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A Framework for Designing Deadlock-Free 
Wormhole Routing Algorithms 

Rajendra V. Boppana and Suresh Chalasani 

Abstract-This paper presents a framework to design fully-adaptive, deadlock-free wormhole algorithms for a variety of network 
topologies. The main theoretical contributions are (a) design of new wormhole algorithms using store-and-forward algorithms, (b) a 
sufficient condition for deadlock free routing by the wormhole algorithms so designed, and (c) a sufficient condition for deadlock 
free routing by these wormhole algorithms with centralized flit buffers shared among multiple channels. To illustrate the theory, 
several wormhole algorithms based on store-and-forward hop schemes are designed. The hop-based wormhole algorithms can be 
applied to a variety of networks including torus, mesh, de Brujin, and a class of Cayley networks, with the best known bounds on 
virtual channels for minimal routing on the last two classes of networks. An analysis of the resource requirements and 
performances of a proposed algorithm, called negative-hop algorithm, with some of the previously proposed algorithms for torus 
and mesh networks is presented. 

Index Terms-Adaptive routing, Cayley networks, de Bruijn networks, deadlocks, design techniques, multicomputer networks, 
mesh networks, performance evaluation, wormhole routing. 

1 INTRODUCTION 

M 
direct 

ANY recent experimental and commercial parallel 
computers [l], [3], [7], [25], [30], [32], [36], [41] use 
networks for low latency, high bandwidth interproc- 

essor communication. A typical direct network is the k-ary 
n-cube network, which has an n-dimensional grid structure 
with k nodes (processors) in each dimension such that every 
node is connected to two other nodes in each dimension by 
direct communication links. 

The performance of a multicomputer network depends 
on the switching technique and the routing algorithm used. 
Possible switching techniques are the virtual cut-through 
[27], store-and-forward [22], and wormhole [13]. The worm- 
hole (WH) switching technique has been widely used in the 
recent multicomputers [32], [30], [36]. In the WH technique, 
a packet is divided into a sequence of fixed-size units of 
data, called flits. If a communication channel transmits the 
first flit of a message, it must transmit all the remaining flits 
of the same message before transmitting flits of another 
message. The main advantages of wormhole switching are 
low memory requirements in routers and pipelined data 
movement in the absence of contention. The main disad- 
vantage of wormhole switching is channel congestion, since 
a blocked message does not relinquish the communication 
channels it has already acquired. The virtual cut-through, 
VCT, and store-and-forward, SAF, switching techniques re- 
quire more storage in nodes but have less channel contention. 
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Some of the most important issues in the design of a 
routing algorithm are high throughput, low-latency mes- 
sage delivery, avoidance of deadlocks, livelocks, and star- 
vation [17]. In this study we consider only minimal routing 
algorithms as per which a message always moves closer to 
its destination with each hop taken. Livelocks can be 
avoided with minimal routing, and starvation can be 
avoided by allocating resources such as communication 
channels and buffers in FIFO order. Ensuring deadlock- 
freedom depends on the design of the routing algorithm. 

A routing algorithm that provides messages with multi- 
ple paths to use to reach their destinations is an adaptive 
routing algorithm. Minimal fully-adaptive algorithms do 
not impose any restrictions on the choice of shortest paths 
to be used in routing messages; in contrast, partially- 
adaptive minimal algorithms allow only a subset of avail- 
able minimal paths in routing messages. The well-known e- 
cube routing algorithm [13], [43] is an example of non- 
adaptive routing algorithms, since it has no flexibility in 
routing messages. 

Many researchers are investigating suitable adaptive 
wormhole and virtual cut-through algorithms for high- 
performance and fault-tolerant routing in k-ary n-cube 
based tori and meshes [4], [5], [SI, [9], [121, 1141, [191, [281, 
[31], [34], [35], [38], [40], and other networks [18], [33]. Most 
of the recent results are on the design of adaptive worm- 
hole algorithms using as few virtual channels as possible 
[41, [91, [141, [16], [19]. Incorporating adaptivity may not 
always improve the throughput and average message la- 
tency [6], [19]. Further, multiple virtual channels could be 
multiplexed on a single physical channel using additional 
flit buffers and multiplexers to improve performance 1111, 

The work on designing wormhole routing algorithms is 
done largely independent of the results developed for store- 
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and-forward switched computer networks [20], [221. There 
are no general results which show the applicability of SAF 
algorithms to derive corresponding WH algorithms with- 
out compromising adaptivity and deadlock-freedom. Fur- 
ther, with the exception of a few results [13], [18], [33], the 
current results on wormhole algorithms are targeted to k- 
ary n-cube torus and mesh networks. 

Based on these observations, it is appropriate to ask the 
following questions. Can we apply the routing algorithms 
for SAF computer networks to WH multicomputer net- 
works? Furthermore, how can we develop WH routing al- 
gorithms that can be applied to a variety of networks in- 
cluding the k-ary n-cube based meshes and tori, de Brujin 
[39] and n-star [2]? What are the performance implications 
of the routing algorithms so derived? 

To address these issues, we present a general result to 
show that a class of store-and-forward routing algorithms 
can also be used, with appropriate modifications, for WH 
routing. We believe that this result unlocks the potential of 
a large number of results developed for computer networks 
in the past two decades. We provide sufficient conditions 
for deadlock free routing by these wormhole algorithms. 
We also provide a sufficient condition for sharing flit buff- 
ers among multiple channels without creating deadlocks. 

As an example of our technique, we derive several 
deadlock-free, fully-adaptive WH routing algorithms from 
SAF algorithms. These algorithms are based on the number 
of hops taken by messages, and are called hop schemes. For 
k-ary n-cube networks, hop schemes require more virtual 
channels than some of the recently proposed wormhole 
algorithms [4], [14], [40]. But hop schemes provide deadlock 
free routing even when flit buffers are shared among mul- 
tiple channels. We show in our performance comparisons 
with other algorithms that this ability of hop schemes 
makes them competitive for many practical network sizes. 
Furthermore, the hop schemes are versatile, and can be 
used for WH switched networks with any topology. To il- 
lustrate this, we provide minimal, deadlock-free, and fully- 
adaptive algorithms with the best known bounds on virtual 
channel requirements for the de Brujin and n-star networks. 

The rest of the paper is organized as follows. Section2 
presents the result on developing WH routing algorithms 
from SAF algorithms. Section 3 presents WH hop schemes 
and their variants. Section 4 applies the results to develop 
fully-adaptive WH routing algorithms for de Brujin and n- 
star networks. Section 5 compares the proposed schemes 
with the adaptive WH routing algorithms proposed in the 
literature. Section 6 concludes the paper with directions for 
future research. 

2 APPLICATION OF SAF ALGORITHMS 
FOR WH ROUTING 

In this section, we describe a method to design new worm- 
hole routing algorithms from store-and-forward algo- 
rithms. We also present a sufficient condition under which 
the new wormhole algorithms are deadlock free. 

First, we introduce some terminology. Each node of the 
interconnection network is a processor-memory-router 
element and is given a distinct address. We assume that the 

links of the network are bidirectional, which can be imple- 
mented using two unidirectional (simplex) physical com- 
munication channels in opposite directions. The physical 
channels, buffers, virtual channels, and messages originat- 
ing from a node can be given unique numbers based on the 
address of the node. Unless otherwise indicated, the num- 
ber of virtual channels are specified per physical channel. 

Let N denote the set of nodes in the network and pc de- 
note the set of a11 physical channels in the network. In a 
SAF network, b, denotes the set of class i buffers, and 
b = v ~ , b i  is the set of all buffers in the network, where m is 
the n y b e r  of buffer classes used. Let Class(b) and Chan- 
nel@, b ) denote, respectively, the class of buffer b and the 
physical channel connecting the nodes to which b and b’ 
belong. In a WH network, c, denotes the set of class i virtual 
channels, and c = U ~ ~ C ,  is the set of all virtual channels in 
the network, where m is the number of viTtual channel 
classes used. Let ChanneZ(c) denote the physical channel on 
which the virtual channel c is simulated, and Class(c) de- 
note the class of e. 

2.1 Deadlock Free Routing Concepts 
We assume that a message which reached its destination 
does not require any more network resources-buffers in 
SAF and communication channels in WH-and is con- 
sunzed in a finite amount of time. Therefore, the issue of 
deadlocks is concerned with the messages that have ac- 
quired some network resources and need more resources to 
reach their destinations. 

In WH routing, communication channels are the re- 
sources for which messages compete. A single physical 
channel between adjacent nodes may not provide deadlock- 
free routing in multicomputer networks such as k-ary n- 
cube based meshes and tori. One solution is to provide a 
sufficient number of virtual channels and devise a suitable 
routing algorithm [13]. Multiple virtual channels between a 
pair of adjacent nodes is provided by multiplexing the 
bandwidth of the single physical channel available. 

