
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 8. AUGUST 1995 803

Executing Algorithms with Hypercube Topology
on Torus Multicomputers

Antonio GonzBlez, Member, IEEE, Miguel Valero-Garcia, Member, IEEE, and Luis Diaz de Cerio

Abstract-Many parallel algorithms use hypercubes as the
communication topology among their processes. When such algo-
rithms are executed on hypercube multicomputers the communi-
cation cost is kept minimum since processes can be allocated to
processors in such a way that only communication between
neighbor processors is required. However, the scalability of hy-
percube multicomputers is constrained by the fact that the inter-
connection cost-per-node increases with the total number of
nodes. From scalability point of view, meshes and toruses are
more interesting classes of interconnection topologies. This paper
focuses on the execution of algorithms with hypercube communi-
cation topology on multicomputers with mesh or torus intercon-
nection topologies. The proposed approach is based on looking at
different embeddings of hypercube graphs onto mesh or torus
graphs. The paper concentrates on toruses since an already
known embedding, which is called standard embedding, is optimal
for meshes. In this paper, an embedding of hypercubes onto
toruses of any given dimension is proposed. This novel embedding
is called xor embedding. The paper presents a set of performance
figures for both the standard and the xor embeddings and shows
that the latter outperforms the former for any torus. In addition,
it is proven that for a one-dimensional torus (a ring) the xor em-
bedding is optimal in the sense that it minimizes the execution
time of a class of parallel algorithms with hypercube topology.
This class of algorithms is frequently found in real applications,
such as FFT and some class of sorting algorithms.

Index Terms-Graph embeddings, hypercubes, scalable dis-
tributed memory multiprocessors, torus multicomputers, mapping
of parallel algorithms.

1. INTRODUCTION

HYPERCUBE communication topology is frequently found A in real parallel applications. Some examples include
parallel algorithms for FFT, sorts, etc. [3], 1111. These algo-
rithms will be called hypercube algorithms or d-cube algo-
rithms, where d is the number of dimensions of the hypercube.
A hypercube algorithm of dimension d or d-cube algorithm,
consists of 2d processes labeled from 0 to 2d - 1 such that
every process communicates only with its d neighbors, one in
each dimension of the d-cube.

In this paper, the problem of executing d-cube algorithms
on multicomputers [l] is considered. A multicomputer is a
distributed memory multiprocessor in which the nodes
(processor + local memory) are interconnected through point-
to-point links.

Manuscript received May 9, 1994; revised Nov. 1. 1994.
A. Gonzlez, M. Valero-Garcfa, and L. Diaz de Cerio are with the Universi-

tat Polithnica de Catalunya, Departament d’ Arquitectura de Computadors,
d Gran Capitan s/n, Campus Nord-Edifici D6 E-08071 Barcelona, Spain.
e-mail: (antonio, miguel, Idiaz) @ac.upc.es.

IEEECS Log Number D95003.

The nodes of a multicomputer are interconnected according
to a given pattern or interconnection topology. If this topology
is a hypercube of dimension d (d-cube multicomputer) then the
d-cube algorithm can be executed on the multicomputer in
such a way that neighbor processes are mapped onto adjacent
nodes (nodes directly connected through a point-to-point link).
In this case, it is said that each process of the d-cube algorithm
has all its d neighbors at distance 1 in the multicomputer (i.e.,
all required communication is between neighbor nodes). In this
way, the cost of the communication component of the d-cube
algorithm is kept minimum when it is executed on a hypercube
multicomputer.

An important drawback of hypercube as interconnection to-
pology for multicomputers is that it is not scalable. In a d-cube
multicomputer each of the 2d nodes is directly connected to
other d nodes through point-to-point links, Therefore, the cost
(and the complexity) of the interconnection hardware per node
increases with the number of nodes. Other interconnection
topologies, such as meshes or toruses are considered more
suitable for multicomputers with a large number of nodes,
since the interconnection cost per node does not depend on the
total number of nodes [13]. For instance, each node of a two-
dimensional torus multicomputer is directly connected to other
4 nodes, it does not matter the number of nodes of the multi-
computer.

To execute a d-cube algorithm on a multicomputer with to-
pology other than hypercube, the first step is to find a mapping
function that allocates each process of the parallel program
onto a given processor of the multicomputer. The problem can
be formulated as finding an embedding of the graph that repre-
sents the topology of the program (a hypercube) onto the graph
that represents the topology of the multicomputer (a mesh or a
torus).

The problem of embedding a given source graph into a des-
tination graph has been extensively studied in the literature. In
particular, embedding any type of graph into a hypercube is a
widely studied topic (see, for instance, [2], [7], [l l] , [12], just
to mention a few recent works). However, the problem of em-
bedding hypercubes onto a mesh or a torus has not been so
extensively studied. In Section 1I.C we review the most rele-
vant works in this subject.

When the topology of the algorithm and the multicomputer
are different, it may be impossible to allocate neighbor proc-
esses to neighbor processors. For instance, in a two-
dimensional torus multicomputer, every process of a d-cube
algorithm has at most four of its d neighbors at distance 1. It
has at least d - 4 neighbors at a distance greater than 1. A mes-
sage to any of these “far” neighbors is routed through the

1045-9219/95$04.00 Q 1995 IEEE

804 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6 , NO. 8, AUGUST 1995

point-to-point links and nodes which are found along the path
to the destination node. A good mapping of a parallel algo-
rithm onto a multicomputer will keep the neighbor processes
as close as possible in the multicomputer, minimizing in this
way the communication cost of the execution.

This paper begins by reviewing some related work on em-
beddings and then, it concentrates on a particular type of em-
beddings that is called embeddings with constant distances. It
will be shown that these embeddings are more adequate for our
purposes, that is, for executing d-cube algorithms onto meshes
or toruses. A well known embedding of hypercubes onto
meshes is the so called standard embedding [SI. It is an em-
bedding with constant distances and it is optimal for meshes of
any given dimension. In consequence, the contribution of this
paper centers on embeddings of hypercubes onto toruses.

A new embedding, called xor embedding, is proposed. The
paper presents a set of performance figures and shows that this
embedding outperforms the standard embedding when it is
used as the mapping function of a d-cube algorithm onto a
torus multicomputer. In addition, it is proven that the xor em-
bedding is optimal for one-dimensional toruses (also called
rings).

This paper is organized as follows. In Section 11, we intro-
duce some notation and describe more precisely the contribu-
tion of this paper as well as some related work. Sections I11
presents the xor embedding. Section IV compares the per-
formance of the xor embedding with that of the standard em-
bedding using a set of different performance metrics. In Sec-
tion V, it is proven that the proposed embedding is optimal for
rings in the sense that it results in the shortest execution time
of a class of d-cube algorithms. Finally, some concluding re-
marks are presented in Section VI.

