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Abstract

We present a new technique for the embedding of large cube-connected cycles networks
(CCC) into smaller ones, a problem that arises when algorithms designed for an architec-
ture of an ideal size are to be executed on an existing architecture of a fixed size. Using
the new embedding strategy, we show that the C'CC' of dimension [/ can be embedded
into the CCC' of dimension k£ with dilation 1 and optimum load for any k,l € IN, k > 8,
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technique also leads to improved dilation 1 embeddings in the case 3 <

thus improving known results. Our embedding
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1 Introduction

Over the past few years, a lot of research has been done in the field of interconnection
networks for parallel computer architectures (for an overview, cf. [19]). Much of the
work has been focused on the capability of certain networks to simulate other network
or algorithm structures, in order to execute parallel algorithms of a special structure
efficiently on different processor networks (see e.g. [5, 17, 25]). One problem that is of
specific interest in this context is that many existing algorithms are designed for arbitrarily
large networks (see e.g. [19]), whereas, in practice, the processor network will be fixed
and of smaller size. Thus, the larger network must be simulated in an efficient way
on the smaller target network. There is an enormous literature on this problem (see
e.g. [3, 8, 14, 15, 21, 23, 24, 26, 30)).

Customarily, the simulation problem is formalized as the emdedding problem of one graph
in another (for a formal definition of the embedding problem, see Section 2). The “quality”
of an embedding is measured by the parameters load, dilation, and congestion. The
importance of the different parameters becomes apparent through the following result.

Proposition 1 [20]:

If there is an embedding of G into H with load ¢, dilation d, and congestion
¢, then there is a simulation of G by H with slowdown O({ + d + ¢).

As a consequence, the load ¢, dilation d, and congestion ¢ have been investigated for
embeddings between many common network structures like hypercubes, binary trees,
meshes, shuffle-exchange networks, deBruijn networks, cube-connected cycles, butterfly
networks, etc. Most of the work was done on one-to-one embeddings (for an overview, see
e.g. [25, 29]), but results on many-to-one embeddings can also be found (see e.g. [2, 6, 7,
9, 12, 13, 16, 18, 22, 26, 27]). In this paper, we focus on many-to-one embeddings of the
cube-connected cycles network (CCC'). The CCC was introduced as a network for parallel
processing in [28]. It has fixed degree, small diameter, and good routing capabilities [19].
It can execute the important class of normal hypercube algorithms very efficiently (see
e.g. [19]). In addition, there is also a strong structural relationship to the deBruijn,
shuffle-exchange, and butterfly networks [1, 10]. Hence, the efficient implementation of
algorithms on CCC networks (of fixed size) is of importance. According to Proposition 1,
one way of executing algorithms designed for a C'C'C network of arbitrary size efficiently
on a CCC network of realistic (fixed) size, is to find embeddings of large CCC’s into
small CC'C’s minimizing the parameters load, dilation, and congestion. In this paper, we
focus on load and dilation. Using our embedding strategy, many important algorithms for
large CC'C’s can be implemented very efficiently on a C'C'C network of realistic size.

Many-to-one embeddings of the CCC network have been investigated in [2, 6, 12, 16, 27].
In [6, 12, 27], embeddings with optimum dilation and load are presented in the case of
embedding CCC’s of dimension [ into k£ where k|l. The authors also restrict themselves
to special kinds of embeddings of a very regular structure, like coverings [6], homogeneous
emulations [12], and homomorphisms [27]. Because of the very restricted nature, Bod-
laender [6] and Peine [27] are also able to classify their embeddings completely. In [2], a
general procedure is described for mapping parallel algorithms into parallel architectures.
This procedure is applied to the CCC network achieving dilation 1, but very high load.