A wormhole routing algorithm specifies two relations on 
virtual channels: routing relation, R, and selection relation, 
d The routing relation determines which paths and chan- 
nels are suitable, for example, for deadlock-free routing, for 
the next hop of a message. The selection relation Suses ad- 
ditional criteria such as channel congestion and chooses one 
of the channels indicated by R. The issue of deadlocks is 
addressed in the design of R, leaving specification of Gfor 
performance improvements only [14]. In this paper, we use 
routing relation and routing algorithm synonymously. 

In SAF routing, multiple classes of buffers are used to 
avoid deadlocks and improve performance. All of the 
above discussion applies to SAF routing, when virtual 
channels are replaced by buffers. 

Let r denote the set of resources (buffers in SAF and vir- 
tual channels in WH) used by the routing relation R.  We 
use the maximal resource dependency graph of the routing re- 
lation R. The maximal resource dependency graph, hence- 
forth resource graph, of R is obtained as follows. The vertices 
of resource graph are the resources (buffers or virtual chan- 
nels); there is a directed edge from vertex r l  to r2 if a mes- 
sage can use r2 immediately after using rl. For deadlock 
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proofs, we show that maximal dependency graphs are acy- 
clic. We consider only minimal (shortest-path) routing of 
messages. Minimal routing avoids livelocks and minimizes 
the bandwidth used per message. We avoid starvation by 
assigning resources to waiting messages on a FCFS basis. 

2.2 Construction of New Wormhole Algorithms 

In this section, we establish the correspondence between 
SAF and WH routing algorithms. Fig. 1 illustrates construc- 
tion of a wormhole node from an SAF node, In SAF routing, 
buffers in nodes are the critical resources. Deadlocks in SAF 
routing are avoided by partitioning the buffers into several 
classes and placing constraints on the set of buffer classes a 
message can occupy in each node. This is known as the 
buffer reservation technique [22]. 

I P2 & Flit uffer 

Physical channel 

(a) 

' : p4 
*;VI 

Virtual channels 

(b) 

Fig. 1. Example of a wormhole router construction from a store-and- 
forward router. The SAF note in (a) has two input, pl and p2, and two 
output p3 and p4, physical channels and two packet butters, bl and 
b2. The paths of three messages, ml,  m2, and m3, through the SAF 
node are shown. In the corresponding wormhole node in (b), two vir- 
tual channels are simulated on each input and output physical chan- 
nel. For clarity, only output virtual channels are shown. The paths of 
the three messages through the WH node are based on the packet 
butter and the output physical channels used int he SAF node. The flit 
butter used to store a flit of a messagae, for example, m l  , is depend- 
ent on the virtual channel used by m l  on pl . 

In the SAF algorithms based on buffer reservations, each 
message is given a class, and a message of class i occupies a 
buffer of class i. A message takes hops from one buffer to 
another until it occupies a buffer in its destination node, at 
which point it awaits consumption. Then, the routing rela- 
tion, S, for an SAF algorithm is from b x N to b. Hops al- 
lowed are given by the elements of S. The element 
(bl, y, b2) E S represents a hop allowed from buffer b l  to b2 
by a message destined to y. 

The process of designing a wormhole algorithm, W, 
from an SAF algorithm, S, consists of two steps: specifica- 
tion of c, the set of virtual channels, and W, the routing re- 
lation from c x N to c. 

1) Let b,, ..., bm be classes of buffers occupied by mes- 
sages before reaching their destinations in the SAF al- 
gorithm. Then, for the WH algorithm, on each physi- 
cal channel in the network, we provide virtual chan- 
nels of classes c,, . . ., c, and the corresponding flit- 
buffers. Fig. 1 shows this for m = 2. Therefore, the set 
of virtual channels in the entire network is c I> {1, ..., 
m) x pc. We also include injection channels and con- 
sumption channels of all nodes in C. 

2) Let (b,, y, b,) E S ,  a hop from buffer b, to b, by a mes- 
sage destined to y in the SAF routing. Then, (c', y, cl), 
(cl, y, c") E W, where CZass(b1) = CZass(cl), Chan- 
nel (cl) = Channel (bl, b2), c' is any virtual channel 
simulated for any buffer and physical channel combi- 
nation used by the message to reach bl ,  and c" is any 
virtual channel simulated for any buffer and physical 
channel combination used by the message after 
reaching b2 (see Fig. 2). If (bl, y, b2) is the first hop of 
the message in the SAF routing, then c' is inj, the injec- 
tion channel of the node of bl. If (bl, y, b2) is the last 
hop of the message in the SAF routing, then c" is cons, 
the consumption channel of the node of b2. 

cr.->@ > -$j--J-Lc, P 

XI x2 
(a) (b) 

Fig. 2. Illustration of hops in a wormhole algorithm constructed from a 
store-and-forward algorithm. Part (a) illustrates the hop by a message 
from packet buffer b l  to b2 in SAF routing. Part (b) illustrates the cor- 
responding hop by the same message in WH routing. The virtual 
channel d provided for the hps by messages from packet buffer b l  to 
node x2 is used for the WH hop. The virtual channels c'and c'" are 
dependent on the hops taken before arriving at node xl and after ar- 
riving at node x2, respectively. The flit buffer used in node xl is the 
dedicated flit buffer for c'and the flit buffer used in node x2 is the 
dedicated flit buffer for cl. The dotted lines indicate additional virtual 
channels (flit butters not shown) simulated on each physical channel. 

Informally, if the SAF algorithm specifies that a message 
should occupy a buffer of class b, at node x and use a chan- 
nel from a set of physical channels, E,  to complete the next 
hop, the corresponding WH algorithm specifies that the 
message at x should take the next hop using a virtual chan- 
nel of class ci on any of the physical channels in 1. 

Suppose a message M is routed from x to y using buffers 
b,, ..., b ,  for hops 1, ..., t - 1; b, is the buffer occupied at 
injection and b, is the buffer occupied at consumption. 
Therefore, (b,, y, bJ, (b2, y, b3), ..., (b,,, y, bJ E S .  Then, 
(injx, y, c,), ..., (ct-2 ,y, c,,), (c,,, y, cons,) E w, such that 
CZuss(c,) = Class(b,), 0 < i < t, and Channel(c,) = Channel(b, 
bi+,); ini, is the injection channel in node x and consy is the 
consumption channel in node y. 

2.3 Sufficient Conditions 

The procedure above designs a wormhole routing algo- 
rithm, W, from a store-and-forward algorithm, S, with the 
same degree of adaptivity. However, W need not be dead- 
lock-free. We will provide sufficient conditions for S to 
yield deadlock-free W. 

It is obvious that any routing algorithm for multicom- 
puters should ensure the following: 

1) each and every message injected into the network is 

2) each message delivered to its destination is removed 

In addition, the SAF algorithms considered in this paper 
have the following property. 

for Deadlock Free Wormhole Algorithms 

delivered to its destination, and 

from the network in finite time. 



172 IEEE TRANSACTIONS ON P A W E L  AND DISTRIBUTED SYSTEMS, VOL. 7, NO. 2, FEBRUARY 1996 

PROPERTY 1. The bufer occupied by a message in a given node is 
dependent only on the buffer Occupied in the previous node 
and the channel used for the hop between the previous node 
and the present node. 
Consider a message M destined to y and currently occu- 

pying buffer b, in node xl. If it moves to buffer b, in x,’s 
neighbor x2, then each and every message that occupies b, 
(in xl) and moves to x2 in the next hop can use b,. Further- 
more, any message that is destined to y and occupying b, 
can move to or wait for 6,  without any restrictions. The 
routing relations of such SAF algorithms are said to be 
static. 

All dependency graphs used for the rest of the paper ac- 
fxally refer to maximal dependency graphs, which are ex- 
plained in Section 2.1. We classify the cycles of a depend- 
ency graph into two categories: direct and indirect cycles. A 
direct cycle passes though exactly two vertices. An indirect 
cycle is an elementary cycle-a cycle such that no vertex is 
encountered more than once-passing through three or 
more vertices. Resource graphs do not have self-loops, 
which are cycles involving only one node. 

LEMMA 1. The maximal dependency graph of a routing algorithm 
has 
1 )  direct cycles if and only if the algorithm has direct dead- 

2 )  indirect cycles if and only if the algorithm has indirect 
locks and 

deadlocks. 
The lemma presented above is a restatement of the well- 

known result in operating systems and in computer com- 
munications and applies to routing algorithms with static 
Rs. Routing algorithms with dynamic Rs have deadlocks if 
and only if instantaneous dependency graphs-formed by 
taking currently existing dependencies-have cycles. This 
fact is used in designing many adaptive algorithms [14], 

In store-and-forward algorithms, it is feasible to use cen- 
tralized buffers, which could lead to a direct deadlock-two 
messages in adjacent nodes block each other‘s path. The 
following lemma shows that SAF algorithms with direct 
deadlocks can be used to construct WH algorithms if cer- 
tain conditions are met. The scope of the lemma includes 
SAF algorithms with nonminimal routing. 
LEMMA 2. W is p e e  of direct and indirect deadlocks if S is free of 

indirect deadlocks and satisfies any one of the following condi- 
tions: 
1)  a message always acquires buffers not used by it be$ore, 
2) a message does not revisit a node immediately aftey leaving 

3)  a message never visits the same node twice. 

