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Optimistic Crash Recovery without
Changing Application Messages

S. Venkatesan, Member, IEEE, Tony Tong-Ying Juang, and Sridhar Alagar

Abstract —We present an optimistic crash recovery technique without any communication overhead during normal operations of the
distributed system. Our technique does not append any information to the application messages, it does not suffer from the domino
effect, and each processor rolls back at most once during recovery. We present three distributed rollback algorithms, their
complexities, and correctness proofs. Their performances are measured through extensive simulations.

Index Terms —Crash recovery, distributed algorithms, fail-stop failures, message complexity, optimistic message logging, time
complexity.

——————————   ✦   ——————————

1 INTRODUCTION

OLLBACK recovery using checkpointed states is a widely
used scheme for recovering from transient processor

failures. Each processor locally checkpoints its state and its
history in a stable log at certain times. When a processor
fails, it can restart from the latest saved state. There are two
approaches to checkpointing and system recovery—the
synchronous approach and the asynchronous approach.

In the synchronous approach (or global checkpointing), the
processors coordinate their checkpointing actions such that the
global state obtained by collecting the checkpointed states of
all of the processors is consistent [4], [22], [12]. Each time a
checkpoint is taken, additional messages are generated during
normal operations even if there are no processor failures.

In the asynchronous approach, processors checkpoint
their states independently. A consistent global state is con-
structed during recovery and it may be necessary for some
(or all) of the processors in the system to roll back. To aid in
minimizing the amount of rollback necessary at each proc-
essor, messages are logged using either the pessimistic mes-
sage logging or the optimistic message logging approaches. In
pessimistic message logging, each message is logged to sta-
ble storage before it is processed [3], [15]. In optimistic mes-
sage logging, the received messages are logged in volatile
storage. Periodically (or when the processor is idle), each
processor independently saves the contents of its volatile
log in a stable log and clears the volatile log.

We present a crash recovery technique using asynchro-
nous checkpointing and optimistic message logging. The
technique does not append any information to the applica-
tion messages. We present three distributed rollback algo-
rithms to determine the maximum recoverable system state

after the simultaneous failure of an arbitrary number of
processors. Both volatile and stable logs are used in deter-
mining the recoverable state. The first rollback algorithm
uses O(md) messages and O(Dd) time where m and D are
the number of communication channels and the diameter of
the network, respectively, and d is a number less than n, the
number of processors. The time complexity can be reduced
to O(d + Dlog d) (resulting in the second rollback algorithm)
without increasing the message complexity. The third roll-
back algorithm, obtained by further refining the first roll-
back algorithm, is time-optimal, and it uses O(mn) mes-
sages and Q(n) time. Our recovery algorithms avoid the
domino effect [16], [17], and a processor rolls back at most
once during recovery. Algorithms for related problems are
also presented.

2 SYSTEM MODEL

A distributed computing system is represented by an undi-
rected graph G = (V, E) where V = {P1, P2, º, Pn} represents
a set of n fail-stop processors [18] connected by a communi-
cation network consisting of a set E of m bidirectional
communication channels. The channels are FIFO. Commu-
nication between the processors is by message-passing
only. The processors and the channels incur unpredictable
but finite delays in performing their tasks.

The application program runs uninterrupted when there
are no failures. The application program at each processor
may

1) receive application messages (called input messages)
from outside entities;

2) send application messages (called output messages)
to outside entities; and

3) exchange application messages with the application
programs running at other processors.

Thus, there are three kinds of application messages.
The application program is suspended when there is a

processor failure and the crash recovery algorithm is exe-
cuted. After the crash recovery algorithm terminates, the
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suspended application program resumes. The crash recovery
algorithm uses recovery messages. Throughout this paper, the
term “message” refers to a recovery message.

The performance of the crash recovery algorithms is
measured by the message complexity and the time complexity
of the algorithm. The worst-case message complexity
measures the maximum number of recovery messages
used. The messages are of length O(log n) bits. The worst-
case time complexity measures the elapsed time among all
executions assuming that the message transmission time on
each channel is one time unit and the processing time is
negligible.

The application program is event-driven [7], [21] where a
processor in state s waits until an application message m is
received, begins a new event, changes its state from s to s¢,
and sends a (possibly empty) set of application messages. A
processor’s execution during an event is deterministic and
is solely dependent on the contents of the message received
and on the state of the processor. The jth event of Pi is

denoted by e j
i  and the state of Pi immediately after e j

i  is

denoted by sj
i .