11. PRELIMINARIES AND RELATED WORK

A. Definitions
A d-cube algorithm is a parallel algorithm that consists of

2d processes such that every process communicates with ex-
actly other d processes. These d processes are called its neigh-
bors. We also say that the communication topology of the al-
gorithm is a hypercube. That means that the 2d processes can
be labeled from 0 to 2d - 1 in such a way that processes n and
m are neighbor (i.e., they communicate) if the binary codes for
n and m differ in a single bit. If this bit is the ith bit then m is
the neighbor of n in dimension i, and n is the neighbor of m in
the same dimension. Then, it is written:

m = Ni(n)
n = Ni(m)

In this paper, we focus on d-cube algorithms in which every
process has the following structure:

do i=O,d-1
compute
communicate with neighbor in dimension i

snddo

In this algorithm every process consists of d stages, each of
them composed of a computation phase followed by a com-

munication phase. In each stage, every process uses a different
dimension to exchange information with one of its neighbors.

The duration of the computation phase and the amount of in-
formation to be exchanged is assumed to be the same for all the
stages and all the processes of the d-cube algorithm. A d-cube
algorithm with the above features will be called a compute-and-
communicate d-cube algorithm, or a CC d-cube algorithm for
short. This kind of d-cube algorithms are common in real appli-
cations like FFT, some type of sorts, etc. [3], [111.

Parallel algorithms can be modeled by graphs. The vertices
of the graph represent the processes of the algorithm and the
edges of the graph represent the neighbor relationship among
processes. A multicomputer can also be modeled by a graph.
The vertices of the graph represent the nodes of the multicom-
puter and the edges of the graph represent the point-to-point
links which interconnect these nodes. The terms edge and link
will be used indistinctly in this paper.

Multicomputers can be classified according to their inter-
connection topology. The work presented in this paper focuses
on mesh and torus multicomputers, since they have scalable
interconnection topologies.

A (k , , kz, ..., k,) c-dimensional torus is an undirected graph
in which the nodes can be labeled as c-tuples (i l , i2, ..., i,),
0 I G < kj. Every node (il, i2, ..., i,) of the graph has two neigh-
bors in each dimension of the torus. Its left neighbor in di-
mension j is (i l , ..., (ij - 1) mod kj, ..., i,) and its right neighbor
in this dimension is (il, ..., (ij + 1) mod kj, ..., i,).

A (kl, k2, ..., k,) c-dimensional mesh is an undirected graph
in which the nodes can be labeled as c-tuples (il, i2, ..., i,),
0 I ij < kj. Every node of the graph has two neighbors in each
dimension j of the mesh if 0 < ij < kj - 1. Its left neighbor is
(il, ..., ij - 1, ..., i,) and its right neighbor is (il, ..., ij + 1, ..., i,).
If 4 = 0, the node has only a right neighbor and if 4 = kj - 1
then it only has a left neighbor.

A line is a one-dimensional mesh while a one-dimensional
torus is called a ring.

Fig. 1 shows some examples and illustrates how their nodes
are labeled.

The distance in a graph between two vertices is the mini-
mum number of edges that join those vertices. In the particular
case of the graph that models a d-cube, the distance between
two vertices is known as the Hamming distance (number of
different bits in their binary representations).

An embedding of graph G into graph H is an injection from
the vertices of G to the vertices of H . In this paper, our atten-
tion is restricted to embeddings in which G and H have the
same number of vertices, and therefore the mapping is given
by a bijective function.

The problem of executing a CC d-cube algorithm on a mul-
ticomputer can be restated as the embedding of graph G, which
represents the CC d-cube algorithm, onto graph H, which rep-
resents the multicomputer.

The dilation of an edge (n , m) of G (edge joining vertices
n and m) is the distance in H betweenfln) andflm).

If G models a CC d-cube algorithm, an edge exists between
vertices n and m if m = Ni(n), for some iE [0, d - 11. The dila-
tion of this edge will be denoted by Di(n). Obviously, since

GONZALEZ, VALERO-GARCfA, AND DfAZ DE CERIO: EXECUTING ALGORITHMS WITH HYPERCUBE TOPOLOGY ON TORUS MULTICOMPUTERS 805

n = Ni(m), Di(n) = Di(m). When a CC d-cube algorithm is exe-
cuted on a multicomputer, as defined by a given embedding J
a communication between processes n and Ni(n) (required in
iteration i of the CC d-cube algorithm) is implemented by a
message which is routed through Di(n) point-to-point links and
Di(n) - 1 nodes of the multicomputer represented by H , which
are found in the shortest path between nodes An) and ANi@)).
In the following, a store and forward routing strategy is as-
sumed. Therefore, the cost of sending a message fromfln) to
ANi@)) is proportional to Di(n).

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 . - - - - - - . f I

0.0 0,l 0.2 0.3

(d
Fig. I . Different types of multicomputers: (a) line, (b) ring, (c) (4, 4) mesh,
and (d) (4.4) torus. The picture also shows how their nodes are. labeled.

B. Contributions

As it was mentioned in the introduction, this paper focuses
on executing CC d-cube algorithms on scalable multicomput-
ers. The function that maps processes onto processors is an
embedding of the graph defined by the communication topol-
ogy of the algorithm (hypercube) onto the graph defined by the
interconnection topology of the multicomputer. In particular,
we are interested in torus multicomputers since for meshes, an
already known embedding, called standard embedding
and described in the next section, is optimal for CC d-cube
algorithms.

The work presented in this paper centers on those embed-
dings in which Q(n) = Di (k [0, d - 11 and n~ [0, 2d - 13). This
means that every process has its neighbor in dimension i at the
same distance in the target multicomputer. In the following, an
embedding with this feature is called embedding with constant
distances and the values of D , (k [0, d - 13) are called the dis-
tances of the embedding.

Embeddings with constant distances have the property that
every process takes the same time to communicate in any
given stage of the CC d-cube algorithm. Because the duration
of the compute phase is also the same for every process, wait-
ing intervals are avoided since neighbor processes arrive at the
same time at the point where they have to communicate. This
fact will be illustrated later through an example.

In this paper, an embedding with constant distances of hy-
percubes onto toruses of any arbitrary dimension is proposed.
The embedding is called xor embedding. It will be shown that
this embedding outperforms the standard embedding using a
set of different performance metrics. Moreover, we prove that
the proposed embedding is optimal for rings (one-dimensional
toruses) in the sense that it minimizes the execution time of CC

d-cube algorithms when they are executed on a ring multicom-
puter. Another additional property of the proposed embed-
dings is their simplicity, which means a negligible cost to
compute the location of any process in the multicomputer.
Some preliminary results about the xor embedding were pre-
sented in [4].

C. Related Work
The problem of embedding d-cubes onto meshes and

toruses has been previously considered by other authors. Here,
a review of the most related work is presented.

Matic presents in [lo] a study of the standard embedding
(defined below) of d-cubes onto two-dimensional meshes
and toruses. To define the standard embedding (which will
be denoted byf,,d) of a d-cube onto a line or a ring, the nodes
of the target multicomputer are numbered from 0 to 2d - 1
(see Fig. l a and lb). Then, the standard embedding is de-
fined by (see Fig. 2a):

fstd (n) =

In general, the standard embedding of a d-cube onto a (kl ,
kz, ..., k,) c-dimensional mesh or torus is defined as follows:

fsrd(n)=(pl, p2t*..vpc)

where
i-1

[j=1

p i = n mod 5 k j) div n kj

Fig. 2b shows an example in which c = 2 and k, = kz = 4.
Obviously, the standard embedding is an embedding with
constant distances. For the particular case in which ki = 2&',
ic [1, c], the distances of the standard embedding are:

D. I - - 2imd(dc) i c [O, d - 11

0 1 2 3 -
(a) (b)

Fig. 2. Standard embeddings of: (a) a 3-cube onto a line or a ring and (b) a
4-cube onto a (4,4) mesh or torus. Each label indicates which vertex of the
d-cube is mapped onto each node of the multicomputer. Wraparound links
are not shown for clarity.