WI, ~401. 

it, or 

PROOF. Assume that the channel graph of W has a cycle: 
c1, ..., c,, c1, t > 1. Then the buffer graph of S has the fol- 
lowing cycle: b,, b,. . ., b,, b,, such that the hop on ci corre- 
sponds to the hop (b, yi, bi,mod f+l). Since the given SAF 
algorithm has no indirect deadlocks, there cannot be in- 
direct cycles in its buffer graph. Hence, t = 2. So, indirect 
cycles do not occur in the channel graph. Now, we show 
that direct cycles cannot occur in the channel graph if the 
hypothesis is satisfied. 

PART A. that a message never reuses a buffer in 
the SAF routing. Consider the cycle c l ,  c2, c l  in the chan- 
nel graph: message m l  obtained c l  and waits for c2 and 
message m2 obtained c2 and waits for c l .  Therefore, the 
wormhole algorithm allows ml to revisit its current 
node, via c2, immediately after leaving it. In the corre- 
sponding SAF routing, ml waits for buffer of m2 and vice 
versa. Furthermore, m l  can revisit its current node using 
the buffer and physical channel used by m2. Therefore, 
by Property 1, ml can use its current buffer on its revisit. 
This is a contradiction. 

PART B. suppose a message never revisits a node imme- 
diately after leaving it. Then it may reuse a buffer after 
taking two or more hops. But this implies an indirect cy- 
d e  in the buffer graph, which cannot occur. Therefore, 
there cannot be cycles in the channel graph. 

PART C. This part is a direct consequence of PART A, since 
a message that never revisits a node does not reuse a 
buffer. U 

COROLLARY 1. If S ensures that messages acquire buffers in the 
grmtcr than order, F, of some partial order on b, then W is 
deadlockfre. 

PROOF. Since s allocates buffers to messages as per an anti- 
symmetric relation, no message reuses a buffer, and S is 
free of deadlocks. Therefore, S satisfies the hypothesis of 
Lemma 2. 0 
In the next two sections, we consider a few well-known 

SAF schemes based on the number of hops taken [20] and 
derive several deadlock-free wormhole algorithms for 
meshes, tori, de Brujin, and a class of Cayley (star) net- 
works. 

3 WORMHOLE HOP SCHEMES 

In hop schemes, the class of a message at any time is a func- 
tion of the hops it has taken up to that point. Depending on 
the function used, various hop schemes can be designed. In 
this section, we describe the negative-hop (NHoP) scheme, 
which is based on the NHOP SAF algorithm by Gopal [20], 
and severa1 variations of the NHOP scheme. 

We use the following notation for mesh and torus net- 
works. A (k, n)-torus (also called k-ar- n-cube) has n dimen- 
sions, DE& .,., D&I~+ and N = k nodes. Each node is 
uniquely indexed by an n-tuple in radix k. Each node is 
connected via communication links to two other nodes in 
each dimension. The neighbors of the node x = (x,,,, . . ., xo) 
in DIM, are (xp1,  ... xi+l, xI 2 1 ,  x ~ _ ~ ,  . . .., x,), where addition 
and subtraction are modulo k. A link is said to be a wrap- 
around link if it connects two neighbors whose addresses 
differ by k - 1 in DIM, 0 5 i < n. A (k, n)-mesh is a (k, n)-torus 
with the wraparound connections missing. The well-known 
binary hypercube is the (2, n)-mesh. In this paper, we con- 
sider (k, n)-torus and (k, n)-mesh networks with small n, 
large k, and bidirectional links. 

3.1 The Negative-Hop Algorithm 
The SAF Version. In the negative-hop SAF algorithm [20], 
the network is partitioned into several subsets, such that no 
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subset contains two adjacent nodes (this is the graph color- 
ing problem). If C is the number of subsets, then the subsets 
are labeled 0, 1, . . ., C - 1, and nodes in subset i are labeled 
(colored) i. A hop is a negative hop if it is from a node with 
a higher label to a node with a lower label; otherwise, it is a 
nonnegative hop. A message occupies a buffer of class bi at 
an intermediate node if and only if the message has taken 
exactly i negative hops to reach that intermediate node. If H 
is the maximum hops taken by a message and C is the 
number of colors, then the maximum number of negative 
hops that can be taken by a message is 

H~ = rH(C - iyc1. (1) 
Gopal [20] proves that this SAF routing lis deadlock free 
when HN + 1 classes of buffers are used. 

The WH Version. The number of virtual channels used 
in the negative-hop (NHoP) wormhole algorithm is propor- 
tional to the maximum number of negative hops a message 
can take. If m is the maximum negative hops taken by a 
message, then up to m + 1 virtual channels, one for each of 
virtual channel classes cw ..., c,, are simulated on each 
physical channel. Every message uses a virtual channel of 
class co for its first hop. Further, the class of a message in- 
creases by one after each negative hop. However, if the fi- 
nal hop of the message is a negative hop, the class of the 
message is not incremented, since a message that has taken 
its last hop waits for no virtual channels. [f H is the maxi- 
mum hops taken by a message and C is the number of col- 
ors used, the maximum number of virtual channels re- 
quired by the NHOP WH algorithm is 

(C - 1)(H - 1) 

I+[ 1 (2) 
Proof of Deadlock Freedom. Consider the following 

partial order on b. Given two distinct buffers b, b’ in b, b < 
b’ if one of the following holds: 

1) Class@) < Class(b’), or 
2) Class(&) = Class(&’) and Color(&) < Color@‘). 

Class@) is the class of b, and Color@) is the color or label of 
the node to which b belongs. Now consider a message that 
takes a hop from buffer b to b’. If the hop is a negative hop, 
then according to rule 1, b’ is greater. Otherwise, according 
the NHoP, Color@) is smaller than Color(b’), in which case 
rule 2 says that b’ is greater. Hence, the buffers occupied by 
any message in successive hops in the SAF routing algo- 
rithm have monotonically increasing ranks. Therefore, by 
Corollary 1 the NHOP wormhole algorithm is deadlock free. 

Application to Meshes and Tori. To implement the 
NHOP wormhole algorithm, we need to demonstrate a suit- 
able coloring scheme. We partition the node set of a (k, n)- 
torus or (k, n)-mesh network into two subsets: Pw P I .  The 
subset to which a node x = (xn-,, ..., xo) belongs is deter- 
mined using the following rule: 

x E Po if ( ~ ~ ~ o * x t )  mod 2 = 0, or x E P, otherwise. 

For even k, the underlying graph of the (k, n)-torus is bi- 
partite, and the partitioning colors the graph. Because adja- 
cent nodes are in distinct subsets, a message takes alter- 

nating positive and negative hops along its path from the 
source to the destination. Therefore, the maximum number 
of negative hops in a (k, n)-torus with even k is [nLk/2]/21. 

For odd k, the (k, n)-torus is not a bipartite graph and the 
partitioning does not color the graph. The adjacent nodes 
connected by wraparound links belong to the same subset 
(and have the same color), and thus do not meet the crite- 
rion of the NHOP routing method; for example, nodes (0, 
..., 0,O) and (0, ..., 0, k - 1) have the same color if k is odd. 
(Any pair of adjacent nodes that are not connected by 
wraparound links will be in distinct subsets and, hence, do 
not pose a problem.) To solve this problem, assume that for 
every pair of nodes a and b connected by a wraparound 
link, there is an imaginary node c between a and b on the 
wraparound link; further, assume that this imaginary node 
belongs to the subset other than that of a and b. Thus a hop 
on the wraparound link from node a to b passes from a to 
the imaginary node c and then from c to b. One of these 
hops is a negative hop. The net effect is to increase the 
maximum number of hops (for counting negative hops 
only, the actual routing is still minimal) in a dimension by 
1, to rk/21, for odd k. 

In summary, a (k, n)-torus has nrk/2’1 hops. Since the 
graph of a (k, n)-mesh is bipartite, for both odd and even k, 
the total hops is n(k - 1). Using C = 2 and substituting for H, 
depending on the type of network, in (2), we obtain that the 
number of virtual channels needed is at most 
1 + Lnrk/21/2], for a (k, n)-torus, and 1 + Ln (k - 1)/21 for a 
(k, n)-mesh. 

Algorithm Negat ive-Hop 
(Initially, current-class = 0 and current-host 

= source of the message.) 
If (current-host # destination) then ( 

1) If color of the current-host is 0 or colors of 
previous-host and current-host match, then in- 
crement current-class by one. 

2) Select any neighbor node that is in a shortest 
path to destination as the next-host. 

3)Reserve the virtual channel of class current- 
class. 

4) If the virtual channel is available, set previ- 
ous-host t current-host, current-host t next- 
host, and route the message; otherwise, go to 
step 2. 

Else Consume the message 
Fig. 3. Pseudocode to process a message by the negative-hop worm- 
hole routing algorithm in (k, n)-mesh and (k, n)-torus networks. 

