
7-

NASA Contractor Report

ICASE Report No. 90--49

182073

ICASE
EFFICIENT ALGORITHMS FOR A CLASS
OF PARTITIONING PROBLEMS

(NA_A-C_'-I _07j) LFFICT_"'T AL._"_TTH_R r_ A

CLAgS _ PA_1TTT_JNI_b P'_,.':_Lr_ Fin-J1 Q,_ort

(ICA5 _-) 27 _ CgCL 09_

M. Ashraf Iqbal
Shahid H. Bokhari

c J/of

N_0-Z_3_ 1

Contract No. NAS1-18605

July 1990

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

I l/k.qA
National Aeronautics and

Space Administration

Langley R_esrch Center

Hampton, Virginia 23665-5225

Efficient Algorithms
for a

Class of Partitioning Problems

M. Ashraf Iqbal*

Department of Electrical Engineering

University of Engineering gJ Technology, Lahore, Pakistan

Shahid H. Bokhari t

ICASE, NASA Langley Research Center

Hampton, Virginia

Abstract

We address the problem of optimally partitioning the modules of

chain- or tree-liketasks over chain-structured or host-satellitemultiple

computer systems. This important class of problems includes many

signal processing and industrial control applications. Prior research

has resulted ina succession of fasterexact and approximate algorithms

for these problems.

We describe polynomial exact and approximate algorithms for this

class that are better than any of the previously reported algorithms.

Our approach is based on a preprocessing step that condenses the

given chain or tree structured task into a monotonic chain or tree.

The partitioning of this monotonic task can then be carried out using

fast search techniques.

*Research supported by a grant from the Division of Research Extension and Advisory

Services, University of Engineering & Technology, Lahore, Pakistan
tOn leave from the Department of Electrical Engineering University of Engineering &

Technology_ Lahore, Pakistan. Research supported by the National Aeronautics and Space
Administration under NASA contract NAS1-18605 while the author was in residence at

the Institute for Computer Applications in Science & Engineering, Mail Stop 132C, NASA

Langley Research Center, Hampton, VA 23665-5225.

1 Introduction

The problem of assigning the constituent parts of a large parallel application

onto the processors of a multiple computer system is one of the key issues

in parallel processing. While the general form of this problem has eluded

efficient solution [1, 3] there has been considerable success for problems with

constrained structure. The mapping of problems with chain- or tree-like

structure on multiple computer systems with chain-like interconnection or on

host-satellite systems was shown to have exact polynomial time solutions by

Bokhari [2]. Iqbal [6] subsequently developed faster approximate algorithms

for this class of problems. These fully polynomial algorithms were faster but

provided solutions only to a desired degree of accuracy e. Nicol & O'Hallaron

[8] improved Bokhari's exact algorithms and developed new algorithms that
were still faster but operated under the assumption of bounded execution and

communication costs. In the present paper we describe a new Ccondensation'

approach that permits exact polynomial time solutions to these problems

that are faster than any of the previously reported exact or approximate

algorithms. Our approach involves a preprocessing step on the given chain

or tree that makes it monotonic and permits a very fast exact solution. These

new algorithms are straightforward to implement and provide the exactness

of [2], the speed of [8], are no more involved than those of [6], and make no

assumptions about magnitudes of costs.

Chain-structured computations form an important class that includes

many signal processing applications. Such computations are conveniently

carried out on chain structured machines in parallel or pipelined mode [4, 5].

Tree-structured computations also arise in signal processing as well as in in-

dustrial control applications [2]. In the latter case sensor inputs from the

shop floor are processed up the nodes of a tree to a central control node, and

control signals travel in the reverse direction. Such tree-structured compu-

tations can be partitioned over the processors of a host-satellite system to

improve response time.

In Section 2 of this paper we describe the key theoretical results related

to our condensation approach. We show how monotonic chains are obtained

and discuss their properties. The concept of monotonicity permits us to

develop improved algorithms for partitioning chain structured programs on

chain connected processors. We describe approximate and exact algorithms

that utilize the condensation approach in Section 3. Section 4 addresses

the problem of assigning multiple chain-structured computations on a host-

satellite system and develops improved approximate and exact algorithms

for these. In Section 5 we describe an improved exact algorithm for parti-

tioning a tree structured computation over a host-satellite system. Section 6

summarizes the results of this paper.