Let SENT
i j eÆ ( )  represent the total number of application

messages sent by Pi to Pj (from the beginning of the appli-

cation program) up to (and including) event e of Pi, and let
RECD

i j e¨ ( )  be the total number of application messages

received by Pi from Pj (from the beginning of the applica-

tion program) up to (and including) event e of Pi. A cut is a
set of events, one event per processor. A cut C is consistent if
for every pair of events ei, ej Œ C, SENT

i j ieÆ ( )  ≥ RECD j i je¨ ( )

and SENT j i jeÆ ( )  ≥ RECD
i j ie¨ ( ) . A global state is a set of

processor states, one state per processor [4]. A global state
GS can be represented by a cut C such that event e Œ C if
and only if the processor state immediately after event e is a
part of GS. A global state is consistent if and only if the cor-
responding cut is consistent. Thus, a consistent global state
corresponds to a consistent cut and vice versa.

Event ej of Pj directly depends on event ei of Pi if

1) Pi = Pj and ej occurs immediately after ei, or
2) a message m sent by Pi during event ei starts event.

Event ej of Pj depends on event ei of Pi if there exists an event
ek such that ej depends on ek and ek depends on ei. The relation
“depends on” is similar to the “happens before” relation [13].

Problem Statement. The state of a processor is lost if it fails
before saving its state. If the state of Pi that has sent a mes-
sage m to Pj is lost, then for consistency, the state change
resulting from the receipt of message m in Pj must be undone.
Thus, the state of the Pj must be rolled back. The system is
said to be in a maximum consistent state after recovering
from processor failures if the global state of the system is
consistent and the number of events (states) rolled back at
each processor is minimum. Johnson and Zwaenepoel [7]
show that the maximum consistent global state is unique.
The crash recovery problem is to find the maximum con-
sistent global state after processor failures. The following

assumptions are made in developing the crash recovery
techniques:

1) When a processor fails and restarts, all of its neigh-
bors are notified. (A simple message-exchange protocol
may be used to achieve this.)

2) No further processor failures occur during crash recov-
ery. (The recovery algorithm may be restarted if there
are further processor failures.)

3) Communication channels connecting nonfaulty proc-
essors are error-free.

3 RECOVERY WITHOUT CHANGING APPLICATION
MESSAGES

We now consider the problem of recovering from processor
failures when the application messages do not contain any
explicit information about dependencies.

3.1 Normal Operation
During normal execution of the application program (when
there are no failures), each processor logs the incoming appli-
cation/input messages in a volatile log when they are proc-
essed by the application program. Processor Pi, after its jth

event e j
i , records the pair {mj, Nj} in volatile storage where

mj is the application message whose receipt starts event e j
i

and Nj is the set of neighbors to whom Pi sends application

messages during event e j
i . If mj is an input message, then it

is logged in the stable storage also. At certain times, each
processor independently saves the contents of its volatile
log (and its processor state, if needed) in stable storage and
clears the volatile log. Note that the processor states may be
checkpointed less frequently compared to logging the appli-
cation messages in stable storage. Also, it is possible to
checkpoint only the application messages without saving
the processor states. In such a case, to recreate sj

i , we start

with the initial state of Pi and replay all of the application
messages (available in stable log) received and processed
by Pi till event e j

i .

SENT i jÆ  is incremented during event e if Pi sends a mes-

sages during event e, and RECD i j¨  is incremented during e

if a message from Pj initiated event e. Note these arrays are

part of Pi’s memory and they are saved whenever Pi is
checkpointed. The value of these arrays after event e can be
computed from the latest checkpointed state before e and
from the information ({m, N}) stored in the volatile log
(form the checkpointed events till event e). Thus, these arrays
need not be logged/saved after every event.

3.2 Preliminaries

Event e j
i  of Pi is said to be logged if it is possible to restore Pi

to sj
i  using the application/input messages (and processor

states, if applicable) logged in the stable log, and event e j
i  of

a faulty processor Pi is said to be unlogged otherwise. Thus,
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if message m that starts event e of Pi is saved in the volatile
log but not in stable storage, then e is an unlogged event.
Event e of Pi is said to be an orphan event if e is an unlogged
event or e depends on an unlogged event. Application mes-
sages sent during orphan events are orphan messages. Note
that a logged event may be an orphan event (if it depends
on an unlogged event).