When a message is generated, the total number of nega- 
tive hops taken is set to zero, and the current host is set to 
the source node. The pseudocode in Fig. 3 describes how a 
message is routed as per the negative-hop scheme. A mes- 
sage, when it moves from a node of color 0 to a node of 
color 1, reserves a virtual channel of the same class it re- 
served in the previous hop; otherwise, it reserves a virtual 
channel one class higher than what it reserved in the previ- 
ous hop. The class of a message is also incremented if it 
takes a hop between nodes of the same color. For the parti- 
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tion we have described, this can happen only for hops on 
wraparound links in odd radix (k, n)-tonus. 

The NHOP is illustrated in Fig. 4 for a message from 
(2,2) to (0,O) in a 4 x 4  mesh using four virtual channels. 
The second and fourth hops are negative hops, but the mes- 
sage class is incremented after the second hop only. 

Fig. 4. Example of the negative-hop routing in a 4 x 4 mesh. 

3.2 Improved Hop Schemes 
For many networks, the NHOP may require too many vir- 
tual channels. The channel requirements can be reduced 
using improved negative hop schemes (INHOPS), which are 
based on the negative hop scheme. The basic technique 
given by Gopal [20] is as follows. 

The SAF Version. The network is partitioned such that 
there are no cycles in any partition, and each partition is 
given a unique number. Now a negative hop is a hop that 
takes a message from a node in a higher numbered parti- 
tion to a node in a lower numbered partition. The hops be- 
tween nodes in a partition and hops from a lower num- 
bered partition to a higher numbered partition are nonne- 
gative hops. Gopal [20] proves that if H$ is the maximum 
number of negative hops taken by any imessage under the 
improved negative-hop scheme, then HN + 2 buffers are 
enough for deadlock-free routing. One of these HN + 2 buff- 
ers is required to handle direct deadlocks that exist when 
messages between neighbors in the partition are ex- 
changed. (Direct deadlocks do not occur in the original 
negative-hop scheme, as per which an,y pair of adjacent 
nodes are in distinct partitions.) 

The WH Version. A message can use any hop that takes 
it closer to its destination. A message that has taken i nega- 
tive hops uses a c, virtual channel for its next hop. Direct 
deadlocks cannot occur with wormhole switching, since 
messages exchanged between neighbors use distinct physi- 
cal channels. Direct deadlocks occur with SAF switching 
because of the centralized buffer pool. Therefore, the IN- 
HOP wormhole algorithm requires at most 

l + F 1 ) 1  (3) 
virtual channels, where HI is the maximum number of inter- 
partition hops a message can take and c' is the number of 
distinct partitions. It is noteworthy that we use HI not HI- 1 
as in (2), since a message that has tak.en its final inter- 
partition hop may still use virtual channels, w i t h  a partition. 

Proof of Deadlock Freedom. The store-and-forward 
MOP is free of indirect deadlocks and minimal-a mes- 
sage never revisits a node. Therefore, from Lemma 2, the 
wormhole algorithms derived from the INHOP are dead- 
lock free. 

Application to Meshes and Tori. Compared to the 
NHOP scheme, the INHOP reduces the buffer requirements 
for SAF routing by approximately a factor of n/ (n  - 1). 
First, we apply the INHOP scheme to meshes. The nodes of 
a (k,n)-mesh are partitioned into two subsets: Po, PI. The 
subset to which a node x = ( x ~ - ~ ,  ..., xo) belongs is deter- 
mined using the following rule: x E Po if (c::*l x .  z) mod 2 = 0, or x E P,  otherwise. 

Given any two distinct nodes x, y that belong to the 
Same subset, there is a single path between x and y within 
the partition if differ only in the DIM, component of their 
addresses, or there is no path between them without in- 
volving inter-partition hops. Therefore, there are no cycles 
in any partition. In fact, the proposed partitioning is 
equivalent to bipartite coloring of an (n - 1)-dimensional 
mesh, and a k-ary n-dimensional mesh is the graph product 
of a (k, n - 1)-mesh and a k-node linear chain [23]. Since a 
message remains in the same partition as long as it takes 
hops in ~ n ~ r ,  (row in a 2D mesh) and moves from one parti- 
tion to another when it takes a hop in DIM,, i > 0, the maxi- 
mum number of inter-partition hops a message can take is 
(n- I)@- 1). Hence, the maximum number of negative 

Similar reductions in the number of buffers can be ob- 
tained for tor i  also. However, partitions now contain cycles 
due to wraparound links in  DIM^ For odd k, wraparound 
connections in other dimensions also cause problems. Both 
can be solved by treating hops on wraparound connections 
as negative hops, appropriately. The argument used for the 
NHOP on odd radix tori applies here with suitable modifi- 
cations. The maximum number of negative hops for a (k, n)- 

hops is r(n - i)(k - 1)/2 1. 

torus is r(a - 1) rk/21/21+ 1. 
Therefore, the virtual channel requirements are 

(k, %)-mesh: r(n - 1) (k - 1)/21+1, (4) 

(S n)-toms: r(n - 1) rk/21/21+ 2. (5)  
For a 16 x 16 x 16 torus, 10 virtual channels per physical 

channel are sufficient and, for a 16 x 16 x 16 mesh, 16 vir- 
tual channels are sufficient. 

3.3 Negative Hop Scheme Based on Coloring Links 
The negative hop scheme above is based on the concept of 
coloring nodes such that any cycle in the network involves 
nodes of more than one color. This concept can be naturally 
extended to coloring links rather than nodes. The edges of 
the underlying graph of the network are colored such that 
any cycle involves edges of two or more colors. The two 
physical channels (one in each direction) of a link are given 
the color of the corresponding edge in the graph. 

Consider the following routing scheme. Any hop that 
takes a message closer to its destination can be used at any 
time. A just injected message has 0 negative hops. The first 
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hop of a message is always a nonnegative hop. A negative 
hop occurs if a message uses a physical channel of color C' 
after using a physical channel of color C" and C' < C". A 
message with i negative hops (including the current hop) 
will use a virtual channel of class i for its next hop. 
LEMMA 3. Let H be the maximum number of hops a message takes 

in the routing scheme based on coloring channels and C be the 
number of colors used. Then, 
1) the maximum number of negative hops a message takes is 

given by (6) and 
2 )  fully-adaptive deadlock-free wormhole routing can be pro- 

vided by using the number of virtual channels given by (7). 

[ T ( H  - 111 

1 + [ Y ( H  - 111 
(7) 

PROOF. Since the first hop is always nonnegative, at most 
H - 1 hops can cause negative hops. Substituting H - 1 
for the number of hops in (1) yields (6). Traveling on 
links of a color is the same as traveling in a cluster in the 
INHor scheme, and each hop, after the first hop, can be 
on a link of color different from that of the previous one. 
Therefore, substituting H - 1 for HI in (3) yields the up- 
per bound on the number of virtual channels given by (7). 
Since there is no equivalent SAF algorithm for this algo- 
rithm, we present a direct proof of dealdlock freedom by 
showing that the channel graph of the algorithm is acyclic. 
We form one subgraph for each color from the underly- 
ing graph of the network with edges colored. The sub- 
graph for color i consists of all the edges of color i and 
the nodes connected to these edges. Since the coloring is 
such that cycles cannot be formed with edges of one 
color only, each of these subgraphs is acyclic. 
Let cl  and c2 be two virtual channels such that cl  is an in 
channel to a node and c2 is an out channel from the same 
node. Let p l  and p2 be the physical channels of cl  and c2, 
respectively. Then cl< c2 if one of the fiollowing is true: 
1) Class of cl  < class of c2, 
2)  Channels c l  and c2 have the same class, but color of 

3) Channels cl  and c2 have the same class, and p l  and p2 

The first two rules are similar to the ones seen for the 
original NHOP algorithm. Since the algorithm uses short- 
est paths and since the subgraph of a color is acyclic, 
there cannot be a cycle within a partition involving c l  
and c2, if cl  and c2 are ranked using the third rule. So, 
the ranking of a pair of virtual channels, if specified, by 
these rules is consistent. 
Now, consider a message that uses or waits for c2 after 
acquiring c l .  If p l  and p2 are of different colors, then one 
of the first two conditions above holds, and c2 is of 
higher rank than c l .  Otherwise, p l  and p2 are in the same 
subgraph, and the third condition specifies that c l  < c2. 
Therefore, each message acquires virtual channels of 
strictly increasing ranks. So, the channel graph is acyclic. 0 

p l  < color of p2, or 

have the same color. 