2 The Partitioning Problem

In this Section we will define our assignment problem and discuss the prop-
erties of chains. We will show how a given chain can be transformed into a

monotonic chain and how this transformation permits faster solutions to the

assignment problem.

2.1 Statement of Problem

We will assume that we are given a chain-structured program of m modules

(numbered 1 to m) and that this is to be partitioned over a chain structured

processor with n < m nodes (numbered 1 to n). With each module i is

associated an execution cost wi and a communication cost ci. wi is the time

required to execute that module on any processor (we assume a homogeneous

system), while cl is the time required for module i to communicate with

module i + 1.

We will work under the assumption that each processor has a contigu-

ous subchain of modules assigned to it. Thus the chain is partitioned into

subchains such that modules i and i + 1 reside on the same or on adjacent

processors. We call this the contiguity constraint. When a subchain is as-

signed to a processor, the load on that processor is the sum of the execution

costs wi plus the communication costs for the two modules at the ends of the

subchain. The time required for the entire system to complete the task is

equal to the time taken by the most heavily loaded processor which is equiva-
lent to the weight of the heaviest subchain. The next subsection summarizes

these definitions.

The problem of finding the partitioning that minimizes the weight of

the heaviest subchain was originally solved by Bokhari [2] in O(man) time.

This is an exact algorithm that makes no assumptions about the magnitudes

of the execution or communication costs. This algorithm was improved to

O(m2n) by Nicol & O'Hallaron [8]*. Iqbal [6] developed a fullypolynomial

approximation algorithm that obtained an assignment optimal to within a

factor of e in time O(mnlog(W/e)), where W is the sum of all execution

costs. Nicol & O'Hallaron [8] reported a carefully developed algorithm that

could solve this problem in O(mnlogm) time under the assumption that

the w,s and the c,s are bounded. One of the major results in the present

paper is an algorithm that solves this problem in O(mn log m) time with no

assumptions about the magnitudes of costs. We will also describe a faster

approximation algorithm.
Since we will be discussing the partitioning of a chain of modules over

a chain of homogeneous processors, the problem is equivalent to partition-

ing chains into subchains. We will consider subchains and processors to be

synonymous in the following discussion.

2.2 Definitions

w_ execution time of module i.

cl communication time between modules i and i + 1.

We assume that Co(C,,,) is the time required for module l(m) to com-

municate with the outside world.

W load on a processor if all m modules are assigned to it.

W = Y:_'=lw_ + co + c._

12p,j,t load on processor p if subchain s... t is assigned to it.

p,,,t = Z:=Jw_ + c, + c.-1.
This is synonymous with the weight of subchain p.

¢(p) a vector of length n that specifies the partition.
Processor p has the subchain _'(p - 1) + 1... T(p) assigned to it, with

bottleneck processor/subchain: for a given r(p) the processor/subchain with

weight max_{_v,_(p-1)+t,_(v)}

"These two algorithms permit heterogeneous processors. The remaining algorithms

assume homogeneous processors.

3

w(r(p)) weight of a partition = the weight of its bottleneck processor. This

is denoted by w when no confusion is likely.

The optimal partition is the T(p) for which the weight w(r(p)) is minimum.

2.3 The Condensation Theorem

Theorem 1. Consider a chain that has a partition of weight w, and in which

there exists an edge ct such that either ct _> Wt+l + ct+l or ct > wt + ct-1, or

both. Then this chain will continue to have a partition of weight < w if we
merge modules t and t + 1.

Proof. In the given partition of weight w, modules t and t+ 1 must belong

to different subchains, otherwise the proof is trivial. We assume that modules

s... t belong to subchain p and that modules t + 1 ... u belong to subchain
p + 1 (see Figure 1). The weights of these subchains are

f_p,.,L = _ wi + c._l + ct
i-----a

u

f_p+l,t+l,_ = _ w_+c_+c_.
i=t+l

Let us merge modules t and t + 1 into one module. The condensed module

can be assigned either to subchain p or to subchain p + 1. If it is assigned to
subchain p, the weights of the two subchains become

S-,t+I
p,,t+l : .-.i=. wi Jr c.-1 q- ct+l : _p,.,t q- wt+l - ct Jr ct+l

_p-t-l,t+2,u : _-_iLt+2 Wi -_- Ct+l + Cu : _'_p+l,t+l,u -- Wt+l -- C t -_- Ct+l.