It can be shown that the standard embedding is optimal for
meshes, in the sense that it minimizes the average distance [5],
which in turn results in the shortest execution time. However,
it is not optimal for toruses, as it will be shown later in this
paper.

Harper in [6] and Lai and Spague in [8] solve the problem
of embedding d-cubes onto meshes to minimize the dilation of
the embedding (the maximum dilation of any edge). Both pro-
posals use the byweight embedding, denoted byfb,,,, which is
not an embedding with constant distances. Next, this embed-
ding is briefly described.

806 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 8, AUGUST 1995

In the case of a line, the labels of the vertices which repre-
sent the processes of the d-cube algorithm are ordered by their
weights. The weight of a label is the number of 1s in its binary
representation. Labels with the same weight are ordered in
descending order. Then, the processes of the d-cube ordered in
that way are allocated to the nodes of the line, from left to
right. Fig. 3a shows an example. The byweight embedding can
be extended to meshes of any dimension. In particular, Lai and
Spague extend this embedding to two-dimensional meshes in
[8]. Fig. 3b shows an example.

Fig. 3. Byweight embeddings of: (a) a 3-cube onto a line and (b) a 5-cube
onto a (8,4) mesh.

The byweight embedding minimizes the dilation of the em-
bedding for lines, and it has a lower dilation than the standard
embedding for two-dimensional meshes. This is an interesting
property in some particular applications of embeddings. For
instance, Lai and Spague propose this embedding to solve the
problem of placing the processors of a hypercube on a printed
circuit board or a chip (which can be modeled as a two-
dimensional mesh). However, the byweight embedding is not
an embedding with constant distances, which is an important
property in the context of executing CC d-cube algorithms
onto multicomputers. Variable distances result in waiting in-
tervals during the execution of the CC d-cube algorithm. These
are due to the fact that two neighbors that are going to com-
municate finish their respective previous computation at dif-
ferent times. The one that finishes earliest must wait for the
other to finish. These waiting intervals contribute to increase
the execution time. To illustrate this fact, Fig. 4 shows an ex-
ample in which the execution time of a CC 3-cube algorithm
on a line for both the standard embedding and the byweight
embedding are compared. The waiting intervals which con-
tribute to make the byweight embedding run slower than the
standard embedding are also shown.

In [9], Ma and Tao proposed several embeddings among
toruses and meshes of different dimensions. Their proposals
are based on generalizing the concept of gray code from radix-
2 numbering system to mix-radix numbering systems. Since a
d-cube can also be seen as a d-dimensional mesh or torus with
two elements in each dimension, their embedding can also be
applied to solve the problem addressed in this paper. However,
they focus on minimizing the dilation (the longest dilation of
any link of the d-cube) and, therefore, the resulting embed-
dings in general do not have constant distances, which is a
desirable property for our objective. However, if one starts
with a d-cube represented by means of a (2, 2, ..., 2) d-
dimensional mesh or torus, then the resulting embedding onto
a ring or a two-dimensional torus has constant distances. Nev-
ertheless, its average distance and therefore its performance

a Computation

I+- Communication

1 Waiting interval

(4
f r td fbB

0 1 2 3 4 5 6 1 0 4 2 1 6 5 3 7

Fig. 4. (a) Dilations for the standard and byweight embeddings (d = 3). Exe-
cuting a CC 3-cube algorithm on a line using: (b) the standard embedding and
(c) the byweight embedding.

for executing our target algorithm is worse than the embedding
proposed in this paper.

In. THE XOR EMBEDDING

Since the standard embedding is optimal for meshes, we fo-
cus just on toruses. The proposed embedding is called xor em-
bedding and it is denoted byf,,. It belongs to the class of em-
beddings with constant distances. In this section, the xor em-
bedding for the case of a one-dimensional torus (a ring) is first
described, and then it is generalized for any dimension.

A. One-Dimensional Torus (Ring)
Given a positive integer x , let x (i) denote the ith bit of the

binary representation of x . The least significant bit is consid-
ered to be the 0th bit. Let G be the graph which represents
the CC d-cube algorithm and R be the graph which repre-
sents the ring multicomputer. Assume that the vertices of R
are labeled from 0 to 2d - 1 clockwise (see Fig. lb). Let
(n(d - l), n(d - 2), ..., n(l), n(0)) be the label (in binary
code) of vertex n in G. This vertex is mapped onto vertex m
=fxo,(n) in R, whose label in binary code (m(d - l), ..., m(0))
is:

m(i) = n(i) k [O , d -11, i f d - 2
m(d - 2) = XOR (n(d - l), n(d - 2))

where XOR (a, b) is the exclusive-or of bits a and b. Fig. 5
shows an example for d = 4.

B. General Case
The xor embedding of a d-dimensional hypercube onto a

(2d1, 2&, ..., 2") c-dimensional torus such that
d , + d , + ... + d , = d is now presented.

GONZALEZ, VALERO-GARCfA, AND DfAZ DE CERIO: EXECUTING ALGORITHMS WITH HYPERCUBE TOPOLOGY ON TORUS MULTICOMPUTERS 807

0 1 2 3 4 5 6 7 12 13.14 15 8 9 10 11
1 1 1 1 - 1 1 1 1 1 1 1 1 - - - - - - - -

Fig. 5. An xor embedding of a 4-cube onto a ring. The labels indicate which
node of the d-cube is mapped onto the corresponding node of the ring.

Let us first define Kj in the following way: KI = 0, and for
every 1 < j IC + 1 we have that:

j-1

kj =E di
j=1

Let G be the graph which represents the d-cube and T be the
graph which represents the torus. Then, vertex n of G is
mapped onto vertex (ml , m2, ..., m,) =&An) in Tas follows:

mj(i) = n(i + 4) i E [0, dj - 11, i # dj - 2
mj(dj - 2) = XOR (n(Kj+l- l), n(Ki,, - 2))

Fig. 6 shows an example for d = 6. It can be noted that both
the standard and the xor embedding of a d-cube onto a
c-dimensional torus can be viewed as multiple embeddings of
smaller hypercubes onto rings. For instance, in Fig. 6, nodes
from 8 to 13 of the 6-cube constitute a 3-cube that is mapped
onto the 8 nodes of the second row of the torus which consti-
tute a ring. This embedding is again an xor embedding.

Note the simplicity of function fmr(n). This function, which
is used very frequently for routing messages during the execu-
tion of the CC d-cube algorithm, consists of simple bit opera-
tions, and its computational cost is negligible.

n(5) n(4) n(3) n(2) n(1) n(O)
d-cube nodes

I 1 LF=zl

Fig. 6. An xor embedding of a 6-cube onto a (8, 8) torus. The wraparound
links are not shown, for clarity.

