative evaluation of expressions can give rise 
to a huge tree of descendant tasks by the time it is known 
whether they are necessary. Transitively propagating priority 
change operations at this stage is costly, particularly when the 
chosen grain size is not coarse. With a coarse grain size, these 
costs can be reduced considerably. 

v. PROBLEMS WITH SPECULATION 

In the case of branch speculation, it appears as if non- 
termination may occur when a recursively defined function 
like factorial is reduced. However, nontermination does not 
occur, because the net priorities with which speculative tasks 
for the recursive branches are created keep decreasing with 
the depth of recursion, and ultimately they become 0. Note 

that nontermination occurs in branch speculation only when 
the (branch) probability, with which the recursive branch is 
selected in a recursive function, is specified to be I .  Tasks 
with priority 0 are not runnable. 

Consider f ( a )  == if a = 0 then 0 else l / a .  Using branch 
speculation can result in an attempt to perform the operation 
( U O ) .  It is possible to allow speculation to be used in situations 
such as these if the system does not abort the program in error 
situations such as (l/O), but merely retums a special error value 
to the calling function. The program may be aborted only if the 
result computed by a speculative task that causes an error such 
as (l /O) is actually demanded for the program’s evaluation. 
Similar problems arise in argument speculation, too; but they 
occur more often in branch speculation. 

VI. TERMINATION OF PROGRAMS 

As a consequence of the Church-Rosser theorem [SI, it 
follows that the order of evaluation of subexpressions in an 
expression is irrelevant, because whatever order is chosen, if 
the evaluation terminates, the normal form reached would be 
the same. It can be ensured that the evaluators based on branch 
speculation and argument speculation would terminate on the 
same set of programs on which a lazy evaluator would. This 
can be achieved by ensuring that some progress is always made 
on the normal-order spine, even while evaluating speculative 
tasks, all of which may not be needed. Nontermination due 
to speculative evaluation of infinite lists does not arise in our 
speculation models, because lists are evaluated lazily. 

VII. FURTHER DISCUSSION 

In this paper, we have proposed two models of speculative 
evaluation, namely, branch speculation and argument specu- 
lation. Programs that satisfy the following properties can run 
faster using speculative evaluation. 

1) The conservative parallelism generated by a program 
cannot keep all the processors in a system busy. 

2) Evaluation of a program using branch speculation per- 
forms better than lazy evaluation if it has conditional 
expressions in some or all of which the complexities of 
predicates are significant, and in some or all of which 
one of the branches has a higher probability of selection 
than the other. 

Evaluation of a program using argument speculation performs 
better if the program has at least some function applications 
that satisfy the following condition. If a lazy evaluator spends 
significant time before it may demand the result of a promising 
nonstrict argument during the reduction of a user-defined 
function application, and if the complexity of the argument is 
not trivial, it is worth speculatively evaluating the argument. 
The extent to which we gain as a result of branch speculation 
or argument speculation depends not only upon the availability 
of spare processors but also on the complexities of predicates 
in conditional expressions. 

The overheads due to speculation using a static priority 
scheme are quite small, and, moreover, speculative tasks, how- 
ever promising they are, do not compete with mandatory tasks. 
For these reasons, if there exist highly promising branches or 
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nonstrict arguments in a program, speculative evaluation may 
be used even if there are only a limited number of processors. 

The differences between branch speculation and argument 
speculation are as follows. Branch speculation can be used 
even if all functions in a program are strict in all their argu- 
ments, but contain conditionals. Also, in branch speculation, 
larger expressions are scheduled for speculative evaluation, 
since an entire branch in a conditional expression is scheduled 
for speculative evaluation. An argument usually is only a 
subexpression of a branch. Thus, more losses may be incurred 
in branch speculation, in general, if speculation is incorrect. 

The compile-time analysis discussed in Section 111 is a 
generalization of traditional strictness analysis and aids in 
identifying useful speculative parallelism in the case of ar- 
gument speculation. Recursive functions may need a number 
of refinements, as discussed in Section 111; but since we are 
interested in only the relative utility of nonstrict arguments 
for a function’s evaluation, usually not more than 10 to 
15 refinements are necessary, and these are compile-time 
overheads. The following are some interesting extensions that 
are possible: 

1) To develop a scheme to dynamically adjust the threshold 

2) TO incorporate speculative evaluation into the parallel 

3) To study the possibility of using recurrence equations to 

value, 

G-machine, and 

derive argument probabilities. 
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