If ct > wt+l + ct+l we obtain

f2p,,,t+l < f2p,,,t

f_l,t+2,. < f_p+l,t+l,,,.

If the condensed module is assigned to subchain p+ 1, the weights of the
two subchains become

4

Figure 1: A chain of m modules mapped onto a chain of n processors. The

w,s are execution costs; c_s are communication costs. Modules s... t are

assigned to processor p; modules t + 1 • • • u are assigned to processor p + 1.

If c, _> wt + ct-1 we obtain

flp,.,_-1 <-- flr,.,t

_-_p+ l,t,u _ _'_p+l,t+ 1,u.

Our condensation disturbs only subchains p and p+ 1, all other subchains

remain undisturbed. The pairs of inequalities obtained above assure us that

there will always be one case in which the weights of these condensed sub-

chains is less than the weights of the original uncondensed subchains. Thus

the entire condensed chain will have a partition with weight < w.[]

2.4 Monotonic Chains

A given chain of m modules can be transformed into a chain of m' _< m

modules by applying the procedure condense. This procedure looks at all

edges in the chain and merges modules t and t + 1 if ct >_ w,+l + ct+l or

c_ > w_ + ct-1, or both. From Theorem 1, we know that if a given chain has

5

"_'_1,1,t

12 _14 _--__

27 i

46

I
42

* t

o
t

1412

9 7 7

38 j
42

t

Figure 2: Top. A 10 module chain and the plot of its fll,l,t which is not
monotone. Bottom. The 10 module chain transformed into a 7 module chain

by applying procedure condense. The plot of the condensed chain's _1,1,t is
monotonic.

a partition of weight w the corresponding condensed chain will also have a

partition of weight <__w. This procedure obviously takes O(m) time.

Theorem 2. In a chain that has been transformed by applying procedure

condense, f_p.,,t _<f/p,,,t+l, for all 1 < p < n, 1 < s, t, < m.

Proof. By contradiction. Suppose f_p,,,t > f_p,,,_+l- Then

t t+l

wi + ct + c,-1 > _ wi + ct+l + c,-1, and thus
i=s i=s

c_ > wt+l + c_+1. (1)

But this is impossible since condense removes all edges that satisfy (1). []

An important consequence of Theorem 2 is the fact that all condensed

chains are monotonic: the weight of a subchain cannot decrease as more

nodes are added to it. This property is crucial to the material that follows.

2.5 Probing Function

Once a given chain has been transformed into a monotonic chain, we can

use the function probe(m, n, w) on it. This procedure returns true if it is

possible to partition the given chain of m modules into n subchains each with

weight < w, and false otherwise.

function probe(processors[1.'' hi, modules[1.., m], w):boolean;

begin

1. s := 1;t := 1;p := 1;

2. while p < n do

begin

3. attempt to find a t > s such that

(f_p,o,, < w) and ((f2p,,,,+l > w) or (t = m))

4. if t = m then return(true);

5. Assign subchain s ... t to processor p;

6. s:=t+l; p:=p+l;

end;

7. return(false);

end;

7

The searchat step3 canbecarriedout by simply incrementing t, in which

case this procedure takes time proportional to m, the number of modules in

the condensed chain. However, the monotonicity of the condensed chain

permits us to use a binary search over the remaining modules at step 3. This

is because once we have computed f21,1,t for all t, there is no need to compute

any other f2p,,,t since 12p,,, t = f_l,l,t - Co - _=_ wi + c,-1 (this is illustrated in

Figure 3). Thus we need to compute 121,x,t once for all t, and compute ,-1_-_ i= 1 //3i

once for all s. These computations take O(m) time each and subsequently let

us execute probe in O(nlog m) time. Thus each execution of probe takes

O(min(m, n log m)) time, depending on the search strategy.

This is a greedy algorithm and the partition that it returns is called a

greedy partition. In [7] a similar probing function was applied to chains with
zero communication costs.

Theorem 3. If it is possible to partition a chain with m modules into n

subchains, each with weight w, the function probe(m, n, w) will always find
that or a partition of weight < w.

