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Resource Placement with Multiple 
Adjacency Constraints in k-ary n-Cubes 

Parameswaran Ramanathan and Suresh Chalasani 

Abstracf-The problem of placing resources in a k-ary n- 
cube ( k  > 2) is considered in this paper. For a given j 2 1, 
resources are placed such that each nonresource node is adjacent 
to j resource nodes. We first prove that perfect j-adjacency 
placements are impossible in k-ary n-cubes if n < j < 2n. Then, 
we show that a perfect j-adjacency placement is possible in k-ary 
n-cubes when one of the following two conditions is satisfied: 1) 
if and only if j equals 211 and k is even, or 2) if 1 5 j 5 n and 
there exist integers q and T such that q divides k and qr - 1 = 
2n/j. In each case, we describe an algorithm to obtain perfect 
j-adjacency placements. We also show that these algorithms 
can be extended under certain conditions to place j distinct 
types of resources in a such way that each nonresource node is 
adjacent to a resource node of each type. For the cases when 
perfect j-adjacency placements are not possible, we consider 
approximate j-adjacency placements. We show that the number 
of copies of resources required in this case either approaches a 
theoretical lower bound on the number of copies required for 
any j-adjacency placement or is within a constant factor of the 
theoretical lower bound for large k .  

Index Terms- Resource allocation, multiprocessors, hyper- 
cubes, mesh connected computers, interconnection network, 
fault- tolerance. 

I. INTRODUCTION 

ESOURCES in a multiprocessor system can be of several R different types: hardware units like disks, printers, and 
YO devices, and software units like compilers, library routines, 
and data files. In a large multiprocessor system, it is usually 
very expensive to provide a copy of a resource to each 
processorhode in the system. It also often leads to poor 
utilization of some of the copies of the resource and thus 
results in poor price-performance ratio. On the other hand, 
providing a system with very few copies of a resource leads 
to contention and hence loss of performance. It also makes 
the system susceptible to failures because a loss of a few 
copies can result in unavailability of that resource to some 
nodes. Therefore, there is a tradeoff among cost, performance, 
and availability that has to be taken into account in placing 
resources in a multiprocessor system. 

Traditionally, this tradeoff is achieved by placing copies 
of a resource in such a way that multiple processors share a 
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copy. Processors that do not have a copy of a resource use the 
copies from "nearby" processors. An optimal placement of a 
resource in a multiprocessor system should be such that there 
is a balance between the time spent by a processor in accessing 
a shared copy and the total number of copies of that resource 
in the system. Finding an optimal placement of resources for 
multiprocessor systems with arbitrary constraints on the time 
spent by a processor and an arbitrary number of copies is 
a very difficult problem. In this paper, we study and solve 
the problem of placing resources in a class of multiprocessor 
systems commonly referred to as k-ary n-cubes [4]. 

A k-ary n-cube (k") is a multiprocessor system with k" 
processorshodes arranged along n dimensions, with k nodes 
in each dimension. Hypercubes and two-dimensional ton are 
special cases of k-ary n-cubes. An n-dimensional hypercube 
is a 2-ary n-cube [SI while a two-dimensional torus is a k-ary 
2-cube. The Intel iPSC-2 and Ametek 2010 systems [9] are 
examples of commercially available k-ary n-cubes. 

Each processorhode in k" can be uniquely addressed by 
an n-digit radix-k number. That is, each processor a in k" 
can be uniquely addressed by an n-tuple (a",  . . . , a l ) ,  where 
a; ~ { O , 1 , ~ . . , ( k - 1 ) } , f o r 1 ~ i ~ n . I n k " , t w o p r o c e s s o r s  
a (anr . .  . , al)  and b 3 ( b " , .  . . , 6 1 )  are connected to each 
other if and only if there exists an i ,  1 5 i 5 n,  such that 
a; = b; f l(mod) k and a1 = 6 l ,  for all E # i .  It follows from 
this definition that each processor in k", k > 2, is connected 
to exactly 2n other processors. Furthermore, it can be shown 
that k" is node-symmetric in the sense that for every pair of 
nodes a and b there exists a homomorphism that maps node 
a to node b. 

For this class of systems, the problem addressed in this paper 
can be stated as follows. First, we find the minimum number of 
copies of a resource required to ensure that each node either 
has a copy of the resource, or is adjacent to j other nodes 
that have a copy of the resource. Then, given the minimum 
number of copies we determine where these resource copies 
should be placed in order to satisfy the above condition. The 
above condition is commonly referred to as the j-adjacency 
constraint. This constraint implies that a node that does not 
have a resource copy can find j copies of that resource among 
neighboring nodes. 

In the rest of this paper, a solution that satisfies the j -  
adjacency constraint in kn is referred to as a j-adjacency 
placement. Also, nodes that have a copy of a resource are 
referred to as resource nodes and those that don't have a copy 
are referred to as nonresource nodes. Furthermore, as in [2], a 
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j-adjacency placement is said to be peifect if and only if no 
two resource nodes are adjacent and each nonresource node is 
adjacent to exactly j resource nodes. Similarly, a j-adjacency 
placement is said to be quasi-perfect if and only if no two 
resource nodes are adjacent and each nonresource node is 
adjacent to at least j but no more than ( j  + 1) resource nodes. 

Motivation for j-adjacency placements arises in many con- 
texts. It can be used to assign j distinct types of resources and 
processors to nodes of k'& in such a way that each processor is 
adjacent to each type of resource. Examples of resource types 
include memory modules, cache units, disk controllers, and I/O 
processors. For instance, Fig. 1 shows a perfect 2-adjacency 
placement in li2, where nodes labeled P are nonresource nodes 
and nodes labeled RI and R2 are resource nodes. Note that, 
in this placement, each processor P is adjacent to exactly one 
resource node of type RI  and one resource node of type Ra. 
If all resources are of the same type, a j-adjacency placement 
may also be used to tolerate up to ( j  - 1) failures of resource 
nodes. 