IV. PERFORMANCE ANALYSIS

In this section, the performance of the xor embedding and
the standard embedding are compared using a set of different
performance metrics. Most of these metrics were used by
Matic in [lo] to evaluate the standard embedding for two-
dimensional meshes and toruses. Here, the corresponding ex-
pressions for both the standard and the xor embeddings of a
d-cube onto a (2d', 2d2 , . . ., 2dc) c-dimensional torus are de-
rived. In some cases where the general expressions are not
easy to compare, we derive the expression corresponding to
the particular case of a squared torus. A squared torus is a
(2dc, 2dc, ..., 2dc) c-dimensional torus, that is, a torus whose all
dimensions have the same size. These list of metrics is the
following:

The execution time (T f (d l , d2, ..., dc)). This represents the
execution time of a CC (d , + d2 + ... + d,)-cube algorithm
onto a (2d', 2 d 2 , . . ., 2dc) c-dimensional torus when the
embeddingfis used as the mapping function.
The links dilation spectrum (Ai,d2,, , , ,dc (D)). This gives
the number of links with dilation D when a (d , + d2 + ...
+ d,)-cube is embedded onto a (2d1, 2&, ..., 2&)
c-dimensional torus as defined by the mapping function$
The longest dilation D;f , (d l , d , , . . . , d,)) . This is the
maximum dilation of any link of the hypercube when it is
embedded onto a (2d', 2&, ..., 2") c-dimensional torus as
defined by the embedding$
The total dilation (Of (d , , d , . . . , dc)) . This represents
the sum of dilations of all links of the hypercube.
The maximum load and minimum load
(L k (d l , d 2 , .. ., d ,) , L i i , (d l , d , , . . ., dc)) . The load of a
node due to communication tasks is measured as the
number of links of the hypercube that traverse that par-
ticular node (those links that begin or finish at that node
are not considered). These parameters give the maximum
and minimum value of the load of any node as a result of
using the embedding$
The average load (Live (d , , d , , . . . , d ,)). This is the aver-
age load of a node due to communication tasks.

A. Execution Time

When using an embedding as a mapping function of a
parallel algorithm onto a multicomputer, the most important
performance measure of the embedding is the time that the
execution of the algorithm takes as a result of using such a
mapping.

Let T, be the duration of the arithmetic computation phase
in every stage of the CC d-cube algorithm, when it is executed
on the target multicomputer. Let T, be the cost of sending a
message through a point-to-point link on the multicomputer.

The time to execute a CC d-cube algorithm on a multicom-
puter with 2d nodes, using the embedding f can be expressed
as:

Tf = dT, + Tcf

808 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6. NO. 8, AUGUST 1995

where Tcf is the cost of the communication component of the
CC d-cube algorithm. Tcf can be expressed as follows:

Td = mUX(Td_1(tl): n = 0..2d -1) (a)

(b)
T (n) = Di (n) ~ , + [I;.-* (n), I;.-, (Ni (n))}

T-,(n) = 0

In the above expressions, Ti@) is the cost of the communi-
cation component for process n from the beginning of the exe-
cution to the end of stage i . Expression (a) indicates that Tcf is
equal to the highest communication component cost of any
process at the end of the d stages of the CC d-cube algorithm.
Expression (b) gives the communication component cost for
process n at the end of stage i . In this stage process n must
exchange information with its neighbor Ni(n). The cost of ex-
changing this information is Di(n)Tc (since a store and forward
routing is assumed). However, this exchange cannot start until
both processes n and Ni(n) are ready to do it. In general, either
process n or process Ni(n) will have to wait for its neighbor to
arrive to the point in which communication can be started.
This is why the term "max" appears in expression (b). These
idle intervals were called waiting intervals in Fig. 4.

Obviously, if the multicomputer has a d-cube interconnec-
tion topology then the best embedding is An) = n (identity
embedding). In this case Di(n) = 1 (for every i and n) and the
execution time is

Tf =d(T , +T,)
If the embedding has constant distances then Di(n) = Di for

every n. In this case, the time to execute a CC d-cube algo-
rithm onto a multicomputer, as defined by an embeddingfis:

d-1 d-1

Tf = (T, + DiT,) = dT, + T,
i=O i=O

Di = d(T, + T,D,)

where D, is the average distance of the embedding:
d-1

Z Di
0, - i=O - - average distance (f)

d
For a (2d1, ..., 2&) c-dimensional torus, the average distance

of the standard embedding is:

and the average distance corresponding to the xor embedding
is:

Since the execution time of the CC d-cube algorithm is pro-
portional to the average distance of the embedding we can
conclude that the standard embedding results in about a 33%
increase in the execution time when compared with the xor
embedding.

Obviously, the embedding with constant distances which
minimizes the execution time of the CC d-cube algorithm is
that whose average distance D, is minimum. An embedding
with such property is said to be optimal. The standard embed-
ding is optimal for meshes of any dimension but not for toruses
since we have just seen that the xor embedding outperforms it.
In addition, it will be proven in Section V that the xor embed-
ding is optimal for one-dimensional toruses.

B. Links Dilation Spectrum
B. I Standard Embedding on Rings

Here, the links dilation spectrum for the standard embed-
ding in the case of a one-dimensional torus is derived.

Notice that any node of the hypercube has its neighbor in
dimension i at distance 2' in the toys. Since there are 2d nodes,
we have 2"' links with dilation 2' for each ig[O, d - 11. We
can then conclude that the links dilation spectrum is:

,4i'd(2i) = 2d-' ; (0 I i < d - 1)

B.2 Xor Embedding on Rings

In the xor embedding for rings, every node has a neighbor at
distance 2' for each k [O , d - 21 and two neighbors at distance
2",. In consequence, the links dilation spectrum is as follows:

B.3 General Case

The links dilation spectrum for both the standard and xor
embeddings can be computed from the spectrum of the one-
dimensional case using the following expression:

Ad,,dz,.. . ,dc (2 i) = 2 ' d j (2i)n 2dk
j=1 1 k11, 1
- (k*i)

In the particular case of a squared c-dimensional

Ai:dz,,,,,dc (2 ') = C 2d-'; (0 I i I d 1 C-1)

the standard embedding we have that
torus, for

and, assuming dlc 2 2, for the xor embedding the correspond-
ing expression is

c 2 d - 1 ; 0 I i 5 d 112-3
A z 2 , . . . p d c (2 ') = (. 2d; i = d / c - 2

C. Longest Dilation
The longest dilation can be obtained from the links dilation

spectrum functions previously developed. For the standard
embedding we have that

D Z (d , , d, , .. ., d ,) = m ~ ~ (2 ~ l - l , 2d2-1 , ..., 2dc-')

and for the xor embedding the corresponding expression is
(assuming di 2 2)

D z (d , , d , , ..., d ,) = m ~ x (2 ~ l - ~ , 2d2-2, ..., 2dc-2)

GONZALEZ, VALERO-GARCf A, AND DfAZ DE CERIO: EXECUTING ALGORITHMS WITH HYPERCUBE TOPOLOGY ON TORUS MULTICOMPUTERS 809

It can be seen that the longest dilation of the xor embedding
is 50% shorter than that of the standard embedding.

