
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6. NO. 5, MAY 1995 511

Resource Placement with Multiple
Adjacency Constraints in k-ary n-Cubes

Parameswaran Ramanathan and Suresh Chalasani

Abstracf-The problem of placing resources in a k-ary n-
cube (k > 2) is considered in this paper. For a given j 2 1,
resources are placed such that each nonresource node is adjacent
to j resource nodes. We first prove that perfect j-adjacency
placements are impossible in k-ary n-cubes if n < j < 2n. Then,
we show that a perfect j-adjacency placement is possible in k-ary
n-cubes when one of the following two conditions is satisfied: 1)
if and only if j equals 211 and k is even, or 2) if 1 5 j 5 n and
there exist integers q and T such that q divides k and qr - 1 =
2n/j. In each case, we describe an algorithm to obtain perfect
j-adjacency placements. We also show that these algorithms
can be extended under certain conditions to place j distinct
types of resources in a such way that each nonresource node is
adjacent to a resource node of each type. For the cases when
perfect j-adjacency placements are not possible, we consider
approximate j-adjacency placements. We show that the number
of copies of resources required in this case either approaches a
theoretical lower bound on the number of copies required for
any j-adjacency placement or is within a constant factor of the
theoretical lower bound for large k .

Index Terms- Resource allocation, multiprocessors, hyper-
cubes, mesh connected computers, interconnection network,
fault- tolerance.

I. INTRODUCTION

ESOURCES in a multiprocessor system can be of several R different types: hardware units like disks, printers, and
YO devices, and software units like compilers, library routines,
and data files. In a large multiprocessor system, it is usually
very expensive to provide a copy of a resource to each
processorhode in the system. It also often leads to poor
utilization of some of the copies of the resource and thus
results in poor price-performance ratio. On the other hand,
providing a system with very few copies of a resource leads
to contention and hence loss of performance. It also makes
the system susceptible to failures because a loss of a few
copies can result in unavailability of that resource to some
nodes. Therefore, there is a tradeoff among cost, performance,
and availability that has to be taken into account in placing
resources in a multiprocessor system.

Traditionally, this tradeoff is achieved by placing copies
of a resource in such a way that multiple processors share a

Manuscript received August 1992; revised February 1993 and August
1993. This work was supported in part by the National Science Foundation
under Grants MIP-9009154, MIP-92137 16, and CCR-9308966. This paper
was presented in part at the International Conference on Parallel Processing,
1992.

The authors are with the Department of Electrical and Computer Engineer-
ing, University of Wisconsin-Madison, Madison, WI 53706 USA.

IEEE Log Number 9409333.

copy. Processors that do not have a copy of a resource use the
copies from "nearby" processors. An optimal placement of a
resource in a multiprocessor system should be such that there
is a balance between the time spent by a processor in accessing
a shared copy and the total number of copies of that resource
in the system. Finding an optimal placement of resources for
multiprocessor systems with arbitrary constraints on the time
spent by a processor and an arbitrary number of copies is
a very difficult problem. In this paper, we study and solve
the problem of placing resources in a class of multiprocessor
systems commonly referred to as k-ary n-cubes [4].

A k-ary n-cube (k") is a multiprocessor system with k"
processorshodes arranged along n dimensions, with k nodes
in each dimension. Hypercubes and two-dimensional ton are
special cases of k-ary n-cubes. An n-dimensional hypercube
is a 2-ary n-cube [SI while a two-dimensional torus is a k-ary
2-cube. The Intel iPSC-2 and Ametek 2010 systems [9] are
examples of commercially available k-ary n-cubes.

Each processorhode in k" can be uniquely addressed by
an n-digit radix-k number. That is, each processor a in k"
can be uniquely addressed by an n-tuple (a", . . . , a l) , where
a; ~ { O , 1 , ~ . . , (k - 1) } , f o r 1 ~ i ~ n . I n k " , t w o p r o c e s s o r s
a (anr . . . , al) and b 3 (b " , . . . , 6 1) are connected to each
other if and only if there exists an i , 1 5 i 5 n, such that
a; = b; f l(mod) k and a1 = 6 l , for all E # i . It follows from
this definition that each processor in k", k > 2, is connected
to exactly 2n other processors. Furthermore, it can be shown
that k" is node-symmetric in the sense that for every pair of
nodes a and b there exists a homomorphism that maps node
a to node b.

For this class of systems, the problem addressed in this paper
can be stated as follows. First, we find the minimum number of
copies of a resource required to ensure that each node either
has a copy of the resource, or is adjacent to j other nodes
that have a copy of the resource. Then, given the minimum
number of copies we determine where these resource copies
should be placed in order to satisfy the above condition. The
above condition is commonly referred to as the j-adjacency
constraint. This constraint implies that a node that does not
have a resource copy can find j copies of that resource among
neighboring nodes.

In the rest of this paper, a solution that satisfies the j -
adjacency constraint in kn is referred to as a j-adjacency
placement. Also, nodes that have a copy of a resource are
referred to as resource nodes and those that don't have a copy
are referred to as nonresource nodes. Furthermore, as in [2], a

1045-9219/95$04.00 0 1995 IEEE

512 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL. 6, NO. 5, MAY 1995

j-adjacency placement is said to be peifect if and only if no
two resource nodes are adjacent and each nonresource node is
adjacent to exactly j resource nodes. Similarly, a j-adjacency
placement is said to be quasi-perfect if and only if no two
resource nodes are adjacent and each nonresource node is
adjacent to at least j but no more than (j + 1) resource nodes.

Motivation for j-adjacency placements arises in many con-
texts. It can be used to assign j distinct types of resources and
processors to nodes of k'& in such a way that each processor is
adjacent to each type of resource. Examples of resource types
include memory modules, cache units, disk controllers, and I/O
processors. For instance, Fig. 1 shows a perfect 2-adjacency
placement in li2, where nodes labeled P are nonresource nodes
and nodes labeled RI and R2 are resource nodes. Note that,
in this placement, each processor P is adjacent to exactly one
resource node of type RI and one resource node of type Ra.
If all resources are of the same type, a j-adjacency placement
may also be used to tolerate up to (j - 1) failures of resource
nodes.