Reddy et al. considered the I-adjacency problem for the 
placement of VO processors in a hypercube [7]. Livingston 
and Stout studied the problem of placing a minimum number 
of resources in a hypercube subject to certain constraints [6].  
Chiu and Raghavendra addressed the problem of placing a 
given number of resources with an objective of minimizing 
the resource diameter [3] where the resource diameter of a 
placement is defined as the maximum value, taken among 
all processors, of the minimum number of hops a node must 
traverse in order to access a resource. 

More recently, Chen and Tzeng [ 2 ]  proposed solutions 
for perfect and quasi-perfect j-adjacency placements in a 
hypercube subject to the general communication constraint that 
a nonresource node is within h hops of j resource nodes for 
any given h 2 1. The techniques and results of Chen and 
Tzeng [2] cannot be extended to k-ary rr-cubes due to one key 
difference between an n-dimensional hypercube and a k". The 

difference is that the binary addresses of all nodes in an n- 
dimensional hypercube form an n-dimensional vector space 
over the field ( 0 , l )  whereas the radix-k addresses of k" do 
not in general form a vector space. 

Livingston and Stout use the theory of perfect &dominating 
sets to study the problem of resource placement in several class 
of networks such as hypercubes, two- and three-dimensional 
meshes and tori, trees, cube-connected cycles, and de Bruijn 
graphs. In particular, they propose methods to construct re- 
source placements in which each nonresource node can reach 
exactly one resource node within a distance of d(d 2 1) from 
itself [SI. In contrast, in this paper, we consider placements in 
which each nonresource node is adjacent to j(j  2 1) resource 
nodes in k". 

The rest of this paper is organized as follows. In Section 11, 
we prove that perfect (quasi-perfect) j-adjacency placements 
are not possible in k" if n < j < 2n(n < j < 2n- 1 ) .  In Section 
111, we derive necessary and sufficient conditions for the 
existence of perfect 1 -adjacency placements and describe an 
algorithm for finding them. We also derive sufficient condi- 
tions for the existence of perfect j-adjacency placements and 
extend the I -adjacency algorithm to find j-adjacency solutions. 
We show that, under certain conditions, these algorithms can 
be extended to place j distinct types of resources in k". For 
values of k ,  n. and j for which perfectlquasi-perfect solutions 
do not exist, we consider approximate j-adjacency placements 
in Section IV. We also show that the number of resource copies 
used by the approximate solutions asymptotically approaches 
a constant multiple of a theoretical lower bound on the number 
of resource copies required for any j-adjacency placement. In 
Section V, the results in this paper are summarized and some 
open problems are identified. 

11. EXISTENCE OF  ADJACENCY 
IN PLACEMENTS ~ - A R Y  ~L-CUBES 

In this section, we derive some of the necessary conditions 
for the existence of j-adjacency perfect and quasi-perfect 
placements. From these conditions it will be clear that the 
solutions for the hypercube do not easily generalize to higher 
radix k-ary n-cubes. For example, it has been shown in [2] 
that either a perfect or a quasi-perfect j-adjacency placement 
exists in a hypercube of any dimension. This is not true in a 
higher radix kn as shown in the theorems below. 

Theorem I :  A j-adjacency perfect placement exists in k", 
k > 2 ,  only if either j = 2n or 1 5 j 5 71. 

Proof: Suppose a j-adjacency perfect placement exists 
in k", k > 2. Then, one of the following two complementary 
conditions must be true: 

1) no two nonresource nodes are adjacent to each other, or 
2 )  there exists at least one pair of adjacent nonresource 

Now, suppose that the first condition is true. Since, no 
two nonresource nodes are adjacent to each other, all nodes 
adjacent to a nonresource node have a copy of the resource. 
Since in I C " ,  k > 2. each node is adjacent to 271 nodes, this 
implies that each nonresource node is adjacent to 271  resource 
nodes. Hence, j = 2n. 

nodes. 
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Dimension 0 

Fig. 2. Illustration of adjacencies of nodes ( 1  and 11' for Theorem 1 

Next, suppose that the second condition is true. That is, 
there exists a pair of adjacent nonresources nodes, say U and 
U'.  Since k r L  is vertex as well as edge symmetric, we can 
assume without loss of generality that the addresses of c1 and 
U' differ only in dimension 0. 

In dimension 0, node U is adjacent to precisely one node 
b # U' (see Fig. 2). Similarly, node (I' is adjacent to precisely 
one node b' # (L in dimension 0. Therefore, a maximum of 
two copies of a resource can be placed among the neighbors 
of (L and U' in dimension 0. 

Next, consider a dimension i # 0. In this dimension, node (L 
is adjacent to two nodes, say c and d .  Similarly (1,' is adjacent 
to two nodes c' and d' (see Fig. 2). Since, by definition, no 
two resource nodes are adjacent to each other in a perfect 
placement, a maximum of two resource copies can be placed 
among the neighbors of U and U' in this dimension. 

From the above two observations, we can conclude that a 
maximum of 27) copies of a resource can be placed among the 
neighbors of a and U' (for a perfect placement). However. since 
we are considering a j-adjacency perfect placement, there must 
be a total of 2 j  resource copies among the neighbors of U and 
U' .  Therefore, 2,j must be less than or equal to 211, or in other 

The necessary conditions proved above are usually not 
sufficient for the existence of perfect ,j-adjacency placements. 
In most cases, there are conditions on k depending on the 
values of 71, and j. For example, as shown in the theorem 
below, a perfect 2wadjacency placement does not exist if k 
is odd. 

Theorem 2: A perfect 2,wadjacency placement exists in k7' ,  
k > 2, if and only if k is even. 