Application to Meshes and Tori. First consider a (k, n)- 
mesh, since it presents the simpler case. Channels in DIM, 
0 I i < n, are given color i. For example, in a 2D mesh, all 
row (DIM,,) channels are of color 0 and all column channels 
are of color 1. (Dally and Aoki [12] have presented this 
method for meshes. But they did not provide any bounds 
on virtual channels required.) A row hop following a col- 
umn hop is a negative hop. Thus, the maximum number 
negative hops is 

[ G [ n ( k  - 1) - 11 = (n - l ) ( k  - 1) .  1 
For a (k, n)-torus, we start by coloring channels of DIMi 

with color i. Because of the wraparound connections, the 
underlying graph of a torus has cycles consisting of edges 
of the same color. To break these cycles, all hops on wrap- 
around links are taken to be negative hops. Then the num- 
ber of negative hops in a torus can be derived as follows. At 
most n ( k / 2 1 -  1 )  hops are taken on grid (non-wraparound) 
links and n hops on wraparound links. Noting that at most 
n colors are used for grid links and each wraparound hop is 
a negative hop, the number of negative hops in a torus is no 
more than 

[ G [ n ( [ k / 2 ]  - 1) - 111 + n = (n - 1)Lk/21+ 1. 

The upper bound on the number of virtual channels re- 
quired is at most one more than the number of negative 
hops. The above analysis indicates that this method re- 
quires more virtual channels than the NHOP for three and 
higher dimensional meshes and tori. 

3.4 Hop Schemes With Class Upgrades 
The hop schemes described thus far do not utilize virtual 
channels evenly: virtual channels with lower numbers are 
utilized more than virtual channels with higher numbers. 
For example, all messages use virtual channels of class 0, 
but only messages between diametrically opposite nodes 
(very few) use virtual channels in the highest numbered 
class. A slight modification to any of the three routing algo- 
rithms corrects this situation and achieves a more uniform 
utilization of virtual channels. 

We discuss this modification for the NHOP scheme. The 
modified scheme is called negative-hop with class up- 
grades. The modification is to give each message a few bo- 
nus upgrades based on the number of negative hops it can 
take before reaching its destination. The number of bonus 
upgrades a message M receives at its source node is given 
by the following formula. 

Number of bonus upgrades = 
maximum number of negative hops possible 
- number of negative hops to be taken by M (8) 

A message with no bonus-upgrades is routed exactly the 
same as in the NHor algorithm. A message with b bonus- 
upgrades, b > 0, may start its journey using a virtual chan- 
nel in one of col . . . c,, classes; the remainder of its journey is 
governed by the NHop algorithm given in Fig. 3. This is 
called the static bonus upgrades method. In the dynamic 
bonus upgrades method, a message may keep its bonus 



upgrades and, at any time during the journey, upgrade its 
virtual channel class by expending one or more bonus up- 
grades. The dynamic class upgrades method is more expen- 
sive to implement, and our experience indicates that both 
dynamic and static methods have similar performances. 

Since a message never waits for a llower class virtual 
channel, even with class upgrades, the routing is deadlock 
free. In addition to balancing the load on virtual channels, 
this method gives priority to messages traveling short dis- 
tances, which improves performance, especially for highly 
local traffic [6]. 

3.5 Hop Schemes With Class Ranges 

Another improvement we can incorporate into hop 
schemes is to give more choice of virtual1 channels for mes- 
sages in higher classes. For example, a miessage with virtual 
channel class il 0 may use any virtual channel of classes 
0, . . ., i. The actual implementation is as follows. If a mes- 
sage of class 2 does not find a virtual chiannel of class 2 in 
the path to its next host, the message selects any free virtual 
channel in classes 0 and 1 that is in its path, relabels it as 2 
and uses it. A virtual channel relabeled by a message of 
higher class number returns to its original class after the 
message has relinquished it. A blocked message, however, 
can only wait for a virtual channel of its class. 

Deadlocks cannot occur, since each blocked message 
waits for virtual channels as per the original algorithm. 
Starvation may be avoided by ensuring that a virtual chan- 
nel is relabeled to a higher class only when there are no 
messages of its class waiting for it. Using ranges of classes to 
select virtual channels gives priority to messages that have 
already used many virtual channels. The use of both class 
upgrades and ranges has the undesirable effect of giving 
low priority to messages that need to travel long distances 
and, perhaps, should be avoided. 

4 WORMHOLE ROUTING ALGORITHM!S 
FOR DE BRUJIN AND n-STAR NETWORKS 

Our design techniques are not limited to1 k-ary n-cube net- 
works. To illustrate this, we design new wormhole algo- 
rithms using the theory developed thus far for multicom- 
puter networks based on de Bmjin [29] andl n-star graphs 121. 

4.1 Wormhole Routing in de Brujin Nletworks 
A k-ary n-dimensional de Brujin network has k" nodes. In 
this paper, we consider only binary de Brujin (or, simply, 
de Brujin) networks, but our results can be extended to ra- 
dix-k de Brujin networks easily. 

First, we consider de Brujin networks ~47ith unidirectional 
links whose underlying graphs are directed de Brujin 
graphs. An example of directed 3D delBrujin network is 
shown in Fig. 5 .  In general, a binary nD de Brujin network 
has diameter n, and the in and out degree,s of a node is 2. In 
particular, node x = xnWl . . . xo is connected to the following 
two nodes: 

no(") = xnU2 . . . xo 0 and q(x) = xn-2 . . . x,l. 

The connections out of a node are callled o,,,-leftshifts 

with 0 or 1 fill-connections. Nodes 0 and N - 1 = Zn - 1 are 
exceptions in that one of their edges results in a loop. For 
the sake of clarity we ignore the loops. When the directions 
of all edges are reversed, we-,get yet another type of 
de Brujin network, which uses n connections-right shifts 
with 0 or 1 fiU. 
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Fig. 5. A directed three dimensional binary de Bruijn network. The 
loops at nodes 0 and 7 are omitted for clarity. The type of an edge is 
indicated by a 0 or 1 as appropriate. 

There is only one shortest path between any pair of 
nodes. Hence, with minimal routing there is no adaptivity 
in a directed de Brujin network. But deadlocks occur if mul- 
tiple virtual channels are not used. Therefore, we investi- 
gate the issue of deadlock-free minimal routing. 

Since binary de Brujin graphs are not bipartite for n 2 2, 
a mini" of three colors are needed to apply the NHOP 
scheme. Ganesan and Pradhan [18] indicate that three col- 
ors are sufficient to color a de Bru'in graph. From their re- 
sult and (2), it is follows that 1 + r' 2(n - 1)/31 virtual chan- 
nels are sufficient for deadlock free routing. 

Using the concept of coloring links rather than nodes, we 
can reduce the virtual channel requirement further. First we 
note that the edges of a de Brujin can be grouped into two 
classes: 0-edges and 1-edges. A 0-edge connects a node to 
another node with a 0 in the last bit position, and 1-edge 
connects a node to another with a 1 in the last bit position 
(see Fig. 5). 
LEMMA 4. Let G = (V, E )  be a bina y, directed de Brujin graph 

with node set V and edge set E. Let E,  indicate the set of all 0- 
edges and E ,  the set of all 1-edges. Then, 
a) E o U E , = E a n d  
b) the directed subgraphs Go = (V, Ed and G, = (V, E,) of G 

are acyclic. 

PROOF. Part (a) of the lemma is true by the construction 
property of the de Brujin graph. 
We now prove part (b) for Go. Assume that Go has at 
least one cycle. That is, there exists a sequence of nodes 
xl, x2, ..., xm, m > 1, such that o,(xl) = x2; 00(x2) = x3; .. .; 
oo(xm) = xl. Then one of the nodes must be node 0, since 
n consecutive hops on 0-edges from any node lead to 
node 0. But the 0-edge of node 0 results in a loop. There- 
fore, the above cycle has a break after the occurrence of 
node 0. This is a contradiction, and Go is acyclic. 
A similar argument can be constructed for GI. If there is 
a cycle of 1-edges then it should have node N - 1 = 
11 ... 1. But node N - 1 is not connected to any other 
node with a 1-edge. U 

Since there are only two types of edges, we need two 
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colors: color 0 for 0-edges and color 1 for 1-edges. (For a k- 
ary de Brujin graph, k colors are used.) There cannot be cy- 
cles when edges of only one color are used. The first hop is 
always nonnegative. A hop on a 0-edge immediately after a 
hop on a 1-edge is a negative hop. For each nonnegative 
hop, the current virtual channel class is used. For each 
negative hop, a message uses a virtual channel of one class 
higher than the current one. Using (7), we colnclude that 

1 + r(n - 1)/21= r(n + 11/21 

virtual channels are sufficient for deadlock free routing. 
An undirected de Brujin network is obtained by replac- 

ing the unidirectional links with bidirectional links. A 
minimal routing algorithm treats an undirected de Brujin 
network as two directed de Brujin networks: one directed 
deBrujin has co,, connections and the other has ci:l con- 
nections. Lemma 4 holds for both types of directed graphs. 
With minimal routing, the path of a message lies com- 
pletely in one of the networks. Therefore, deadlock-free 
wormhole routing can be provided in undirected de Bruijn 
networks using the link coloring scheme dliscussed for di- 
rected de Bruijn networks. 

Ganesan and Pradhan [18] give a different routing algo- 
rithm with rn/21 virtual channels for binary de Brujin net- 
works. For k-ary de Brujin networks, our algorithm requires 
1 + r(n - 1) (k - l ) /k1 virtual channels. Park and Agrawal 
[37] give a different routing algorithm withi similar bounds 
on virtual channels. 