Also, only special kinds of embeddings, so-called contractions, are considered. In [16],
the embedding problem for C'C'C'’s is investigated taking into account general embedding
functions and any possible network dimension. More precisely, it is proved that the cube-
connected cycles network of dimension [, CCC(I), can be embedded into CCC(k), | > k,
with

l
(a) dilation 2 and optimum load {E : Qlk-‘.
(b) dilation 1 and load

{é . QZk-‘ for

2p—1 2p—3 1 _2p—1
{L . 2““} for pe{2,3,...} such that P < —-< P .
p p—1 k p

> 2,
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In this paper, we present a new technique for the embedding of large cube-connected
cycles networks into smaller ones. Using the new embedding strategy, we show:
4k + 3

5 l ‘
Let k,l € IN, k > 8, such that 3 4+ < z <2 ¢ = 3 92/ Then, there is

l
a dilation 1 embedding of CCC(l) into CCC (k) with load [% : Qlk-‘ .

This is optimal, and improves the results from [16]. Our embedding technique also leads

3
to improved dilation 1 embeddings in the case 2 < A < 3 +cp .
The general strategy of the embeddings is the same as in [16], namely to map 2% cycles
in CCC(l) of length [ onto one cycle in CCC(k) of length k and to allocate the nodes
of the guest cycles as balancedly as possible on the host cycle. But in order to improve
the results from [16], a completely different way of allocating the guest nodes on the host

cycle is introduced.

The paper is organized as follows. Section 2 contains the definitions of the terms used in
the paper. Section 3 presents the new embedding strategy. Section 4 presents the derived
results. The Conclusion gives an outlook on further consequences of the new embedding
technique.

2 Definitions

(Most of the terminology is taken from [19, 25].) For any graph G = (V, E), let V(G) =
V' denote the set of vertices of G, and F(G) = E denote the set of edges of G. Let
a denote the binary complement of a € {0,1}. For a = aay...a,, 1 € {0,1}™, let
(i) =ag...0; 100,171 ... Q1.

Cube-Connected Cycles Network. The (wrapped) cube-connected cycles network of
dimension m, denoted by CCC'(m), has vertex-set V,, = {0,1,....,m —1} x {0, 1}, where
{0,1}™ denotes the set of length-m binary strings. For each vertex v = (i, ) € V,,,
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i€{0,1,....m—1},a € {0,1}", we call i the level and « the position-within-level (PWL)
string of v. The edges of CCC(m) are of two types: For each i € {0,1,...,m — 1} and
each a = agay...a,, 1 € {0,1}™, the vertex (i, ) on level i of CCC(m) is connected

e by a cycle-edge with vertex ((i + 1) mod m, «) on level (i + 1) mod m and

e by a cross-edge with vertex (i, a(i)) on level i.
For each ae € {0,1}™, the cycle
0,0) & (La) > ... (m—1,a) < (0,a)

of length m will be denoted by C,(m) or C,.
CCC(m) has m2™ nodes, 3m2™ ! edges and degree 3. An illustration of CCC(3) is

shown in Figure 1.

000 100 010 110 001 101 011 111
0
1 (
2

Figure 1: The cube-connected cycles CCC(3)

Graph Embeddings. Let G and H be finite undirected graphs. An embedding of G
into H is a mapping f from the nodes of G to the nodes of H. G is called the guest graph
and H is called the host graph of the embedding f. The load of the embedding f is the
maximum number of vertices of the guest graph G that are mapped to the same host
graph vertex. [The optimum load achievable is the ratio [|V(G)|/|V(H)|] of the number
of nodes in G and H.] The dilation of the embedding f is the maximum distance in the
host between the images of adjacent guest nodes. A routing is a mapping r of G’s edges to
paths in H, r(vy, vy) = a path from f(v1) to f(vy) in H. The congestion of the embedding
f is the maximum number of edges that are routed through a single edge of H.