Proof: (Necessity) Since each node U in k " ,  k > 2, has 
271 neighbors, every neighbor of a nonresource node must 
be a resource node. Further, by definition, no two resource 
nodes can be adjacent in  a perfect placement. It follows from 
these two observations. that every alternate node along any 
dimension of k" should have a copy of the resource. This 
implies that k must be even. 

(SufJiciency) If k is even, a perfect 271-adjacency placement 
can be obtained using the following algorithm. Arbitrarily 
choose any node a and place a copy of the resource at that 
node. Then, place copies of the resource at every node that is at 
an even distance from node ( 1 .  It can be easily shown that this 
simple algorithm assigns a resource to all the 271 neighbors of 
a node that is not assigned a resource and that no two resource 

words, j 5 71, .  

nodes are adjacent. Hence the theorem. 

From Theorem 1, we can conclude that a perfect (271 - 1)- 
adjacency placement does not exist in k". However, using 
an algorithm similar to the one in the sufficiency proof 
of Theorem 2,  we can show that there is a quasi-perfect 
(271 - 1)-adjacency placement in k'" Necessary conditions 
for the existence of quasi-perfect placements are stated in the 
theorem below. Note that, unlike in hypercubes 121, quasi- 
perfect placements do not always exist in k"! k > 2 .  

Theorem 3: A quasi-perfect j-adjacency placement exists 
in k r l .  k > 2. only if either 1 5 .;j 5 71, or j = (2n - l ) ,  or 
j = 271. 

Proot  The proof is similar to that of Theorem 1, and 
hence is omitted. 

Quasi-perfect placements are of interest when perfect place- 
ments do not exist for given values of k , n ,  and j .  However, 
constructing quasi-perfect placements for all values of k ,  71, 

and j seems to be a difficult problem. Therefore, when perfect 
placements cannot be found, we present algorithms for con- 
structing approximate placements in  which each nonresource 
node is adjacent to at least j resource nodes. 

111. PERFECT PLACEMENT IN k-ARY 'ri-CUBES 

Algorithms for perfect placements in k'l is the subject of this 
section. In Section 111-A, we derive necessary and sufficient 
conditions for the existence of perfect I-adjacency placements 
in k'L.  As a part of the sufficiency proof, we describe an 
algorithm for constructing a perfect 1 -adjacency placement. 
Then, in Section 111-B, we derive sufficient conditions for the 
existence of perfect jadjacency placements. Here again, we 
describe an algorithm to construct the placements as a part of 
the proof. 

Our approach for constructing perfect j-adjacency place- 
ments is similar to that of Chen and Tzeng [ 2 ] .  However, there 
is one key difference between an n-dimensional hypercube 
and a k" that distinguishes our approach from that in [2]. 
The difference is that the binary addresses of all nodes in 
an n-dimensional hypercube form an n-dimensional vector 
space over the field (0,l) whereas the radix-k addresses 
of k" do not in general form a vector space. Consequently, 
we cannot directly use results from coding theory as in the 
case of hypercubes. Solutions for hypercubes may extend to 
a topology known as generalized hypercubes in which two 
nodes are adjacent if their radix-k addresses differ in exactly 
one digit [ I ] . '  

Before we discuss the algorithms for resource placement, 
we prove a lemma that characterizes the number of resource 
copies required in a perfect j-adjacency placement. 

Lemma I :  The number of resource nodes in a perfect j -  
adjacency placement in kvL ,  k > 2 ,  equals j . k l L / ( 2 n  + j ) .  

Proof: Let X be the number of resource nodes in a 
perfect j-adjacency placement. Then, these nodes must provide 
j adjacencies to each of the ( k "  - X) nonresource nodes. That 
is, the total number of adjacencies required is j. (k" - X). On 
the other hand, the total adjacencies provided by the resource 
nodes is 271 X because no two resource nodes are adjacent 
to each other in a perfect placement. 

' Recall that, in I ; " .  two nodes are adjacent iff their radix-k addresses differ 
by one (modulo A , )  in exactly one digit. 
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Fig. 3. Perfect I-adjacency placement in 5-ary 2-cube. 

Equating these two quantities we get 

2 7 1 .  = j .  ( k n  - x) 
Or, x = j . k" / (2n .  + j ) .  

Since the number of resource nodes is an integer, it follows 
from the above lemma that a j-adjacency perfect placement 
does not exist if j . krL is not an integral multiple of (2n + j ) .  
In Section 111-B, we identify some sufficient conditions for 
the existence of perfect j-adjacency placements, when j > 2. 
When X = j . k n / ( 2 7 ~ + j )  is not an integer, [ j . k " / ( 2 n + j ) l  
is a lower bound on the number of resource copies required 
for j-adjacency placements in k" .  

A. Perfect 1 -Adjacency Placement 

From Lemma 1, it follows that perfect I-adjacency place- 
ment exists in IC" only if IC" is an integral multiple of 2n+l. In 
this section, we first derive sufficiency conditions under which 
perfect I-adjacency placement exists in I C " .  We also show that 
if n < 22, then the necessary condition that 2n + 1 divides k" 
is also sufficient for finding perfect 1 -adjacency placements. 

Theorem 4: A perfect I-adjacency placement exists in IC" 
if there exist integers q and T such that q divides k and 

Proot  Given y and r such that the conditions in the 
theorem are satisfied, we prove the theorem by constructing 
a perfect I-adjacency placement in kn. The algorithm for 
constructing this placement is as follows. 

Consider the set, 62, of all nonzero r-tuples over the set of 
integers {0,1, . . . ~ y - l}. Partition Q into subsets containing 
only an r-tuple and its additive inverse. Note that, there are 
exactly ( y T  - 1)/2 subsets in this partition because no r-tuple 
in Q is an additive inverse of itself. This is due to the fact 
that y must be an odd integer in order to satisfy the condition 
y" = 212 + 1. Construct a r x n matrix H = [hlha . . .  h,] 
using exactly one r-tuple from each subset in the partition 
as the column vector. Place a resource copy at a node a = 

yr = 2n + 1. 