Proof. Similar to the proof given in [7]. Omitted for brevity.O

3 Partitioning Chains on Chains

We now show how the results of the preceding Section can be used to obtain

faster algorithms for partitioning chains on chains. We will discuss first an

approximation algorithm that supplies an answer to within any specified

degree e of accuracy. We will then go on to develop a fast exact algorithm.

3.1 Approximate Assignment

Suppose we wish to solve the problem of partitioning chains on chains ap-

proximately. That is, we wish to partition a chain of m modules into n

subchains such that the weight of the heaviest subchain is within e of the

optimal partition. We proceed by first applying procedure condense on the

given chain. An upper bound on the weight of the optimal partition is W, the

cost of executing all modules on one processor. A lower bound is 0. We can

divide this interval into no more than W/e subintervals and conduct a binary

weight of

subchain

14
12

I

6
....... J

42

38 U _/1,,,,

34
31 r-- _22,2,t

30 ._3.0. D3,_,,
I27 ,"- 26

!

24] F 23 ._ 22

19 _ -- 19-- " 18 F f14,4,t
16 r- -1-5--- • _-........ as,s,,fl6,6,,

7]_...... . _7,_,,

Figure 3: The plots of fll,l,t and flo,_,t are spaced exactly ,-1

co-1 apart. Thus a binary search on 1-12,2,_can be carried out on fl1,1,, by

compensating for the offset Wl - cl. Some numbers have been omitted to

avoid congestion.

search using probe over this range. A binary search is permissible since the

chain has been condensed into a monotonic chain. Thus the time required is

O(min(m, n log m) log(IV/e)). This is better than the best previously known

approximation algorithm [6] which is O(mn log(W/e)).

3.2 A Simple Exact Algorithm

Once we have condensed our chain of modules into a monotonic chain, we

can compute the O(m 2) values of fll,,,t,1 < s < m, 1 < t _< rn (we as-

sume that the condensed chain has rn modules). We can arrange these

values in a master sorted list without having to sort explicitly. This is be-

cause each fll,,,t is monotonic for a fixed s. We can thus merge each _ into

the master list in O(m _ logm) time. Once this list has been generated, we

can binary search over it using probe and find the optimal assignment in

O(min(m, nlog m)log m) time. Assuming m _> n, the total time is masked

by the time to create the master list, which is O(m 2 log m).

3.3 Improved Exact Algorithm

Observe first that, since our chain connected system is homogeneous, _p,a,t ----

flq,a,_ for all p, q. Thus we can always fix module 1 to processor 1 and consider

only the m(m - 1)/2 values of fl,,a,,, 1 < s _< m, 1 < t < m.

The number of probes required to find the optimal bottleneck subchain

can be reduced by carefully analyzing the relationships between fls. These

are shown by the lattice of Figure 4 in which each node represents an fl and

a directed edge from node p to node q implies that p > q. Monotonicity

of the chain ensures that flm,o,t < _o,o,t+l- This accounts for the horizontal

edges. We can also observe that fla,a,t -- fl,+l,a+l,t = Ca-1 + Wa -- Ca, which is

positive for condensed chains. This accounts for the vertical edges.

We can use binary search with probe over the median row s _ of this lattice

to find the smallest g for which probe(_t,,,a,,v) is true. Once this has been

done and the value of fla',o',V recorded, we can eliminate from consideration

all f_o,o,, with s > s * and t < g since probe(flm,a,_) is guaranteed to be false

in this range. We can also eliminate all _to,a,t with s < s _ and _ > g

since _a',,',*' is the smallest feasible value in this region. Figure 4 illustrates

these regions. This process of elimination is continued recursively on the two

remaining subregions. This 2-dimensional search technique is due to Nicol &

O'Hallaron [8] who show that it takes no more than 4m probes to find the
optimal value.

Since our probe takes O(min(m, n log m)), we have an overall complexity

of O(mn log m). This is the same as Nicol & O'Hallaron's algorithm [8], which

assumes bounded execution and communication costs. Our algorithm makes

no assumptions about the magnitudes of costs.

10

I

I

° • • !

Figure 4: Illustration of 2-dimensional binary search over _(s, s, t). A search

over row 3 yields f_3,3,s as the smallest for which probe returns true. We

can now eliminate from consideration all f_s in the dotted region, as probe

can never be true for these. We can also eliminate the dashed region, since

f_3,3,5 is the smallest from among these fls.

