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Executing Algorithms with Hypercube Topology 
on Torus Multicomputers 

Antonio GonzBlez, Member, IEEE, Miguel Valero-Garcia, Member, IEEE, and Luis Diaz de Cerio 

Abstract-Many parallel algorithms use hypercubes as the 
communication topology among their processes. When such algo- 
rithms are executed on hypercube multicomputers the communi- 
cation cost is kept minimum since processes can be allocated to 
processors in such a way that only communication between 
neighbor processors is required. However, the scalability of hy- 
percube multicomputers is constrained by the fact that the inter- 
connection cost-per-node increases with the total number of 
nodes. From scalability point of view, meshes and toruses are 
more interesting classes of interconnection topologies. This paper 
focuses on the execution of algorithms with hypercube communi- 
cation topology on multicomputers with mesh or torus intercon- 
nection topologies. The proposed approach is based on looking at 
different embeddings of hypercube graphs onto mesh or torus 
graphs. The paper concentrates on toruses since an already 
known embedding, which is called standard embedding, is optimal 
for meshes. In this paper, an embedding of hypercubes onto 
toruses of any given dimension is proposed. This novel embedding 
is called xor embedding. The paper presents a set of performance 
figures for both the standard and the xor embeddings and shows 
that the latter outperforms the former for any torus. In addition, 
it is proven that for a one-dimensional torus (a ring) the xor em- 
bedding is optimal in the sense that it minimizes the execution 
time of a class of parallel algorithms with hypercube topology. 
This class of algorithms is frequently found in real applications, 
such as FFT and some class of sorting algorithms. 

Index Terms-Graph embeddings, hypercubes, scalable dis- 
tributed memory multiprocessors, torus multicomputers, mapping 
of parallel algorithms. 

1. INTRODUCTION 

HYPERCUBE communication topology is frequently found A in real parallel applications. Some examples include 
parallel algorithms for FFT, sorts, etc. [3], 1111. These algo- 
rithms will be called hypercube algorithms or d-cube algo- 
rithms, where d is the number of dimensions of the hypercube. 
A hypercube algorithm of dimension d or d-cube algorithm, 
consists of 2d processes labeled from 0 to 2d - 1 such that 
every process communicates only with its d neighbors, one in 
each dimension of the d-cube. 

In this paper, the problem of executing d-cube algorithms 
on multicomputers [l]  is considered. A multicomputer is a 
distributed memory multiprocessor in which the nodes 
(processor + local memory) are interconnected through point- 
to-point links. 
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The nodes of a multicomputer are interconnected according 
to a given pattern or interconnection topology. If this topology 
is a hypercube of dimension d (d-cube multicomputer) then the 
d-cube algorithm can be executed on the multicomputer in 
such a way that neighbor processes are mapped onto adjacent 
nodes (nodes directly connected through a point-to-point link). 
In this case, it is said that each process of the d-cube algorithm 
has all its d neighbors at distance 1 in the multicomputer (i.e., 
all required communication is between neighbor nodes). In this 
way, the cost of the communication component of the d-cube 
algorithm is kept minimum when it is executed on a hypercube 
multicomputer. 

An important drawback of hypercube as interconnection to- 
pology for multicomputers is that it is not scalable. In a d-cube 
multicomputer each of the 2d nodes is directly connected to 
other d nodes through point-to-point links, Therefore, the cost 
(and the complexity) of the interconnection hardware per node 
increases with the number of nodes. Other interconnection 
topologies, such as meshes or toruses are considered more 
suitable for multicomputers with a large number of nodes, 
since the interconnection cost per node does not depend on the 
total number of nodes [13]. For instance, each node of a two- 
dimensional torus multicomputer is directly connected to other 
4 nodes, it does not matter the number of nodes of the multi- 
computer. 

To execute a d-cube algorithm on a multicomputer with to- 
pology other than hypercube, the first step is to find a mapping 
function that allocates each process of the parallel program 
onto a given processor of the multicomputer. The problem can 
be formulated as finding an embedding of the graph that repre- 
sents the topology of the program (a hypercube) onto the graph 
that represents the topology of the multicomputer (a mesh or a 
torus). 

The problem of embedding a given source graph into a des- 
tination graph has been extensively studied in the literature. In 
particular, embedding any type of graph into a hypercube is a 
widely studied topic (see, for instance, [2], [7], [ l l ] ,  [12], just 
to mention a few recent works). However, the problem of em- 
bedding hypercubes onto a mesh or a torus has not been so 
extensively studied. In Section 1I.C we review the most rele- 
vant works in this subject. 

When the topology of the algorithm and the multicomputer 
are different, it may be impossible to allocate neighbor proc- 
esses to neighbor processors. For instance, in a two- 
dimensional torus multicomputer, every process of a d-cube 
algorithm has at most four of its d neighbors at distance 1. It 
has at least d - 4 neighbors at a distance greater than 1. A mes- 
sage to any of these “far” neighbors is routed through the 
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point-to-point links and nodes which are found along the path 
to the destination node. A good mapping of a parallel algo- 
rithm onto a multicomputer will keep the neighbor processes 
as close as possible in the multicomputer, minimizing in this 
way the communication cost of the execution. 

This paper begins by reviewing some related work on em- 
beddings and then, it concentrates on a particular type of em- 
beddings that is called embeddings with constant distances. It 
will be shown that these embeddings are more adequate for our 
purposes, that is, for executing d-cube algorithms onto meshes 
or toruses. A well known embedding of hypercubes onto 
meshes is the so called standard embedding [SI. It is an em- 
bedding with constant distances and it is optimal for meshes of 
any given dimension. In consequence, the contribution of this 
paper centers on embeddings of hypercubes onto toruses. 

A new embedding, called xor embedding, is proposed. The 
paper presents a set of performance figures and shows that this 
embedding outperforms the standard embedding when it is 
used as the mapping function of a d-cube algorithm onto a 
torus multicomputer. In addition, it is proven that the xor em- 
bedding is optimal for one-dimensional toruses (also called 
rings). 

This paper is organized as follows. In Section 11, we intro- 
duce some notation and describe more precisely the contribu- 
tion of this paper as well as some related work. Sections I11 
presents the xor embedding. Section IV compares the per- 
formance of the xor embedding with that of the standard em- 
bedding using a set of different performance metrics. In Sec- 
tion V, it is proven that the proposed embedding is optimal for 
rings in the sense that it results in the shortest execution time 
of a class of d-cube algorithms. Finally, some concluding re- 
marks are presented in Section VI. 