4.2 Wormhole Routing in n-Star Networks 
Star graphs belong to the class of Cayley graphs studied by 
Akers and Krishnamurthy [2]. The numbelr of nodes in an 
n-degree star graph (or simply n-star) is n! and the degree 
of a node is n - 1. 

An n-star network has an n-star graph as its underlying 
graph. It is convenient to associate each node of an n-star 
with a unique permutation of the integer sequence 1, ..., n. 
Two nodes of a star graph are connected by an edge if the 
label of one can be obtained from the other by interchanging 

the symbol in the first (leftmost) position with the symbol in 
some other position. The operation of interchanging symbols 
in positions 1 and i of a permutation is the transposition (1, i) 
and is denoted t,. Hence, each edge of a star graph can be 
labeled with ti for some 2 5 i I n. For example, node 1342 in 
the 4star graph in Fig. 6 is connected to nodes 3142, 4312, 
and 2341 using edges with labels tz, t,, t4, respectively. 

To apply the hop schemes, we investigate the chromatic 
number of the star graph. 
LEMMA 5. The n-dimensional, n 2 0, star graph is bipartite, and 

PROOF. We prove the lemma by giving a coloring scheme. 
Recall that the label of each node in an n-star is a permu- 
tation of the identity permutation I = 12 . . . n. The iden- 
tity permutation I (and its associated node) is given color 
0. We give color 0 to a permutation P if and only if P can 
be obtained by applying an even number of transposi- 
tions of the form ti, 2 S i I n, on I; otherwise, P is given 
color 1. From a well-known result in the theory of per- 
mutations [24], each permutation is assigned a unique 
color. 
To complete the proof, we need to show that adjacent 
nodes have opposite colors. If two nodes x and y are ad- 
jacent, then there exists a transposition t,, 2 I i 5 n, such 
that x is obtained by applying t, on y. Therefore, if x is-of 

0 
Akers and Krishnamurthy [2] prove that the diameter of 

a star graph is L3(n - 1)/2J. Substituting C = 2 and 
H = L3(n - 1)/2J in (2), we obtain that 

hence can be colored with two colors. 

color 0, then y is of color 1, and vice-versa. 

L J 

virtual channels per physical channel are sufficient for dead- 
lock-free wormhole routing in an n-star. The previously best 
known bound on virtual channels is n - 1 by Misic 1331. 

5 IMPLEMENTATION AND PERFORMANCE 
CONSIDERATIONS 

1234 423 I In this section, we investigate the resource requirements and 
performances of wormhole schemes derived from SAF algo- 
rithms, in general, and the NHop scheme, in particular. Since 
majority of the studies and implementations are specific to 
mesh and torus networks, we use these networks as exam- 
ples in our analyses. Since our algorithms are general enough 
to apply to any network, our delay and cost analysis may be 
applied in the design of routers for other networks also. We 
start with a discussion on router organizations. 

In normal wormhole routing, each virtual channel has a 
dedicated flit buffer to hold the flit transmitted on the vir- 
tual channel. Therefore, deadlocks on flit buffers is not an 
issue in wormhole routing. A possible datapath organiza- 
tion of an adaptive router [8] is shown in Fig. 7. But as the 
degree of a node increases, the buffer requirement for the 
entire node increases, even when the number of virtual 
channels per physical channel is constant. This problem is 
exacerbated when deep buffers (to hold multiple flits and 
improve latencies) are used. 

2413 

Fig. 6. A 4-star network. 
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From Injection To Consimption 

LJ----d 

U -  

Flit Buffer 

Fig. 7. Datapath of wormhole router with dedicated flit buffers. 

To Consumption From Injection F 
Fllt Buffer 

Fig. 8. Datapath of wormhole router with centralized flit buffers. 

Therefore, IBMs Vulcan network provides centralized flit 
buffers in each router to improve performance [42]. Each 
Vulcan switch has a central queue of 1,024 bytes shared by 
all the eight incoming channels. To ensure deadlock free 
routing, however, the Vulcan switch pirovides a dedicated 
flit buffer on each input channel. An alternative datapath 
organization with centralized buffers to facilitate sharing of 
flit buffers among multiple channels is shown in Fig. 8. The 
WH algorithms that use only dedicated flit buffers can also 
be implemented using the centralized1 organization. The 
main difiference is each virtual channel goes through a 
crossbar before accessing its exclusive buffer. 

5.1 Cost and Delay Analysis 
of Centralized Buffers Organization 

Consider some WH routing algorithim, which requires 
dedicated flit buffers for each virtual channel, but is im- 
plemented using the centralized organization. Hit buffers 
are not shared; each virtual channel has its exclusive buffer, 
but needs to go through Crossbar 1 (in Fig. 8) before ac- 
cessing its exclusive buffer. We will compare the router 
delay and cost for such an algorithm iimplemented using 
dedicated buffers and centralized buffem organizations. We 
assume that m is the number of flit buffers used, p the 
number of incoming physical channels to a router, and v 
the number of virtual channels per physical channel. It is 
clear that m = pv. 

Router Delay. For dedicated buffers organization, the 
major components of delay are flow control from incoming 
physical channels to flit buffers, crossbar delay from flit 
buffers to the outputs of the central crossbar, and the vir- 
tual channel controller delay from the outputs of the cross- 
bar to outgoing physical channels [SI. For header flit, 

From Injection 
I 

I IT 
In Physlcal 
Channels 

I 

1 I Mux Flit Buffer Mux w To Consumption 

Fig. 9. Logical organization of the wormhole router with centralized flit 
buffers. 

header decode and update and channel selection are the 
additional costs. We compare various delays of the cen- 
tralized buffers organization with the dedicated buffers 
organization. 

The header decode and update and channel selection are 
similar for both organizations. The flow control in the cen- 
tralized organization is done in Crossbarl. So, when a 
header flit arrives, say, from  NODE^ (node 1) to NODE,, it is 
allocated a central buffer by establishing a connection 
through Crossbar 1 of  NODE^ or is refused connection. The 
header is retained by NODE, for a few cycles, by which time 
rejection of the header, if occurred, will be known. Once the 
connection is established, the allocated central flit buffer 
acts as a dedicated flit buffer to that virtual channel, and 
the transit of data flits is similar to that of dedicated flit 
buffer implementation. The crossbar delay in the dedicated 
buffers organization is eliminated in the centralized buffers 
organization. The virtual channel controller i s  implemented 
using Crossbar 2. 

The centralized buffer organization in Fig. 8 may indi- 
cate that Crossbar 2 of a node and Crossbar 1 of the next 
node must be switched in a coordinated fashion to transmit 
a flit between the two nodes. This is not true, however. To 
show this, we give the logical organization of the central- 
ized router in Fig. 9. Comparing Fig. 8 and Fig. 9, we notice 
that the operation of the first column of multiplexers in the 
logical organization is implemented by Crossbar 1, and that 
of the second column of multiplexers by Crossbar 2. 

Once a flit buffer is allocated to a virtual channel, it re- 
mains associated with that virtual channel until it is re- 
leased. Therefore, a multiplexer between the inputs and 
buffers in the logical organization is set once at the time of 
setting up the path. An input channel may be allocated 
multiple flit buffers, one for each active virtual channel on 
the input channel. Since a crossbar naturally provides the 
multicast communication, this can be accomplished easily by 
setting one input channel to flit buffer connection for each 
request accepted and removing one such connection for each 
request completed. Flits coming on a physical channel are 
available at all the flit buffers allocated to it and an appropri- 
ate flit buffer accepts the flit. This is similar to storing a flit in 
one of the appropriate flit buffers associated with the physical 
channel in the dedicated buffers organization. 

The amount of switching done by Crossbar 2 is the same 
as the amount of switching done by the multiplexers at the 
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output physical channels in Fig. 7. This crossbar changes its 
settings on flit-by-flit basis, much the same way the multi- 
plexers in Fig. 7 change their settings. 

If the flit size is such that it takes multiple cycles to trans- 
mit between nodes (for example, in Cray T3D, it takes six to 
eight cycles to transmit a flit from one node to another), then 
Crossbar2 will have ample time to change selkgs. 

In summary, connection from an input virtual channel to 
an output virtual channel takes more time, and data flits go 
through two smaller crossbars instead of one large crossbar 
with centralized organization. But the centralized organiza- 
tion with buffers between the crossbars lends itself easily to 
pipelining, there by avoiding increase in clock cycle time. 
Since the centralized organization has longer datapath, the 
router delay for a message increases compared to the dedi- 
cated organization, when the number of buffers is kept the 
same. 

Router Cost. Since the number of buffers is kept con- 
stant, there are two cost components: number of crosspoints 
for the crossbars, and the wire area for multiplexers and the 
rest of the data path. Let w be the flit size. 