(anl . . . , a1) if and only if 

a .  HT = 0 (mod) y. 

We now prove that the resulting placement is a perfect 1- 
adjacency placement in ICn. To prove this result, we must prove 
that 1 )  no two resource nodes are adjacent to each other, and 
2) each nonresource node is adjacent to exactly one resource 
node. 

The first condition is proved by contradiction. Let, if pos- 
sible, a = (unl...,al) and b (b,,...,bl) be two adjacent 
resource nodes. That is, a . H T  b.HT 0 (mod) y. Without 
loss of generality, we can assume that b a @ e i ,  where @ 
denotes addition modulo IC and e; is an n-tuple with a 1 in the 
ith dimension and zeros in all other dimensions. Thus, 

b . HT E 0 (mod q )  

+ ( a  @ ei) . HT E 0 (mod 4 )  

+ (a + e i )  . HT = 0 (mod y) (since y divides k )  
+ et . HT E 0 (mod y) (since a is a resource node) 

+ hi E 0 (mod 4). 

This is a contradiction because all column vectors in H are 
nonzero. Therefore, no two resource nodes are adjacent to 
each other. 

To prove the second condition, consider a nonresource node 
a. From the definition of IC" ,  the addresses of all the neighbors 
of a are of the form a@ei  or a e e i ,  for some 1 5 i 5 n; here 
eB and e are, respectively, addition and subtraction modulo 
k .  We now show that there is an unique i for which either 
( a  @ e i )  . HT e 0 (mod y)  or (a 8 e i )  . HT 3 0 (mod 4). 

Since a is a nonresource node, a . HT (mod q )  E Q. 
Therefore, it follows from the construction of H that there 
are two mutually exclusive cases: a . HT (mod y) is either 
a column vector of H or is an additive inverse of a unique 
column vector of U .  We now show that, in either case, a is 
adjacent to a unique resource node. 

Case 1: a. HT (mod y) = hi for an unique i, 1 5 i 5 n. 
In this case, 

(a 8 e i )  . HT 3 (a - e*)  . HT (mod q )  (since y divides I C )  
U . HT - h; (mod y) 

0 (mod 4). 

Therefore, U is adjacent to exactly one resource node, a e ei.  
Case 2: a .  HT (mod y) # hi for all i, 1 5 i 5 n. From 

the definition of H .  there is an unique i, 1 5 i 5 71, such that 
a . HT + h, 

(a @ e ; )  . HT E (a + e;) . H T  (mod q )  (since q divides I C )  

0 (mod 4). In this case, 

= U .  HT + hi (mod y) 

3 0 (mod 4). 

Therefore, a is adjacent to exactly one resource node, a @ e*. 
This proves the second condition and hence the theorem. 

To illustrate Theorem 4, consider the construction of a 1- 
adjacency perfect placement in s2. From the proof of the above 
theorem, the matrix H in this case is [ l  21. Node addresses 
that have resources in this case are (0, 0), (1 ,  2) ,  (2 ,  4), ( 3 ,  
l) ,  and (4, 3). Fig. 3 shows this resource placement for a 5'; 
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nodes with resource copies are shown with filled circles. In this 
figure, note that, each nonresource node is adjacent to exactly 
one resource node. For example, nonresource node (0, 4) is 
adjacent to resource node (0, 0)  through a wrap-around edge. 

Notice that a placement obtained by translating each re- 
source node in a perfect placement by a constant is also perfect. 
As an example, let us add (1, 1) to the address of each resource 
node in Fig. 3. It can be easily seen that the new resource 
nodes (1, 1 j ,  (2, 3), (3 ,  5j ,  (4, 2j, and (5 ,  4) also constitute 
a perfect I-adjacency placement in 5*.  Thus, even though the 
above theorem gives exactly one perfect placement, one can 
construct multiple disjoint perfect placements by appropriate 
translation. 

Theorem 4 identifies a sufficient condition for the existence 
of perfect I-adjacent placements. In the general case, this 
condition is not equivalent to the necessary condition that k" 
must be a multiple of 2n + 1. For example, if k = 15 and 
n = 22,2n + 1 divides I C n .  However, there are no integers q 
and T such that q divides k and q' = 2n + 1 = 45. Therefore, 
although perfect 1-adjacency placement may exist in 1522, 
Theorem 4 cannot be used to find such a placement. However, 
this is not a serious limitation because we next show that 
for all practical systems, the necessary condition implies the 
sufficient condition. 

Theorem 5: If n < 22, perfect 1-adjacency placements exist 
in k" if and only if k" is an integral multiple of 2 n  + 1. 

Proof: (Necessity) Follows from Lemma 1. 
(SufJiciencyj If n < 22, then 2n+ 1 has only one prime factor 

and/or all prime factors of 271 + 1 have a multiplicity of one. 
If 2n + 1 has only one prime factor, then 2 n  + 1 = pm for 

some prime p and integer m. Since 271 + 1 divides k " , p  must 
also be a prime factor of k .  Therefore, by setting q = p and 
T = m, the existence of perfect 1-adjacency placement in k" 
follows from Theorem 4. 

On the other hand, if all prime factors of 2 n  + 1 have a 
multiplicity of one, then 271 + 1 = p l p z  . . . pi for some primes 
p l ,  p z ,  . . . , p l .  Since 2 n  + 1 divides I C " ,  each p l ,  p z ;  . . , p l ,  
must also be a prime factor of k .  That is, 2 n  + 1 divides k .  
Thus, by setting q = 211+ 1 and T = 1, the existence of perfect 
1-adjacency placement in IC" follows from Theorem 4. Hence, 
the theorem. 