11. PRELIMINARIES AND RELATED WORK 

A. Definitions 
A d-cube algorithm is a parallel algorithm that consists of 

2d processes such that every process communicates with ex- 
actly other d processes. These d processes are called its neigh- 
bors. We also say that the communication topology of the al- 
gorithm is a hypercube. That means that the 2d processes can 
be labeled from 0 to 2d - 1 in such a way that processes n and 
m are neighbor (i.e., they communicate) if the binary codes for 
n and m differ in a single bit. If this bit is the ith bit then m is 
the neighbor of n in dimension i, and n is the neighbor of m in 
the same dimension. Then, it is written: 

m = Ni(n) 
n = Ni(m) 

In this paper, we focus on d-cube algorithms in which every 
process has the following structure: 

do i=O,d-1 
compute 
communicate with neighbor in dimension i 

snddo 

In this algorithm every process consists of d stages, each of 
them composed of a computation phase followed by a com- 

munication phase. In each stage, every process uses a different 
dimension to exchange information with one of its neighbors. 

The duration of the computation phase and the amount of in- 
formation to be exchanged is assumed to be the same for all the 
stages and all the processes of the d-cube algorithm. A d-cube 
algorithm with the above features will be called a compute-and- 
communicate d-cube algorithm, or a CC d-cube algorithm for 
short. This kind of d-cube algorithms are common in real appli- 
cations like FFT, some type of sorts, etc. [3], [ 111. 

Parallel algorithms can be modeled by graphs. The vertices 
of the graph represent the processes of the algorithm and the 
edges of the graph represent the neighbor relationship among 
processes. A multicomputer can also be modeled by a graph. 
The vertices of the graph represent the nodes of the multicom- 
puter and the edges of the graph represent the point-to-point 
links which interconnect these nodes. The terms edge and link 
will be used indistinctly in this paper. 

Multicomputers can be classified according to their inter- 
connection topology. The work presented in this paper focuses 
on mesh and torus multicomputers, since they have scalable 
interconnection topologies. 

A (k , ,  kz, ..., k,) c-dimensional torus is an undirected graph 
in which the nodes can be labeled as c-tuples ( i l ,  i2, ..., i,), 
0 I G < kj. Every node (il, i2, ..., i,) of the graph has two neigh- 
bors in each dimension of the torus. Its left neighbor in di- 
mension j is ( i l ,  ..., (ij - 1) mod kj, ..., i,) and its right neighbor 
in this dimension is (il, ..., (ij + 1) mod kj, ..., i,). 

A (kl, k2, ..., k,) c-dimensional mesh is an undirected graph 
in which the nodes can be labeled as c-tuples (il,  i2, ..., i,), 
0 I ij < kj. Every node of the graph has two neighbors in each 
dimension j of the mesh if 0 < ij < kj - 1. Its left neighbor is 
(il,  ..., ij - 1, ..., i,) and its right neighbor is (il, ..., ij + 1, ..., i,). 
If 4 = 0, the node has only a right neighbor and if 4 = kj - 1 
then it only has a left neighbor. 

A line is a one-dimensional mesh while a one-dimensional 
torus is called a ring. 

Fig. 1 shows some examples and illustrates how their nodes 
are labeled. 

The distance in a graph between two vertices is the mini- 
mum number of edges that join those vertices. In the particular 
case of the graph that models a d-cube, the distance between 
two vertices is known as the Hamming distance (number of 
different bits in their binary representations). 

An embedding of graph G into graph H is an injection from 
the vertices of G to the vertices of H .  In this paper, our atten- 
tion is restricted to embeddings in which G and H have the 
same number of vertices, and therefore the mapping is given 
by a bijective function. 

The problem of executing a CC d-cube algorithm on a mul- 
ticomputer can be restated as the embedding of graph G, which 
represents the CC d-cube algorithm, onto graph H, which rep- 
resents the multicomputer. 

The dilation of an edge (n ,  m )  of G (edge joining vertices 
n and m )  is the distance in H betweenfln) andflm). 

If G models a CC d-cube algorithm, an edge exists between 
vertices n and m if m = Ni(n), for some iE [0, d - 11. The dila- 
tion of this edge will be denoted by Di(n). Obviously, since 
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n = Ni(m), Di(n) = Di(m). When a CC d-cube algorithm is exe- 
cuted on a multicomputer, as defined by a given embedding J 
a communication between processes n and Ni(n) (required in 
iteration i of the CC d-cube algorithm) is implemented by a 
message which is routed through Di(n) point-to-point links and 
Di(n) - 1 nodes of the multicomputer represented by H ,  which 
are found in the shortest path between nodes An) and ANi@)). 
In the following, a store and forward routing strategy is as- 
sumed. Therefore, the cost of sending a message fromfln) to 
ANi@))  is proportional to Di(n). 

0 1  2 3 4  5 6 7  0 1  2 3 4 5  6 7  . - - - - - - .  f I 

0.0 0,l 0.2 0.3 

(d 
Fig. I .  Different types of multicomputers: (a) line, (b) ring, (c) (4, 4) mesh, 
and (d) (4.4) torus. The picture also shows how their nodes are. labeled. 

B. Contributions 

As it was mentioned in the introduction, this paper focuses 
on executing CC d-cube algorithms on scalable multicomput- 
ers. The function that maps processes onto processors is an 
embedding of the graph defined by the communication topol- 
ogy of the algorithm (hypercube) onto the graph defined by the 
interconnection topology of the multicomputer. In particular, 
we are interested in torus multicomputers since for meshes, an 
already known embedding, called standard embedding 
and described in the next section, is optimal for CC d-cube 
algorithms. 

The work presented in this paper centers on those embed- 
dings in which Q(n) = Di (k [0, d - 11 and n~ [0, 2d - 13). This 
means that every process has its neighbor in dimension i at the 
same distance in the target multicomputer. In the following, an 
embedding with this feature is called embedding with constant 
distances and the values of D , ( k  [0, d - 13) are called the dis- 
tances of the embedding. 

Embeddings with constant distances have the property that 
every process takes the same time to communicate in any 
given stage of the CC d-cube algorithm. Because the duration 
of the compute phase is also the same for every process, wait- 
ing intervals are avoided since neighbor processes arrive at the 
same time at the point where they have to communicate. This 
fact will be illustrated later through an example. 

In this paper, an embedding with constant distances of hy- 
percubes onto toruses of any arbitrary dimension is proposed. 
The embedding is called xor embedding. It will be shown that 
this embedding outperforms the standard embedding using a 
set of different performance metrics. Moreover, we prove that 
the proposed embedding is optimal for rings (one-dimensional 
toruses) in the sense that it minimizes the execution time of CC 

d-cube algorithms when they are executed on a ring multicom- 
puter. Another additional property of the proposed embed- 
dings is their simplicity, which means a negligible cost to 
compute the location of any process in the multicomputer. 
Some preliminary results about the xor embedding were pre- 
sented in [4]. 

C. Related Work 
The problem of embedding d-cubes onto meshes and 

toruses has been previously considered by other authors. Here, 
a review of the most related work is presented. 