11

Satellites
Host

Figure 5: A host-satellite systemprocessingreal-time data.

4 Chains on Host-Satellite Systems

We now address the problem of partitioning multiple chains on a host-satellite

system. In this case we assume that we have a large, powerful host computer

connected to many smaller satellite machines (Figure 5). Each satellite re-

ceives a data stream from a real time environment, performs a chain of com-

putations on it, and forwards the results to the central host. It is possible

to partition each satellite's chain so that some of its modules reside on the

host and take advantage of the host's greater computational power. We are

interested in minimizing the time required for all satellites to complete one

iteration of their respective tasks. If too much load is assigned to the host,
then the time to complete one iteration of all tasks will increase to an in-

tolerable extent. On the other hand if all chains reside on their respective

satellites then the power of the host is wasted. The problem is to find a

balance between the two extremes, i.e. a partitioning of the several chains

12

that minimizes the maximum of (1) the most heavily loadedsatellite and (2)
the total load on the host. As before,we assumepartitions into contiguous
subchains. In the present case,this meansthat eachchain is divided into
two contiguoussubchains,one of which resideson the host and the other on
the satellite.

4.1 Definitions

n number of satellites.

m number of modules per chain. For simplicity, we assume that all

chains have the same number of modules.

ei,, execution time of module i of satellite s.

ci,, communication time between modules i and i + 1 of satellite s. We

assume that Co,o(cm,o) is the time required for module l(m) of satellite

s to communicate with the outside world(the host).

_j for satellite s, the ratio of compute time for a module on the satellite

to its compute time on the host. Thus module i will take wi,° time on

satellite a and wi,s/as on the host.

load on satellite s if subchain 1 ... t is assigned to it.

= _i=x wi,o + ct,_._$,t t

load on host caused by modules t + 1 .. • m of chain s.

= E]i ,+iwJa. +

We can denote a partition of chains by the vector T1, T2,.-- T_ such that

modules 1... T_ of chain _ are assigned to satellite s and the remaining to

the host. The time required by this partition is

n

ma (m 2, ' (2)

13

_°
0q

¢D

..

o

o

o

o

p-,.

o

_j

0-,°
o

(T

0

<:

o

T_O

w--,

b-..

¢0

t_

0

/ -. '1

I

I

!

I

L,

I

ue.,_

0¢.._

I

I

L

I

I

0_

I

I

t_

01

-©
=e

t_

t_

4.2 Condensing Chains

The chains of our single-host multiple-satellite system can be condensed into

monotonic chains. A complicating issue is the fact that each module has

two execution costs (wi,j on the satellite and wi,,/a, on the host). A chain

that is monotonic with respect to one execution cost may not necessarily be

monotonic with respect to the other. However the probing function that we

describe in the following subsection is concerned only with satellite weights

and it therefore suffices to condense the chain with respect to these satellite

weights.

4.3 Probing Function

We now assume that all our n chains of m modules are condensed, monotonic

chains as discussed above. If we view a single host-satellite combination as a

two processor system, we can apply a simple modification of function probe

of Section 2.5 to determine if this chain can be divided into two subchains

such that the satellite has load _J.k < w on it and k is maximum. Since our

chains are monotonic with respect to satellite costs, this version of probe can

use binary search and provide an answer in O(log m) time. This function will

return true or false and will specify k and g/s,k in case the answer is true.

It is straightforward to compute As,k in constant time from this information.

Given an w we can compute if there exists a partition that puts _,3-, < w

load on each of the satellites and _=1 A,,_ < w total load on the host as

follows. Apply probe(w) to each of the satellites, computing and adding

up all A,.Zs as they are reported. If all processors answered true and if

,=1 A,,_ _ w, there does indeed exist a partition that puts no more than

w load on each of the satellites and on the host. This entire 'ensemble' probe

can be carried out in O(nlogm) time.

4.4 Partitioning Algorithms

In a problem with n chains of m modules each, there are mn possible values

of w. We could carry out rnn 'ensemble' probes to obtain the assignment

that minimizes (2) in O(mn _ logm) time. This is an exact algorithm, but is

not an improvement over previously known exact algorithms. If we denote

by W the time taken if all modules are assigned to the host and resolve to

15

an accuracy of e, we immediately obtain an approximation algorithm that

takes O(n logmlog(W/e)) time, which isbetterthan lqbal'sO(mn log(W/e))
approximation algorithm [6].

