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Abstract 

W e  present Illulti, a symmetric, fully distrihuted, 
randomized algoiithm that, with probability I ,  sched- 
ules multiparty interactions in a strongly fair manner. 
To our kn.owledgc:, Multi is the first algorithm for  slirong 
interaction fa i rmss  to appear in the literature. More- 
over, the ezpected time taken by  Multi t o  establiiih an 
interaction is  a constant not depending on the total 
number o,f processes in the system. In this sense, .iMuZti 
guarantees real-time response. 

Multi ,makes no assumptions (other than bounded- 
ness) abo,ut the tame it takes processes to  communicate. 
It thus oifers an #appealing tonic to  the impossibiliiy re- 
sults of ij!’say&B,ugrodia and Joung concerning strong 
interactioNn fairness in an environment, shared-memory 
or messaige-passing, in which processes are determinis- 
tic and thre communication time is nonnegligible. 

Because strong interaction fairness is as strong a 
fairness condition that one might actually want to  im- 
pose in practice, our results indicate that randomiza- 
tion may also prove fruitful for other notions of fairness 
lacking deterministic realizations and requiring real- 
time response. 

1 Introduction 

A muli!iparty interaction is a set of 1/0 actions exe- 
cuted jointly by a number of processes, each of which 
must be ready to execute its own action for any cif the 
actions in the sei to occur. An attempt to participate 
in an interaction delays a process until all other par- 
ticipants are available. After the actions are executed, 
the participating processes continue their local coimpu- 
tation. hilthougli a relatively new concept, the mul- 
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tiparty interaction has found its way into various dis- 
tributed programming languages and algebraic models 
of concurrency. See [IO] for a taxonomy of program- 
ming languages offering Ihnguistic support for multi- 
party interaction. 

Although multiparty interactions are executed syn- 
chronously, the underlying model of communication is 
usually asynchronous isnd bipartied. The multiparty 
interaction scheduling pralhlem then is concerned with 
synchronizing asynchronoilas processes to  satisfy the fol- 
lowing requirements: (1) an interaction can be estab- 
lished only if all of its paieticipants are ready (i.e., the 
interaction is enabled), amd (2) a process can partici- 
pate in only one interaction at a time. Moreover, some 
notion of fairness is typically associated with the imple- 
mentation to  prevent “unfair” computations that favor 
a particular process or interaction. 

Several important faieirxess notions have been pro- 
posed in the literature [l, 2, 31, including: weak inter- 
action fairness, where if an interaction is continually 
enabled, then some of its participants will eventually 
engage in an interaction; and strong interaction fair- 
ness, where an interaction that is infinitely often en- 
abled will be established infinitely often. A distinguish- 
ing characteristic of weak interaction fairness is that 
it is much weaker than most known fairness notions, 
while strong interaction ifairness is much stronger. 

In general, stronger. ifairness notions induce more 
liveness properties, but are also more difficult to  im- 
plement. Therefore, it is not surprising to  see that 
only weak interaction famness has been widely imple- 
mented (e.g., [16, 14, 4, 3.3, 11, 17, 91). It is also not 
surprising to see that a31 of these algorithms are asym- 
metric and deterministic, as weak interaction fairness 
(and thus strong interatction fairness) has been proven 
impossible by any symmetric, deterministic, and dis- 
tributed algorithm [7, 121. Given that a process decides 
autonomously when it will attempt an interaction, and 
at a time that cannot be predicted in advance, strong 
interaction fairness is still not possible even if the sym- 



metry requirement is dropped [18, 81. 
Note that these impossibility results do not de- 

pend on the type of communication primitives (e.g., 
message-passing or shared-memory) provided by the 
underlying execution model. They hold as long as one 
process’s readiness for multiparty interaction can be 
known by another only through communications, and 
the time it takes two processes to communicate is non- 
negligible (but can be finitely bounded). 

In the case of CSP communication guard scheduling, 
a special case of the multiparty interaction scheduling 
problem where each interaction involves exactly two 
processes, randomization has proven to be an effective 
technique for coping with the aforementioned impos- 
sibility phenomena. For example, the randomized al- 
gorithm of Reif and Spirakis [15] is symmetric, weak 
interaction fair with probability 1, and guarantees real 
time response: if two processes are continuously willing 
to interact with each other within a time interval A, 
then they establish an interaction within A time with 
high likelihood, and the expected time for establish- 
ment of interaction is constant. 