Reddy et al. considered the I-adjacency problem for the
placement of VO processors in a hypercube [7]. Livingston
and Stout studied the problem of placing a minimum number
of resources in a hypercube subject to certain constraints [6].
Chiu and Raghavendra addressed the problem of placing a
given number of resources with an objective of minimizing
the resource diameter [3] where the resource diameter of a
placement is defined as the maximum value, taken among
all processors, of the minimum number of hops a node must
traverse in order to access a resource.

More recently, Chen and Tzeng [2] proposed solutions
for perfect and quasi-perfect j-adjacency placements in a
hypercube subject to the general communication constraint that
a nonresource node is within h hops of j resource nodes for
any given h 2 1. The techniques and results of Chen and
Tzeng [2] cannot be extended to k-ary rr-cubes due to one key
difference between an n-dimensional hypercube and a k". The

difference is that the binary addresses of all nodes in an n-
dimensional hypercube form an n-dimensional vector space
over the field (0 , l) whereas the radix-k addresses of k" do
not in general form a vector space.

Livingston and Stout use the theory of perfect &dominating
sets to study the problem of resource placement in several class
of networks such as hypercubes, two- and three-dimensional
meshes and tori, trees, cube-connected cycles, and de Bruijn
graphs. In particular, they propose methods to construct re-
source placements in which each nonresource node can reach
exactly one resource node within a distance of d(d 2 1) from
itself [SI. In contrast, in this paper, we consider placements in
which each nonresource node is adjacent to j(j 2 1) resource
nodes in k".

The rest of this paper is organized as follows. In Section 11,
we prove that perfect (quasi-perfect) j-adjacency placements
are not possible in k" if n < j < 2n(n < j < 2n- 1) . In Section
111, we derive necessary and sufficient conditions for the
existence of perfect 1 -adjacency placements and describe an
algorithm for finding them. We also derive sufficient condi-
tions for the existence of perfect j-adjacency placements and
extend the I -adjacency algorithm to find j-adjacency solutions.
We show that, under certain conditions, these algorithms can
be extended to place j distinct types of resources in k". For
values of k , n. and j for which perfectlquasi-perfect solutions
do not exist, we consider approximate j-adjacency placements
in Section IV. We also show that the number of resource copies
used by the approximate solutions asymptotically approaches
a constant multiple of a theoretical lower bound on the number
of resource copies required for any j-adjacency placement. In
Section V, the results in this paper are summarized and some
open problems are identified.

11. EXISTENCE OF ADJACENCY
IN PLACEMENTS ~ - A R Y ~L-CUBES

In this section, we derive some of the necessary conditions
for the existence of j-adjacency perfect and quasi-perfect
placements. From these conditions it will be clear that the
solutions for the hypercube do not easily generalize to higher
radix k-ary n-cubes. For example, it has been shown in [2]
that either a perfect or a quasi-perfect j-adjacency placement
exists in a hypercube of any dimension. This is not true in a
higher radix kn as shown in the theorems below.

Theorem I : A j-adjacency perfect placement exists in k",
k > 2 , only if either j = 2n or 1 5 j 5 71.

Proof: Suppose a j-adjacency perfect placement exists
in k", k > 2. Then, one of the following two complementary
conditions must be true:

1) no two nonresource nodes are adjacent to each other, or
2) there exists at least one pair of adjacent nonresource

Now, suppose that the first condition is true. Since, no
two nonresource nodes are adjacent to each other, all nodes
adjacent to a nonresource node have a copy of the resource.
Since in I C " , k > 2. each node is adjacent to 271 nodes, this
implies that each nonresource node is adjacent to 271 resource
nodes. Hence, j = 2n.

nodes.

RAMANATHAN AND CHALASANI: RESOURCE PLACEMENT WITH MULTIPLE ADJACENCY CONSTRAINTS 513

Dimension 0

Fig. 2. Illustration of adjacencies of nodes (1 and 11' for Theorem 1

Next, suppose that the second condition is true. That is,
there exists a pair of adjacent nonresources nodes, say U and
U'. Since k r L is vertex as well as edge symmetric, we can
assume without loss of generality that the addresses of c1 and
U' differ only in dimension 0.

In dimension 0, node U is adjacent to precisely one node
b # U' (see Fig. 2). Similarly, node (I' is adjacent to precisely
one node b' # (L in dimension 0. Therefore, a maximum of
two copies of a resource can be placed among the neighbors
of (L and U' in dimension 0.

Next, consider a dimension i # 0. In this dimension, node (L
is adjacent to two nodes, say c and d . Similarly (1,' is adjacent
to two nodes c' and d' (see Fig. 2). Since, by definition, no
two resource nodes are adjacent to each other in a perfect
placement, a maximum of two resource copies can be placed
among the neighbors of U and U' in this dimension.

From the above two observations, we can conclude that a
maximum of 27) copies of a resource can be placed among the
neighbors of a and U' (for a perfect placement). However. since
we are considering a j-adjacency perfect placement, there must
be a total of 2 j resource copies among the neighbors of U and
U' . Therefore, 2,j must be less than or equal to 211, or in other

The necessary conditions proved above are usually not
sufficient for the existence of perfect ,j-adjacency placements.
In most cases, there are conditions on k depending on the
values of 71, and j. For example, as shown in the theorem
below, a perfect 2wadjacency placement does not exist if k
is odd.

Theorem 2: A perfect 2,wadjacency placement exists in k7' ,
k > 2, if and only if k is even.

Proof: (Necessity) Since each node U in k " , k > 2, has
271 neighbors, every neighbor of a nonresource node must
be a resource node. Further, by definition, no two resource
nodes can be adjacent in a perfect placement. It follows from
these two observations. that every alternate node along any
dimension of k" should have a copy of the resource. This
implies that k must be even.