Consider processor Pi. The event that occurs immedi-
ately before its earliest orphan event is the rollback point of
Pi, denoted by RPi. If e j

i  is the rollback point of Pi, then sj
i  is

the state Pi must restart from after crash recovery.

3.3 Recovery Algorithms
Crash recovery is performed in two steps. In the first step,
the processors cooperate and each processor determines its
rollback point. This step is called the rollback step. Note
that, in step one, no processor rolls back; the processors
merely determine the events (or states) they must roll back
to. In the second step, each processor rolls back (recreates
the state it must roll back to) using the stable log (and the
volatile log if applicable). We first consider the first step.
The second step is considered in Section 3.5.

3.3.1 Main Idea
Consider a faulty processor P1 (see Fig. 1). Let el be its latest
logged event. The event el+1  immediately after el in P1 is an
unlogged event. All other processors have to identify those
(orphan) events that are dependent on el+1 .

Fig. 1. Transitive dependency through three intermediate processors.

Let P2 be a neighbor of P1 and let x = SENT1 2Æ elc h. P1

sends x to P2 informing P2 that P1 has the knowledge of

sending only x messages to P2. If P2 has an event eo such

that RECD 2 1¨ (eo) > x, then eo is an orphan event. P2 identifies

all orphan events that depend on el+1. All the neighbors of

P1 behave similarly and this completes one iteration. Con-

sider the second iteration. Let en be the latest nonorphan

event of P2. Processor P2 sends SENT 2 3Æ (en) to its neighbor

P3. When P3 receives the count SENT 2 3Æ (en) from P2, P3 may

identify more orphan events. Similar to P2, all other neigh-

bors of P1 also send such counts to their neighbors and they
may identify more orphan events. This completes the sec-
ond iteration. After two iterations, all orphan events that
transitively depend on unlogged events of faulty processors

through one intermediate processor are identified. Thus, if
event e of faulty processor Pi is an unlogged event, event e¢
of Pj directly depends on e (or e¢ depends on an event of Pi

that occurs after e), and event e¢¢ of Pk directly depends on e¢
(or e¢¢ depends on an event of Pj that occurs after e¢), then,

1) Pi knows about the loss of e when it restarts after its
failure;

2) Pj identifies e¢ to be an orphan event after one iteration;
and

3) Pk identifies e¢¢ to be an orphan event after two iterations.

Similarly, after n - 1 iterations, all orphan events (that depend
on unlogged events through at most n - 2 intermediate
processors) are identified.

We next present three rollback algorithms. As a preproc-
essing step, for the first two rollback algorithms, a spanning
tree rooted at a designated node is constructed [5]. The
third algorithm does not require a spanning tree.

3.3.2 Rollback Algorithm 1
The rollback algorithm (Fig. 2) consists of several iterations.
Each processor Pi uses a variable TRPi to denote its tentative
rollback point and a Boolean variable UPDTDi to indicate
whether TRPi is updated during the current iteration. Pi ini-
tializes TRPi to the latest event logged in the stable storage if
it is faulty, and to the latest event of Pi if it is nonfaulty.
During the execution of the rollback algorithm, TRPi is the
latest nonorphan event of Pi with the knowledge that Pi has
gained so far about orphan messages. The event immedi-
ately following TRPi of Pi, if it exists, is an orphan event. As
the rollback algorithm executes, Pi gains more knowledge
about dependencies and updates TRPi. At the end, TRPi will
be equal to RPi for all Pi Œ V.

To each neighbor Pj, processor Pi sends an update message,
waits for an update message from each neighbor and
processes them. This completes one iteration. During
the kth iteration, Pi initializes its local variable UPDTDi to

false, sends an update(x) message to its neighbor Pj where

x = SENT i jÆ (TRPi), and waits for an update message from

each neighbor. The value x of the update(x) message sent by
Pi to Pj identifies TRPi implicitly. When Pj receives an update(x)

message from Pi, processor Pj infers that Pi’s tentative roll-
back point is an event e such that x is the total number of
application messages sent by Pi to Pj till Pi’s event e. If the

number of messages received by Pj from Pi till Pj’s tentative

rollback point (TRPj) is greater than x, then Pj’s tentative

rollback point depends on an orphan event of Pi, and hence

Pj must update TRPj.