The randomized algorithm of Francez and Rodeh [7] 
is simpler: a process pi expresses its willingness to es- 
tablish an interaction with a process p j  by setting a 
Boolean variable shared by the two processes; pi may 
then need to wait a certain amount of time 5 before 
re-accessing the variable to determine if p j  is likewise 
interested in the interaction. The authors show that, 
under the proviso that the time to access a shared vari- 
able is negligible compared to 6, the algorithm is weak 
interaction fair with probability 1. Note, however, that 
this assumption, combined with the fact that no lower 
bound on 6 is provided, may significantly limit the al- 
gorithm’s practicality. Furthermore, no strcng interac- 
tion fairness is claimed by either algorithm. 

In this paper, we present Multi, an extension of 
Francez and Rodeh’s randomized algorithm to the mul- 
tiparty case. We prove that Multi is weak interaction 
fair with probability 1. We also show that if the transi- 
tion of a process to a state in which it is ready for inter- 
action is independent of the random draws of the other 
processes, then, with probability 1, Multi is strong in- 
teraction fair. To our knowledge, Multi is the first al- 
gorithm for strong interaction fairness to appear in the 
literature. 

We also present a detailed timing analysis of Multi 
and establish a lower bound on how long a process 
must wait before re-accessing a shared variable. Con- 
sequently, our algorithm can be fine-tnned for optimal 
performance. Moreover, we show that the expected 
time to establish an interaction is a constant not de- 
pending on the total number of processes in the system. 
Thus, Multi also guarantees real-tame response. 

Because strong interaction fairness is as strong a 
fairness condition that one might actually want to  im- 
pose in practice, our results indicate that randomia- 
tion may also prove fruitful for other notions of fairness 
lacking deterministic realizations and requiring real- 
time response. 

The rest of the paper is organized as follows. Sec- 
tion 2 describes the multiparty interaction scheduling 
problem in a more anthropomorphic setting, known as 
Committee Coordination. Our randomized algorithm 
is presented in Section 3 and analyzed in Section 4. 
Section 5 concludes. 

2 The Committee Coordination Prob- 
lem 

The problem of scheduling multiparty interactions 
in asynchronous systems has been elegantly character- 
ized by Chandy and Misra as one of Committee Coor- 
dination [5]: 

Professors (cf. processes) in a certain univer- 
sity have organized themselves into commit- 
tees (cf. interactions) and each committee has 
a fixed membership roster of one or more 
professors. From time to time, a professor 
may decide to attend a committee meeting; 
it starts waiting and continues to wait until a 
meeting of a committee of which it is a mem- 
ber is started. 

Given that all meetings terminate in finite time, the 
problem is to devise an algorithm satisfying the follow- 
ing three requirements: 

Synchronization: A committee meeting may be 
started only if all members of that committee are 
waiting. 

Exclusion: No two committees meet simultaneously 
if they have a common member. 

Weak Interaction Fairness: If all professors of a 
committee are waiting, then eventually some pro- 
fessor will attend a committee meeting. 

We shall also consider strong interaction fair- 
ness, i.e., a committee that is infinitely often enabled 
will be started infinitely often. A committee is enabled 
if every member of the committee is waiting, and is 
disabled otherwise. 

The overall behavior of a professor can be described 
by the state transition diagram of Figure 1, where state 
T corresponds to thinking, W corresponds to waiting 
for a committee meeting, and E means that the pro- 
fessor is actively engaged in a meeting. 
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Figure 1: Statt: transition diagram of a professam. 

1. while waiting do { 
2. 

3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 

randomly choose a ccirnmittee M from 

if TEST&OP(CM, inc, iizc) = Iprof.MI - 1 
{ M  Ipi E p r o f . Y } ;  

then /* a committee meeting is established */ 

else { wait 6 t h e ; ;  
attend the meeting of M 

if TEST&OP(CM, no-op, dec) = 0 
then /* a conunittee meeting is established */ 

/* else try another committee */ } 
attend the meeting of M ; 

11. } 

Note that any algorithm for the problem should only 
control the transition of a professor from state PV to 
state E, but not the other two transitions. That is, 
the transitions fi*om T to W and from E to T' are 
autonomous to e(ach professor. Moreover, we do not 
assume any upper bound on the time a professor can 
spend in thinking. Otherwise, an algorithm for the 
problem could siinply wait long enough until all pro- 
fessors become waiting, and then schedule a committee 
meeting of its choosing. All three requirements for the 
problem and strong interaction fairness would thein be 
easily satisfied. 