Lexicographic Orderings. Let Lex : {0,...,m—1} x {0,1}" — INy, Lex(i,aq...a, 1)
= 12" + ap2" ' + 12" % + ... + a, 12° . Then, the lezicographic order on {0,1,...,m —
1} x {0,1}" is defined by

(i,a) < (4, 0) & Lex(i,a) < Lex(j,8) ,
and the lezicographic distance between (i, «) and (7, () is defined as |Lex(i, o) — Lex(j, )] .

Balanced Allocations. Let ay,by, a9, by € INy such that by > ay, by > as, by — a; >
by — ay. Let r € IN. A function

d: {(L],U/] +1,...,b]} X {0,1}T — {a2,a2+1,...,b2}
is called a balanced allocation of {ay,..., b1} x{0,1}" among {as, ..., by} according to the

lexicographic order on {ay,...,b1} x {0,1}" if d satisfies the following properties:
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L] d(al, OT) = Qa, d(bl, lr) = bQ,

e d is monotonic nondecreasing in the lexicographic ordering of the arguments [i.e.,
d(i,5) < d(@i', 0", if (i,8) < (i',4") according to the lexicographic order on

{ay, ..., b1} x{0,1}7],

R {m.gr-‘ 1< |d'G)| < Pl_aiﬁrl

bQ_a2+1

2" for all 5 195 ..., Do}
b2_a2+1 -‘ or a JG{GQa a2}

[Note that such an allocation function d can always be constructed for the parameters
ay, by, ag, by, as above.]

3 The General Embedding Strategy

The basic idea of the embeddings presented here is to map 2! % cycles Cy,, Cy,, . . ., Coy_y

in CCC(l) of length [ onto one cycle Cj of length k in CCC(k) and to allocate the [ - 2%
nodes of C,,...,C appropriately among the k£ nodes of Cj.

I Ayl —k
ForMAL CONSTRUCTION:

Consider numbers 7(0),7(1),...,m(k — 1), where each 7(i) € {0,1,...,1 — 1}, and each
(i) <m(i+1). Let 7(0),7(1),....,7(l —k—1) € {0,1,...,0 — 1} \{n(0),n(1),...,w(k —
1)} such that 7(0) < 7#(1) < ... < @(l — k —1). [Note that {m(0),n(1),...,7(k —
D} UA{=0),7(1),...,7(l—k—-1)}={0,1,...,1—1}]

Let Ar(0)s Ax(1)y - - -5 Ax(k—1) € {0, 1}. The cycles {Caom---azq ‘ A7 (0)s Ar(1)5 - - -y Ax(l—k—1) €
{0,1}} of CCC(l) are mapped onto the cycle Coroyn(rymiin(_1y 1M CCC(k) such that the
nodes 0,1,...,1 — 1 of each C,yq4, q4_, are allocated appropriately among the nodes of

C

The exact allocation of the nodes of {Cygay..a, 1 | @r(0), @(1)s- -+ Gzg—k—1) € {0,1}} on
C is determined by an allocation function

Ar(0)Ar(1)---Cx(k—1) *

G (0) Qo (1) -+ (k—1)
d:{0,1,...,1 =1} x{0,1}" * = {0,1,..., k- 1}

which specifies, for each node number € {0,1,...,1—1} on the guest cycle Cyq,..4,_, and
each cycle index az()axz(1) - .. azy—k—1), the position on the host cycle Carw(o)aw(l)...an(kﬂ)-
[On each host cycle Cor oyt (1) etini1ys A (0)s Ar(1)s - - 5 Ur(k—1) € {0,1}, the same allocation
function is used.| Formally, the embedding f : V(CCC(l)) — V(CCC(k)) is of the form

fli,aoay .. ar_y) == (d(i, azo) - - - Gr(1—k-1)); Cr(0) - - - O (k1))
forall 0<i<Il—1,apa;...a_; € {0,1}.