(SufJiciency) If k is even, a perfect 271-adjacency placement
can be obtained using the following algorithm. Arbitrarily
choose any node a and place a copy of the resource at that
node. Then, place copies of the resource at every node that is at
an even distance from node (1 . It can be easily shown that this
simple algorithm assigns a resource to all the 271 neighbors of
a node that is not assigned a resource and that no two resource

words, j 5 71, .

nodes are adjacent. Hence the theorem.

From Theorem 1, we can conclude that a perfect (271 - 1)-
adjacency placement does not exist in k". However, using
an algorithm similar to the one in the sufficiency proof
of Theorem 2, we can show that there is a quasi-perfect
(271 - 1)-adjacency placement in k'" Necessary conditions
for the existence of quasi-perfect placements are stated in the
theorem below. Note that, unlike in hypercubes 121, quasi-
perfect placements do not always exist in k"! k > 2 .

Theorem 3: A quasi-perfect j-adjacency placement exists
in k r l . k > 2. only if either 1 5 .;j 5 71, or j = (2n - l) , or
j = 271.

Proot The proof is similar to that of Theorem 1, and
hence is omitted.

Quasi-perfect placements are of interest when perfect place-
ments do not exist for given values of k , n , and j . However,
constructing quasi-perfect placements for all values of k , 71,

and j seems to be a difficult problem. Therefore, when perfect
placements cannot be found, we present algorithms for con-
structing approximate placements in which each nonresource
node is adjacent to at least j resource nodes.

111. PERFECT PLACEMENT IN k-ARY 'ri-CUBES

Algorithms for perfect placements in k'l is the subject of this
section. In Section 111-A, we derive necessary and sufficient
conditions for the existence of perfect I-adjacency placements
in k'L. As a part of the sufficiency proof, we describe an
algorithm for constructing a perfect 1 -adjacency placement.
Then, in Section 111-B, we derive sufficient conditions for the
existence of perfect jadjacency placements. Here again, we
describe an algorithm to construct the placements as a part of
the proof.

Our approach for constructing perfect j-adjacency place-
ments is similar to that of Chen and Tzeng [2] . However, there
is one key difference between an n-dimensional hypercube
and a k" that distinguishes our approach from that in [2].
The difference is that the binary addresses of all nodes in
an n-dimensional hypercube form an n-dimensional vector
space over the field (0,l) whereas the radix-k addresses
of k" do not in general form a vector space. Consequently,
we cannot directly use results from coding theory as in the
case of hypercubes. Solutions for hypercubes may extend to
a topology known as generalized hypercubes in which two
nodes are adjacent if their radix-k addresses differ in exactly
one digit [I] . '

Before we discuss the algorithms for resource placement,
we prove a lemma that characterizes the number of resource
copies required in a perfect j-adjacency placement.

Lemma I : The number of resource nodes in a perfect j -
adjacency placement in kvL , k > 2 , equals j . k l L / (2 n + j) .

Proof: Let X be the number of resource nodes in a
perfect j-adjacency placement. Then, these nodes must provide
j adjacencies to each of the (k " - X) nonresource nodes. That
is, the total number of adjacencies required is j. (k" - X). On
the other hand, the total adjacencies provided by the resource
nodes is 271 X because no two resource nodes are adjacent
to each other in a perfect placement.

' Recall that, in I ; " . two nodes are adjacent iff their radix-k addresses differ
by one (modulo A ,) in exactly one digit.

5 I4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL. 6, NO. 5 , MAY 1995

Fig. 3. Perfect I-adjacency placement in 5-ary 2-cube.

Equating these two quantities we get

2 7 1 . = j . (k n - x)
Or, x = j . k" / (2n . + j) .

Since the number of resource nodes is an integer, it follows
from the above lemma that a j-adjacency perfect placement
does not exist if j . krL is not an integral multiple of (2n + j) .
In Section 111-B, we identify some sufficient conditions for
the existence of perfect j-adjacency placements, when j > 2.
When X = j . k n / (2 7 ~ + j) is not an integer, [j . k " / (2 n + j) l
is a lower bound on the number of resource copies required
for j-adjacency placements in k" .

A. Perfect 1 -Adjacency Placement

From Lemma 1, it follows that perfect I-adjacency place-
ment exists in IC" only if IC" is an integral multiple of 2n+l. In
this section, we first derive sufficiency conditions under which
perfect I-adjacency placement exists in I C " . We also show that
if n < 22, then the necessary condition that 2n + 1 divides k"
is also sufficient for finding perfect 1 -adjacency placements.

Theorem 4: A perfect I-adjacency placement exists in IC"
if there exist integers q and T such that q divides k and

Proot Given y and r such that the conditions in the
theorem are satisfied, we prove the theorem by constructing
a perfect I-adjacency placement in kn. The algorithm for
constructing this placement is as follows.

Consider the set, 62, of all nonzero r-tuples over the set of
integers {0,1, . . . ~ y - l}. Partition Q into subsets containing
only an r-tuple and its additive inverse. Note that, there are
exactly (y T - 1)/2 subsets in this partition because no r-tuple
in Q is an additive inverse of itself. This is due to the fact
that y must be an odd integer in order to satisfy the condition
y" = 212 + 1. Construct a r x n matrix H = [hlha . . . h,]
using exactly one r-tuple from each subset in the partition
as the column vector. Place a resource copy at a node a =

yr = 2n + 1.

(anl . . . , a1) if and only if

a . HT = 0 (mod) y.

We now prove that the resulting placement is a perfect 1-
adjacency placement in ICn. To prove this result, we must prove
that 1) no two resource nodes are adjacent to each other, and
2) each nonresource node is adjacent to exactly one resource
node.