Matic presents in [lo] a study of the standard embedding 
(defined below) of d-cubes onto two-dimensional meshes 
and toruses. To define the standard embedding (which will 
be denoted byf,,d) of a d-cube onto a line or a ring, the nodes 
of the target multicomputer are numbered from 0 to 2d - 1 
(see Fig. l a  and lb). Then, the standard embedding is de- 
fined by (see Fig. 2a): 

fstd (n)  = 

In general, the standard embedding of a d-cube onto a (kl ,  
kz, ..., k,) c-dimensional mesh or torus is defined as follows: 

fsrd(n)=(pl, p2t*..vpc) 

where 
i-1 

[ j=1 

p i  = n mod 5 k j )  div n kj  

Fig. 2b shows an example in which c = 2 and k, = kz = 4. 
Obviously, the standard embedding is an embedding with 
constant distances. For the particular case in which ki = 2&', 
ic [ 1, c], the distances of the standard embedding are: 

D. I -  - 2imd(dc) i c  [O, d -  11 

0 1 2 3  - 
(a) (b) 

Fig. 2. Standard embeddings of: (a) a 3-cube onto a line or a ring and (b) a 
4-cube onto a (4,4) mesh or torus. Each label indicates which vertex of the 
d-cube is mapped onto each node of the multicomputer. Wraparound links 
are not shown for clarity. 

It can be shown that the standard embedding is optimal for 
meshes, in the sense that it minimizes the average distance [5],  
which in turn results in the shortest execution time. However, 
it is not optimal for toruses, as it will be shown later in this 
paper. 

Harper in [6] and Lai and Spague in [8] solve the problem 
of embedding d-cubes onto meshes to minimize the dilation of 
the embedding (the maximum dilation of any edge). Both pro- 
posals use the byweight embedding, denoted byfb,,,, which is 
not an embedding with constant distances. Next, this embed- 
ding is briefly described. 



806 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 8, AUGUST 1995 

In the case of a line, the labels of the vertices which repre- 
sent the processes of the d-cube algorithm are ordered by their 
weights. The weight of a label is the number of 1s in its binary 
representation. Labels with the same weight are ordered in 
descending order. Then, the processes of the d-cube ordered in 
that way are allocated to the nodes of the line, from left to 
right. Fig. 3a shows an example. The byweight embedding can 
be extended to meshes of any dimension. In particular, Lai and 
Spague extend this embedding to two-dimensional meshes in 
[8]. Fig. 3b shows an example. 

Fig. 3. Byweight embeddings of: (a) a 3-cube onto a line and (b) a 5-cube 
onto a (8,4) mesh. 

The byweight embedding minimizes the dilation of the em- 
bedding for lines, and it has a lower dilation than the standard 
embedding for two-dimensional meshes. This is an interesting 
property in some particular applications of embeddings. For 
instance, Lai and Spague propose this embedding to solve the 
problem of placing the processors of a hypercube on a printed 
circuit board or a chip (which can be modeled as a two- 
dimensional mesh). However, the byweight embedding is not 
an embedding with constant distances, which is an important 
property in the context of executing CC d-cube algorithms 
onto multicomputers. Variable distances result in waiting in- 
tervals during the execution of the CC d-cube algorithm. These 
are due to the fact that two neighbors that are going to com- 
municate finish their respective previous computation at dif- 
ferent times. The one that finishes earliest must wait for the 
other to finish. These waiting intervals contribute to increase 
the execution time. To illustrate this fact, Fig. 4 shows an ex- 
ample in which the execution time of a CC 3-cube algorithm 
on a line for both the standard embedding and the byweight 
embedding are compared. The waiting intervals which con- 
tribute to make the byweight embedding run slower than the 
standard embedding are also shown. 

In [9], Ma and Tao proposed several embeddings among 
toruses and meshes of different dimensions. Their proposals 
are based on generalizing the concept of gray code from radix- 
2 numbering system to mix-radix numbering systems. Since a 
d-cube can also be seen as a d-dimensional mesh or torus with 
two elements in each dimension, their embedding can also be 
applied to solve the problem addressed in this paper. However, 
they focus on minimizing the dilation (the longest dilation of 
any link of the d-cube) and, therefore, the resulting embed- 
dings in general do not have constant distances, which is a 
desirable property for our objective. However, if one starts 
with a d-cube represented by means of a (2, 2, ..., 2) d- 
dimensional mesh or torus, then the resulting embedding onto 
a ring or a two-dimensional torus has constant distances. Nev- 
ertheless, its average distance and therefore its performance 

a Computation 

I+- Communication 

1 Waiting interval 

(4 
f r td  fbB 

0 1 2 3 4 5 6 1  0 4 2 1 6 5 3 7  

Fig. 4. (a) Dilations for the standard and byweight embeddings (d = 3). Exe- 
cuting a CC 3-cube algorithm on a line using: (b) the standard embedding and 
(c) the byweight embedding. 

for executing our target algorithm is worse than the embedding 
proposed in this paper. 

In. THE XOR EMBEDDING 

Since the standard embedding is optimal for meshes, we fo- 
cus just on toruses. The proposed embedding is called xor em- 
bedding and it is denoted byf,,. It belongs to the class of em- 
beddings with constant distances. In this section, the xor em- 
bedding for the case of a one-dimensional torus (a ring) is first 
described, and then it is generalized for any dimension. 

A. One-Dimensional Torus (Ring) 
Given a positive integer x ,  let x ( i )  denote the ith bit of the 

binary representation of x .  The least significant bit is consid- 
ered to be the 0th bit. Let G be the graph which represents 
the CC d-cube algorithm and R be the graph which repre- 
sents the ring multicomputer. Assume that the vertices of R 
are labeled from 0 to 2d - 1 clockwise (see Fig. lb). Let 
(n(d - l), n(d - 2), ..., n(l), n(0)) be the label (in binary 
code) of vertex n in G. This vertex is mapped onto vertex m 
=fxo,(n) in R, whose label in binary code (m(d - l), ..., m(0)) 
is: 

m(i) = n(i) k [ O ,  d -11, i f d - 2 
m(d - 2)  = XOR (n(d - l), n(d - 2) )  

where XOR (a, b) is the exclusive-or of bits a and b. Fig. 5 
shows an example for d = 4. 

B. General Case 
The xor embedding of a d-dimensional hypercube onto a 

(2d1, 2&, ..., 2") c-dimensional torus such that 
d ,  + d ,  + ... + d ,  = d is now presented. 
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0 1 2 3 4 5 6 7 12 13.14 15 8 9 10 11 
1 1 1 1 - 1 1 1 1 1 1 1 1  - -  - - - - - -  

Fig. 5. An xor embedding of a 4-cube onto a ring. The labels indicate which 
node of the d-cube is mapped onto the corresponding node of the ring. 