However it is possible to do much better. Note that our n monotonic

chains have m potentialws each, in ascending order. These n listscan be

merged into one sortedlistin O(mn logn) time. We can subsequently use bi-

nary search over thissorted listto solveour problem in O(log(mn)n logm) =

O(n log2m + n logm log n) time. This time is masked by the O(mn logn)

time to condense chains and to merge ws. This time is equal to Nicol &

O'Hallaron's O(mnlogn) algorithm, which assumes bounded execution and

communication costs.Our algorithm makes no such assumption.

5 Trees on Host-Satellite Systems

We now consider the problem of partitioning a tree structured program over

a host-satellite system. Our program is made up of a number of modules that

can execute either on the host or on one of the satellites. As in the previous

Section, we have a motivation to assign as many modules as possible on the

host in order to take advantage of its greater power. However, we do not

wish to load the host to the point that the time required for it to complete

its portion of the task is greater than the time that would have been required
by the satellites.

We will assume that our partitioning is under the {ollowing constraints.

1. The root of the tree is always assigned to the host,

2. if a specific node is assigned to a satellite, all its children nodes are also

assigned to the same satellite,

3. if two nodes are assigned to a satellite, their lowest common ancestor

is also assigned to the same satellite.

In other words each satellite has a single maximal subtree assigned to it. An

example of a partition that satisfies these constraints is given in Figure 7. We

will assume that we have available as many nodes as there are satellites and

that the optimal assignment may choose not to use some of them. This is a

good model of many industrial process monitoring and/or control systems.

16

Satellite1 Satellite2 Satellite 3

Figure 7: A tree structured program partitioned over a host-satellite system

In such systems, external information from the shop floor is gathered by

satellite computers and processed in a hierarchical fashion up the levels of a

tree. The root of this tree resides on a large, central host machine. Control

signals from the host travel in the opposite direction. Processing may be

done in a pipelined or parallel fashion. It is important to partition the tree

between the host and the satellites such that the response time of the system

is minimized. As in the preceding Section, this response time depends on the

larger of (1) the load on the most heavily loaded satellite and (2) the total

load on the host.

17

5.1 Definitions

m number of modules in the tree.

n number of satellites in a given partition.

e, execution time of module i on a satellite. All satellites are assumed
to be similar.

Ol

Ci

7(0

W

&

the ratio of compute time for a module on a satellite to its compute
time on the host. Thus module i will take e_ time on a satellite and

e,/a on the host. We assume that a > 1 (the host is more powerful
than the satellites).

communication time between modules i and father(i) if i is assigned
to a satellite and father(i) to the host.

the set of children of node i.

the root node of the subtree assigned to satellite p.

the set of nodes in the subtree rooted at node i.

contribution to the load on the host made by the assignment of the
subtree rooted at node i to the host.

_ = Ejc_-(,) ej/a.

load on the host of all m modules of the program are assigned to it.
W = ei/ .

load on a satellite if the subtree rooted at module i is assigned to it.
Si = EjET(i) ej -_-ci.

_T total load on the host.

/r = w - E=l(_.(p) _ c_(_)).

Our assignment is specified by the vector T(p), 1 < p < n that specifies the

root node of the subtree resident on each satellite. Given this vector, the
weight of an assignment is

max(max
l <_p<,, (3)

18

ca >_ c; + (4)

% _> % + (5)

5.2 Condensing Trees

Theorem 4. Consider a tree that has a partition of weight w, and in which

there exists a node f with a child g E C(f) such that at least one of the

following two inequalities holds.

ie{_-(l)-_r(0)}

iec(g)

Then this tree will continue to have a partition of weight G w if we merge

nodes f and g.

Proof. The given partition of weight w must assign f to the host and g

to a satellite, otherwise the proof is trivial. When we merge f and g, the

condensed node f + g can be assigned either to the host or to a satellite.

If inequality (4) holds assign the condensed node to a satellite (see Figure

8). In this case the load on the satellite before condensation was

i_'C_)

After condensation it is

S I : _ ei + c1.
i_T(f)

The decrease is

Sg-SI : ca-- Z ei--cf.
ie{_rC/)-T(g)}

This quantity is non-negative because of (4).
The load on the host will decrease by at least % + ey/a - cI which is also

non-negative because of (4).