Pi processes the update messages sent by its neighbors as

follows. Let update(c) be a message received by Pi from its

neighbor Pj. Processor Pi scans its log and determines

RECD i j¨ (TRPi). If RECD i j¨ (TRPi) > c, then Pi examines its log,

finds the latest event e such that RECD i j¨ (e) = c, and sets

TRPi to e and UPDTDi to true. On the other hand, if
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RECD i j¨ (TRPi) £ c, Pi need not update TRPi in response and

the value of UPDTDi remains unchanged. In this manner, all

of the update messages are processed and TRPi is updated.
After processing the update messages received from all of its
neighbors, Pi completes the current iteration and proceeds
to the next iteration if needed.

Termination. The rollback algorithm terminates if no proces-
sor updates its tentative rollback point during the present
iteration. Clearly, UPDTDi is set to true only if Pi updates TRPi

during the current iteration. Boolean OR of UPDTD1, UPDTD2,

º, UPDTDn is computed by using a spanning tree T rooted

at, say, Pr and the result is broadcast as follows. Each leaf Pi

of T sends UPDTDi to its parent. A nonleaf processor Pj

receives Boolean values from all of its children, computes
Boolean OR of UPDTDj and the values received from its chil-

dren, and sends the computed value to its parent if Pj is not

the root; if Pj is the root, then it broadcasts (on the tree T)
the value computed by the function Boolean_OR. If the
broadcast value is TRUE, the next iteration begins; a FALSE
value terminates the rollback algorithm.

A formal description of the algorithm consisting of pro-
cedure rollback_1 and function Boolean_OR appears in Fig. 2.

Correctness. Let Ik denote the kth iteration. Let Rk be the set
of processors that update their tentative rollback points
during Ik, Fk Õ Rk be the set of processors that have made
the final update to their tentative rollback points during the
kth iteration1 (and do not update in subsequent iterations of

the rollback algorithm), and N V R Fk k i
k

i= - - =
-U 0

1 . Thus,

each processor in Nk does not update its tentative rollback

point in Ik and it has not found it correct rollback point till

Ik. We denote the rollback point of Pi (event TRPi) at the end

of Ik by TRPi(k).

THEOREM 1. Rk +1  = f iff the tentative rollback points at the end of

Ik are consistent.

PROOF. fi. We prove this by taking contrapositive. Assume
that the tentative rollback points of Pi and Pj are not

consistent at the end of Ik. Thus, events TRPi(k) and

TRPj(k) are not consistent. Without loss of generality,

assume that RECD i j¨ ( TRPi(k)) > SENT j iÆ (TRPj(k)) = c.

Now consider Ik+1. Processor Pj sends an update(c¢)
message to Pi where c¢ £ c. When Pi receives the update(c¢)
message,

1) if RECD i j¨ (TRPi)) > c¢, then Pi updates TRPi and,

2) if RECD i j¨ (TRPi)) £ c¢, then TRPi is a predecessor of

event TRPi(k).

In either case, Pi updates TRPi during Ik+1 and Pi Œ Rk+1.
Thus, Rk+1 π f.

‹. For all Pi and Pj in V, if the tentative rollback

points TRPi(k) and TRPj(k) at the end of Ik are pairwise

consistent, then RECD i j¨ ( TRPi(k)) £ SENT j iÆ (TRPj(k))

and RECD j i¨ ( TRPj(k)) £ SENT i jÆ ( TRPi(k)). During the

k + 1st iteration, Pi sends an update (SENT i jÆ (TRPi(k)))

message to Pj, and Pj does not update TRPj on receiv-

ing this message. Similarly, Pi does not update TRPi

during Ik+1 on receiving the update message from Pj.

This is true for all pair of processors, hence Rk+1 = f. �

functionfunction Boolean_OR;

{executed by processor Pi}
beginbegin
ifif Pi is a leaf thenthen send UPDTDi to the
parent
elseelse
wait for the message containing a Boo-
lean value (true/false) from each
child;
VALUE ¨ Boolean OR of UPDTDi and values
received form each child;
ifif Pi is the root thenthen broadcast VALUE
on the tree T;
elseelse send VALUE to the parent;
endifendif;

endifendif;
VALUE ¨ value broadcast on T by the root;
return (VALUE)

endend;