Let us first define Kj in the following way: KI = 0, and for 
every 1 < j  IC + 1 we have that: 

j-1 

kj  =E di 
j=1 

Let G be the graph which represents the d-cube and T be the 
graph which represents the torus. Then, vertex n of G is 
mapped onto vertex (ml ,  m2, ..., m,) =&An) in Tas follows: 

mj(i) = n(i + 4) i E [0, dj - 11, i # dj - 2 
mj(dj - 2)  = XOR (n(Kj+l- l), n(Ki,, - 2))  

Fig. 6 shows an example for d = 6. It can be noted that both 
the standard and the xor embedding of a d-cube onto a 
c-dimensional torus can be viewed as multiple embeddings of 
smaller hypercubes onto rings. For instance, in Fig. 6, nodes 
from 8 to 13 of the 6-cube constitute a 3-cube that is mapped 
onto the 8 nodes of the second row of the torus which consti- 
tute a ring. This embedding is again an xor embedding. 

Note the simplicity of function fmr(n). This function, which 
is used very frequently for routing messages during the execu- 
tion of the CC d-cube algorithm, consists of simple bit opera- 
tions, and its computational cost is negligible. 

n(5) n(4) n(3) n(2) n(1) n(O) 
d-cube nodes 

I 1  LF=zl 

Fig. 6. An xor embedding of a 6-cube onto a (8, 8) torus. The wraparound 
links are not shown, for clarity. 

IV. PERFORMANCE ANALYSIS 

In this section, the performance of the xor embedding and 
the standard embedding are compared using a set of different 
performance metrics. Most of these metrics were used by 
Matic in [lo] to evaluate the standard embedding for two- 
dimensional meshes and toruses. Here, the corresponding ex- 
pressions for both the standard and the xor embeddings of a 
d-cube onto a (2d', 2d2 ,  . . ., 2dc)  c-dimensional torus are de- 
rived. In some cases where the general expressions are not 
easy to compare, we derive the expression corresponding to 
the particular case of a squared torus. A squared torus is a 
(2dc, 2dc, ..., 2dc) c-dimensional torus, that is, a torus whose all 
dimensions have the same size. These list of metrics is the 
following: 

The execution time ( T f ( d l ,  d2, ..., dc)). This represents the 
execution time of a CC ( d ,  + d2 + ... + d,)-cube algorithm 
onto a (2d', 2 d 2 , .  . ., 2dc)  c-dimensional torus when the 
embeddingfis used as the mapping function. 
The links dilation spectrum (Ai,d2,, , , ,dc (D)). This gives 
the number of links with dilation D when a ( d ,  + d2 + ... 
+ d,)-cube is embedded onto a (2d1, 2&, ..., 2&) 
c-dimensional torus as defined by the mapping function$ 
The longest dilation D;f ,  (d l  , d , ,  . . . , d, ) ) .  This is the 
maximum dilation of any link of the hypercube when it is 
embedded onto a (2d', 2&, ..., 2") c-dimensional torus as 
defined by the embedding$ 
The total dilation (Of ( d ,  , d ,  . . . , dc)) .  This represents 
the sum of dilations of all links of the hypercube. 
The maximum load and minimum load 
( L k ( d l ,  d 2 ,  .. ., d , ) ,  L i i , ( d l ,  d , ,  . . ., dc)) .  The load of a 
node due to communication tasks is measured as the 
number of links of the hypercube that traverse that par- 
ticular node (those links that begin or finish at that node 
are not considered). These parameters give the maximum 
and minimum value of the load of any node as a result of 
using the embedding$ 
The average load (Live ( d ,  , d ,  , . . . , d ,  )). This is the aver- 
age load of a node due to communication tasks. 

A. Execution Time 

When using an embedding as a mapping function of a 
parallel algorithm onto a multicomputer, the most important 
performance measure of the embedding is the time that the 
execution of the algorithm takes as a result of using such a 
mapping. 

Let T, be the duration of the arithmetic computation phase 
in every stage of the CC d-cube algorithm, when it is executed 
on the target multicomputer. Let T, be the cost of sending a 
message through a point-to-point link on the multicomputer. 

The time to execute a CC d-cube algorithm on a multicom- 
puter with 2d nodes, using the embedding f can be expressed 
as: 

Tf = dT, + Tcf 
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where Tcf is the cost of the communication component of the 
CC d-cube algorithm. Tcf can be expressed as follows: 

Td = mUX(Td_1(tl): n = 0..2d -1) (a) 

(b) 
T (n )  = Di ( n ) ~ ,  + [I;.-* (n), I;.-, (Ni (n))} 

T-,(n) = 0 

In the above expressions, Ti@) is the cost of the communi- 
cation component for process n from the beginning of the exe- 
cution to the end of stage i .  Expression (a) indicates that Tcf is 
equal to the highest communication component cost of any 
process at the end of the d stages of the CC d-cube algorithm. 
Expression (b) gives the communication component cost for 
process n at the end of stage i .  In this stage process n must 
exchange information with its neighbor Ni(n). The cost of ex- 
changing this information is Di(n)Tc (since a store and forward 
routing is assumed). However, this exchange cannot start until 
both processes n and Ni(n) are ready to do it. In general, either 
process n or process Ni(n) will have to wait for its neighbor to 
arrive to the point in which communication can be started. 
This is why the term "max" appears in expression (b). These 
idle intervals were called waiting intervals in Fig. 4. 

Obviously, if the multicomputer has a d-cube interconnec- 
tion topology then the best embedding is An) = n (identity 
embedding). In this case Di(n) = 1 (for every i and n) and the 
execution time is 

Tf =d(T ,  +T,) 
If the embedding has constant distances then Di(n) = Di for 

every n. In this case, the time to execute a CC d-cube algo- 
rithm onto a multicomputer, as defined by an embeddingfis: 

d-1 d-1 

Tf = (T, + DiT,) = dT, + T, 
i=O i=O 

Di = d(T, + T,D,) 

where D, is the average distance of the embedding: 
d-1 

Z Di 
0, - i=O - - average distance (f) 

d 
For a (2d1, ..., 2&) c-dimensional torus, the average distance 

of the standard embedding is: 

and the average distance corresponding to the xor embedding 
is: 

Since the execution time of the CC d-cube algorithm is pro- 
portional to the average distance of the embedding we can 
conclude that the standard embedding results in about a 33% 
increase in the execution time when compared with the xor 
embedding. 

Obviously, the embedding with constant distances which 
minimizes the execution time of the CC d-cube algorithm is 
that whose average distance D, is minimum. An embedding 
with such property is said to be optimal. The standard embed- 
ding is optimal for meshes of any dimension but not for toruses 
since we have just seen that the xor embedding outperforms it. 
In addition, it will be proven in Section V that the xor embed- 
ding is optimal for one-dimensional toruses. 

B. Links Dilation Spectrum 
B. I Standard Embedding on Rings 

Here, the links dilation spectrum for the standard embed- 
ding in the case of a one-dimensional torus is derived. 