If inequality (5) holds then assign the condensed node to the host. In

this case the load on the satellite before condensation is again S 0 (given

above). After condensation, part of this load will go to the load and part

will be distributed over several additional satellites (so that there is now one

19

cf

new partition

if inequality (14) holds

f+g assigned to satellite

e/

original

partition

Cg

eg

new partition

if inequality (15) holds

f+g assigned to host

Figure 8: Illustration of proof of Theorem 4

satellite for each child of g). Each of the new satellite loads will be at least

eg + cg - miniec(g) ci less than the original satellite load Sg. This quantity is

non-negative because cy _> _iec(a)ci. The load on the host will increase by

%/a + _ee(g)ci and decrease by %. The quantity % - %/a - _iec(g)c, is
non-negatlve because of (5) and because a > 1.

In at least one case the loads on the satellites and on the host decrease

or remain unchanged. Thus if there is a partition of weight w before conden-

sation there will be a partition of weight < w after condensation.D

2O

5.3 Monotonic Trees

A procedure condense_tree can be derived from Theorem 4. This procedure

goes through the tree and merges together all nodes f and g, where g is the

child of f, which satisfy (4) or (5). A tree to which this procedure has

been applied is called a condensed tree. Condensed trees are monotonic in a

fashion analogous to condensed chains.

Theorem 5. In a tree that has been transformed by applying procedure

condense_tree, Sg < $! for all f, g such that f is the father of g.

Proof. By contradiction. Suppose Su > Sj. Then

ieT"(_) JeT(I)

% > e,+ c, (6)
_e{7Cf)-_Cg)}

But this is impossible since all f, g that satisfy (6) are eliminated by proce-

dure condense_tree. D

This theorem assures us that, once a tree has been condensed, the load

caused by a subtree cannot exceed the load caused by a containing subtree.

5.4 Probing Function

A probing function can now be designed to evaluate if there exists a partition

of the condensed tree that assigns no more than w weight to each of the

satellites or to the host. This probing function proceeds upwards from the

leaves of the tree and stops each time it identifies a maximal subtree that has

weight _< w.When all such subtrees have been identified, the load on the host

can be calculated. If this is less than w, the function returns true. Since

the condensed tree is monotonic, i.e. the weight of a subtree is always < the

weight of a containing subtree, this probing function needs to look at each

node only once and will return an answer in O(m) time.

5.5 Partitioning Algorithm

There are m potential subtrees in our condensed tree. Their weights can be

evaluated in O(m) time and sorted in O(mlogm) time. Following this, we

21

can can carry out a binary search over this list to find the optimal value of

w. This takes O(log m) probes each of cost O(m). The overall time for this

algorithm is thus O(mlog m). This is better than Bokhari's exact algorithm,

which takes O(m 2 log m) time and Iqbal's approximation algorithm which is
O(rn log(W/e)).

6 Conclusions

The general problem of partitioning a program over a multiple computer

system has so far eluded an efficient solution. Prior research by Bokhari [2],
Iqbal [6] and Nicol g_ O'Hallaron [8] has reported a succession of efficient

algorithms for the restricted class of chain- or tree- structured programs. In

the present paper we have described a condensation approach that prepro-

cesses the given chain or tree in linear time. This condensation makes the

chain or tree monotonic and permits fast algorithms to be used in the search
for the optimal partition.

For the problem of partitioning an m module chain over a chain of n pro-

cessors, we have improved Iqbal's O(mn log(W/e)) approximation algorithm

to O(mlog(W/e)). Our exact algorithm for this problem is O(mnlogm)

s4hich compares with Nicol & O'Hallaron's O(m2n) exact algorithm and

their O(mnlog m) bounded cost algorithm. Our exact algorithm makes no
assumptions about costs.

When faced with the problem of partitioning n chains of m modules each

over a host-satellite system, we have developed an O(nlogmlog(W/e)) ap-

proximation algorithm that is better than Iqbal's O(mn log(W/e)) solution.
Our exact solution is O(mnlogn), which is equal to Nicol & O'Hallaron's

algorithm (which again assumes bounded costs).

Finally, for the problem of partitioning a single tree-structured program

over a host-satellite system, we have improved Bokhari's O(m _ log m) exact
solution to O(mlog m). The following table summarizes this discussion.