The first condition is proved by contradiction. Let, if pos-
sible, a = (unl...,al) and b (b,,...,bl) be two adjacent
resource nodes. That is, a . H T b.HT 0 (mod) y. Without
loss of generality, we can assume that b a @ e i , where @
denotes addition modulo IC and e; is an n-tuple with a 1 in the
ith dimension and zeros in all other dimensions. Thus,

b . HT E 0 (mod q)

+ (a @ ei) . HT E 0 (mod 4)

+ (a + e i) . HT = 0 (mod y) (since y divides k)
+ et . HT E 0 (mod y) (since a is a resource node)

+ hi E 0 (mod 4).

This is a contradiction because all column vectors in H are
nonzero. Therefore, no two resource nodes are adjacent to
each other.

To prove the second condition, consider a nonresource node
a. From the definition of IC" , the addresses of all the neighbors
of a are of the form a@ei or a e e i , for some 1 5 i 5 n; here
eB and e are, respectively, addition and subtraction modulo
k . We now show that there is an unique i for which either
(a @ e i) . HT e 0 (mod y) or (a 8 e i) . HT 3 0 (mod 4).

Since a is a nonresource node, a . HT (mod q) E Q.
Therefore, it follows from the construction of H that there
are two mutually exclusive cases: a . HT (mod y) is either
a column vector of H or is an additive inverse of a unique
column vector of U . We now show that, in either case, a is
adjacent to a unique resource node.

Case 1: a. HT (mod y) = hi for an unique i, 1 5 i 5 n.
In this case,

(a 8 e i) . HT 3 (a - e*) . HT (mod q) (since y divides I C)
U . HT - h; (mod y)

0 (mod 4).

Therefore, U is adjacent to exactly one resource node, a e ei.
Case 2: a . HT (mod y) # hi for all i, 1 5 i 5 n. From

the definition of H . there is an unique i, 1 5 i 5 71, such that
a . HT + h,

(a @ e ;) . HT E (a + e;) . H T (mod q) (since q divides I C)

0 (mod 4). In this case,

= U . HT + hi (mod y)

3 0 (mod 4).

Therefore, a is adjacent to exactly one resource node, a @ e*.
This proves the second condition and hence the theorem.

To illustrate Theorem 4, consider the construction of a 1-
adjacency perfect placement in s2. From the proof of the above
theorem, the matrix H in this case is [l 21. Node addresses
that have resources in this case are (0, 0), (1 , 2) , (2 , 4), (3 ,
l) , and (4, 3). Fig. 3 shows this resource placement for a 5';

RAMANATHAN AND CHALASANI: RESOURCE PLACEMENT WITH MULTIPLE ADJACENCY CONSTRAINTS 515

nodes with resource copies are shown with filled circles. In this
figure, note that, each nonresource node is adjacent to exactly
one resource node. For example, nonresource node (0, 4) is
adjacent to resource node (0, 0) through a wrap-around edge.

Notice that a placement obtained by translating each re-
source node in a perfect placement by a constant is also perfect.
As an example, let us add (1, 1) to the address of each resource
node in Fig. 3. It can be easily seen that the new resource
nodes (1, 1 j , (2, 3), (3 , 5j , (4, 2j, and (5 , 4) also constitute
a perfect I-adjacency placement in 5*. Thus, even though the
above theorem gives exactly one perfect placement, one can
construct multiple disjoint perfect placements by appropriate
translation.

Theorem 4 identifies a sufficient condition for the existence
of perfect I-adjacent placements. In the general case, this
condition is not equivalent to the necessary condition that k"
must be a multiple of 2n + 1. For example, if k = 15 and
n = 22,2n + 1 divides I C n . However, there are no integers q
and T such that q divides k and q' = 2n + 1 = 45. Therefore,
although perfect 1-adjacency placement may exist in 1522,
Theorem 4 cannot be used to find such a placement. However,
this is not a serious limitation because we next show that
for all practical systems, the necessary condition implies the
sufficient condition.

Theorem 5: If n < 22, perfect 1-adjacency placements exist
in k" if and only if k" is an integral multiple of 2 n + 1.

Proof: (Necessity) Follows from Lemma 1.
(SufJiciencyj If n < 22, then 2n+ 1 has only one prime factor

and/or all prime factors of 271 + 1 have a multiplicity of one.
If 2n + 1 has only one prime factor, then 2 n + 1 = pm for

some prime p and integer m. Since 271 + 1 divides k " , p must
also be a prime factor of k . Therefore, by setting q = p and
T = m, the existence of perfect 1-adjacency placement in k"
follows from Theorem 4.

On the other hand, if all prime factors of 2 n + 1 have a
multiplicity of one, then 271 + 1 = p l p z . . . pi for some primes
p l , p z , . . . , p l . Since 2 n + 1 divides I C " , each p l , p z ; . . , p l ,
must also be a prime factor of k . That is, 2 n + 1 divides k .
Thus, by setting q = 211+ 1 and T = 1, the existence of perfect
1-adjacency placement in IC" follows from Theorem 4. Hence,
the theorem.

B. Perfect j-Adjacency Placement

From Lemma 1, we know that a perfect j-adjacency place-
ment can exist in k" only if j . k" is a multiple of 2n + j.
In this section, we derive a sufficient condition under which
such a placement can be found.

Theorem 6: A perfect j-adjacency placement exists in k"
if there exist integers q and T such that q divides k and
q' - 1 = 2nl . j .

Proof: Given q and T such that the conditions in the
theorem are satisfied, we prove the theorem by constructing a
perfect j-adjacency placement in k". Consider the set, Q, of
all nonzero r-tuples over the set of integers {0,1, . . . , q - l}.
Partition Q into subsets containing only an r-tuple and its
additive inverse. Construct a set Q' by picking exactly one T-

tuple from each subset in the partition. Then, identify a matrix
H such that for each h E Q'

1) if h + h 0 (mod q) , then j / 2 column vectors of H

2) if h + h $ 0 (mod q) , then j column vectors of H are

That is, each self-inverse in Q' appears as j / 2 column
vectors of H and each nonself-inverse in Q' appears as j
column vectors of H . Note that, there are either no self-
inverses or 2' - 1 self-inverses in Q' depending on whether q
is odd or even, respectively. In either case, the total number
of column vectors in H is n. Place a resource copy at a node
a if and only if

are equal to h, and

equal to h.

a . HT = 0 (mod q) .