Notice that any node of the hypercube has its neighbor in 
dimension i at distance 2' in the toys. Since there are 2d nodes, 
we have 2"' links with dilation 2' for each ig[O, d - 11. We 
can then conclude that the links dilation spectrum is: 

,4i'd(2i) = 2d-' ; (0 I i < d - 1) 

B.2 Xor Embedding on Rings 

In the xor embedding for rings, every node has a neighbor at 
distance 2' for each k [ O ,  d - 21 and two neighbors at distance 
2",. In consequence, the links dilation spectrum is as follows: 

B.3 General Case 

The links dilation spectrum for both the standard and xor 
embeddings can be computed from the spectrum of the one- 
dimensional case using the following expression: 

Ad,,dz,.. . ,dc ( 2 i )  = 2 ' d j  (2i)n 2dk 
j=1 1 k11,  1 
- (  k*i ) 

In the particular case of a squared c-dimensional 

Ai:dz,,,,,dc ( 2 ' )  = C 2d-';  (0 I i I d 1 C-1) 

the standard embedding we have that 
torus, for 

and, assuming dlc 2 2, for the xor embedding the correspond- 
ing expression is 

c 2 d - 1 ;  0 I i 5 d 112-3 
A z 2 , . . . p d c  ( 2 ' )  = ( . 2d; i = d /  c -  2 

C. Longest Dilation 
The longest dilation can be obtained from the links dilation 

spectrum functions previously developed. For the standard 
embedding we have that 

D Z ( d , ,  d, ,  .. ., d , )  = m ~ ~ ( 2 ~ l - l ,  2d2-1 ,  ..., 2dc-') 

and for the xor embedding the corresponding expression is 
(assuming di 2 2 )  

D z ( d , ,  d , ,  ..., d , )  = m ~ x ( 2 ~ l - ~ ,  2d2-2,  ..., 2dc-2)  
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It can be seen that the longest dilation of the xor embedding 
is 50% shorter than that of the standard embedding. 

D. Total Dilation 

tion spectrum. It is given by the following expression: 
This parameter can also be computed using the links dila- 

X 

Dt =c 2'A(2') 
i=O 

where 2' =Om,. Next, this expression is further developed for 
both the standard and the xor embeddings and for some par- 
ticular toruses. 

In the case of the standard embedding on rings we have that 
d-1 

D:d(d) = 2' . 2d-' = 2d-'(2d - 1) 
i=O 

whereas for the xor embedding on rings the total dilation is 

i=O 

In the case of a squared c-dimensional torus we have that 
dlc-1 

Ds td(d lc ,  ..., d i e ) =  2' * ~ * 2 ~ - '  
i=O 

= c .2d-' (2d'c - 1) 
dlc-3 

D y ( d l c ,  ..., d l c ) =  2' . C * 2 d  
i=O 

1) 
= 2d-1(3.2d/c-2 - 

Notice that the total dilation of the standard embedding is 
about 33% higher than that of the xor embedding in both 
cases. 

E. Maximum and Minimum Loads 
In this section, the load due to communication tasks of 

every node is analyzed. The objective is to determine the value 
for the most loaded node and the least loaded one. 

E.l Standard Embedding on Rings 

Assume that a d-dimensional hypercube is to be embedded 
onto a one-dimensional torus with 2d nodes. Let Gd(n)  be the 
load of node n due to the links whose dilation is 2'. We have 
that 

n mod 2"'; o 5 n mod 2'+' < 2' 
2"' - 1 - mod 2"'; 2' 5 n mod 2"' < 2'" ( G"(n) = 

Notice that GId(.) is a periodic function with period 2'+', 
and it is defined in the interval nE [0, 2d - 11. Fig. 7 illustrates 
an example when d = 4. The figure shows the load of every 
node due to links whose dilation is 22. 

Let L$'(n) be the load of node n due to links whose dila- 
tion is either 2' or 2"', that is, 

L&(n) = Ly(n)+ q!'(n) 

L 2 ( n ) 0  1 2  3 3 2 1 0  0 1 2  3 3 2 1  0 

Fig. 7. Load of each node due to links with dilation equal to four for the stan. 
dad embedding of a 4-cube onto a ring. 

It can be shown that 

2(n mod 2'); 

2(2' - 1 - n mod 2'); 

n mod 2"' < 2i-' 

(2i - 1); 2'-' 5 n mod 2i+' < 2' + 2i-' 

n mod 2"' 2 2' + 2'-' 

L:!' (n)  = 

Again L$-,(n)is a periodic function with period 2"', and it 

is defined in the interval ne [0, 2d - 13. Fig. 8 shows graphi- 
cally how these expressions were obtained. 

Fig. 8. Computing Li:tl (n)  from Litd (n)  and Li" (n) .  

Now, the total load of a given node, which is denoted by 
Crd(d, n), can be computed. If d is even then 

q ? d ,  n) = L;!',L*(n) + L;!3,d-4(n) + ... + L$(n) + L f ( n )  

y ( d ,  n) = L;!l,d-2(n)+ L;!3,d-4(n) + ... + L$(n) 

and if d is odd we have that 

and obviously, 

L L ( d )  = max[Lstd(d, n)] 

Due to the fact that the period of L$-,(n) is four times the 

period of Li!'&-3(n), there are always two periods of 

L;!!2,i-3(n) where L&(n) is maximum for every n inside 
these two periods. In consequence, there is always at least one 
node n such that both L;;f-'(n) and Li!2,i-3(n) get its maxi- 
mum value for this node (see Fig. 9). Therefore, if d is even 
then 

Lg ( d )  = maS( Ly!l,d-2 (n)) + (Ly!3,d-4(n)) 

+ . . . + mar (e; (n,) 
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the maximum load of the standard embedding on rings is given 
by the following expression: 

Regarding the minimum load, it can be seen that nodes 
0 and 2d - 1 have a null load; then, IC.::,, ( d )  = 0. 

E.2 Xor Embeddings on Rings 
Notice that the load of a node due to links whose dilation is 

less than 2"* is the same for both the standard and the xor em- 
bedding, that is 

L y ( n ) = L : r d ( n )  ; O I i c d - 2  

In consequence 

L r  (d, n) = L r 2  (n) + Lsfd ( d  - 2, n) 

The load due to links whose dilation is 2 d - 2 ( L z 2 ( n ) )  is 
equal to 2d-2 - 1.  This is illustrated in Fig. 10 by means of a 
particular example. Since this is a constant function, we can 
conclude that 

L Z  (d )  = (2d-2 - 1 )  + L&(d - 2 )  

which results in 

i= l  

2d-I - 2d-2.L(d-2)/2J-l 
= (2d-2 -1 )+  - L(d - 2 ) /  21 

3 
Regarding the minimum load, we have that 

L z i ( d )  = (2d-2 -I)+ L:ffl(d-2) = (2d-2 - 1) 

since L:fn ( d  - 2 )  = 0. 

n 1 0  1 2 3 4 5 6 7 8 9 1011  1 2 1 3 1 4 1 5  

txor (0) ( 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3  

Fig. 10. Load of each node due to links with dilation equal to four for the xor 
embedding of a 4-cube onto a ring. 