3 The Algorithm 

In this section, we present Multi, our randomized 
algorithm for committee coordination. In the adgo- 
rithm, we associate with each committee M a counter 
CM whost: value ranges over [O . Ipro f .4  -11, wlhere 
pr0f.M is the set of professors involved in M. CM can 
be accessed only lby the professors in pr0f.M and only 
through the TESCPOP instruction as follows: 

result := TEST&OP(CM, zero-op, nonzero-op) 
The effect of this instruction is to apply to CM the! op- 
eration teiro-op if its value was zero and the operation 
nonxero-op otherwise, and to assign to the variable re- 
sult the old value ( i .e . ,  the value before the operation) 
of C M .  The operations used here are no-op, inc, and 
dec, where 

nO-Op(cM) =: C M ,  

deC(cM) = ( ( 3 ~  - 1) mod IprOf.4.  
inc(CM) = ( ( 7 ~  + 1) mod I p r o f . 4 ,  

For example, if CJC = 2, then TEST&OP(CM, no-op, dec) 
sets CM =: 1 and returns 2. If CM = 0, TEST&OP(CM, 
no-op, dec) keeps CM unchanged and returns 0. We 
assume that the execution of the TEST&OP instruction 
is uatomic," although, in the full version of the paper, 
we show how this assumption can be removed. 

Algoritlim Multi can be informally described as fol- 
lows. Initially, all the shared counters are set to sero. 
When a ppofessor pi decides to attend a committee 

Figure 2: Algorithm Multi for professor pi .  

meeting, it randomly chooses a committee M of which 
it is a member. It then attempts to start a meeting of 
M by increasing the value of CM by 1 (all increments 
and decrements are to be interpreted modulo Iprof.Mj). 
If the new value of CMr is 0 (i.e., CM = 1prof.M - 1 
before the increment), then professor pi concludes that 
each of the other members of M have increased CM by 
one, and are waiting for pi to convene M. So pi goes 
to state E to start the meeting. 

If the new value of CM is not zero, however, then at  
least one of the professors in prof.Mis not yet ready. So 
professor pi waits for some period of time (hoping that 
its partners will becomie ready) and then re-accesses 
CM. If CM has now been set to  0, then all the profes- 
sors which were not ready for M are now ready, and so 
pi can attend the meeting. If CM is still not zero, then 
some professor is still not ready for M. So pi with- 
draws its attempt to start M by decreasing the value 
of CM by 1 and tries anotlher committee. 

The algorithm to be executed by each professor pi 
is presented in Figure 2, where waiting (line 1) is a 
Boolean flag indicating wlhether or not pi is waiting for 
a committee meeting. The constant 6 (line 6) is the 
amount of time a profesisoir waits before re-accessing a 
counter. We will later require (see Section 4) that 6 
be greater than qmax x (Iprof.MI - l), where q m w  is 
the maximum amount od time a professor can spend in 
executing lines 2 and 3.l Note that the algorithm is 
symmetric in the sense that all professors execute the 
same code and make no1 use of their process ids. 

'More precisely, qmar shoiild also include the time it takes 
to execute line 1. To simpliify the analysis, we assume that the 
Boolean flag waiting only st:rv(:s to indicate the state of the ex- 
ecuting professor, and so no explicit test of the flag is needed. 
Moreover, we assume that an ,Bction is instantaneously executed 
at somo t i m o  instanso. Tho t i m c  it takcs t o  cxocuto an act ion  i s  
the difference between the ltinne the action is executed and the 
time the previous action (of the same professor) was executed. 
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4 Analysis of the Algorithm 

In this section we prove that Multi satisfies the syn- 
chronization and exclusion requirements of the Com- 
mittee Coordination problem, and, with probability 1, 
is weak and strong interaction fair. We also analyze 
the expected time Multi takes to  schedule a committee 
meeting. 

4.1 Definitions 

We assume a discrete global time axis where, to an 
external observer, the events of the system are totally 
ordered. Internally, however, processors may execute 
instructions simultaneously at  the same time instance. 
Simultaneous access to  a shared counter will be arbi- 
trated in the implementation of the TESTBcOP instruc- 
tion, which we assume is executed atomically. 

Since the time axis is discrete, it is meaningless 
to say that “there are infinitely many time instances 
in some finite time interval such that ...” Therefore, 
throughout this paper, the phrase “there are infinitely 
many time instances” refers to the interval [0, a). 

For analysis purposes, we present in Figure 3 a re- 
finement of the state transition diagram of Figure 1, 
where state W is refined into three sub-states Wo-Wz. 
The actions taken by the professors from these sub- 
states are: 
WO: randomly choose a new committee. 

W1: access counter CM by TEST&OP(CM, inc, inc).  

Wz: wait 6 time before re-accessing CM by TEST&OP( 

We say that a professor is watching for committee M 
if it is in state Wz waiting for re-access to CM.  

According to  the algorithm, if at time t a professor 
p accesses a counter C, by TEST&OP(C~,  inc, inc) 
in state W1, then it will be in state Wz or E after t ,  
depending on the value of CM.  Furthermore, if p enters 
state Wz at time t to  watch for a committee M ,  then 
at  time t + 6 it will re-access CM by TEST&OP(CM, no- 
op, dec). Depending on the value of C M ,  after time 
t + 6 the professor will either return to  state WO to  
choose another committee, or enter state E to attend 
the meeting of M .  