D. Total Dilation

tion spectrum. It is given by the following expression:
This parameter can also be computed using the links dila-

X

Dt =c 2'A(2')
i=O

where 2' =Om,. Next, this expression is further developed for
both the standard and the xor embeddings and for some par-
ticular toruses.

In the case of the standard embedding on rings we have that
d-1

D:d(d) = 2' . 2d-' = 2d-'(2d - 1)
i=O

whereas for the xor embedding on rings the total dilation is

i=O

In the case of a squared c-dimensional torus we have that
dlc-1

Ds td(d lc , ..., d i e) = 2' * ~ * 2 ~ - '
i=O

= c .2d-' (2d'c - 1)
dlc-3

D y (d l c , ..., d l c) = 2' . C * 2 d
i=O

1)
= 2d-1(3.2d/c-2 -

Notice that the total dilation of the standard embedding is
about 33% higher than that of the xor embedding in both
cases.

E. Maximum and Minimum Loads
In this section, the load due to communication tasks of

every node is analyzed. The objective is to determine the value
for the most loaded node and the least loaded one.

E.l Standard Embedding on Rings

Assume that a d-dimensional hypercube is to be embedded
onto a one-dimensional torus with 2d nodes. Let Gd(n) be the
load of node n due to the links whose dilation is 2'. We have
that

n mod 2"'; o 5 n mod 2'+' < 2'
2"' - 1 - mod 2"'; 2' 5 n mod 2"' < 2'" (G"(n) =

Notice that GId(.) is a periodic function with period 2'+',
and it is defined in the interval nE [0, 2d - 11. Fig. 7 illustrates
an example when d = 4. The figure shows the load of every
node due to links whose dilation is 22.

Let L$'(n) be the load of node n due to links whose dila-
tion is either 2' or 2"', that is,

L&(n) = Ly(n)+ q!'(n)

L 2 (n) 0 1 2 3 3 2 1 0 0 1 2 3 3 2 1 0

Fig. 7. Load of each node due to links with dilation equal to four for the stan.
dad embedding of a 4-cube onto a ring.

It can be shown that

2(n mod 2');

2(2' - 1 - n mod 2');

n mod 2"' < 2i-'

(2i - 1); 2'-' 5 n mod 2i+' < 2' + 2i-'

n mod 2"' 2 2' + 2'-'

L:!' (n) =

Again L$-,(n)is a periodic function with period 2"', and it

is defined in the interval ne [0, 2d - 13. Fig. 8 shows graphi-
cally how these expressions were obtained.

Fig. 8. Computing Li:tl (n) from Litd (n) and Li" (n) .

Now, the total load of a given node, which is denoted by
Crd(d, n), can be computed. If d is even then

q ? d , n) = L;!',L*(n) + L;!3,d-4(n) + ... + L$(n) + L f (n)

y (d , n) = L;!l,d-2(n)+ L;!3,d-4(n) + ... + L$(n)

and if d is odd we have that

and obviously,

L L (d) = max[Lstd(d, n)]

Due to the fact that the period of L$-,(n) is four times the

period of Li!'&-3(n), there are always two periods of

L;!!2,i-3(n) where L&(n) is maximum for every n inside
these two periods. In consequence, there is always at least one
node n such that both L;;f-'(n) and Li!2,i-3(n) get its maxi-
mum value for this node (see Fig. 9). Therefore, if d is even
then

Lg (d) = maS(Ly!l,d-2 (n)) + (Ly!3,d-4(n))

+ . . . + mar (e; (n,)

810 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 8, AUGUST 1995

the maximum load of the standard embedding on rings is given
by the following expression:

Regarding the minimum load, it can be seen that nodes
0 and 2d - 1 have a null load; then, IC.::,, (d) = 0.

E.2 Xor Embeddings on Rings
Notice that the load of a node due to links whose dilation is

less than 2"* is the same for both the standard and the xor em-
bedding, that is

L y (n) = L : r d (n) ; O I i c d - 2

In consequence

L r (d, n) = L r 2 (n) + Lsfd (d - 2, n)

The load due to links whose dilation is 2 d - 2 (L z 2 (n)) is
equal to 2d-2 - 1. This is illustrated in Fig. 10 by means of a
particular example. Since this is a constant function, we can
conclude that

L Z (d) = (2d-2 - 1) + L&(d - 2)

which results in

i= l

2d-I - 2d-2.L(d-2)/2J-l
= (2d-2 -1)+ - L(d - 2) / 21

3
Regarding the minimum load, we have that

L z i (d) = (2d-2 -I)+ L:ffl(d-2) = (2d-2 - 1)

since L:fn (d - 2) = 0.

n 1 0 1 2 3 4 5 6 7 8 9 1011 1 2 1 3 1 4 1 5

txor (0) (3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

Fig. 10. Load of each node due to links with dilation equal to four for the xor
embedding of a 4-cube onto a ring.

E.3 General Case

Since both the standard and xor embeddings of a hypercube
onto a c-dimensional torus can be regarded as several embed-
dings of smaller hypercubes onto rings, there is always at least
one node for which the load is maximum in all the dimensions
of the torus, and at least one other node for which the load is
minimum in all the dimensions. Then, it follows that

Table I compares the maximum and minimum load of both
embedding onto different toruses. We can conclude that the
xor embeddings has a higher minimum load but a lower maxi-
mum load. That is, the load of the nodes with communication
tasks is more evenly distributed, which is a desirable property.

TABLE I
MAXIMUM AND MINIMUM LOAD FOR BOTH THE STANDARD

AND THE xor EMBEDDINGS

1 X8
2 x 4
1 x 1 6
2 x 8
4 x 4
8 x 8

16 x 16
16x32
32x32
32x64

0 3
0 1
0 8
0 3
0 2
0 6
0 16
0 26
0 36
0 57

1 1
0 0
3 4
I 1
0 0
2 2
6 8
10 14
14 20
22 33

F. Average Load
Taking into account that a link with dilation D results in a uni-

tary additional load to D - 1 nodes, the average load of nodes due
to communication tasks can be computed from the links dilation
spectrum using the following expression for both embeddings:

Lave(dl , d 2 , dc) = 9 (2 i - 1) ' (Ad1,d2,...,dc(2i))/2d
i=O

where 2' = D,,.
For the particular case of a ring, the average load is

d-1
Lzfe(d) = C (2 ' - 1) / 2 = (2d - d - 1) / 2

i=l
d-3

LE: (d) = (2' - 1) / 2 + (2d-2 - 1) = (3 2d-2 - d - 1) / 2
i=l

GONZALEZ, VALERO-GARCf A, AND DfAZ DE CERIO: EXECUTING ALGORITHMS WITH HYPERCUBE TOPOLOGY ON TORUS MULTICOMPUTERS 81 1

For a c-dimensional squared torus the average load is
dlc-1

L$e(dl,d2,...,dc)= c c (2 i - 1) / 2 = ~ (2 ~ " - d / c - 1) / 2
i=l

dlc-3

L$: (4, d2 , . . . , d,) = c c (2' - 1) / 2 + c (2d1c-2 - 1)
i=l

= ~ (3 * 2 ~ ' ~ - ~ - d / c - 1) / 2

In both cases, the average load of the standard embedding is
about 33% higher than that of the xor embedding. The differ-
ence is even higher for small hypercubes. We can then con-
clude that for the execution of any parallel algorithm with a
hypercube communication topology the xor embedding will
result in a quite less number of communication conflicts. No-
tice that in the case of the CC d-cube algorithms analyzed in
this paper, due to their particular structure, conflicts never
occur for the two embeddings.