Even with the simplesi hierarchical implementation, the 
multiplexers require O(w m log,v)-wm wires horizontally 
and log,v levels with w wires vertically, a? each level. So, 
crosspoint area, which is approximately w times the num- 
ber of crosspoints, dominates the overall silicon area for 
both routers. 

rosspoints used, for the edicated 
buffer implementation, is (m + 1) x (m + 1) = m and, for 
the centralized buffer implementation, 2(p x (m + 1)) = 
2pm. If m 2 2p, then the cost of the centralized buffers or- 
ganization is comparable to that of the dedicated buffers 
organization. 

J The number of 

5.2 Buffers Requirements of Wormhole Algorithms 
We are now ready to compare the resource requirements of 
more traditional WH algorithms with those designed from 
SAF algorithms. From the above discussion, if the total 
number of buffers used is the same, then a wormhole 
scheme that has high virtual channel requirements but does 
not require dedicated flit buffers remains competitive with 
more traditional wormhole algorithms that require typi- 
cally a constant number of virtual channels with dedicated 
flit buffers. So, the critical issue is the buffer requirements 
for SAF based wormhole algorithms. 

We show that buffer requirements can be substantially 
reduced for wormhole algorithms derived from certain SAF 
algorithms. The idea is to provide m classes of centralized 
flit buffers in WH routing if m classes of packet buffers are 
used in SAF routing. No dedicated buffers, are provided for 
individual virtual channels. A head flit, on arriving at a 
node, will use a flit buffer of class i, where i is the class of 
the packet buffer that will be used for this message in SAF 
routing. 
LEMMA 6. I f  a store-and-forward algorithm ensures that messages 

acquire buffers in the greater than order, 2-, of some partial 
order on b, the corresponding wormhole algorithm is deadlock 
free euen when only centralized, and no dedicated, flit buffers 
are provided. 

PROOF. With centralized flit buffers, additional dependen- 
cies occur on flit buffers. To handle this, we consider the 
expanded resource graph of the WH algorithm in which 
the resources are virtual channels and centralized flit 
buffers. We start by giving a ranking of virtual channels 
and centralized flit buffers. Let b be a centralized flit 
buffer in node, say, x. If c is an input virtual channel to 
node x such that a message arriving into node x through 
c can use b, then c < b. Similarly, if c is an output virtual 
channel to node x such that a message using buffer b can 
leave x using c, then b < c. This gives a ranking of cen- 
tralized flit buffers which is also the ranking of packet 
buffers in the underlying SAF algorithm. Therefore, there 
cannot be cycles involving two or more centralized flit 
buffers in the resource graph of the WH algorithm. 0 

COROLLARY 2. The wormhole NHOP algorithm is deadlock free 
euen when only m flit buffers are provided per node, where m 
is the number of virtual channels given by (2). 

PROOF. We have shown in Section 3.1 that the SAF version of 
NHOP satisfies the hypothesis of Lemma 6. Therefore, the 
wormhole MOP is deadlock free when the m flit buffers 
are organized as m classes of centralized flit buffers. 0 
It is easy to show that the above corollary holds for 

NHOP with class ranges and upgrades as well. 
For many known WH algorithms, the centralized buffers 

organization does not reduce buffer requirements. For ex- 
ample, the e-cube requires two classes of virtual channels. 
But providing two centralized buffers-one buffer for each 
virtual channel class-does not work, since direct dead- 
locks occur. For such algorithms, virtual channels that are 
used to prevent deadlocks should have exclusive flit buffers 
(with either router implementation) to avoid deadlocks. 

With dedicated buffers implementation, the NHoP 
scheme requires too much memory per router. With cen- 
tralized flit buffers, however, it requires less memory. To 
see the implications of Lemma 6, let us consider the e-cube 
algorithm, which requires 4n dedicated flit buffers for a 
(k, n)-torus, for example, 12 for a 3D torus. With centralized 
buffers, the NHOP requires 1 + In [k/21/21 buffers, which is 
seven for an (8, 3)-torus. In fact, the NHOP requires fewer 
buffers than the e-cube for (k, n)-tori with k I 14. For k = 15, 
16, the NHOP requires one more buffer than the e-cube. 
Similarly, for a (k, n)-mesh with k I 5, the NHOP requires 
fewer or just one more buffer than the e-cube. 

Some of the recently proposed fully-adaptive algorithms 
for k-ary n-cube networks require only a constant number 
of virtual channels. Two recent examples of such fully- 
adaptive algorithms are the *-channel algorithm [4], 1141 for 
tori and the Opt-Y algorithm [40] for meshes. The *-channel 
scheme requires three classes of virtual channels and is 
based on the e-cube algorithm: two virtual channel classes 
are used to avoid deadlocks and the extra class is used to 
provide adaptive (non e-cube) routing. The Opt-Y algo- 
rithm requires only two virtual channels: one class is used 
to avoid deadlocks using the West-First algorithm [19] and 
the other class to provide full-adaptivity. 

With dedicated flit buffers, the *-channel scheme re- 
quires a minimum of 6n buffers for an nD torus (18 for a 3D 
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torus). It is possible to reduce the requirement, by provid- 
ing dedicated flit buffers for the e-cube channels (to pre- 
serve deadlock freedom) and centralized flit buffers for 
adaptive channels. With as few as 4n + 1 buffers, fully- 
adaptive routing can be provided by the *-channel scheme. 
(Care should be taken here to avoid deadlocks, since the 
number of adaptive channels is more than the number of 
buffers available for messages on the adaptive channels, 
and obtaining an adaptive virtual channel does not guaran- 
tee a flit buffer in the node at the other end of the channel. 
In particular, a message should not atternpt to use an adap- 
tive channel, when e-cube channel is available.) Still, when 
k 516, the NHOP requires fewer or the same number of 
buffers per router. The Opt-Y scheme requires only two 
virtual channels. So, its buffer requirements grow as 4n 
with all dedicated flit buffers or 2n + 1 with buffers for the 
adaptive channels shared. Since a (k, v)-mesh has almost 
twice the diameter of a (k, n)-torus, the NHOP requires more 
buffers. For example, unless, k < 7, the NHOP requires more 
buffers than the Opt-Y scheme in a (k, n)-mesh. 

The cost comparisons indicate that the MOP with cen- 
tralized organization of routers could be an attractive alter- 
native for tori, but less attractive for large-radix meshes. 

5.3 Performance Comparisons 
We have used a register-transfer level sirnulator to compare 
the performances of the NHoP, e-cube, *-channel, and Opt- 
Y schemes. For the NHOP algorithm, we used class ranges 
(see Section 3.5). We have simulated ( 3  6, 2)-torus, (8, 3)- 
torus, and (8,3)-mesh networks with uniform and bit rever- 
sal traffic. Uniform traffic is widely used in simulation 
studies and serves as a benchmark traffic pattern. The bit 
reversal traffic creates multiple hotspots and severely tests 
the adaptivity of an algorithm. In practice, fixed length 
messages give better manageability of resources such as 
injection and consumption buffers, and small message sizes 
are more suitable for fine-grain computations. Hence, we 
have used fixed length messages of 20 flits, which could be 
suitable for transmitting four 64-bit words together with 
header, checksum and other information on 16-bits wide 
physical channels such as the ones used in Cray T3D. 

We have assumed a centralized organization for NHOP 
routers, and dedicated organizations for (e-cube, Opt-Y, and 
*-channel routers. Based on the above discussion on router 
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Fig. 10. Performance of the ecube, *-channel, and NHop algorithms 
for uniform traffic in an (8, 3)-torus with 18 buffers per node. 

delays, we have assumed that the NHOP router takes three 
cycles to set up an appropriate connection for an incoming 
message; if the connection is already set up, then data flits 
have two cycles latency through the router. On the other 
hand, delay through the router node was uniformly set to 
one cycle for e-cube, Opt-Y, and *-channel schemes, to re- 
ward their use of fewer virtual channels and dedicated 
buffers. The clock cycle time is the same for all routers. In 
each cycle, a router, if it has one or more message headers 
waiting for connections, attempts to set up connection for 
one header, selected in round-robin manner, by checking 
the virtual channels specified by its algorithm. 

To facilitate simulations at and beyond saturation, we 
have used a congestion control mechanism: a node is not 
permitted to inject new messages into the network if a certain 
number of its previously injected messages are still within its 
router. This number, estimated using some preliminary 
simulation runs, is between six and eight (depending on the 
network simulated) for uniform traffic and between three 
and six for bit reversal traffic. This mechanism has no effect 
on the router delay and throughput prior to saturation, and 
helps sustain network throughput for traffic rates beyond 
saturations. Despite this congestion control, sometimes the 
m e s  double back indicating that peak throughputs in such 
cases are not sustained for traffic rates beyond saturation. 

In wormhole routing, bubbles could be introduced, es- 
pecially at low traffic, in the transmission of consecutive 
fits of a message because of asynchronous pipelining. To 
reduce these bubbles, we used buffers of depth 4, that is, 
each buffer can hold four flits of a single message. When- 
ever, a buffer has space for two or more flits, next pair of 
data flits are sent from the previous router in the path. All 
other parameters are kept the same in all simulations. 