Figure 4 illustrates a possible scenario for four pro- 
fessors p l ,  p z ,  p3, and p4 executing the algorithm, 

CM,no-op, dec). 

xe-.CSO.. CM (#  0 )  

ready for 

Figure 3: State transition diagram of a professor exe- 
cuting the algorithm. 

Mi4 and then accesses CM,, at time 3. Since C M ~ ,  = 0 
before the access, pl  enters state Wz t o  watch for M14 
for 6 = 3 time units and then re-accesses CM,, at time 
6 .  Since p4 will not access CM,, until time 9, pl  re- 
turns to state WO to try another committee. Later at 
time 12,  pl chooses committee Mi23 and then accesses 
C M , ~ ,  a t  time 13. When pl  re-accesses C M ~ , , ~  at time 
16, it finds that both pz and p3 are willing to start the 
meeting of M123. So pl  enters state E to  attend the 
meeting. The meeting of Mi23 ends at time 19, after 
which the committee members can return to  state Tat 
a time of their own choosing. The shaded area between 
time 17 and 19 represents a synchronization interval for 
the three professors. 

4.2 Properties of the Algorithm That 
Hold with Certainty 

We now analyze the correctness of the algorithm. 
We begin with an invariant about the value of a shared 
counter C M ,  which we will use in proving that Multi 
satisfies the synchronization condition of the Commit- 
tee Coordination Problem. 

Lemma 1 If at time t there are IC professors in  state 
WZ watching for committee M and no professor, since 
last entering state WO, has entered state E to  attend a 
meeting of M ,  then the value of CM at t ime t is  k .  If ,  
however, at time t some professor has entered state E 
to  attend a meeting of M ,  then CM = 0 and in  [ t ,  t +a] 
(all professors in pr0f.M will have entered state E t o  
attend the meeting of M .  

where p i  and p4 are involved in committee Mi4,  Pi, pz, 

volved in Mz34. For each professor, we explicitly depict 
its state (on the Y-axis) at each global time instance 
(on the X-axis). For example, a t  time 1 professor pl  
starts waiting for a committee meeting and so it enters 
state WO from state T. At time 2, it randomly chooses 

Proof: By induction on t i ,  the time at which the i t h  
system event 0 

Theorem 1 (Synchronization) If a professor i n  
pr0f.M enters state E at time t t o  attend a meeting 
of M ,  then within 6 time all professors in  pr0f.M will 
have entered state E to  attend the meeting of M .  

and p3 are involved in M i m ,  and P Z ,  p3 and p4 are in- 
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Figure 4: A pa,rtial computation of four professors. 

Proof: The theorem follows immediately from 
Lemma 31. 0 

Theorem 2 (Exclusion) No two committees con- 
vene simultaneously i f  they have a common member. 

Proof: The result follows from the fact that a projfessor 
watches for one committee a t  a time. 0 

4.3 Properties of the Algorithm That 
Hold with Probability 1 

We move on l o  prove that Multi is weak and strong 
interaction fair, and analyze its time complexity. For 
this we wvill need some definitions about the "raindom 
draw" a professor performs in state WO when deciding 
which meeting t o  attempt. 

We say that a professor accesses a counter CM 
when it executes the instruction TEST&OP(CM, inc, inc) 
(line 3 o f  the algorithm) and re-accesses CM when it 
executes TEST&CIP(C~, no-op, dec) (line 7). Now sup- 
pose that professor p accesses some counter in the: time 
interval (t - 6, t]  If there is more than one such access, 
choose the most recent one. Then the choice of counter 
must be the resilt of the random draw performed be- 
fore the access ((line 2). Let Dt,p denote this random 
draw, and let I]it,prof.M = {Dt ,p  Ip E pr0f.M and Dt,p 
is defined}. 

Note that if p is in stfate Wz at  time t ,  then p must 
have accessed some counter in the interval (t -6, t ] ,  and 
so Dt,p must be defined. Note further that the interval 
(t - 6, t ]  is open at  t .- 5 and closed at  t .  Therefore, 
Dt,p is defined if p acc(:sjjt:s CM a t  t ,  but is not defined 
if the access occurs a t  t -- 6. The reason for choosing 
this semi-closed interval is to avoid the situation where 
an access to a counter OCCUES simultaneously with a 
re-access to the same counter by another professor. 

For example, suppolse that counter CM, shared ex- 
clusively by p l  and p z ,  is accessed by p l  at  time t - 6 
and found to be zero. Then p l  must wait 6 time be- 
fore re-accessing CM at  time t. Suppose further that 
pz also chooses M and accesses CM at  time t .  We thus 
have an accesslre-access (conflict involving CM at  time 
t ,  and the meeting is e,stieblished if and only if the con- 
flict is resolved in favor oil the access; i.e., pz  gets to go 
first. 