v. PROOF OF OFTIMALITY OFfxor FOR RINGS
The average distance as defined in Section IV.A, will be

used as the main criterion to measure the goodness of any em-
bedding with constant distances, since minimizing the average
distance implies minimizing the execution time of CC d-cube
algorithms. In this section, it is proven that the xor embedding
has the minimum average distance for embeddings with con-
stant distances of hypercubes onto rings,

To show that the xor embedding is optimal for rings, we
will prove that the average distance of any embedding with
constant distances is higher than or equal to the average dis-
tance of the fmr embedding. This is stated by Theorem 10. Be-
fore this theorem, several lemmas and corollaries that are
needed to prove that result are presented. First, a lower bound
for the sum of any set of d - 1 distances corresponding to any
embedding with constant distances is found. Then, a lower
bound for the highest distance of the embedding is computed.
Both together give a lower bound for the average distance of
any embedding with constant distances. This lower bound is
the average distance of the fmr embedding, which proves its
optimality .
DEFINITION. Given any node of a hypercube, we define ND(n),

where D is any subset of dimensions of the hypercube, as
the node that is reached by starting at node n and moving
through every dimension in D, one after another, using
each dimension exactly once (as we know, the order in
which the dimensions are used does not matter, the result
will be the same). For instance, i f 0 = { 1 , 3 } , then ND(n) =

In the following, Ni(N,(n)) will be written as Nfl,(n). The
parenthesis are removed for the sake of clarity, but the mean-
ing referring the order in which dimensions are used is pre-
served. That is, NiN,i(n) means that we move from node n first
using dimension j and then dimension i.

The first lemma of this section proves that the sum of any
subset of d - 1 distances corresponding to d - 1 dimensions
must be at least 2"' - 1.

N3(Nl(n)) = NI(N3(n)).

LEMMA 1. Let fd be an embedding with constant distances
(Di, ig[O, d - 13) of a d-cube onto a ring. Let V be any sub-
set with d - 1 of the dimensions of the d-cube, that is, V
contains all the dimensions of the d-cube except one. Then,

Di22d- ' -1
VieV

PROOF. Let H(d, n, V) be the subset of nodes of a d-cube that
consists of nodes n and N d n) for every W E V. Obviously,
the number of elements in H(d, n, V) is two to the power of
the number of elements in V. In particular, if V has d - 1
elements, then H(d, n, V) consists of 2"' elements. Given
any set of 2"' nodes of a ring, there will always be two
nodes in this set whose distance is at least 2"' - 1. Since it
is possible to go from any node in H(d, n, V) to any other
node in the same set, using each dimension in V at most
once, the distances corresponding to the dimensions in V

0
The next lemma states that if two distances are equal when

embedding a d-cube onto a ring then these distances must be
equal to 2d-2 + k 2*' for some integer k 2 0.
LEMMA 2. Let fd be an embedding with constant distances

(Di, &[O, d - 13) of a d-cube onto a ring with 2d nodes. Zf
Di = Dj = K(i # j) then K ' 6 1 2d-2 (in the following,
x E,, y means that x mod 2" = y mod 2"; if n = d we will just
write x f y).

PROOF. Suppose the nodes of the ring are labeled clockwise
from 0 to 2d - 1. Let us take any node n of the hypercube
and let x = fd(n). Suppose that Di = Dj = K(i # j) . Then,
y = fd(Ni(n)) is equal to either (x + K) mod 2d or (x - K)
mod 2d. For short we will write fd(Ni(n)) = (x K) mod 2d.
We have also that z = fd(4(n)) = (x M) mod 2d. Since
N,(n) # Ni(n), the only possible solution is either y = (x + K)
mod 2d and z = (x - K) mod 2* or y = (x - K) mod 2d and
z = (x + K) mod 2d. Since both situations are symmetrical,
let us suppose the first one holds without loss of generality.

We have also that Nfli(n) is the same as NJvj(n). Let
w = fd(Np&)). Then w = 0, + K) mod 2d (it cannot be equal
to 0, - K) mod 2d since 0, - K) mod 2d = x but x and w must
be different). Since w is also equal to fd(NJv,{n)), w =
(z - K) mod 2d. Therefore, y + K = z - K, that is, x + 2K = x
- 2K. This means that 4K 0 which implies that K Ed-2 0.
Then K = k 2"' for some integer k > 0 (distances must be
positive integers). However, K cannot be a multiple of 2"'
because this would imply that y = z. In consequence, K =

0
DEFINITION. Given two nodes x and y of a ring we say that y is

clockwise in relation to x if the shortest path from x to y is
clockwise. Otherwise we say that y is counterclockwise in
relation to x. Obviously, i f y is clockwise in relation to x ,
then x is counterclockwise in relation to y .

must add up to at least 2"' - 1.

2d-2 + k 2*', that is, K Ed-1 2"'.

DEFINITION. Let f d be an embedding with constant distances
(Q, ie[O, d - 11) of a d-cube onto a ring. Let us define
S = {il 0 I i c d and Di < 2d-2}, that is, S (it stands for
Short) is the set of dimensions whose corresponding dis-

812 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS. VOL. 6. NO. 8, AUGUST 1995

tances are less than 2d-2 when a hypercube is embedded
onto a ring. Given any node n of the hypercube, we define
C(n) = (il iES and fANi(n)) is clockwise in relation to f d n))
and C (n) = (il i E S and fANi(n)) is counterclockwise in
relation to f d n)) . Obviously, C(n) U C (n) = S.
Given any node, its neighbor in a given dimension of the

hypercube is at a fixed distance in the ring, but it can be
clockwise or counterclockwise. The next two lemmas prove
that, if we take into account only those dimensions of the hy-
percube such that their corresponding Di are less than 2d-2,
there is always a node which has all its neighbors in those di-
mensions clockwise in the ring (there is another node with all
the neighbors in those dimensions being counterclockwise).

LEMMA 3. Let fd be an embedding with constant distances
(Di, iE [0, d - 13) of a d-cube onto a ring with 2d nodes. Let
n be any node of the hypercube. Then, for any j E c (n) ,
C(n) U (j } c C(Nj (n)).

PROOF. It is obvious thatjE C(Nj(n)) because N,hj(n) = n; so, if
N,(n) is counterclockwise in relation to n then, N,Nj(n) = n is
clockwise in relation to Nj(n).