B. Perfect j-Adjacency Placement 

From Lemma 1, we know that a perfect j-adjacency place- 
ment can exist in k" only if j . k" is a multiple of 2n + j. 
In this section, we derive a sufficient condition under which 
such a placement can be found. 

Theorem 6: A perfect j-adjacency placement exists in k" 
if there exist integers q and T such that q divides k and 
q' - 1 = 2nl . j .  

Proof: Given q and T such that the conditions in the 
theorem are satisfied, we prove the theorem by constructing a 
perfect j-adjacency placement in k". Consider the set, Q,  of 
all nonzero r-tuples over the set of integers {0,1, . . . , q - l}. 
Partition Q into subsets containing only an r-tuple and its 
additive inverse. Construct a set Q' by picking exactly one T- 

tuple from each subset in the partition. Then, identify a matrix 
H such that for each h E Q' 

1) if h + h 0 (mod q ) ,  then j / 2  column vectors of H 

2) if h + h $ 0 (mod q ) ,  then j column vectors of H are 

That is, each self-inverse in Q' appears as j / 2  column 
vectors of H and each nonself-inverse in Q' appears as j 
column vectors of H .  Note that, there are either no self- 
inverses or 2' - 1 self-inverses in Q' depending on whether q 
is odd or even, respectively. In either case, the total number 
of column vectors in H is n. Place a resource copy at a node 
a if and only if 

are equal to h, and 

equal to h. 

a .  HT = 0 (mod q) .  

We now prove that the resulting placement is a perfect j -  
adjacency placement in k". To prove this result, we must prove 
that 1) no two resource nodes are adjacent to each other, and 2) 
each nonresource node is adjacent to exactly j-resource nodes. 

The first condition can be proved by contradiction just 
as in the case of perfect 1-adjacency placements (see proof 
of Theorem 4). To prove the second condition, consider a 
nonresource node a. From the placement rule, we know 
that a . HT = U E Q. There are three mutually exclusive 
possibilities: 1) U is a self-inverse 2) U is not a self-inverse, 
but, U is a column vector of H ,  and (iii) U is not a self-inverse 
and U is not a column vector of H .  

In the first case, j / 2  columns of H are equal to U .  Let 
i be one such column. In this case, we can verify that 
(a  @ e;) . HT = (a 8 e ; )  . HT 0 (mod q) .  That is, nodes 
(a  @ e;) and ( a  e e,) are two resource nodes adjacent to a. 
Since there are a total of j / 2  such columns, a is adjacent to 
exactly j resource nodes. 

In the second case, j columns of H are equal to U .  Let 
i be one such column. In this case, it can be shown that 
( a  @ e ; ) .  HT 0 (mod 4 ) .  In other words, node ( a @  e i )  is a 
resource node adjacent to a. Since there are j such columns, 
a is adjacent to exactly j resource nodes. 

In the third case, j columns of H are equal to the additive 
inverse of U .  Let i be one such column. In this case, it can be 
shown that (a  e ei) HT = 0 (mod 9 ) .  In other words, node 
(a e e;) is a resource node adjacent to a. Since there are j 
such columns, a is adjacent to j resource nodes. 

Thus, in all three cases, a is adjacent to exactly j resource 

To illustrate Theorem 6, we construct a perfect 2-adjacency 
placement in 6*. The sufficient conditions mentioned in The- 
orem 6 are satisfied for this example with q = 3 and T = 1. 
Thus, the H matrix is [ l  I]. The resources nodes in a 
perfect 2-adjacency placement in 6' are shown with filled 
circles in Fig. 4. In this figure, we note that, each nonresource 
node is adjacent to exactly two resource nodes. For example, 
nonresource node (2, 2) is adjacent to the resource nodes ( 2 ,  
1)  and (1, 2 ) .  

nodes. This proves the theorem. 

C. Perfect Placement of j Distinct Resource Types 

Dejnition I :  A perjiect j-type j-adjacency placement is a 
placement with j distinct types of resources in which 1 )  each 
nonresource node is adjacent to exactly one resource node of 
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Fig. 4. Perfect 2-adjacency placement in 6-ary 2-cube. 

each type, and 2 )  no two resource nodes are adjacent to each 
other. 

The method described in the proof of Theorem 6 for 
obtaining perfect j-adjacency placements can be extended, 
under certain conditions, to construct a perfect j-type j -  
adjacency placement. The following two lemmas identify 
sufficient conditions under which such an extension is possible. 

Theorem 7: A perfect 3-type j-adjacency placement exists 
in IC" if 

I )  k , a ,  and j satisfy the conditions in Theorem 6 with q 
odd, and 

2 )  there exist integers y and m such that p divides k and 
PnL = 3. 

Proof: The first condition in the theorem implies that 
there exists a perfect j-adjacency placement in k". Identify 
the matrix H as in the proof of Theorem 6. Let P = 
(0, PI ,  Pz, .  . . , PjPl} be the set of all m-tuples over the set 
of integers {0,1, . . . , p - I }. Construct an m x n matrix 
R = ( r r L , . . . , q )  such that 

1 )  each column vector of R is a 7n-tuple in P ;  and 
2 )  if hi = hj, then T,  # 4'1, where hi and h l  are ith and 

Note that, the above two conditions can be satisfied because 
1) a column vector can repeat at most j times in H ,  and 2 )  
there are j distinct vectors in P .  

Now identify a perfect 3-adjacency placement using the 
method described in the proof of Theorem 6. To each resource 
node a in this placement assign a type i if a.RT Pi (mod p )  
for some P; E P. We now show that, in this assignment, no 
two resource nodes adjacent to a nonresource node are of the 
same type. 