E.3 General Case 

Since both the standard and xor embeddings of a hypercube 
onto a c-dimensional torus can be regarded as several embed- 
dings of smaller hypercubes onto rings, there is always at least 
one node for which the load is maximum in all the dimensions 
of the torus, and at least one other node for which the load is 
minimum in all the dimensions. Then, it follows that 

Table I compares the maximum and minimum load of both 
embedding onto different toruses. We can conclude that the 
xor embeddings has a higher minimum load but a lower maxi- 
mum load. That is, the load of the nodes with communication 
tasks is more evenly distributed, which is a desirable property. 

TABLE I 
MAXIMUM AND MINIMUM LOAD FOR BOTH THE STANDARD 

AND THE xor EMBEDDINGS 

1 X8 
2 x 4  
1 x 1 6  
2 x 8  
4 x 4  
8 x 8  

16 x 16 
16x32 
32x32 
32x64 

0 3 
0 1 
0 8 
0 3 
0 2 
0 6 
0 16 
0 26 
0 36 
0 57 

1 1 
0 0 
3 4 
I 1 
0 0 
2 2 
6 8 
10 14 
14 20 
22 33 

F. Average Load 
Taking into account that a link with dilation D results in a uni- 

tary additional load to D - 1 nodes, the average load of nodes due 
to communication tasks can be computed from the links dilation 
spectrum using the following expression for both embeddings: 

Lave(dl ,  d 2 ,  dc)  = 9 ( 2 i  - 1 )  ' (Ad1,d2,...,dc(2i))/2d 
i=O 

where 2' = D,,. 
For the particular case of a ring, the average load is 

d-1 
Lzfe(d) = C ( 2 ' - 1 ) / 2  = (2d  - d - 1 ) / 2  

i=l 
d-3 

LE: ( d )  = (2' - 1 )  / 2 + (2d-2 - 1 )  = ( 3  2d-2 - d - 1 )  / 2 
i=l 
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For a c-dimensional squared torus the average load is 
dlc-1 

L$e(dl,d2,...,dc)= c c ( 2 i - 1 ) / 2  = ~ ( 2 ~ " - d / c - 1 ) / 2  
i=l 

dlc-3 

L$: (4, d2 , . . . , d,  ) = c c (2' - 1) / 2 + c ( 2d1c-2 - 1) 
i=l 

= ~ ( 3 * 2 ~ ' ~ - ~ - d / c - 1 ) / 2  

In both cases, the average load of the standard embedding is 
about 33% higher than that of the xor embedding. The differ- 
ence is even higher for small hypercubes. We can then con- 
clude that for the execution of any parallel algorithm with a 
hypercube communication topology the xor embedding will 
result in a quite less number of communication conflicts. No- 
tice that in the case of the CC d-cube algorithms analyzed in 
this paper, due to their particular structure, conflicts never 
occur for the two embeddings. 

v. PROOF OF OFTIMALITY OFfxor FOR RINGS 
The average distance as defined in Section IV.A, will be 

used as the main criterion to measure the goodness of any em- 
bedding with constant distances, since minimizing the average 
distance implies minimizing the execution time of CC d-cube 
algorithms. In this section, it is proven that the xor embedding 
has the minimum average distance for embeddings with con- 
stant distances of hypercubes onto rings, 

To show that the xor embedding is optimal for rings, we 
will prove that the average distance of any embedding with 
constant distances is higher than or equal to the average dis- 
tance of the fmr embedding. This is stated by Theorem 10. Be- 
fore this theorem, several lemmas and corollaries that are 
needed to prove that result are presented. First, a lower bound 
for the sum of any set of d - 1 distances corresponding to any 
embedding with constant distances is found. Then, a lower 
bound for the highest distance of the embedding is computed. 
Both together give a lower bound for the average distance of 
any embedding with constant distances. This lower bound is 
the average distance of the fmr embedding, which proves its 
optimality . 
DEFINITION. Given any node of a hypercube, we define ND(n), 

where D is any subset of dimensions of the hypercube, as 
the node that is reached by starting at node n and moving 
through every dimension in D, one after another, using 
each dimension exactly once (as we know, the order in 
which the dimensions are used does not matter, the result 
will be the same). For instance, i f 0  = { 1 ,  3 } ,  then ND(n) = 

In the following, Ni(N,(n)) will be written as Nfl,(n). The 
parenthesis are removed for the sake of clarity, but the mean- 
ing referring the order in which dimensions are used is pre- 
served. That is, NiN,i(n) means that we move from node n first 
using dimension j and then dimension i. 

The first lemma of this section proves that the sum of any 
subset of d - 1 distances corresponding to d - 1 dimensions 
must be at least 2"' - 1.  

N3(Nl(n)) = NI(N3(n)). 

LEMMA 1. Let fd be an embedding with constant distances 
(Di, ig[O, d - 13) of a d-cube onto a ring. Let V be any sub- 
set with d - 1 of the dimensions of the d-cube, that is, V 
contains all the dimensions of the d-cube except one. Then, 

Di22d- ' -1  
VieV 

PROOF. Let H(d, n, V) be the subset of nodes of a d-cube that 
consists of nodes n and N d n )  for every W E V. Obviously, 
the number of elements in H(d, n, V) is two to the power of 
the number of elements in V. In particular, if V has d - 1 
elements, then H(d, n, V) consists of 2"' elements. Given 
any set of 2"' nodes of a ring, there will always be two 
nodes in this set whose distance is at least 2"' - 1. Since it 
is possible to go from any node in H(d, n, V) to any other 
node in the same set, using each dimension in V at most 
once, the distances corresponding to the dimensions in V 

0 
The next lemma states that if two distances are equal when 

embedding a d-cube onto a ring then these distances must be 
equal to 2d-2 + k 2*' for some integer k 2 0. 
LEMMA 2. Let fd be an embedding with constant distances 

(Di, &[O, d - 13)  of a d-cube onto a ring with 2d nodes. Zf 
Di = Dj = K(i # j )  then K ' 6 1  2d-2 (in the following, 
x E,, y means that x mod 2" = y mod 2"; if n = d we will just 
write x f y). 