22

Problem Linear Array Host Satellite

Bokhari exact m3n

N-O'H exact m2n mn log m

Iqbal approximate mnlog(W/e) mnlog(W/e)

N-O'H bounded costs mn log m mn log n

Tree

m sn log m m s log m

m log(W/e)

Improved Results

'Approximate m log(W/e)

Exact mn log m

r_ log m log(W/e)

mn log n m log m

N-O'H=Nicol & O'Hallaron.

Acknowledgements

We wish to thank R. G. Voigt and K. E. Durrani for their encouragement

of this research. We are grateful to D. M. Nicol for many useful discussions

and for his comments on an earlier draft of this paper.

23

References

[1] Shahid H. Bokhari. Assignment problems in parallel and distributed computing.
Kluwer, Boston, 1987.

[2] Shahid H. Bokhari. Partitioning problems in parallel, pipelined and distributed

computing. IEEE Transactions on Computers, C-37(1):48-57, January, 1988.

[3] Shahid H. Bokhari. On the mapping problem. IEEE Transactions on Com-
puters, C-30:207-214, March 1981.

[4] S. Borkar et al. iWARP: An integrated solution to high-speed parallel com-

puting. In Proceedings of Supercomputing 88, pages 330-339, 1988.

[5] G. Bolch et al. A multiprocessor system for simulating data transmission sys-

tems (MUPSI). Microprocessing and Microprogramming, 12(5):267-277, De-
cember 1983.

[6] M. Ashraf Iqbal. Approximate algorithms for partitioning and assignment

problems. Technical Report 86-40, ICASE, June 1986. NASA Contractor
Report 178130.

[7] M. Ashraf Iqbal, Joel H. Saltz, and Shahid H. Bokhari. A comparative analysis

of static and dynamic load balancing strategies. Proceedings of the 1985 Inter-

national Conference on Parallel Processing, pages 1040-1047, August 1986.

[8] David M. Nicol and David R. O'Hallaron. Improved algorithms for mapping

pipelined and parallel computations. IEEE Transactions on Computers, to

appear, 1990. An earlier version is available as ICASE Report 88-2, NASA
Contractor Report No. 181655.

24

1. Report No.

NASA CR-18207 3

ICASE Report No. 90-49

4. Title and Subtitle

EFFICIENT ALGORITHMS FOR A CLASS OF PARTITIONING

PROBLEMS

7. Author(s)

M. Ashraf lqbal

Shahid H. Bokhari

Report Documentation Page

2. Government Accession No. 3. Reclptent s L.a_a,og ,_u.

9. Pedorming Organization Name and Address
Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23665-5225

5. Repo_ Date

July 1990

6. Performing Organization Code

8. Performing Organization Report No.

90-49
10. Work Unit No.

505-90-21-01

11. Contract or Grant No.

NASI-18605

13. Ty_ of Repo_andPeriodCovered

Contractor Report

i4. Sponsoring _,gency Code

12. Sponsoring AgencyNameandAddress

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 236665-5225

15. Supplementaw Notes

Langley Technical Monitor:

Richard W. Barnwell

Submitted to IEEE Transactions

on Parallel and Distributed

Computers

Final Report
16. Abstract

We address the problem of optimally partitioning the modules of chain-or tree-

like tasks over chain-structured or host-satellite multiple computer systems. This

important class of problems includes many signal processing and industrial control

applications. Prior research has resulted in a succession of faster exact and ap-

proximate algorithms for these problems.
We describe polynomial exact and approximate algorithms for this class that

are better than any of the previously reported algorithms. Our approach is based

on a preprocessing step that condenses the given chain or tree structured task into

a monotonic chain or tree. The partitioning of this monotonic take can then be

carried out using fast search techniques.

17. Key Words(SuggestedbyAuthor(s))

Approximation algorithms, assignments,

chains, distributed computing, host-

satellite systems, load balancing, parti-

tioning, parallel processing, trees

19. SecuriW Cla_if. (of this repot)

Unclassified

18. Distribution Statement

61 - Computer Programming and Software

62 - Computer Systems

Unclassified - Unlimited

. Securi Cla_if. (of this page) 21. No. of pa_s

26
Unclassified

22. Price

A0 3

NASA FORM 1626 OCT 86

NASA-Langley, t990