Let, if possible, a be a nonresource node which is adjacent to 
two resource nodes of the same type. Also, let U .  HT mod q = 
h. Since q is odd, h + h $ 0 (mod q ) ;  thus, from the 
construction of matrix H ,  we conclude that either 1) h appears 

Ith column vectors of H .  

j times in H ,  or 2 )  the additive inverse of h appears j times 
in H .  

If h appears j times in H ,  then any resource node adjacent 
to a must be of the form (a 8 e i )  such that e;HT = h; = h. 
Further, two resource nodes ( U  8 e i )  and ( a  8 el)  must satisfy 
the condition hi = hl. These two resource nodes will have the 
same resource type if and only if 

( U  8 e,) . RT = ( a  e e l ) .  RT (mod p )  

+ ( U  - e,) . RT = ( U  - e l )  . RT (mod p )  

(since p divides k )  
=+ e , .  RT RT 

=+ T ;  = T l  

+ ti; $ hl (from the construction of R).  

This contradicts the requirement that hi = hl. 
On the other hand, if the additive inverse of h appears j 

times in N, then any resource node adjacent to a is of the 
form ( a e e i )  such that e;HT = hi = h. Proceeding as above, 
we can once again show that no two resource nodes adjacent 
to a are of the same type. 

Hence, the theorem. 

Iv. APPROXIMATE RESOURCE PLACEMENTS IN k" 

In Section 11, we discussed the necessary and sufficient 
conditions for the existence of perfect and quasi-perfect j -  
adjacency placements. The advantages of perfedquasi-perfect 
placements are that 1) no two resource nodes are adjacent to 
each other, and 2) no nonresource node is adjacent to more 
than j + 1 resource nodes. These two conditions ensure j 
adjacencies using as few resource copies as possible. However, 
perfect/quasi-perfect j-adjacency placements do not exist for 
all values of k ,n ,  and j. 

In order to construct j-adjacency placements for all values 
of IC, n,  and j ,  we relax the constraints 1 )  and 2 )  stated above. 
This implies that in the j-adjacency placements constructed in 
this section two resource nodes can be adjacent to each other 
and a nonresource node can be adjacent to more than ( j  + 1) 
resource nodes. As a result, the number of copies of a resource 
in the constructed placements may be more than the minimum 
number required. 

In view of the discussion above, we consider three mutually 
exclusive cases: 1) j divides 2n and 1 5 j 5 71, 2 )  j does not 
divide 2n and 1 5 j 5 71, and 3) n < j < 2n. Solutions for 
these cases are described in the following three subsections. 
In the first case, the number of resource copies used by the 
approximate solutions asymptotically approaches the lower 
bound j . k n / ( 2 n  + j) as k + cx3 for each n. In the other two 
cases, the number of resource copies used by the approximate 
solutions is within a constant factor of the theoretical lower 
bound for large I C .  

A .  Approximate Placements when j Divides 2n, 1 5 j 5 71 

An algorithm for constructing approximate placements in 
this case is given in Fig. 5. The basic idea of this algorithm 
is best illustrated by an example. Consider a 1-adjacency 
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Algorithm Resource.Place 

Input Parameters: k ,  n, and 3 ;  

If 2n/j  is not an integer 1. 
2. 
3. Exit; 
4 .  Endif 

Print 'The algorithm cannot handle this case"; 

5 .  Find integers q and r surh that q divides k and qr - 1 = 2n/j. 
If such integers cannot he found, find smallest q such that q' - 1 = 2 n / j  

Let H be as in the proof of Theorem 6 6. 

7.  Place a copy of a resourre at a if a .  H T  0 (mod q) ,  

8. If k is an integral multiple of q 
9. Return Placement; 1' Perfect 3-adjacency placement */ 

10. For i = 1 t o n  do 
11. 

12. 

Place a copy of a resource at a (a,,, . . . . a . + l , ( k  - l ) , ~ , ,  . . . , a l )  if 
[a ,  ... a,+] ( q  - 1) a,-l . .  . HT 1 0 [mod q); 1 

13. 

14.  

15. Endfor; 
16. Return Placement. 

Place a copy of a resource at a E (a,,, . . . ,a .+* , (k  - l ) , a , ,  . . . , a l )  if 

[a .  . . .  a,+, k a,-, , . ,  . H T  z 0 (modq); 1 
Fig. 5 .  Algorithm for constructing approximate ,;-adjacency placement. 

placement in 7'. Since there are no integers q and T such that q 
divides 7 and q' - 1 = 3,  Step 5 of the algorithm returns q = 5 
and T = 1. The algorithm then places copies of a resource at 
all nodes orthogonal to the matrix H = [l 21 (Refer to Steps 
6 and 7 of algorithm Resource-Place). The resource nodes thus 
obtained are shown with 0 in Fig. 6. At the end of step 7 of 
algorithm Resource-Place, if k is not a multiple of q (in this 
case 5), then some nodes still would not have received their j 
adjacencies. For example. in Fig. 6, node (2, 0) is not adjacent 
to any resource node at the end of this step. This is because, if 
k were 10 (a multiple of q ) ,  this node would have received its 
adjacency from node (2, 9) (Node (2, 9) is orthogonal to H ) .  
Since in a 7', ( 2 . 0 )  is adjacent to ( 2 ,  6). we must provide a 
resource copy at node (2, 6). This procedure must be repeated 
for each node of the form (x ,O)  which were to receive its 
adjacency from (x,9) in lo2 (Steps 11 and 12 of algorithm 
Resource-Place). Similarly, nodes of the form ( 6 ,  x )  which 
were to receive their adjacency from nodes ( 7 , ~ )  if k were 
10, should each be provided with a copy of the resource (Steps 
13 and 14 of algorithm Resource-Place). In Fig. 5, the nodes 
that were provided with resource copies in Steps 11-14 of the 
algorithm are indicated by placing a 0 around the nodes. 