PROOF. Suppose the nodes of the ring are labeled clockwise 
from 0 to 2d - 1. Let us take any node n of the hypercube 
and let x = fd(n). Suppose that Di = Dj = K(i # j ) .  Then, 
y = fd(Ni(n)) is equal to either (x  + K )  mod 2d or (x  - K )  
mod 2d. For short we will write fd(Ni(n)) = (x  K) mod 2d. 
We have also that z = fd(4(n))  = (x  M) mod 2d. Since 
N,(n) # Ni(n), the only possible solution is either y = ( x  + K )  
mod 2d and z = ( x  - K )  mod 2* or y = (x  - K )  mod 2d and 
z = (x  + K )  mod 2d. Since both situations are symmetrical, 
let us suppose the first one holds without loss of generality. 

We have also that Nfli(n) is the same as NJvj(n). Let 
w = fd(Np&)). Then w = 0, + K )  mod 2d (it cannot be equal 
to 0, - K )  mod 2d since 0, - K )  mod 2d = x but x and w must 
be different). Since w is also equal to fd(NJv,{n)), w = 
( z  - K )  mod 2d. Therefore, y + K = z - K, that is, x + 2K = x  
- 2K. This means that 4K 0 which implies that K Ed-2 0. 
Then K = k 2"' for some integer k > 0 (distances must be 
positive integers). However, K cannot be a multiple of 2"' 
because this would imply that y = z. In consequence, K = 

0 
DEFINITION. Given two nodes x and y of a ring we say that y is 

clockwise in relation to x if the shortest path from x to y is 
clockwise. Otherwise we say that y is counterclockwise in 
relation to x. Obviously, i f y  is clockwise in relation to x ,  
then x is counterclockwise in relation to y .  

must add up to at least 2"' - 1. 

2d-2 + k 2*', that is, K Ed-1 2"'. 

DEFINITION. Let f d  be an embedding with constant distances 
(Q, ie[O, d - 11) of a d-cube onto a ring. Let us define 
S = {il 0 I i c d and Di < 2d-2}, that is, S (it stands for 
Short) is the set of dimensions whose corresponding dis- 
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tances are less than 2d-2 when a hypercube is embedded 
onto a ring. Given any node n of the hypercube, we define 
C(n) = (il iES and fANi(n)) is clockwise in relation to f d n ) )  
and C ( n )  = (il i E S and fANi(n)) is counterclockwise in 
relation to f d n ) ) .  Obviously, C(n) U C ( n )  = S. 
Given any node, its neighbor in a given dimension of the 

hypercube is at a fixed distance in the ring, but it can be 
clockwise or counterclockwise. The next two lemmas prove 
that, if we take into account only those dimensions of the hy- 
percube such that their corresponding Di are less than 2d-2, 
there is always a node which has all its neighbors in those di- 
mensions clockwise in the ring (there is another node with all 
the neighbors in those dimensions being counterclockwise). 

LEMMA 3. Let fd be an embedding with constant distances 
(Di, iE  [0, d - 13) of a d-cube onto a ring with 2d nodes. Let 
n be any node of the hypercube. Then, for any j E c ( n ) ,  
C(n) U ( j }  c C(Nj (n)). 

PROOF. It is obvious thatjE C(Nj(n)) because N,hj(n) = n; so, if 
N,(n) is counterclockwise in relation to n then, N,Nj(n) = n is 
clockwise in relation to Nj(n). 

It only remains to be proved that for every k ~ C ( n ) ,  
k ~ C @ " ( n ) ) .  Let us suppose that there is a k such that 
k E  C(n), k E  C(Nj(n)). Assume that the nodes of the ring are 
labeled clockwise from 0 to 2d - 1 and let x = fAn). Since 
Nj(n) is counterclockwise in relation to n, then fdN,(n)) 
= (x - Dj) mod 2d. By hypothesis NkN,(n) is counterclock- 
wise in relation to Nj(n), so fd(NkN,{n)) = (x  - Dj - Dk) mod 
2d. Since Nk(n) is clockwise in relation to n, then fa(Nk(n)) 

Because NkNj(n) and N,Nk(n) are the same node, x - Dj - Dk 
= x + Dk dlj. This implies that either Dj + Dk Ed-1 0 or Dk 
=d-l 0; but none of these can hold since 0 < Dj, Dk < 2d-2 (j, 
ke S). So, the hypothesis was wrong and then k~ C(Nj(n)). 0 

LEMMA 4. Let f d  be an embedding with constant distances 
(Di, is[O, d -13) of a d-cube onto a ring with 2d nodes. 
Then, there is a node n of the hypercube such that C(n) = S, 
that is, c ( n )  = 0. 

PROOF. Lemma 3 gives us an algorithm to find this node n. We 
can start from any node m of the hypercube. If C(m)  = 0, 
then n = m; if not, take any i E C(m)  and move to Ni(m). 
Lemma 3 states that the number of elements in C(N,(m))  is 
strictly less than the number of elements in C(m). Repeat- 
ing this step we will finally find a node n such that 

= (x + Dk) mod 2d and fdN,hk(n)) = (X + Dk mj) mod 2d. 

- 
C(n)  = 0, that is, C(n) = S. n 
From now on we will refer to the node designated by 

Lemma 4 as node c of the hypercube. The nodes of the ring 
can be labeled in the most convenient way for us. From now 
on, the node f d c )  will be labeled as node 0, and the rest of the 
nodes of the ring will be labeled clockwise from 0 to 2d - 1. 
By the above lemma, fdNi(c)) = Di for any ieS.  The next 
lemma states that for any iES, the neighbors of Ni(c) in every 
dimensionjES - ( i )  are clockwise. Obviously, the neighbor of 
Ni(c) in dimension i is counterclockwise, since it is c. 

LEMMA 5 .  Let fd be an embedding with constant distances 
(Di, k [ O ,  d - 11) of a d-cube onto a ring with 2d nodes. 
Then, for any ieS, C(Ni(c)) = S - ( i } .  This is equivalent to 
say that fAN,Ni(c)) = Di + Dj for any i, je S ,  i f j .  

PROOF. Suppose there is some jcS - ( i )  such that 
j E C(N,(c)) .  That means that x = fdN,Ni(c)) = (Di - Dj) 
mod 2d. Since x is also equal to fd(NiNj(c)) = (Dj mi) mod 
2d, this implies that either 

Di Zd-1 Dj, which is not possible because Di f Dj (by 

Dj Ed-1 0, which cannot hold since 0 c Dj < 2d-2. 
In consequence, for every j E S - ( i } ,  je C(Ni(c)) and then 
C(Ni(C)) = S - (4. 0 
Next, it is proven that given any subset of dimensions W _c S, 

the neighbors of N d c )  in every dimension i E S - Ware clockwise. 
LEMMA 6. Let f d  be an embedding with constant distances (Di, 

ie [0, d - 11) of a d-cube onto a ring with 2d nodes. Then, 
for any W CS, C(N&c)) c S - W. 

PROOF. The lemma will be proved by induction over the num- 
ber of elements in W. 

If W has just one element the lemma holds (it has been 
proved in Lemma 5 ,  which can be seen as a particular case 
of Lemma 6). 