We now prove that the resulting placement is a perfect j -
adjacency placement in k". To prove this result, we must prove
that 1) no two resource nodes are adjacent to each other, and 2)
each nonresource node is adjacent to exactly j-resource nodes.

The first condition can be proved by contradiction just
as in the case of perfect 1-adjacency placements (see proof
of Theorem 4). To prove the second condition, consider a
nonresource node a. From the placement rule, we know
that a . HT = U E Q. There are three mutually exclusive
possibilities: 1) U is a self-inverse 2) U is not a self-inverse,
but, U is a column vector of H , and (iii) U is not a self-inverse
and U is not a column vector of H .

In the first case, j / 2 columns of H are equal to U . Let
i be one such column. In this case, we can verify that
(a @ e;) . HT = (a 8 e ;) . HT 0 (mod q) . That is, nodes
(a @ e;) and (a e e,) are two resource nodes adjacent to a.
Since there are a total of j / 2 such columns, a is adjacent to
exactly j resource nodes.

In the second case, j columns of H are equal to U . Let
i be one such column. In this case, it can be shown that
(a @ e ;) . HT 0 (mod 4) . In other words, node (a @ e i) is a
resource node adjacent to a. Since there are j such columns,
a is adjacent to exactly j resource nodes.

In the third case, j columns of H are equal to the additive
inverse of U . Let i be one such column. In this case, it can be
shown that (a e ei) HT = 0 (mod 9) . In other words, node
(a e e;) is a resource node adjacent to a. Since there are j
such columns, a is adjacent to j resource nodes.

Thus, in all three cases, a is adjacent to exactly j resource

To illustrate Theorem 6, we construct a perfect 2-adjacency
placement in 6*. The sufficient conditions mentioned in The-
orem 6 are satisfied for this example with q = 3 and T = 1.
Thus, the H matrix is [l I]. The resources nodes in a
perfect 2-adjacency placement in 6' are shown with filled
circles in Fig. 4. In this figure, we note that, each nonresource
node is adjacent to exactly two resource nodes. For example,
nonresource node (2, 2) is adjacent to the resource nodes (2 ,
1) and (1, 2) .

nodes. This proves the theorem.

C. Perfect Placement of j Distinct Resource Types

Dejnition I : A perjiect j-type j-adjacency placement is a
placement with j distinct types of resources in which 1) each
nonresource node is adjacent to exactly one resource node of

516 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 5, MAY 1995

Fig. 4. Perfect 2-adjacency placement in 6-ary 2-cube.

each type, and 2) no two resource nodes are adjacent to each
other.

The method described in the proof of Theorem 6 for
obtaining perfect j-adjacency placements can be extended,
under certain conditions, to construct a perfect j-type j -
adjacency placement. The following two lemmas identify
sufficient conditions under which such an extension is possible.

Theorem 7: A perfect 3-type j-adjacency placement exists
in IC" if

I) k , a , and j satisfy the conditions in Theorem 6 with q
odd, and

2) there exist integers y and m such that p divides k and
PnL = 3.

Proof: The first condition in the theorem implies that
there exists a perfect j-adjacency placement in k". Identify
the matrix H as in the proof of Theorem 6. Let P =
(0, PI , Pz, . . . , PjPl} be the set of all m-tuples over the set
of integers {0,1, . . . , p - I }. Construct an m x n matrix
R = (r r L , . . . , q) such that

1) each column vector of R is a 7n-tuple in P ; and
2) if hi = hj, then T, # 4'1, where hi and h l are ith and

Note that, the above two conditions can be satisfied because
1) a column vector can repeat at most j times in H , and 2)
there are j distinct vectors in P .

Now identify a perfect 3-adjacency placement using the
method described in the proof of Theorem 6. To each resource
node a in this placement assign a type i if a.RT Pi (mod p)
for some P; E P. We now show that, in this assignment, no
two resource nodes adjacent to a nonresource node are of the
same type.

Let, if possible, a be a nonresource node which is adjacent to
two resource nodes of the same type. Also, let U . HT mod q =
h. Since q is odd, h + h $ 0 (mod q) ; thus, from the
construction of matrix H , we conclude that either 1) h appears

Ith column vectors of H .

j times in H , or 2) the additive inverse of h appears j times
in H .

If h appears j times in H , then any resource node adjacent
to a must be of the form (a 8 e i) such that e;HT = h; = h.
Further, two resource nodes (U 8 e i) and (a 8 el) must satisfy
the condition hi = hl. These two resource nodes will have the
same resource type if and only if

(U 8 e,) . RT = (a e e l) . RT (mod p)

+ (U - e,) . RT = (U - e l) . RT (mod p)

(since p divides k)
=+ e , . RT RT

=+ T ; = T l

+ ti; $ hl (from the construction of R).

This contradicts the requirement that hi = hl.
On the other hand, if the additive inverse of h appears j

times in N, then any resource node adjacent to a is of the
form (a e e i) such that e;HT = hi = h. Proceeding as above,
we can once again show that no two resource nodes adjacent
to a are of the same type.

Hence, the theorem.

Iv. APPROXIMATE RESOURCE PLACEMENTS IN k"

In Section 11, we discussed the necessary and sufficient
conditions for the existence of perfect and quasi-perfect j -
adjacency placements. The advantages of perfedquasi-perfect
placements are that 1) no two resource nodes are adjacent to
each other, and 2) no nonresource node is adjacent to more
than j + 1 resource nodes. These two conditions ensure j
adjacencies using as few resource copies as possible. However,
perfect/quasi-perfect j-adjacency placements do not exist for
all values of k ,n , and j.