{rollback algorithm executed by processor Pi}
algorithmalgorithm rollback_1;
beginbegin
TRPi ¨ the latest event of Pi from stable
and volatile logs;
NOTDONE ¨ true;
whilewhile NOTDONE looploop
send an update (SENTi jÆ  (TRPi)) message
to each neighbor Pj;
UPDTDi ¨ false;
repeatrepeat
wait for an update message from a
neighbor;
{process each update message as fol-
lows:}
let m ¨ update(c) be the message re-
ceived from Pj;

compute RECDi j¨ (TRPi);

ifif RECDi j¨ (TRPi) > c thenthen

find the latest event e of Pi such

that RECDi j¨ (e) = c;
TRPi ¨ e;
UPDTDi ¨ true;

endifendif;
untiluntil (an update message from each
neighbor is received);
NOTDONE ¨ (Boolean_OR);

endloopendloop; {end of an iteration}
RPi ¨ TRPi;

endend;

Fig. 2. Algorithm rollback_1.
1. F0 Õ {faulty processors} is the set of processors that do not update their

tentative rollback point in any iteration.
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We say that Pi sends a new update message to Pj during

an iteration if the value sent by Pi to Pj in the update message
(value c if update(c) is sent) during that iteration is less than
the value sent (by Pi to Pj in the update message) during the

previous iteration. For Pi to send a new update message

during Ik, Pi must have updated TRPi during Ik-1.
From Theorem 1, algorithm rollback_1 terminates if and

only if the tentative rollback points of all of the processors
are pairwise consistent. We next bound the number of
iterations.

LEMMA 1. For all k ≥ 0, if Rk π f then Fk π f.2

PROOF. Assume that Rk π f and assume for contradiction

that Fk = f. Thus, each processor of Rk will receive a
new update message and will find its final recovery
point during a later iteration. These new update mes-
sages cannot be sent by any of the processors in Fi, i < k,

since processors in Fi do not update their tentative

rollback points after Ii. So, we have to consider only

those processors not in Fi, i < k. In Ik+1, processors in

Nk do not send new update messages since they do not

update their tentative rollback points during Ik. All of

the processors in Rk find their final rollback points at
iterations later than k on receiving new update mes-
sages and these update messages are “triggered” by
new update messages sent during Ik+1 by the proces-

sors of Rk. Consider an arbitrary processor Pi Œ Rk.

Since Pi updates TRPi (on receipt of a new update mes-
sage) at an iteration later than k and since only proc-
essors of Rk send new update messages during Ik+1,

event TRPi(k) depends on event TRPj(k) for some Pj Œ Rk.
This dependency can be represented by a dependency
chain. Now consider only those dependency chains
that begin with event TRPa(k) and end with event

TRPb(k) for all Pa, Pb Œ Rk. Among these dependency

chains, let DC = {e1, e2, º, el} be the longest depend-
ency chain (with the maximum number of events in
it). Let e1 = TRPc(k) for some Pc Œ Rk and let el = TRPd(k)

for some Pd Œ Rk. Since DC is the longest dependency

chain, e1 does not depend on TRP ¢c  (k) for any P ¢c  Œ Rk.

Clearly, Pc Œ Rk will not receive a new update message

after Ik and Pc will not update TRPc after Ik. Thus, Pc Œ Fk

contradicting the assumption that Fk = f. �

THEOREM 2. Algorithm rollback_1 terminates after at most n
iterations and finds the maximum consistent recovery
point of each processor.

PROOF. During Ik, if Rk π f, Fk π f. Thus, during Ik, at least

one processor Pi finds its RPi value (and does not update
its TRP value at later iterations). The rollback algorithm

terminates after k + 1 iterations if Rk = f. Thus, algo-
rithm rollback_1 terminates after at most n iterations.

Clearly, the final rollback point of each processor is
maximum—Pi sets TRPi to e only because the event
that occurs immediately after event e of Pi is started
by an orphan message. From Theorem 1, the rollback
points are consistent when the algorithm terminates.�

Message Complexity. During each iteration, every processor
sends an update message to each neighbor and hence 2m
update messages (m is the number of channels) are sent.
Boolean OR is computed once during each iteration using O(n)
messages. Thus, O(m) messages are sufficient for each itera-
tion. Let d be the number of iterations needed. After d itera-
tions, no processor updates its tentative recovery point and the
rollback algorithm terminates at the end of Id+1. By Theorem 2,
d £ n - 1. The message complexity of algorithm rollback_1 is
O(md) with a one-time preprocessing step (constructing a
spanning tree) that uses O(m + nlog n) messages.