Assume that the lemma holds for any set with less than N 
elements and let us suppose that it does not hold for a set 
W with N elements. This means that there is a dimension 
k e S  - W such that fd(Nk(Nw(c))) is counterclockwise in re- 
lation to fa(Ndc)). 

The fact that the lemma holds for any subset with less 
than N elements implies that 

Lemma 2) and Di, Dj < 2d-2, or 

for any subset D c S with N elements. Therefore, since W 
has N elements 

Let V be equal to the set W after taking any element of it 
and being replaced by k,  that is, let iEW be any element of 
W, then V = (W - ( i } )  U ( k )  . Since V has also N elements 

We know that Nk(Nw(C)) = Ni(Nv(C)). Then, fd(Nk(Nw(C))) 
= fANi(Nv(c))). By hypothesis, since Nk is counterclockwise 
in relation to Nw(c), then the left part of the equality must be 
equal to (r  - &) mod 2d. The right part is equal to s +Di 
mod 2d. In consequence, r - Dk = s mi. Substituting r and s 
by their corresponding expressions and simplifying we ob- 
tain that Di - Dk = Dk ai. This equation can be satisfied 
just in two ways: either Dk Ed-] 0 or Di Dk. None of 
them can hold since 0 < Di, Dk < 2"*, and as Lemma 2 
states, Di and Dj cannot be equal. 
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We then conclude that for every ~ E S  - W, f&Vk(N&c))) 
is clockwise in relation to fdN&c)) and therefore, C(N&c)) 

COROLLARY 7. Zfwe start from node c and we want to move to 
node N&c) for any W E S, using each dimension in W ex- 
actly once, any time we move through a dimension in W we 
will be moving clockwise in the ring, no matter in which 
order we use the dimensions in W, that is, 

c s -  w. 0 

PROOF. It is a direct implication of Lemmas 4 and 6. The for- 
mer states that node c has all its neighbors in S clockwise, 
so the first hop must be necessarily clockwise. Then Lemma 
6 says that if we have moved from node c to a node r using 
a subset W of dimensions of S, making use of each dimen- 
sion just once, all the neighbors of node r in any dimension 
not used yet (i.e., belonging to S - W) are clockwise, so the 

0 
Next, it is proven that, when embedding a hypercube onto a 

ring with constant distances, if all distances are lower than 
262, the sum of all distances must be at least 2d - 1. 
LEMMA 8. Let fd be an embedding with constant distances 

(Di, i E  [0, d - 1 1 )  of a d-cube onto a ring with 2d nodes such 
that every Di < 2d-2. Zfsuch embedding exists, then 

next hop must also be clockwise. 

d-1 

Di 2 2 d - 1  
i=O 

PROOF. Since all distances are less than 2d-2, S (set of di- 
mensions whose distance is less than 2"') consists of all 
dimensions of the d-cube. Then, Lemma 4 states that there 
must be a node c such that all its neighbors are clockwise. 
In addition, Corollary 7 says that it is possible to go from 
node c to any node of the hypercube given at most d hopes 
(each one corresponding to a different dimension) and 
going always clockwise. In particular, we can go from 
node c to the node just next to it counterclockwise. Mov- 
ing always clockwise, the distance between these two 
nodes is 2d - 1 ,  so the sum of all distances must be at least 
equal to this amount. 0 

COROLLARY 9. An embedding with constant distances such 
that all distances are less than 2d-2 is not optimal, if it ex- 
ists. In rhis context, to be optimal means that it has the low- 
est average distance for embeddings with constant dis- 
tances. In other words, the optimal embedding must have at 
least one distance greater than or equal to 2&'. 

PROOF. Lemma 8 states that, if such embedding exists, then the 
sum of its distances is at least 2d - 1 .  To prove this corollary 
it suffices to find an embedding whose distances add up to 
less than this amount. Such embedding can be the xor em- 

U 

We are now ready to prove that the xor embedding is opti- 

bedding, the one proposed in Section 111. 

mal. This is proved in the next theorem and its corollary. 

THEOREM 10. Let fd be an embedding with constant distances 
(Di, k [ O ,  d - 11) of a d-cube onto a ring with 2d nodes. 
Then the average distance of fd is at least (3  2d-' - l ) /d .  

PROOF. The proof is based on Lemma 1 and Corollary 9. The 
lemma says that the sum of any subset of d - 1 distances is 
at least 2"' - 1, so in particular, the sum of the d - 1 lowest 
distances of the embedding must be at least equal to this 
amount. Corollary 9 states that the optimal embedding has 
at least one distance that is higher than or equal to 2d-2, so in 
particular, the highest distance of the embedding must be 
higher than or equal to 2d-2. Both together imply that 

3.2d-2 - 1  
d 1 @ (average distance ( f d )  2 0 

COROLLARY 1 1 .  The xor embedding of a d-cube onto a ring 
proposed in Section III  is optimal in the sense that it has 
the lowest average distance for embeddings with constant 
distances. 

PROOF. The average distance of the xor embedding is equal to 
the lower bound introduced in Theorem 10. U 

VI. CONCLUSIONS 

This paper focuses on the execution of algorithms with a 
hypercube communication topology onto multicomputers with 
a torus interconnection topology. The problem is tackled by 
means of graph embeddings. An embedding of hypercubes 
onto toruses of any arbitrary dimension has been presented. 
This embedding, called xor embedding, belongs to a class of 
embeddings whose distinguishing property is that all the links 
of the same dimension of the hypercube have the same dilation 
on the torus. This class of embeddings are called embeddings 
with constant distances. 

Many parallel algorithms with hypercube topology have the 
property that all the processes perform the same activity with 
different data. This activity consists of a number of stages 
(usually as many as number of dimensions of the hypercube) 
and each stage is composed of a computing phase followed by 
a communication phase in which data is interchanged with one 
of its neighbors. This structure is found in parallel algorithms 
for FFT and sorting among others. For this type of algorithms, 
called CC d-cube algorithms, constant distances may be desir- 
able because they imply that the communication phase has the 
same duration for every process, avoiding waiting intervals 
which can degrade performance. 

The xor embedding has been compared to the standard em- 
bedding using a set of different performance metrics (execution 
time of a CC d-cube algorithm, links dilation spectrum, longest 
dilation, total dilation, maximum and minimum load, and aver- 
age load). For all of them the performance of the xor embedding 
is significantly better than that of the standard embedding. 

For CC d-cube algorithms, the embedding with constant 
distances that results in the shortest execution time is that 
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whose average distance is minimum. It has been proven that 
the average distance of the xor embedding is minimum for 
rings (one-dimensional torus), and therefore, it maximizes the 
performance of the multicomputer for those algorithms. 

Another important property of the xor embedding is the 
simplicity of the function which determines the location where 
a node of the d-cube is found in the target multicomputer. 

We are currently working on the generalization of this work 
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