Note, however, that no dependency on the resolution 
order is manifest if pj's access occurs any time after 
t - 6 (but no later than t ) .  In this case, pz's access 
is certain to precede p1's re-access and the meeting is 
once again established. .Also noteworthy of this case is 
the fact that both Dt,p,l and Dt,pa are defined, while in 
the case where pl's ac:ceZis occurs a t  t - 6, only Dt,pa 
is defined. In general, if Dt,p is defined for all p E M, 
and these random dratws yield the same outcome M ,  
then M will be established (see Lemma 4). 

In the rest of this section we shall use $ p , ~  to 
denote the fixed non-zero probability that professor 
p E pr0f.M chooses comimittee M in a random draw. 
Thus, 

PE PT0f.M 

is the probability that a set of mutually independent 
random draws, one by eiech professor in prof.M, yields 
the same outcome M. 

The following three kinmas are used in the fairness 
proofs. 

Lemma 2 Vt,t' such that t' - t > 6 ,  
Dt,prof.M n Dt1,prof.M =: 8. 

Proof: Follows directly jfrom the definition of Dt,p. 0 

Lemma 3 Suppose that committee M is  continuously 
enabled in the interval (tilt; + e ) .  Then there ez- 
ists a t ime instance t ,  t; < t 5 ti + 8,  such that 
IDt,pmf.MI = IPrOf.MI if: 

I .  0 >_ qmax x Iprof.MI, and 

2. 6 > vmsx x (Iprof.Ml- 1). 
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Proof: Since M is enabled in ( t i ,  t i+O) ,  every professor 
of M is in a W-state in this interval. Clearly, either (i) 
there exists an interval ( t ; , t j ) ,  ti < t j  5 t ;  + 8 ,  during 
which every professor p E pr0f.M is in state Wz, or 
(ii) there exists some professor p such that p is not in 
state WZ in ( t i , t j ) .  In case (i), Dt,p must be defined 
for every p E pr0f.M and every t in ( t ; , t j ) ,  and so 
IDt,prof.MI = Iprof.Ml. 

For case (ii), suppose that some professor pl E 
pr0f.M stays in WO or W1 in (ti,ti + ml’) and then 
accesses some counter at ti  + ml, where ml > 0. So 
Dt;+ml,pl is defined. Since ml 5 vmax and Iprof.MI 2 
1, by condition 1, ti < ti + ml 5 ti  + 8. 

If Dti+ml,p is defined for all p E pr0f.M (i.e., 
IDt;+m,,prof.MI = Iprof.MI), then we are done. Oth- 
erwise, Iprof.Ml must be greater than one, and there 
exists another professor p2 such that Dt,pa is not de- 
fined for all t in [ti + ml,  t ;  + ml + mz), but Dt,p, is 
defined for t = ti + ml + mz (similarly because pz stays 
in state WO or W1 in ( t i  + ml,  ti + ml + mz), and then 
accesses some counter a t  t i  + ml + mz). Moreover, 
0 < m2 5 Qmax. 

By condition 1 and the fact that lprof.MI 2 2 ,  we 
have ml + mz 5 8.  So pl is still in a W-state in (ti + 
m1,ti + ml + mz). However, since pl accesses some 
counter at t i + m l ,  pl  must have entered state Wz after 
the access, and stays in Wz in ( t i  + ml , ti + ml + 6). So 
Dt,pl must be defined for all t in [ti + ml,  ti + ml + 6). 
Moreover, by condition 2, t; + ml < ti  + ml + mz < 
ti + ml + 6. So Dt,p must be defined for both p = 
p l , p z ,  and t = ti  + ml + mz. Since ml + m2 5 8 ,  

If Dti+ml+ma,p is also defined for every other profes- 
sor p E prof .M,  then we are done. Otherwise, pr0f.M 
must contain at least three professors, and there ex- 
ists a third professor p3 such that Dt,ps is not de- 
fined for all t in [ti + ml + mz,ti + ml + mz + m3), 

where 0 < m3 5 T ~ ~ ~ ,  but Dt,ps is defined for t = 
ti + ml + m2 + m3. Moreover, we can use a similar 
argument to  show that Dt,pl and D)t,p2 must also be 
defined for t = ti  + ml + m2 + m3. In general, we can 
show that if Iprof.MI 2 n, then DtrPk must be defined 
for le=l . .nandt i  < t = t i + m l + m z +  . . .+m, L t ; + 8 .  