The load of f is determined by the allocation function d. Therefore, d should allocate the
guest nodes as balancedly as possible on each host cycle. In the sequel, d will be chosen
such that

d(n(i),f) =i| forall 0<i<k—1,8e{0,1}*




This guarantees that all the cross-edges
(i,0) & (i,a(i)), i€ {m(0),7(1),...,7(k — 1)},

of CCC(l) are mapped onto a corresponding cross-edge in CCC(k). All the other edges
of CCC(l) are mapped onto a path on a single cycle Csz in CCC(k). So, in this case the
dilation is directly dependent on the allocation d of the guest nodes on the host cycle and
stands partly in contrast to the desired balancedness of the allocation as explained above.

For low dilation, the values of w(0),7(1),...,m(k — 1) should be allocated relatively
balancedly among 0,1,...,1 — 1, and the nodes (i,apa;...a; 1) and (j,boby...b, 1) of
the cycles Cy,, Ca,, - ., Cay_, of CCC(I) with a small lexicographical distance between

(i,az(0) - - - Gz-k—1)) and (J, bz(o) - - . bz—k—1y) should be mapped close together on the cy-
cle Cz in CCC(k).

In [16], for 1 < [/k < 2, it was shown that the values of 7(0),7(1),...,7(k — 1) can be
specified such that the following holds:

a) m(i+1) —w(i) <2 forall0 <i< k—1.

b) The nodes {(7 (i), agar ... a;_1) | az0), @z(1), - - -, Gza—k—1) € {0,1}} are mapped onto
(i, Ar(0)Ar(1) - - - a,ﬂ(k,])) for0 <i<k-—1, Ar(0)s Ar(1)s - - - 5 Op(k—1) € {0, 1}.

¢) The nodes {(7(i), agay ...a;—1) | 0 < i <1=k—1, az@), az(1); - - - Gza—k-1) € {0,1}}
can be allocated balancedly in certain sections of the host cycle C

A7 (0)Ar(1)---Cr(k—1)"
Ar(0)s Ar(1)s -+ + s O(k—1) € {0, 1}, while maintaining dilation 1 at the same time.
5) [ 4k + 3
Here, for - + ¢, < — < 2, ¢, = %, we show that 7(0),7(1),...,7(k — 1) can be

specified such that the following holds:
a) m(i+1)—7m(i) <3 forall 0 <i<k—1.

b) The nodes {(7(i), apar ... a-1) | ax(0), @z(1)s - - - @za—k-1) € {0,1}} are mapped onto
(i, Uy (0) (1) - - - aw(k,l)) for0<i<k-—1, A (0)s Ar(1); - - - > (k1) € {0, 1}.

¢) The nodes {(7(i),a0a1...a;1) | 0 < i <1 —k — 1, az0), Gr(1),---»0r0-k-1) €
{0,1}} can be allocated balancedly on the complete host cycle Cor 0y an (1) mtin o1y
Ur(0), Gr(1)s - - - Gr(k—1) € {0, 1}, while maintaining dilation 1 at the same time.

The main new technical contribution will be to show that the guest nodes {(m(i) +
Lagar .. a;1),(7(3) + 2,a0a1 ... a1—1) | Gz(0), Ar(1)s - - > Ara—k-1) € {0,1}} can be al-
located in an appropriate way among the host nodes {(j,ax(0)tr1)---axp-1)) | J €
{i = 1,i,i+1,i+ 2}} for 0 < i < k — 1 such that n(i + 1) — w(i) = 3, while main-
taining dilation 1 at the same time.



4 Improved Dilation 1 Embedding of the CCC

Theorem 1:

5 [ 4k + 3 ,
Let k,l € IN, k > 8, such thatg—i—ck < z <2, ck:m. Then, there is

l
a dilation 1 embedding of CCC(I) into CCC(k) with load h : 2““]

Proof:

(A)

We show that the construction of Section 3 can be adapted to yield an embedding of
[
CCC(l) into CCC(k) with dilation 1 and load [E : Qlk-‘ :

For this, we specify the allocation d and the indices 7 (i) for the embedding f in the
construction of Section 3.