Time Complexity. During each iteration, a processor sends
one update message to each neighbor, receives one update
message from each neighbor, and all of the processors
compute the Boolean OR of local values. Since message
processing time is negligible and messages take unit time to
traverse a channel (assumed for time complexity only),
exchanging update messages uses O(1) time. Before the end
of each iteration, the value UPDTD1 ⁄ º ⁄ UPDTDn is com-
puted distributively using the tree T. If T is a breadth-first
tree, then Boolean OR can be computed using O(D) time
where D is the diameter of the network. Since the total
number of iterations is d, the time complexity is O(Dd). The
time complexity of the one time preprocessing step O(nlog n).

3.3.3 Rollback Algorithm 2
Algorithm rollback_1 checks for termination (by computing
Boolean OR) at the end of each iteration. If the value of d is
known to all of the processors, then the termination condi-
tion need not be evaluated and the time complexity can be
improved. After d iterations, each processor can terminate
the rollback algorithm without invoking function Boolean
OR. Since the value of d is not always known a priori, we
guess the value in stages.

During stage t, each processor executes 2t iterations. At
the end of stage t (but not at the end of each iteration), we
check the termination condition by performing a Boolean
OR of the local decisions as in Algorithm rollback_1 (using
function Boolean_OR of Fig. 2). If a processor updates its
tentative recovery point during the last iteration of stage t,
then more iterations are needed and we proceed to stage t + 1.
If no processor updates its tentative recovery point during
the last iteration of stage t, the processors terminate.

Complexity. In algorithm rollback_2, we evaluate the termi-
nation condition (computing Boolean OR) at the end of
each stage and stage t consists of 2t iterations. If maxstages is
the maximum number of stages needed, then maxstages =
O(log d) (recall that d is the number of iterations needed)
and the total number of iterations = 20 + 21 + º + 2maxstages =
O(d). Thus, the message complexity is O(md). Each iteration

2. R0 = set of faulty processors.
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can be completed in one time unit and Boolean OR is com-
puted once for each stage (at the end of each stage). Thus,
the time complexity is O(d + Dlog d) where D, the diameter of
the network, is the time needed for one invocation of func-
tion Boolean_OR assuming that a breadth-first tree is used.

3.3.4 Rollback Algorithm 3
The time complexity of algorithm rollback_2 is O(nlog n) if d
and D are O(n). The worst-case time complexity can be
reduced by assuming that d = n - 1 and not evaluating the
termination condition (Boolean OR). Algorithm rollback_3
consists of n - 1 iterations. The time and message complexities
of algorithm rollback_3 are O(n) and O(mn), respectively.

THEOREM 3. Q(n) time units are necessary and sufficient for
rolling back processors in general networks.

PROOF. Each Pi must be informed about the processor failures
before Pi can begin the crash recovery algorithm. The
diameter of the underlying network may be O(n) in
the worst case, and hence W(n) time units are needed.
O(n) is the time complexity of algorithm rollback_3. �

The results are summarized in Table 1. Algorithms roll-
back_1 and rollback_2 have the same message complexity
and algorithm rollback_2 has a better time complexity. For
complete graphs, D = 1 and the first two algorithms are
very efficient in both the message and the time complexity.
If D and d are large (say O(n)), then algorithm rollback_3 is
preferable because of its time complexity (and all the three
algorithms have the same message complexity in this case).
Also, algorithm rollback_3 is uniform—all processors exe-
cute the same local algorithm.

TABLE 1
MESSAGE AND TIME COMPLEXITIES

Algorithm Message
Complexity

Time Complexity

rollback_1 O(md) O(Dd)
rollback_2 O(md) O(d + D log d)
rollback_3 O(mn) Q(n)

3.4 Experimental Investigation
In this section, we evaluate the performance of the three
rollback algorithms by extensive simulation of several dis-
tributed systems. The application program simulated is a
simple distributed on-line transaction processing system
that accesses local and remote objects. Accessing remote
objects is done by message-passing. When a processor
receives a message, it processes the message and sends
messages to some randomly selected neighbors, similar to
the simulation in [9]. A global clock is used to schedule the
events in each processor. (The global clock is not used by
the rollback algorithms; it is used only for the simulation.)
When a message is sent to a processor, the random delay in
transmitting the message is assumed to be exponentially
distributed with a mean of 0.1 millisecond. Processors inde-
pendently checkpoint their states (including volatile log) at
predetermined intervals. The failure time is determined
randomly, and multiple processors are assumed to have
failed. Figs. 3, 4, 5, and 6 show our simulation results with a
90% confidence interval. The simulation was run 100 times
by varying the seed to determine each point in the figures.