Since the number of professors in pr0f.M is finite, 
eventually we will reach a point where Dt,p is defined 
for each p E pr0f.M and some ti < t 5 ti + Q (see Fig- 

t i < t i + m l + m z L t i + e .  

ure 5 ) .  The lemma is then established. 0 

We shall henceforth refer to  Condition 2 of Lemma 3 
(the lower bound on 6)  as Assumption Al .  Note that 
different professors can choose different values for 6; 
these values need only satisfy the lower bound estab- 
lished by the lemma. As such, the clocks used by the 
professors to  implement time-outs need not be adjusted 

tl t 2  
:- M i s  continuously anrblod 

’- ?mbX x I v O f . M I  

i+-qmb*- 6min . .  . .  . .  . .  
. .  . .  

P l  : 
I , , ,  
i 4 i i  

i re-access C ready for M access C pa : 

4 4 i re-access C access C p3 : 

4 z 
re-access C access C i p4 : 

4 4 
re-access C access C 

Figure 5: Illustration of Lemma 3 .  ( t l ,  t 2 )  is the max- 
imum possible interval during which M is enabled but 
IDt ,prof .MI # Iprof.MI. Here Iprof.M( = 4. Then, 
DtgtP must be defined for all p E pr0f.M. Note that 
if &,in would equal vmax x (1prof.MI - l), then Dta,pl 
would not be defined. 

to the same accuracy. 
Lemma 3 says that if a committee M is continuously 

enabled sufficiently long, then there exists an interval 
of length 8 within which every professor in pr0f .M per- 
forms a random draw. The following lemma ensures 
that if their random draws yield the same outcome, 
then they must establish M .  

Lemma 4 If IDt,prof.MI = Iprof.MI and all the ran- 
dom draws in Dt ,pro f .M yield the same outcome M ,  
then by  time t some professor must have already en- 
tered state E to start M ,  and by t ime t + 6  all professors 
in pr0f.M will enter state E to start M .  

Proof: Assume the hypotheses described in the 
lemma. Let pi E pr0f.M be the first professor which, 
after performing its random draw in Dt ,pro f .M,  accesses 
CM by TEST&OP(CM, inc, inc),  and let pj  E pT0f.M be 
the last professor to do so. Let ti and t j  be the time 
at which pi and p j ,  respectively, accesses C M .  Then, 
t j  - t ;  < 6 ,  and t - 6 < ti 2 t j  L t .  

Since pi accesses CM at time t i ,  it will not re-access 
CM until ti + 6. Since ti  + 6 > t ,  all professors which 
access CM in [ t ; , t j ]  will remain in state W2 before pj  
accesses CM. By Lemma 1, CM = Jprof .MJ - 1 just 
before pj’s access. So when pj accesses CM at t j ,  it will 
set CM to zero and enter state E to  start M .  Moreover, 
by time t j  + 6, every other professor of M will learn 
that M has been started when it re-accesses CM by 
TEsT&oP(C~, no-op, dec), and so will also enter state 
E to start M .  Since t j  + 6 5 t + 6, the lemma is thus 
established. 0 
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Theorem 3 (Weak Interaction Fairness) 
Assume A I  and that all members of a committee M 
are wading for committee meetings. Then, the prob- 
ability is 1 thai! eventually a meeting involving some 
member of M u d l  be started. 

Proof: Suppos~ that M is enabled at t .  If M it; con- 
tinuously enabled in ( t , t  + vmax x Iprof.MI), then by 
Lemma 3 under A l l  there exists a time instance t l ,  
t < tl 5 t -t 7ms.x x )Prof.M\, such that IDtl,prof.MI = 
Iprof.MI. If the random draws in D t , , p , . o ~ . ~  yield the 
same outcome M ,  then, by Lemma 4, M must be dis- 
abled at tl. Even if the random draws do not yield the 
same outcome, some professor of M may still establish 
another committee meeting M’ if its random draw has 
the outcome M t  and at the same time all other profes- 
sors of M‘ are also interested in M‘. So the probalility 
that the random draws in Dtl ,pTof .~  do not cause any 
committee involving a member of M to be started is 
no greater than 3 - $ J M .  

Similarly, if M remains enabled for another 7max + 6 
time, then each professor must perform another ran- 
dom draw and access some counter within this inter- 
val. So there must exist another time instance t 2  such 
that tl < ‘tz _< d l  -+ vmax + 6,  and Dta ,p+of .M contains a 
completely new set of random draws of size Iproj,.M/. 
Again, the probability that M remains enabled after 
these random draws is no greater than 1 - $ M ,  given 
that the random draws in D t l , p r o f . M  do not cause any 
member of M to attend a meeting. In general, the 
probability that M remains enabled after i sets of such 
random draws wtl,pTof.M, Dta,pTof.M, . . ., Dt,,proj.M is 
no greater than [I - + M ) ~ .  As i tends to infinity, 
(1 - T + ~ M ) ~  tends to zero. So the probability is zero 
that M remains enabled forever. U 

Intuitively, A1 requires that the 6 parameter used in 
the algorithm is Pmge enough so that a professor r ~ i l l  
not re-access a counter before the other professors get 
a chance to access the counter. If this assumption is 
removed from Theorem 3, then a set of professors could 
access and re-access a counter forever without ever es- 
tablishing a, committee meeting. To illustrate, consider 
Figure 6 .  Each professor re-accesses a counter before 
the other professor could access the same counter. So 
no matter what committees they choose in their ram- 
dom draws, there just does not exist any time instance 
at which a professor can see the result of a counter set 
by the othele professor. 