We have used average time spent in the network by a 
message and the utilization of bisection bandwidth as the 
performance metria. For all the results in this paper, 95%- 
confidence intervals [26] are 55% of the respective values 
reported. All the graphs show message latency in cycles 
versus achieved bisection utilization. 

Torus Simulations. We have simulated two cases for an 
(8,3)-torus: 18 or 24 buffers per node. Fig. 10 and Fig. 11 show 
the per fomces  of the e-cube, MOP and *-channel schemes 
for the 18 buffers case. All algorithms are given 18 buffers per 
node, which is the minimum number required by the *-channel 
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Fig. 11. performance of the ecube, *-channel, and NHOP algorithms 
for bit reversal traffic in an (18, 3)-torus with 18 buffers per node. 
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scheme. For the e-cube, we simulated, on each physical chan- 
nel, three virtual channels, two for deadlock free routing and 
one usable by either class depending on traffic. For the NHoP, 
we have simulated seven (the minimum required) virtual 
channels with centralized buffers organization. For the *- 
channel scheme, we have simulated three virtual channels, two 
for deadlock free e-cube routing and one for adaptive routing. 
We have used Duato's channel selection policy, as per which 
adaptive channels are used whenever they are available [14]. 
(We have compared and found that our results on the *- 
channel algorithm are consistent with the simulation results of 
Duato and Lopez [15] for an algorithm closely related to the *- 
channel scheme.) 

From Fig. 10 and Fig. 11, it is clear that the NHOP has 
higher latency at low traffic, because of long,er router delays, 
but offers higher throughput-26% higher for uniform and 
46% higher for bit reversal-than the *-channel scheme. 

We have simulated only the *-channel and NHOP algo- 
rithms for the 24 buffers case. For the *-channel, we have 
provided two channels for adaptive routing and two for 
deadlock free routing. For the NHoP, we have simulated 
eight virtual channels (the eighth channel is shared by all 
classes of messages) and centralized buffers organization. 
Fig. 12 and Fig. 13 give the performances of the two algo- 
rithms for uniform and bit reversal traffics. Once again, the 
NHOP has higher latency at low traffic but offers higher 
throughput. (To see if the *-channel scheme offers higher per- 
formance, we have simulated it with centralized buffers for 
adaptive channels, and with the number of adaptive channels 
varied from two to five. The peak throughput remained the 
same or reduced.) 

We have also simulated the e-cube, *-channel and NHOP 
for a (16,2)-toms with 16 flit buffers per node. The results are 
given in Fig. 16 and Fig. 17. For the 2D torus, the NHOP offers 
higher throughput but the *-channel scheme has similar per- 
formance with lower latency. 

Mesh Simulations. Since NHOP requires more buffers 
than e-cube and Opt-Y algorithms, we have simulated only 
an (8,3)-mesh with 24 buffers per node. The results are given 
in Fig. 16 and Fig. 17. In this instance, the Qpt-Y outperforms 
the MOP. 

5.4 Summary of Cost and Performance Comparisons 
The cost of a wormhole router is often associated with the 
number of virtual channels simulated on each physical chan- 
nel. This is an appropriate measure of cost when dedicated 
flit buffers and the router organization in Fig.7 are used. 
When flit buffers are shared among multiple virtual chan- 
nels, and centralized buffers organization of Fig. 8 is used, 
the total number of flit buffers, not the virtual channels, de- 
termines the router cost. 

Thus, even with wormhole routing, buffer area is a major 
limiting factor in designing router chips. With centralized 
buffers, and appropriately designed routing algorithms, it is 
feasible to provide fully-adaptive routing using less buffer 
area than that required for e-cube or other traditional WH 
algorithms. This is especially true for tori, for which the 
NHOP requires fewer buffers than the e-culbe for k 2 14. The 
MOP is not as attractive for meshes because of large diame- 
ters and reduced virtual channel requirements for the e-cube 
and fully-adaptive schemes such as Opt-Y. 

Our simulation study indicates that an NHOP based algo- 
rithm gives higher throughput than the e-cube and *-channel 
schemes for both uniform and bit reversal traffic in tori. The 
MOP performs worse than the Opt-Y scheme for meshes, 
however, probably because of network asymmetry and high 
diameter. 

Chien [8] showed that, for nonpipelined routers, using 
many virtual channels incurs high costs and longer clock cy- 
cle times compared to, for example, the e-cube. So, an adap- 
tive router may have more flits delivered per cycle than an e- 
cube router, but may have 1.5 or two times longer clock cycle 
time, resulting in lower throughput in flits per second. In this 
study, we have considered pipelined routers and have shown 
that with an appropriate routing algorithm, sharing of flit 
buffers, and pipelining, both cost and clock rate limitations 
can be overcome. In the context of pipelined routers, the net 
effect of a more complex routing algorithm is higher message 
latencies at low traffic. 

6 CONCLUDING REMARKS 

We have presented a technique to design wormhole algo- 
rithms from store-and-forward algorithms. In addition, we 
have provided a sufficient condition under which the worm- 
hole algorithms are deadlock free. As an application of this 
technique, we have designed wormhole algorithms from 
store-and-forward hop schemes known in the computer net- 
works literature [20]. In particular, we have presented the 
negative-hop ( M o p )  wormhole algorithm and several varia- 
tions of it. We have also shown that the previously proposed 
dimension reversal scheme [12] is a variant of the M o p .  Our 
results are not limited k-ary n-cubes. To illustrate this, we 
have given deadlock-free, fully-adaptive wormhole algo- 
rithms for deBrujin and n-star networks, with the best 
bounds on virtual channels. 

We have considered a new router organization based on the 
concept of sharing flit buffers by placing them in a central pool. 
We have shown that if an SAF algorithm routes messages such 
that buffers are acquired in a monotonically increasing order, 
then the buffers required for the corresponding wormhole al- 
gorithm is reduced by the factor of the node degree. With cen- 
tralized buffers implementation, it is the total number of buff- 
ers used, not the number of virtual channels simulated on each 
physical channel, that determines cost of the router. To handle 
longer datapaths and more complex control associated with 
fully adaptive routers, we have considered pipelining within 
routers. Pipelining avoids increase in clock cycle time with no 
sigruficant loss in the number of flits delivered per cycle. 

With centralized buffers organization, the NHOP provides, 
for many configurations of k-ary n-cube networks, fully- 
adaptive routing while requiring fewer buffers than the e- 
cube. For example, for the (8, 3)-torus used in a 512 node 
Cray T3D, the NHOP requires seven flit buffers for fully- 
adaptive routing, while the e-cube requires 12 flit buffers. For 
the 8 x 16 x 8 torus (the maximum configuration for Cray 
T3D), the NHOP requires nine buffers, while the e-cube re- 
quires 12 buffers. Because of longer diameters and simpler 
routing with e-cube in meshes, the NHOP requires more buff- 
ers than the e-cube, unless k 2 5. 

We have evaluated the performances of the NHOP with 
class ranges, e-cube, and previously proposed fully-adaptive 
*-channel and Opt-Y schemes. Our simulations indicate that 
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Fig. 12. Performance of the *-channel and Nhop algorithms for uniform 
traffic in an (8, 3)-torus with 24 buffers per node. 
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Fig. 13. Performance of the ecube, *-channel and NHop algorithms 
for bit reversal traffic in an (8, 3)-mesh with 24 buffers per node. 
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Fig. 14. Performance of the ecube, *-channel, and Nhop algorithms 
for uniform traffic in a (16, 2)-torus with 16 buffers per node. 

the NHOP performs better than the e-cube and *-channel 
schemes for tori. For meshes, the NHOP performs better than 
the e-cube but slightly worse than the Opt-Y scheme. 

Based on the buffer cost and throughput evaluations, the 
MOP has advantage 8 over previously proposed wormhole 
algorithms for torus networks. The NHOP has higher message 
latency, however, due to centralized router organization. 

For the current wormhole algorithms, the buffer require- 
ments increase with node degree or the diameter. A better 
scalable routing method should use only a constant number 
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Fig. 15. Performance of the e-cube, *-channel, and NHop algorithms 
for bit reversal traffic in a (16, 2)-torus with 16 buffers per node. 
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Fig. 16. Performance of the e-cube, Opt-Y, and NHop algorithms for 
uniform traffic in an (8, 3)-mesh with 24 buffers per node. 
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Fig. 17. Performance of the ecube, Opt-Y, and NHop algorithms for 
bit reversal traffic in an (8, 3)mesh with 24 buffers per node. 

of buffers independent of the node degree or network diame- 
ter. Such algorithms exist for packet routing on torus and 
mesh networks [38], [lo], but the buffer size increases with 
packet size. Our results on centralized buffers organization 
and the sufficient condition for deadlock-free sharing of flit 
buffers may be used to explore if such algorithms exist for 
wormhole routing. Similar results for wormhole routing fa- 
cilitate design of fully-adaptive router modules, from which 
routers for networks of arbitrary size and node degree can be 
designed. 
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