Fig. 3 shows the number of messages used by algorithm
rollback_1. (Recall that the message complexity of algorithm
rollback_1 is O(md).) The number of messages increases as
the number of processors increases. However, for a small
change in n the value of d may also play a role. In Fig. 3 (for
density = 2), this is reflected by a decrease in the number of
messages when n changes from 22 to 24, which is due to a
decrease in the value of d. (The value of d depends also on
the application program.) In general, the number of mes-
sages (asymptotically) increase with n, as m and d depends
on n. Also, note that the number of messages increases with
density3 due to the increase in m. Fig. 4 compares the three
rollback algorithms with respect to the number of messages
required for rolling back. Algorithms 1 and 2 differ only by
a constant in their message complexity, and this is well
reflected in the figure. Algorithm 3 is expensive since d is
not always equal to n - 1.

Fig. 3. Number of messages used by Algorithm rollback_1. Checkpoint
interval = 50.

Fig. 4. Comparison of number of messages used by the three algo-
rithms.

Fig. 5 shows the variation of rollback time of algorithm
rollback_1 when the number of processors is increased. The
total time for crash recovery includes the time to find the
rollback points and the time for restoring each processor to
the state immediately after its rollback point. In our simu-
lation, we measured only the time to find the rollback
points. (A processor’s state is restored from the stable stor-
age at most once during recovery.) As both the diameter D

3. The density of a network is the ratio of the number of channels to the
number of nodes.
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and the length of dependency chain d may increase with n,
the rollback time also increases with n. For complete graphs
the diameter is always 1, and hence its rollback time is less
than the rollback time in lower density graphs. Fig. 6 com-
pares the performance of our three algorithms with respect
to rollback time. Algorithm 3 performs badly when the
length of the dependency chain is very less compared to n - 1.
Algorithm 2 performs better than Algorithm 1 because
Boolean_OR is not executed after every iteration, and
Boolean_OR is a time consuming operation if the diameter
of the network is high.

From our experimental study, we find that the average
value of d is very small compared to the total number of
processors. (However, we cannot generalize it as the value
of d depends on the application program and checkpointing
frequency.) Thus, on the average, the first two rollback algo-
rithms are substantially more efficient than the third roll-
back algorithm (in terms of the number of messages and
elapsed time) although the third rollback algorithm is
asymptotically time-optimal in the worst case.

Fig. 5. Rollback time of Algorithm rollback_1 for various densities.

Fig. 6. Comparison of rollback time of three algorithms.

3.5 Restarting the Distributed Program

Using a rollback algorithm, processor Pi can find its recov-

ery point RPi. Clearly, RPi is the latest event of Pi that is not

an orphan event. Now, the state of Pi at the end of its event

RPi must be restored. If sk
i  is a checkpointed state of Pi and

el
i  = RPi, then Pi is restored to sl

i  by restarting from sk
i  and

replaying all of the messages (available in volatile and stable

storage) that started events ek
i

+1, ek
i

+2 , º, el
i . Messages gen-

erated during replay are duplicate messages and must not
be sent to others unless they were “lost” by the faulty re-
cipients. The neighbors of the faulty processors resend
those “lost messages” to the faulty processors. A faulty
processor Pi sends a resend(RECD i j¨ (RPi)) message to neigh-

bor Pj. On receipt of a resend(y) message from Pi, processor

Pj checks if SENT j iÆ (RPj) > y, and, if so, Pj resends the last

(SENT j iÆ (RPj) - y) application messages that Pj sent to Pi

during the previous run (before failures) by generating
them if necessary. Regeneration of messages may be
avoided if the senders log the outgoing messages.

The counters saved in the checkpoints of each processor
(the total number of application messages sent to a neigh-
bor and the total number of application messages received
from a neighbor) increase monotonically and become
unbounded if the application program uses a large number
of application messages. These counters may be reset peri-
odically by using the generalized scheme for bounding
sequence numbers [14].