The strong interaction fairness property of the al- 
gorithm additionally requires the assumption that a 
professor’s transition from thinking to waiting (see Fig- 
ure I )  does not depend on the random draws perform,ed 
by other processes. We refer to this assumption as A2. 

Pl : 

4 h  & 4  1 1  
access re-access accew re-access access re-access 

1 4  1 4  4 I  
access re-acce:sc access re-access access re-access 

Figure 6: Two professors wait forever without estab- 
lishing any meeting due to a bad choice of 6. 

We also need the following lemma on the probabilis- 
tic behavior of a large number of random draws. 

Lemma 5 If there a7pe anfinitely many t’s such that 
IDt,prof,MI = Iprof.MI, then the probability is  1 that 
all the random draws in Dt ,pro f ,M produce the same 
outcome for irlfinitely inany t ’s. 

Proof: Let t l , t z , .  . . be an infinite sequence of in- 
creasing time instances at each of which IDt,,prof.Ml = 
[prof.M(. W.1.o.g. assume that Vi,ti+l - ti > 6. By 
Lemma 2, the sets Dt,,,pT,,f.~ are pairwise disjoint. 

Consider the random draws in set D t , , p r o f . ~ .  Let 
EM denote the event that the random draws in 
Dtlrpr0f.M produce the same outcome M .  Clearly the 
probability of EM’S occurrence is independent of the 
time these random draws are made and is given by 
$M. Define random variable Ai to be 1 if EM occurs 
at t i ,  and 0 otherwise. Then, Ai = 1 has probability 
$ M ,  and Ai = (3 has probability 1 - $M. 

By the Law of h r g e  Numbers (see, for example, [6]), 
for any E we have 

That is, when n tends to infinity, the probab;lity is 1 

that Ai- tends to 1 . ) ~ .  Therefore, with prob- 
ab;lity 1, the set (i I Ai := 1, i 2 1) is infinite. Hence, 
with probability 1, there are infinitely many i’s such 
that the random draws in . L ) t i , p r o f . ~  produce the same 
outcome M .  0 

Theorem 4 (Strong Initeraction Fairness) 
Assume AI and A2. Then, .if a committee is enabled 
in$nitely often, with probability 1 the committee will be 
convened infinitely often. 

Proof: Since the algorithm satisfies weak interac- 
tion fairness, we assume f8hrzt there are infinitely many 
i’s such that M becomes enabled at time instance 
t i .  By Lemma 3 and h l ,  either (1) there are in- 
finitely many i’s such that each interval ( t i ,& + @], 
8 2 vmsx x Iprof.MI, contains some time instance t 
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such that IDt,p,.o~.~I = Jprof.M(, or (2) there are in- 
finitely many i’s such that when M becomes enabled 
at ti, some professor q E pr0f.M attends some meeting 
in the interval (&,ti + e).  

Consider Case (1). By Lemma 5, with probability 1 
there are infinitely many t’s such that all the random 
draws in Dt,p,.oj.~ produce the same outcome. So by 
Lemma 4, with probability 1 M is convened infinitely 
often. 

Consider Case (2). Let Dii,q be the last random 
draw performed by q before it attends some meeting in 
(t;,t; + e). By A2, the random draw Dii,q is indepen- 
dent of the enabledness of M at time t i ,  and so is in- 
dependent of the other random draws Dik,q .  Since the 
event that Dii,g yields outcome M has a nonzero prob- 
ability, by the Law of Large Numbers (see Lemma 5), 
the probability is 1 that there are infinitely many i ’ s  
such that Dii,p yields outcome M .  Clearly, the meet- 
ing that q will attend in (ti,ti + 6 )  is determined by 
DIi,g. So, with probability 1, M is convened infinitely 
often. 0 

Note that if Assumption A2 is dropped from The- 
orem 4, then a conspiracy against strong interaction 
fairness can be devised. To illustrate, consider a sys- 
tem of two professors pl and p2,  and three committees 
MI, which involves only pl , M2, which involves only p2, 
and M12, which involves both p1 and p2. Suppose that 
pl becomes waiting, and then tosses a coin to choose 
either MI or M12. The malicious p2 could stay in think- 
ing until p1 has selected M I ;  then p2 becomes waiting 
just before pl accesses CM,. Since pl can successfully 
start M I  once it selects M I ,  M12 will not be started 
if pl remains in its meeting while p2 is waiting. How- 
ever, MI2 is enabled as soon as p2 becomes waiting. 
So if this scenario is repeated ad infinitum, then the 
resulting computation would not be strong interaction 
fair. 