We observe that the total number of resources required 
for the placement shown in Fig. 5 is 15 as compared to the 
lower bound 10 obtained from the formula j . lcn/(2n + j ) .  
However, the number of resource copies can be reduced in 
some instances. For example, nodes (1, 6) and (6, 4) were 
provided with a copy of the resource in Steps 13 and 14 
because these nodes were to receive their adjacencies from 
nodes (1, 7) and (7, 4), respectively, in 10'. However, since 
nodes ( I ,  6) and (6, 4) had already received their adjacencies 
from nodes (2, 6) and (6, 31, respectively, (which were 
provided with resource copies in Steps 11-12) resource copies 
from nodes (1, 6) and (6, 4) could have been eliminated. 

Fig. 6.  1-adjacency placement in 7-ary 2-cube. 

This optimization can be easily incorporated into algorithm 
Resource-Place by modifying Steps 13 and 14 as follows. 

13. 

14a. 

14b. 

Place a copy of a resource at 
(I =; ( a n r .  ' .  , a,+1, ( k  - 1). a,. ' .  ' , a1) 

if fewer than j neighbors of node n have a 
resource copy and 

[ a,  . . .  ~,+lka,- l  . . ai] . H T  E 0 rrlod 4;  

Algorithm Resource-Place can be extended under the con- 
ditions identified in Theorems 7 to place j distinct types of 
resources to ensure that each nonresource node is adjacent to 
a resource node of each type. However, in this case, one cannot 
perform the optimizations in Steps 13, 14a, and 14b. Through 
examples, it can also be shown that Algorithm Resource-Place 
is not always optimal. For instance, one can place resource 
copies at nodes 

((0,O). (0,415 ( 1 9  21, (2 .  0L (2,5).  ( 2 , 6 ) ,  (3 ,3 ) ,  (4.11, 

(5 ,4) ,  ( 5 . 5 ) ,  ( 5 ;  61, ( 6 , 2 ) )  

to obtain I-adjacency placement in 7'. This placement uses 
only twelve resource copies as opposed to thirteen required by 
the optimized Algorithm Resource-Place. Since, at present, we 
are unable to determine the number of resource copies in an 
optimal placement, we compare the number of resource copies 
placed by algorithm Resource-Place with the theoretical lower 
bound j . k n / ( 2 n  + j ) .  We show that the difference between 
the number of resource copies required by the algorithm and 
the theoretical lower bound approaches zero as k tends to 30 

for each n. 
Theorem 8: The number of resource copies required by 

algorithm Resource-Place for a j-adjacency placement ap- 
proaches the theoretical lower bound j . k n / ( 2 n  + j )  as k 
tends to 30 for each n. 
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Proof: Let k = .$ . q + t for integers s and t such that 
s 2 0, and 0 < t < y. At the end of Step 7, the number 
of resource copies placed by the algorithm is at most equal 
to j . k n / ( 2 n  + j ) .  Thus, the only additional copies placed 
by the algorithm are in Steps 10-15. An upper bound on 
the number of copies placed in these steps can be obtained 
by counting the number of resource copies placed in an 
(n  - 1)-dimensional hyperplane of ( ( s  + 1)q)" .  That is, in 
each iteration of the for-loop, the number of copies placed is 
at most j . ((s + 

Therefore, the ratio of the additional copies to the theoretical 
lower bound is 

. q n p 1 ) / ( 2 n  + j ) .  

( s  + 1)n - l  4 "-I 
( s . q + t ) "  . 

Since qr - 1 must equal 2 n / j .  q cannot exceed (2n + j ) / j .  
Hence, k --+ m is equivalent to s -+ m. Taking limits as 
s -+ m, the above ratio tends to zero. w 

B. Approximate Placements when j Does 
Not Divide 2 n .  I 5 j 5 rL 

Recall that, Algorithm Resource-Place is based on the 
assumption that j divides 212. In this section, we consider the 
case when j does not divide 2n. We propose two different 
techniques to handle this case. Depending on the values of 
the I C ,  n ,  and j ,  either of the two techniques could be better 
in terms of the number of resource copies required. The first 
technique finds an n' such that j divides 2n' and then uses 
schemes from the previous sections to determine the required 
resource placement. In contrast, the second technique finds a 
j' such that j' divides 2n and then applies our earlier schemes. 
These two techniques are described below. 

I )  Modijication o f n ,  to n': Let 71' be the largest integer 
less than ,n such that 2n' is divisible by j .  Partition k" 
into k"-" IC-ary n'-cubes and use Algorithm Resource-Place 
to find approximate j-adjacency placements in each one of 
the k-ary n'-cubes. This is possible because j divides 2n'. 
Since each node in h:" belongs to one of these k-ary n'- 
cubes, this technique ensures that the j-adjacency constraint 
is satisfied, albeit using more resource copies. The theorem 
below compares the number of resource copies required by 
this technique to the theoretical lower bound on the number 
of resource copies required. 

Theorem 9: The ratio of the number of resource copies 
required by the above technique to the theoretical lower bound 
on the number of resource copies required for a j-adjacency 
placement in ICTL is bounded by 513 as IC tends to CO for each n. 

Proofi From Theorem 8,  the number of resources 
placed by Algorithm Resource-Place in each k" approaches 
( jk"  ) / ( 2 n '  + j )  as k + CO. Hence, the total number 
of resources placed by the above technique approaches 
( jk"' l2n'  + j) . knpTL' as IC -+ 00. Since the theoretical 
lower bound on the number of resource copies required is 
(jIC")/(2n + j ) ,  the ratio of the resource copies placed by the 
above technique to this theoretical lower bound approaches 
(2n + j ) / ( 2 n '  + j )  for large I C .  