The checkpointed information will grow as each process
takes a new checkpoint and messages are logged in stable
storage. Also, an output message m cannot to committed
unless we are sure that the process that generates m will not
have to roll back beyond the event during which it gener-
ated m. Algorithms for these two problems are very closely
related to the rollback algorithms as shown in [24].

4 CONCLUSIONS

The crash recovery algorithms presented in this paper use
asynchronous checkpointing and place no communication
overhead during normal operation of the system.

Strom and Yemini [23] introduce the concept of optimis-
tic crash recovery in distributed systems and present a roll-
back algorithm. Their algorithm appends a vector of num-
bers to each application message and may use an exponen-
tial number of messages in the worst case [21]. Johnson and
Zwaenepoel [7] unify several approaches to fault-tolerance
based on message logging and checkpointing. They also
show that there exists a unique maximum recoverable sys-
tem state after failures and present a recovery algorithm.
Every state interval of a process is assigned a unique inter-
val index. Application messages sent during a state interval
are tagged with the interval index of the state interval. A
direct dependency vector is associated with each state inter-
val and the vector is updated whenever a message is received.
The recovery algorithm is executed when the state intervals
become stable. In our scheme, the recovery algorithms are
executed only when there is a failure. Since they find a
recoverable state whenever state intervals become stable,
recovery at the time of failures is simple. Our recovery algo-
rithms are distributed whereas their algorithm is centralized.

Bhargava and Lian [2] propose an optimistic scheme for
checkpointing and recovering for multiple failures. Proc-
esses take checkpoints independently. To recover from a
failure, a process executes a two phase algorithm. In the
first phase, the process collects information about the
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messages exchanged in the system. In the second phase, it
builds a local system graph based on the information gath-
ered and uses it to determine the set of processes that must
rollback and the checkpoints to which they should rollback.
The advantage of their scheme is checkpointing processes,
rollback processes, and operational processes can proceed
concurrently. A process does not make two consecutive
rollbacks without performing any useful computation, but,
in the worst case, a process may need to rollback to the begin-
ning of execution in. Their scheme does not use message
logging. We use message logging to reduce the amount
rollback done, but normal operations are suspended during
recovery.

Sistla and Welch [21] present two rollback algorithms
that are more decentralized than the rollback algorithm of
[7]. The first rollback algorithm uses O(n2) messages assum-
ing that O(n) numbers are appended to the application
messages where n is the number of processors. The second
rollback algorithm of [21] uses O(n3) messages by append-
ing one number to the application messages. Our algo-
rithms are an improvement over their second algorithm
since we do not append any number to the application
messages. Venkatesan and Juang [24] present an optimistic
crash recovery algorithm that uses O(n2) messages when
one number is appended to the application messages. Our
work, in contrast, does not append any information to the
application messages. Thus, there is no delay introduced in
updating or appending numbers during normal operations.
Also, since nothing is appended to the application mes-
sages, there is no communication overhead when there are
no failures. However, a process might log unnecessary
messages since it does not have a global dependency infor-
mation. Our recovery algorithms, in the worst case, use
more messages than the algorithms that append informa-
tion [8], [21]. Our results, along with the results of Venkate-
san and Juang [24], show that there is a trade–off between
the amount of information appended to the application
messages and the number of messages used during recovery.

Crash recovery can also be achieved using synchronous
checkpointing [4], [22], [12]. In [12], processors coordinate
their checkpointing actions such that the global state obtained
by collecting the checkpointed states of all of the processors
is consistent. When a processor fails, each processor rolls
back and restarts from the latest checkpointed state. Each
time a checkpoint is taken, this approach generates addi-
tional messages during normal operations even if there are
no processor failures. Recovery techniques have been used
for coping with faults that are not necessarily due to proc-
essor crashes (for example software faults). The reader is
referred to [6], [10], [11], [19] for further reading.

The distributed system under consideration is an asyn-
chronous system with FIFO communication channels. The
FIFO property of the communication channels is used in the
development of the algorithms. New approaches are
needed for crash recovery if the channels are not FIFO.
Assuming that the channels are F-channels [1], one may
develop crash recovery techniques using message logging.
The recovery algorithms presented in this paper can be
applied to any application program. It is possible to make a
particular protocol cope with and recover from failures by

designing a crash recovery technique specific to that proto-
col and incorporating it into the protocol [20].
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