In order to construct j-adjacency placements for all values
of IC, n, and j , we relax the constraints 1) and 2) stated above.
This implies that in the j-adjacency placements constructed in
this section two resource nodes can be adjacent to each other
and a nonresource node can be adjacent to more than (j + 1)
resource nodes. As a result, the number of copies of a resource
in the constructed placements may be more than the minimum
number required.

In view of the discussion above, we consider three mutually
exclusive cases: 1) j divides 2n and 1 5 j 5 71, 2) j does not
divide 2n and 1 5 j 5 71, and 3) n < j < 2n. Solutions for
these cases are described in the following three subsections.
In the first case, the number of resource copies used by the
approximate solutions asymptotically approaches the lower
bound j . k n / (2 n + j) as k + cx3 for each n. In the other two
cases, the number of resource copies used by the approximate
solutions is within a constant factor of the theoretical lower
bound for large I C .

A . Approximate Placements when j Divides 2n, 1 5 j 5 71

An algorithm for constructing approximate placements in
this case is given in Fig. 5. The basic idea of this algorithm
is best illustrated by an example. Consider a 1-adjacency

RAMANATHAN AND CHALASANI: RESOURCE PLACEMENT WITH MULTIPLE ADJACENCY CONSTRAINTS 517

Algorithm Resource.Place

Input Parameters: k , n, and 3 ;

If 2n/j is not an integer 1.
2.
3. Exit;
4 . Endif

Print 'The algorithm cannot handle this case";

5 . Find integers q and r surh that q divides k and qr - 1 = 2n/j.
If such integers cannot he found, find smallest q such that q' - 1 = 2 n / j

Let H be as in the proof of Theorem 6 6.

7. Place a copy of a resourre at a if a . H T 0 (mod q) ,

8. If k is an integral multiple of q
9. Return Placement; 1' Perfect 3-adjacency placement */

10. For i = 1 t o n do
11.

12.

Place a copy of a resource at a (a,,, a . + l , (k - l) , ~ , , . . . , a l) if
[a , ... a,+] (q - 1) a,-l . . . HT 1 0 [mod q); 1

13.

14.

15. Endfor;
16. Return Placement.

Place a copy of a resource at a E (a,,, . . . ,a .+* , (k - l) , a , , . . . , a l) if

[a a,+, k a,-, , . , . H T z 0 (modq); 1
Fig. 5 . Algorithm for constructing approximate ,;-adjacency placement.

placement in 7'. Since there are no integers q and T such that q
divides 7 and q' - 1 = 3, Step 5 of the algorithm returns q = 5
and T = 1. The algorithm then places copies of a resource at
all nodes orthogonal to the matrix H = [l 21 (Refer to Steps
6 and 7 of algorithm Resource-Place). The resource nodes thus
obtained are shown with 0 in Fig. 6. At the end of step 7 of
algorithm Resource-Place, if k is not a multiple of q (in this
case 5), then some nodes still would not have received their j
adjacencies. For example. in Fig. 6, node (2, 0) is not adjacent
to any resource node at the end of this step. This is because, if
k were 10 (a multiple of q) , this node would have received its
adjacency from node (2, 9) (Node (2, 9) is orthogonal to H) .
Since in a 7', (2 . 0) is adjacent to (2 , 6). we must provide a
resource copy at node (2, 6). This procedure must be repeated
for each node of the form (x ,O) which were to receive its
adjacency from (x,9) in lo2 (Steps 11 and 12 of algorithm
Resource-Place). Similarly, nodes of the form (6 , x) which
were to receive their adjacency from nodes (7 , ~) if k were
10, should each be provided with a copy of the resource (Steps
13 and 14 of algorithm Resource-Place). In Fig. 5, the nodes
that were provided with resource copies in Steps 11-14 of the
algorithm are indicated by placing a 0 around the nodes.

We observe that the total number of resources required
for the placement shown in Fig. 5 is 15 as compared to the
lower bound 10 obtained from the formula j . lcn/(2n + j) .
However, the number of resource copies can be reduced in
some instances. For example, nodes (1, 6) and (6, 4) were
provided with a copy of the resource in Steps 13 and 14
because these nodes were to receive their adjacencies from
nodes (1, 7) and (7, 4), respectively, in 10'. However, since
nodes (I , 6) and (6, 4) had already received their adjacencies
from nodes (2, 6) and (6, 31, respectively, (which were
provided with resource copies in Steps 11-12) resource copies
from nodes (1, 6) and (6, 4) could have been eliminated.

Fig. 6. 1-adjacency placement in 7-ary 2-cube.

This optimization can be easily incorporated into algorithm
Resource-Place by modifying Steps 13 and 14 as follows.

13.

14a.

14b.

Place a copy of a resource at
(I =; (a n r . ' . , a,+1, (k - 1). a,. ' . ' , a1)

if fewer than j neighbors of node n have a
resource copy and

[a, . . . ~,+lka,- l . . ai] . H T E 0 rrlod 4;

Algorithm Resource-Place can be extended under the con-
ditions identified in Theorems 7 to place j distinct types of
resources to ensure that each nonresource node is adjacent to
a resource node of each type. However, in this case, one cannot
perform the optimizations in Steps 13, 14a, and 14b. Through
examples, it can also be shown that Algorithm Resource-Place
is not always optimal. For instance, one can place resource
copies at nodes

((0,O). (0,415 (1 9 21, (2 . 0L (2,5). (2 , 6) , (3 ,3) , (4.11,

(5 ,4) , (5 . 5) , (5 ; 61, (6 , 2))

to obtain I-adjacency placement in 7'. This placement uses
only twelve resource copies as opposed to thirteen required by
the optimized Algorithm Resource-Place. Since, at present, we
are unable to determine the number of resource copies in an
optimal placement, we compare the number of resource copies
placed by algorithm Resource-Place with the theoretical lower
bound j . k n / (2 n + j) . We show that the difference between
the number of resource copies required by the algorithm and
the theoretical lower bound approaches zero as k tends to 30

for each n.
Theorem 8: The number of resource copies required by

algorithm Resource-Place for a j-adjacency placement ap-
proaches the theoretical lower bound j . k n / (2 n + j) as k
tends to 30 for each n.