Since j does not divide 2 n ,  let 2n = s j  + t for some 
integers s and t .  s 2 0 and 0 < t < j. If s and j are odd, 

then n' = (s - l ) j / 2  is the largest integer less than n such 
that 2n' is divisible by j. Otherwise, the largest such integer 
is s j / 2 .  Therefore, n - n'<j .  Hence, 

2 j  < 1 + -  
2n' + j 
2 j  . 
3 j  

5 1 + - (since n' 1 j )  

= 5 / 3 .  

Hence the theorem. 
2 )  ModiJication of j to j ' :  Another technique to handle the 

case in which 2 n  is not divisible by j is to find the small- 
est j' > j such that j '  divides 2 n  and use Algorithm Re- 
source-Place to find a j'-adjacency placement in IC". 

Theorem IO: The ratio of the number of resource copies 
required by the above technique to the theoretical lower bound 
on the number of resource copies required for a j-adjacency 
placement in k" is bounded by (2n + j)/(3j) as k tends to 
oc: for each n. 

Proofi From Theorem 8, the number of resources placed 
by Algorithm Resource-Place in k" for a j'-adjacency place- 
ment approaches ( j ' k n ) / ( 2 n + j ' )  as k + ca. Hence, the ratio 
of the resource copies placed by the above technique to the 
theoretical lower bound approaches ( j ' ( 2 n  + j ) ) / ( j ( Z n  + j')) 
for large k .  Since this is an increasing function of j '  and since 

w 
Since 5 / 3  < (2n + j ) / 3 j  when 2 j  < n,  it follows from 

Theorems 9 and 10 that the technique of modifying n to n' 
is better than the technique of modifying j to j '  if 2 j  < n; 
otherwise, the latter technique is better. 

j '  5 n, the above ratio is bounded by (271 + j)/(3j). 

C. Approximate Placements when j Does 
Not Divide 2 n ,  n < j < 2 n  

The placement algorithms discussed so far are based on the 
assumption that either 1 5 j 5 n or j = 2 n .  In this section, we 
consider the complementary case when n < j < 2n. Since from 
Theorem 1 there exist no perfect j-adjacency placements for 
this case, we need to consider approximate placement schemes. 

As in Section IV-B, approximate placements can be ob- 
tained by either modifying n or j .  In the first technique, 
find the smallest integer n' > n such that 2n' is divisible by 
j. Since j exceeds n, this condition is satisfied if n' = j. 
Then, find a j-adjacency placement in k j  using Algorithm 
Resource-Place and modify it using techniques similar to those 
in Steps 10-1 5 of Algorithm Resource-Place. Using arguments 
similar to those given in the proof of Theorem 8, the number 
of resource copies in the resulting placement can be shown to 
be bounded by ( k n / 3 )  + k" - ( I C  - 2)". 

The second technique for obtaining an approximate j -  
adjacency placement when n < j < 2 n  is to construct a quasi- 
perfect ( 2 n  - 1)-adjacency placement in k" (see Theorem 3). 
The number of resource copies required for this method is 
bounded by 1;"/2. Since this bound is greater than the bound 
of (ICn/3) + k" - ( k  - 2)" for the first technique, the first 
technique is superior for large I C .  
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divides 2n 1 3q,r.  s.t. q divides k 1 j. k ” / ( 2 n +  j) 

TABLE I 
SUMMARY OF RESULTS DERIVED IN THIS PAPER 

perlect, optimal 

= (2n - I )  
divides 2n,  

and qr - 1 = 2n/j 
for all k k “ / 2  quai-perfect 
V q , r ,  q‘ - I = 2n/j * approaches approximate, 

1 5 I 5 n 

does not di- 

vide 2n. 1 5 

k - w  j 5 n  

n < j < 2 n  I f o r a l l k  I bounded by 1 approximate 

q does not divide k 

for all k bounded by approximate 

1 . k “ / ( 2 n  + 1 )  as k - m asymptotically 

optimal 

m i n { v , : } . & a s  

m i n { $ , y  - ( k - Z ) “ }  as 

k - m  

f Results for k = 2 are presented in [2 ] .  

V. CONCLUSIONS 

In this paper. we studied the resource placement problem 
in k-ary n-cubes. We described algorithms for constructing j -  
adjacency placements in k”. We showed that these algorithms 
can be extended to place j distinct types of resources in k”. 
The key results are summarized in Table I. In addition, we 
showed the following: 

perfect (quasi-perfect) ,j-adjacency placements are impos- 
sible in k-ary n-cubes if n < j < 2n(n < j < 2n - 1); 
for n < 2 2 .  the necessary and sufficient condition for a 
perfect I-adjacency placement is that k” should be an 
integral multiple of 2 n  + 1; 
a sufficient condition for a perfect ,j-adjacency placement 
is that there exist integers q and T such that y divides IC 
and qr - 1 = 2 n / j .  

Finding the number of resource copies required for an optimal 
j-adjacency placement for a general k” seems to be hard and 
at present it is an open problem. 

The results derived in this paper for k-ary n-cubes can 
be extended to n-dimensional meshes in a straightforward 
fashion. Notice that an n-dimensional mesh does not have 
wraparound links that are present in the k-ary n-cube. Hence, 
a j-adjacency placement in k” provides j adjacencies to all 
nodes in the interior of the mesh; however, some nonresource 
nodes on the boundary of the mesh might not be adjacent to 
j resource nodes because of the absence of wraparound links. 
Hence, some boundary nodes that do not have resources in 
k“ may have to receive resource copies in the corresponding 
mesh. In order to determine the exact location of resource 
nodes on the boundary, techniques similar to those presented 
in this paper can be used. 

The results derived in this paper may also be generalized 
to the case in which each nonresource node is required to 
reach j resource nodes within h hops, h > 1, using partitioning 
techniques similar to those in [ 2 ] .  However, these partitioning 
techniques do not always result in optimal placements. Finding 

the optimal number of resource copies required for an h-hop 
j-adjacency placement is an open problem. 
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