It only remains to be proved that for every k ~ C (n) ,
k ~ C @ " (n)) . Let us suppose that there is a k such that
k E C(n), k E C(Nj(n)). Assume that the nodes of the ring are
labeled clockwise from 0 to 2d - 1 and let x = fAn). Since
Nj(n) is counterclockwise in relation to n, then fdN,(n))
= (x - Dj) mod 2d. By hypothesis NkN,(n) is counterclock-
wise in relation to Nj(n), so fd(NkN,{n)) = (x - Dj - Dk) mod
2d. Since Nk(n) is clockwise in relation to n, then fa(Nk(n))

Because NkNj(n) and N,Nk(n) are the same node, x - Dj - Dk
= x + Dk dlj. This implies that either Dj + Dk Ed-1 0 or Dk
=d-l 0; but none of these can hold since 0 < Dj, Dk < 2d-2 (j,
ke S). So, the hypothesis was wrong and then k~ C(Nj(n)). 0

LEMMA 4. Let f d be an embedding with constant distances
(Di, is[O, d -13) of a d-cube onto a ring with 2d nodes.
Then, there is a node n of the hypercube such that C(n) = S,
that is, c (n) = 0.

PROOF. Lemma 3 gives us an algorithm to find this node n. We
can start from any node m of the hypercube. If C(m) = 0,
then n = m; if not, take any i E C(m) and move to Ni(m).
Lemma 3 states that the number of elements in C(N,(m)) is
strictly less than the number of elements in C(m). Repeat-
ing this step we will finally find a node n such that

= (x + Dk) mod 2d and fdN,hk(n)) = (X + Dk mj) mod 2d.

-
C(n) = 0, that is, C(n) = S. n
From now on we will refer to the node designated by

Lemma 4 as node c of the hypercube. The nodes of the ring
can be labeled in the most convenient way for us. From now
on, the node f d c) will be labeled as node 0, and the rest of the
nodes of the ring will be labeled clockwise from 0 to 2d - 1.
By the above lemma, fdNi(c)) = Di for any ieS. The next
lemma states that for any iES, the neighbors of Ni(c) in every
dimensionjES - (i) are clockwise. Obviously, the neighbor of
Ni(c) in dimension i is counterclockwise, since it is c.

LEMMA 5 . Let fd be an embedding with constant distances
(Di, k [O , d - 11) of a d-cube onto a ring with 2d nodes.
Then, for any ieS, C(Ni(c)) = S - (i } . This is equivalent to
say that fAN,Ni(c)) = Di + Dj for any i, je S , i f j .

PROOF. Suppose there is some jcS - (i) such that
j E C(N,(c)) . That means that x = fdN,Ni(c)) = (Di - Dj)
mod 2d. Since x is also equal to fd(NiNj(c)) = (Dj mi) mod
2d, this implies that either

Di Zd-1 Dj, which is not possible because Di f Dj (by

Dj Ed-1 0, which cannot hold since 0 c Dj < 2d-2.
In consequence, for every j E S - (i } , je C(Ni(c)) and then
C(Ni(C)) = S - (4. 0
Next, it is proven that given any subset of dimensions W _c S,

the neighbors of N d c) in every dimension i E S - Ware clockwise.
LEMMA 6. Let f d be an embedding with constant distances (Di,

ie [0, d - 11) of a d-cube onto a ring with 2d nodes. Then,
for any W CS, C(N&c)) c S - W.

PROOF. The lemma will be proved by induction over the num-
ber of elements in W.

If W has just one element the lemma holds (it has been
proved in Lemma 5 , which can be seen as a particular case
of Lemma 6).

Assume that the lemma holds for any set with less than N
elements and let us suppose that it does not hold for a set
W with N elements. This means that there is a dimension
k e S - W such that fd(Nk(Nw(c))) is counterclockwise in re-
lation to fa(Ndc)).

The fact that the lemma holds for any subset with less
than N elements implies that

Lemma 2) and Di, Dj < 2d-2, or

for any subset D c S with N elements. Therefore, since W
has N elements

Let V be equal to the set W after taking any element of it
and being replaced by k, that is, let iEW be any element of
W, then V = (W - (i }) U (k) . Since V has also N elements

We know that Nk(Nw(C)) = Ni(Nv(C)). Then, fd(Nk(Nw(C)))
= fANi(Nv(c))). By hypothesis, since Nk is counterclockwise
in relation to Nw(c), then the left part of the equality must be
equal to (r - &) mod 2d. The right part is equal to s +Di
mod 2d. In consequence, r - Dk = s mi. Substituting r and s
by their corresponding expressions and simplifying we ob-
tain that Di - Dk = Dk ai. This equation can be satisfied
just in two ways: either Dk Ed-] 0 or Di Dk. None of
them can hold since 0 < Di, Dk < 2"*, and as Lemma 2
states, Di and Dj cannot be equal.

GONZALEZ. VALERO-GARCIA, AND DfAZ DE CERIO: EXECUTING ALGORITHMS WITH HYPERCUBE TOPOLOGY ON TORUS MULTICOMPUTERS 813

We then conclude that for every ~ E S - W, f&Vk(N&c)))
is clockwise in relation to fdN&c)) and therefore, C(N&c))

COROLLARY 7. Zfwe start from node c and we want to move to
node N&c) for any W E S, using each dimension in W ex-
actly once, any time we move through a dimension in W we
will be moving clockwise in the ring, no matter in which
order we use the dimensions in W, that is,

c s - w. 0

PROOF. It is a direct implication of Lemmas 4 and 6. The for-
mer states that node c has all its neighbors in S clockwise,
so the first hop must be necessarily clockwise. Then Lemma
6 says that if we have moved from node c to a node r using
a subset W of dimensions of S, making use of each dimen-
sion just once, all the neighbors of node r in any dimension
not used yet (i.e., belonging to S - W) are clockwise, so the

0
Next, it is proven that, when embedding a hypercube onto a

ring with constant distances, if all distances are lower than
262, the sum of all distances must be at least 2d - 1.
LEMMA 8. Let fd be an embedding with constant distances

(Di, i E [0, d - 1 1) of a d-cube onto a ring with 2d nodes such
that every Di < 2d-2. Zfsuch embedding exists, then

next hop must also be clockwise.

d-1

Di 2 2 d - 1
i=O

PROOF. Since all distances are less than 2d-2, S (set of di-
mensions whose distance is less than 2"') consists of all
dimensions of the d-cube. Then, Lemma 4 states that there
must be a node c such that all its neighbors are clockwise.
In addition, Corollary 7 says that it is possible to go from
node c to any node of the hypercube given at most d hopes
(each one corresponding to a different dimension) and
going always clockwise. In particular, we can go from
node c to the node just next to it counterclockwise. Mov-
ing always clockwise, the distance between these two
nodes is 2d - 1 , so the sum of all distances must be at least
equal to this amount. 0

COROLLARY 9. An embedding with constant distances such
that all distances are less than 2d-2 is not optimal, if it ex-
ists. In rhis context, to be optimal means that it has the low-
est average distance for embeddings with constant dis-
tances. In other words, the optimal embedding must have at
least one distance greater than or equal to 2&'.

PROOF. Lemma 8 states that, if such embedding exists, then the
sum of its distances is at least 2d - 1 . To prove this corollary
it suffices to find an embedding whose distances add up to
less than this amount. Such embedding can be the xor em-

U

We are now ready to prove that the xor embedding is opti-

bedding, the one proposed in Section 111.

mal. This is proved in the next theorem and its corollary.