The time complexity of the algorithm is analyzed in 
the following theorem. 

Theorem 5 (Time Complexity) Suppose that from 
some time onward committee M is enabled. Then, the 
expected time it takes for any member of M to start a 
meeting is no greater than 

Proof: Suppose that M is enabled from time t onward. 
By Lemma 3, there exists a time instance t l ,  t < tl 5 
t + x Iprof.MI, such that lDt,,prof.MI = Iprof.MI. 
By Lemma 4, if these random draws yield the same out- 
come M (an event that occurs with probability $ M ) ,  
then all professors in pr0f.M will start a meeting of M 

by time tl + 6. Otherwise, if some professor’s random 
draw leads to the establishment of some other commit- 
tee meeting involving the professor, then M will also be 
disabled by tl + 6. If neither of these is the case, then 
each professor in pr0f.M must perform another ran- 
dom draw and access the selected counter within qmaX 
time (from the time it re-accesses the previous selected 
counter). So there must exist another time instance t 2 ,  

tl < t 2  5 tl $ 6  +qmax, such that D t 2 , p r o f . ~  contains a 
completely new set of random draws, one by each pro- 
fessor in pr0f.M. Once again, if the new random draws 
yield the same outcome M or cause some other com- 
mittee meeting to be started, then some professor will 
enter a meeting by time t 2  + 6 5 tl + 26 + Vmax. 0th-  
erwise, each professor in pr0f.M will perform another 
random draw within qmax time, and so on. 

Therefore, the expected time starting from tl until 
some member of M enters state E to start a meeting 
is no greater than 

Vmax 

Since tl 5 t+qmaxx Iprof.MI, the expected time for any 
member of M to start a meeting when M is enabled is 
no greater than 

0 

Note that qmax is a constant determined by the size 
(number of members) of the largest committee; call this 
value MaxCommSize. $JM is a constant determined by 
the maximum number of committees of which a profes- 
sor can be a member; call this value MaxNumComm. 
Finally, 6 is a constant determined by vmaX and Max- 
CommSize. Therefore, the time complexity of the al- 
gorithm is a constant determined by MaxCommSize 
and MaxNumComm, and is independent of the total 
number of professors and committees in the system. 

5 Conclusions 

We have presented Multi, a new randomized algo- 
rithm for scheduling multiparty interactions. We have 
shown that by properly setting the value of 6 (the 
amount of time a process is willing to wait for an inter- 
action to be established), our algorithm is both weak 
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and strong interaction fair with probability 1. Our re- 
sults hold even if the time it takes to  access a shared 
variable (the clsmmunication delay) is nonnegligible. 
To our hnowledge, this makes Multi the first algorithm 
for strong interaction fairness to  appear in the litera- 
ture. 

Strong interaction fairness has been proven imipossi- 
ble by any deterministic algorithm. Our results there- 
fore indicate that randomization is a feasible and ef- 
ficient countermeasure to such impossibility phenom- 
ena. Furthermore, since most known fairness notions 
are weaker than strong interaction fairness, they too 
can be implemented via randomization. For example, 
strong process ,Fairness [l], where a process infinitely 
often ready foir an enabled interaction will partiicipate 
in an interactioii infinitely often, is also realized lby our 
algorithm. 

Multi is an extension of Francez and Rodeh's ran- 
domized algoril hm for CSP-like biparty interactions. 
Francez and Rodeh were able to  claim only weak inter- 
action fairness for their algorithm, and then only under 
the limiting assumption that the communication time 
is negligible compared to 6. In this case, strong iiiiterac- 
tion fairness wculd be possible even in a deterministic 
setting. 

We have also analyzed the time complexity of our 
algorithm. Like Reif and Spirakis's real-time algo- 
rithm [35], the expected time taken by Multi to es- 
tablish i3n interaction is a constant not depending on 
the total number of processes in the system. 

Although Multi is presented in a shared-memory 
model, it can be easily converted to a message- 
passing algorithm by letting some processes maintain 
the shared variables, and other processes communicate 
with them by message passing to obtain the values of 
these variables. The time to read/write a shared vari- 
able then accoiints for the time it takes to deliver a 
message. The (5 parameter in Assumption A1 can be 
properly adjusted to  reflect the new communication de- 
lay so tlhat both weak and strong interaction fairness 
notions can still be guaranteed with probability 1. 
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