518 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 5. MAY 1995

Proof: Let k = .$. q + t for integers s and t such that
s 2 0, and 0 < t < y. At the end of Step 7, the number
of resource copies placed by the algorithm is at most equal
to j . k n / (2 n + j) . Thus, the only additional copies placed
by the algorithm are in Steps 10-15. An upper bound on
the number of copies placed in these steps can be obtained
by counting the number of resource copies placed in an
(n - 1)-dimensional hyperplane of ((s + 1)q)" . That is, in
each iteration of the for-loop, the number of copies placed is
at most j . ((s +

Therefore, the ratio of the additional copies to the theoretical
lower bound is

. q n p 1) / (2 n + j) .

(s + 1)n - l 4 "-I
(s . q + t) " .

Since qr - 1 must equal 2 n / j . q cannot exceed (2n + j) / j .
Hence, k --+ m is equivalent to s -+ m. Taking limits as
s -+ m, the above ratio tends to zero. w

B. Approximate Placements when j Does
Not Divide 2 n . I 5 j 5 rL

Recall that, Algorithm Resource-Place is based on the
assumption that j divides 212. In this section, we consider the
case when j does not divide 2n. We propose two different
techniques to handle this case. Depending on the values of
the I C , n , and j , either of the two techniques could be better
in terms of the number of resource copies required. The first
technique finds an n' such that j divides 2n' and then uses
schemes from the previous sections to determine the required
resource placement. In contrast, the second technique finds a
j' such that j' divides 2n and then applies our earlier schemes.
These two techniques are described below.

I) Modijication o f n , to n': Let 71' be the largest integer
less than ,n such that 2n' is divisible by j . Partition k"
into k"-" IC-ary n'-cubes and use Algorithm Resource-Place
to find approximate j-adjacency placements in each one of
the k-ary n'-cubes. This is possible because j divides 2n'.
Since each node in h:" belongs to one of these k-ary n'-
cubes, this technique ensures that the j-adjacency constraint
is satisfied, albeit using more resource copies. The theorem
below compares the number of resource copies required by
this technique to the theoretical lower bound on the number
of resource copies required.

Theorem 9: The ratio of the number of resource copies
required by the above technique to the theoretical lower bound
on the number of resource copies required for a j-adjacency
placement in ICTL is bounded by 513 as IC tends to CO for each n.

Proofi From Theorem 8, the number of resources
placed by Algorithm Resource-Place in each k" approaches
(jk") / (2 n ' + j) as k + CO. Hence, the total number
of resources placed by the above technique approaches
(jk"' l2n' + j) . knpTL' as IC -+ 00. Since the theoretical
lower bound on the number of resource copies required is
(jIC")/(2n + j) , the ratio of the resource copies placed by the
above technique to this theoretical lower bound approaches
(2n + j) / (2 n ' + j) for large I C .

Since j does not divide 2 n , let 2n = s j + t for some
integers s and t . s 2 0 and 0 < t < j. If s and j are odd,

then n' = (s - l) j / 2 is the largest integer less than n such
that 2n' is divisible by j. Otherwise, the largest such integer
is s j / 2 . Therefore, n - n'<j . Hence,

2 j < 1 + -
2n' + j
2 j .
3 j

5 1 + - (since n' 1 j)

= 5 / 3 .

Hence the theorem.
2) ModiJication of j to j ' : Another technique to handle the

case in which 2 n is not divisible by j is to find the small-
est j' > j such that j ' divides 2 n and use Algorithm Re-
source-Place to find a j'-adjacency placement in IC".

Theorem IO: The ratio of the number of resource copies
required by the above technique to the theoretical lower bound
on the number of resource copies required for a j-adjacency
placement in k" is bounded by (2n + j)/(3j) as k tends to
oc: for each n.

Proofi From Theorem 8, the number of resources placed
by Algorithm Resource-Place in k" for a j'-adjacency place-
ment approaches (j ' k n) / (2 n + j ') as k + ca. Hence, the ratio
of the resource copies placed by the above technique to the
theoretical lower bound approaches (j ' (2 n + j)) / (j (Z n + j'))
for large k . Since this is an increasing function of j ' and since

w
Since 5 / 3 < (2n + j) / 3 j when 2 j < n, it follows from

Theorems 9 and 10 that the technique of modifying n to n'
is better than the technique of modifying j to j ' if 2 j < n;
otherwise, the latter technique is better.

j ' 5 n, the above ratio is bounded by (271 + j)/(3j).

C. Approximate Placements when j Does
Not Divide 2 n , n < j < 2 n

The placement algorithms discussed so far are based on the
assumption that either 1 5 j 5 n or j = 2 n . In this section, we
consider the complementary case when n < j < 2n. Since from
Theorem 1 there exist no perfect j-adjacency placements for
this case, we need to consider approximate placement schemes.

As in Section IV-B, approximate placements can be ob-
tained by either modifying n or j . In the first technique,
find the smallest integer n' > n such that 2n' is divisible by
j. Since j exceeds n, this condition is satisfied if n' = j.
Then, find a j-adjacency placement in k j using Algorithm
Resource-Place and modify it using techniques similar to those
in Steps 10-1 5 of Algorithm Resource-Place. Using arguments
similar to those given in the proof of Theorem 8, the number
of resource copies in the resulting placement can be shown to
be bounded by (k n / 3) + k" - (I C - 2)".

The second technique for obtaining an approximate j -
adjacency placement when n < j < 2 n is to construct a quasi-
perfect (2 n - 1)-adjacency placement in k" (see Theorem 3).
The number of resource copies required for this method is
bounded by 1;"/2. Since this bound is greater than the bound
of (ICn/3) + k" - (k - 2)" for the first technique, the first
technique is superior for large I C .