THEOREM 10. Let fd be an embedding with constant distances
(Di, k [O , d - 11) of a d-cube onto a ring with 2d nodes.
Then the average distance of fd is at least (3 2d-' - l) /d .

PROOF. The proof is based on Lemma 1 and Corollary 9. The
lemma says that the sum of any subset of d - 1 distances is
at least 2"' - 1, so in particular, the sum of the d - 1 lowest
distances of the embedding must be at least equal to this
amount. Corollary 9 states that the optimal embedding has
at least one distance that is higher than or equal to 2d-2, so in
particular, the highest distance of the embedding must be
higher than or equal to 2d-2. Both together imply that

3.2d-2 - 1
d 1 @ (average distance (f d) 2 0

COROLLARY 1 1 . The xor embedding of a d-cube onto a ring
proposed in Section III is optimal in the sense that it has
the lowest average distance for embeddings with constant
distances.

PROOF. The average distance of the xor embedding is equal to
the lower bound introduced in Theorem 10. U

VI. CONCLUSIONS

This paper focuses on the execution of algorithms with a
hypercube communication topology onto multicomputers with
a torus interconnection topology. The problem is tackled by
means of graph embeddings. An embedding of hypercubes
onto toruses of any arbitrary dimension has been presented.
This embedding, called xor embedding, belongs to a class of
embeddings whose distinguishing property is that all the links
of the same dimension of the hypercube have the same dilation
on the torus. This class of embeddings are called embeddings
with constant distances.

Many parallel algorithms with hypercube topology have the
property that all the processes perform the same activity with
different data. This activity consists of a number of stages
(usually as many as number of dimensions of the hypercube)
and each stage is composed of a computing phase followed by
a communication phase in which data is interchanged with one
of its neighbors. This structure is found in parallel algorithms
for FFT and sorting among others. For this type of algorithms,
called CC d-cube algorithms, constant distances may be desir-
able because they imply that the communication phase has the
same duration for every process, avoiding waiting intervals
which can degrade performance.

The xor embedding has been compared to the standard em-
bedding using a set of different performance metrics (execution
time of a CC d-cube algorithm, links dilation spectrum, longest
dilation, total dilation, maximum and minimum load, and aver-
age load). For all of them the performance of the xor embedding
is significantly better than that of the standard embedding.

For CC d-cube algorithms, the embedding with constant
distances that results in the shortest execution time is that

814 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 6, NO. 8, AUGUST 1995

whose average distance is minimum. It has been proven that
the average distance of the xor embedding is minimum for
rings (one-dimensional torus), and therefore, it maximizes the
performance of the multicomputer for those algorithms.

Another important property of the xor embedding is the
simplicity of the function which determines the location where
a node of the d-cube is found in the target multicomputer.

We are currently working on the generalization of this work

Antonio G o d l e z received the computer science
degree in 1986 and the PhD degree in computer
science in 1989, both from the Polytechnic Univer-
sity of Catalonia (UPC), Barcelona, Spain. He is
currently an associate professor in the Computer
Architecture Department at the Polytechnic Uni-
versity of Catalonia. His teaching and research in-
terests center on computer architecture (in particu-
lar, memory organization), parallel architectures and
algorithms, and logic programming. Dr. Gonzalez is
a member of the Board of Directors of Euromicro

in two different directions. First, we are looking at more gen-
era1 hypercube algorithms. Second, we are considering more
general torus multicomputers in which the number of process-

and a member of the IEEE and ACM.

ing elements is not necessarily a power of two.

ACKNOWLEDGMENTS

This work has been supported by the Ministry of Education
and Science of Spain (CICYT TIC-92/880 and TIC-91/1036)
and the European Center for Parallelism in Barcelona
(CEPBA).

REFERENCES

W.C. Athas and C.L. Seitz, “Multicomputers: Message-passing concur-
rent computers,” Computer, vol. 21, no. 8, pp. 9-24, Aug. 1988.
C.Y.R. Chen and Y.-C. Chung, “Embedding networks with ring con-
nections in hypercube machines,” Proc. Int’l Conf: Parallel Processing,

G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker,
Solving Problems on Concurrent Processors. Englewood Cliffs, N.J.:
Prentice Hall, 1988.
A. GonAez and M. Valero-Garcia, “The xor embedding: Embedding
hypercubes onto rings and tomes,” L. Dadda and B. Wah. eds., Proc.
Int’l Con$ Application-Specific Array Processors, IEEE CS Press,

L.H. Harper, “Optimal assignments of numbers to vertices,” J. Soc.
Industrial Applied Math., vol. 12, pp. 131-135, 1966.
L.H. Harper, “Optimal numbering and isoperimetric problems on
graphs,” J. Combinatorial Theory, vol. 1, pp. 385-396, 1966.
C.-T. Ho and S.L. Johnsson, “Embedding three-dimensional meshes in
boolean cubes by graph decomposition,” Proc. Int’l Con$ Parallel
Processing, vol. 3, pp. 319-326, 1990.
T.H. Lai and A.P. Sprague, “Placement of the processors of a hyper-
cube,” IEEE Trans. Computers, vol. 40, no. 6, pp. 714-722, 1991.
E. Ma and L. Tao, “Embeddings among meshes and tori,” J. Parallel
and Distributed Computing, vol. 18, pp. 44-55, 1993.

vol. 3, pp. 327-334, 1990.

1993, pp. 15-28.

[lo] S. Matic, “Emulation of hypercube architecture on nearest-neighbor
mesh-connected processing elements,” IEEE Trans. Computers, vol. 39,
no. 5, pp. 698-700, May 1990.

[1 11 F.T. Leighton, Introduction to Parallel Algorithms and Architectures:
Arrays, Trees, Hypercubes. San Mateo, Calif.: Morgan Kaufmann,
1992.

[I21 S.W. Tumer, L.M. Ni, and B.H.C. Cheng, “Contention-free 2D-mesh
cluster allocation in hypercubes,” Proc. Int ’ I Conf: Parallel Processing,

[I31 A. Varma and C.S. Raghavendra, ed., “Interconnection networks for
multiprocessors and multicomputers: Theory and practice,” JEEE
CS Press, 1993.

vol. 2, pp. 125-129, 1993.

Miguel Valero-Garcia received the computer sci-
ence degree in 1986 and the PhD degree in com-
puter science in 1989, both from the Polytechnic
University of Catlonia (UPC), Barcelona, Spain. He
is currently an associate professor in the Computer
Architecture Department at the Polytechnic Uni-
versity of Catalonia. His primary research interest is
in parallel architectures and algorithms. Dr. Valero-
Garch is a member of the IEEE and ACM and a
researcher of the European Center for Parallelism of
Barcelona (CEPA).

Luis Diaz de Cerio received the higher diploma
degree from the Polytechnic University of Catalonia
(UPC), Barcelona, Spain, in electrical engineering in
1993. He is currently an assistant professor in the
Computer Architecture Department at the Polytech-
nic University of Catalonia, where he is pursuing his
PhD. His research interests focus on parallel archi-
tectures and algorithms.