RAMANATHAN AND CHALASANI: RESOURCE PLACEMENT WITH MULTIPLE ADJACENCY CONSTRAINTS 519

divides 2n 1 3q,r. s.t. q divides k 1 j. k ” / (2 n + j)

TABLE I
SUMMARY OF RESULTS DERIVED IN THIS PAPER

perlect, optimal

= (2n - I)
divides 2n,

and qr - 1 = 2n/j
for all k k “ / 2 quai-perfect
V q , r , q‘ - I = 2n/j * approaches approximate,

1 5 I 5 n

does not di-

vide 2n. 1 5

k - w j 5 n

n < j < 2 n I f o r a l l k I bounded by 1 approximate

q does not divide k

for all k bounded by approximate

1 . k “ / (2 n + 1) as k - m asymptotically

optimal

m i n { v , : } . & a s

m i n { $, y - (k - Z) “ } as

k - m

f Results for k = 2 are presented in [2] .

V. CONCLUSIONS

In this paper. we studied the resource placement problem
in k-ary n-cubes. We described algorithms for constructing j -
adjacency placements in k”. We showed that these algorithms
can be extended to place j distinct types of resources in k”.
The key results are summarized in Table I. In addition, we
showed the following:

perfect (quasi-perfect) ,j-adjacency placements are impos-
sible in k-ary n-cubes if n < j < 2n(n < j < 2n - 1);
for n < 2 2 . the necessary and sufficient condition for a
perfect I-adjacency placement is that k” should be an
integral multiple of 2 n + 1;
a sufficient condition for a perfect ,j-adjacency placement
is that there exist integers q and T such that y divides IC
and qr - 1 = 2 n / j .

Finding the number of resource copies required for an optimal
j-adjacency placement for a general k” seems to be hard and
at present it is an open problem.

The results derived in this paper for k-ary n-cubes can
be extended to n-dimensional meshes in a straightforward
fashion. Notice that an n-dimensional mesh does not have
wraparound links that are present in the k-ary n-cube. Hence,
a j-adjacency placement in k” provides j adjacencies to all
nodes in the interior of the mesh; however, some nonresource
nodes on the boundary of the mesh might not be adjacent to
j resource nodes because of the absence of wraparound links.
Hence, some boundary nodes that do not have resources in
k“ may have to receive resource copies in the corresponding
mesh. In order to determine the exact location of resource
nodes on the boundary, techniques similar to those presented
in this paper can be used.

The results derived in this paper may also be generalized
to the case in which each nonresource node is required to
reach j resource nodes within h hops, h > 1, using partitioning
techniques similar to those in [2] . However, these partitioning
techniques do not always result in optimal placements. Finding

the optimal number of resource copies required for an h-hop
j-adjacency placement is an open problem.

ACKNOWLEDGMENT

The authors wish to thank F. Wang and Profs. K. Saluja and
B. Bose for their constructive comments during this work.

REFERENCES

[I] L. N. Bhuyan and D. P. Agrawal, “Generalized hypercube and hyperbus
structures for a computer network,” IEEE Trans. Comput.. vol. C-33,
pp. 323-333, Apr. 1984.

121 H.-L. Chen and N.-F. Tzeng, “Fault-tolerant resource placement in
hypercube computers,” in Proc. Int. Con$ Parallel Processing, Aug.
1991, pp. 517-524.

[3] G.-M. Chiu and C. S. Raghavendra, “Resource allocation in hypercube
systems,” in Proc. Distrib. Memory Comput. Con$, Apr. 1990, pp.
896902.

[4] F. T. Leighton, Introduction to Parallel Algorithms and Architectures:
Arrays, Trees, Hypercubes.

[51 M. Livingston and Q. Stout, “Perfect dominating sets,” Congressus
Numeranrium, vol. 79, pp. 187-203, 1990.

[6) -, “Distributing resources in hypercube computers,” in Proc.
Third Con$ Hypercube Concurrent Cumput. and Appl., Jan. 1988, pp.
222-23 1.

171 A. L. N. Reddy, P. Banerjee, and S. G. Abraham, “ U 0 embedding in
hypercubes,” in Pmc. Int. Con$ Parallel Processing, Aug. 1988, pp.
331-338.

[SI Y. Saad and M. H. Schultz, “Topological properties of hypercubes,”
IEEE Trans. Compur., vol. 37, pp. 867-872, July 1988.

[9] C. L. Seitz et al., “The architecture and programming of the Ametek
Series 20 10 multicomputer,” in Proc. Third Con$ Hypercube Concurrent
Comput. Appl., Jan. 1988, pp. 33-37.

New York: Morgan-Kaufmann, 1992.

Parameswaran Ramanathan received the B Tech
degree from the Indian Institute of Technology,
Bombay, India, in 1984, and the M.S E. and Ph D
degrees from the University of Michigan, Ann Ar-
bor, in 1986 and 1989, respectively

From 1984 to 1989 he was a Research Assistant
in the Department of Electncal Engineering and
Computer Science at the University of Michigan.
At present, he is an Assistant Professor in the De-
partment of Electrical and Computer Engineering,
dnd in the Department of Computer Sciences at the

University of Wisconsin, Madison. His research interests include the areas of
real-time systems, fault-tolerant computing, distributed system?, and parallel
algorithms

Suresh Chalasani received the B.Tech. degree in
electronics and communications engineering from
J.N.T. University, Hyderabad, India, in 1984, the
M.E. degree in automation from the Indian Institute
of Science, Bangalore, in 1986, and Ph.D. degree
in computer engineering from the University of
Southern California in 1991.

He is currently an Assistant Professor of Electri-
cal and Computer Engineering at the University of
Wisconsin, Madison. His research interests include
parallel architectures, parallel algorithms, and fault-
tolerant systems.