I —k
ForOSiST—l,let

, 121 3k
h(i) := L_k—ﬂ-‘+1.

I—k
[Then, h(O):l,h(T—1>:l—3.] For 0<i<l—k—1,let

h <%> if 7 even,

m(i) := hq%’DJrl if 7 odd.

Let w(0),7(1),...,7(k —1) € {0,1,...,01 =1} \ {7(0),7(1),...,7(l — k — 1)} such that
7(0) < 7(1) < ... < w(k—1). [Note that {w(0),7(1),...,7(k—1)} U{7(0),7(1),...,7(l—
k—1)}=40,1,...,1—1}/]

For the time being, we only construct the allocation d : {0,1,...,1 — 1} x {0,1}}\"%* —
{0,1,..., k — 1} partially, namely we specify d(i, 3) for i € {mw(0),w(1),...,7(k—1)}. Let

d(n(i),B) :=i] forall 0<i<Fk 1,3¢€{0,1}* (*)

[Later on, d(i, 3) is specified for i € {7(0),7(1),...,7(l—k—1)}. For the moment, d(i, 3)
may have an arbitrary value for i € {7(0),7(1),...,7(l —k—1)}.]

Now, the embedding f of CCC(I) into CCC(k) is defined as in the construction of Section
3

f(i; apay - - - alfl) = (d(i, az(o) - - - aﬁ(szfl)); Ar(0) - - - aﬂ(kfl))
forall 0<i<Il—1,apa;...aq; € {0,1}.



Note that (*) guarantees that all the cross-edges
(,0) & (i,a(i)), i€ {x(0),x(1),....x(k— 1)},
of CCC(1) are mapped onto a corresponding cross-edge in CCC(k) [see Claim A1 below].

Now, we construct d(i, 3) fori € {7(0),7(1),....7(l-k—1)}. Let ar), aray, .-, Gr—1) €
{0,1}.  For the time being, we allocate the guest nodes {(i,apa...a; 1) | i €
{7(0),7(1),...,7(l — k — 1)}, azq),az1),---,0z0-k-1) € {0,1}} balancedly on the host
cycle Ca, g a, 1) ang_y, according to the lexicographical order on {0,1,...,1=1} x {0, 1}**,
i.e. we use an allocation function d : {7(0),7(1),...,7(l — k — 1)} x {0,1}}"% —
{0,1,...,k — 1} such that

o d(7(0),05%) =0, d@(l—k—-1),1"%=k—1,

° d:is monotonic nondecreasing in the lexicographic ordering of the arguments li.e.,
d(i,3) < d(i', ), if (i,8) < (¢,0") according to the lexicographical order on
{0,1,...,01 =1} x {0, 1}'7F],

. {_l;’“.glﬂ “1 < a2 {%-W} forall j =0,1,... k1.

[At this point, we are not concerned with the obtained dilation. We will see later on
that the allocation d can be changed into an allocation d : {7(0),7(1),...,7(l — k —
1} x {0,1}"%* — {0,1,...,k — 1} which guarantees dilation 1, while maintaining the
balancedness of the allocation.]

I —k
Let (i) == h(i) —2i — 1 for all 0 < i < - 1. Then, according to Claim A2 below,

a) dh(i) —1,8)=r(i)  forall0<i< % _1, B e {0, 1)1,

b) d(h(i)+2,8)=r()+1 forall0<i< # —1, 8€{0,1}*

Also, according to Claim A3 below,

a) r(i) — 1< d(h(i), 8) < d(h(i) +1,8) < r(i) + 2
forall 0 <i< # —1, e {01}

b) 14~ (r(i) — 1) N {(A(i). B). (h(i) + 1.6) | B € (0.1} 4] < [%W_l

-k
TR k| g
5

Ik
for all OSiST—l,

¢) ld H(r(i) +2) N {(h(2). B), (h(i) +1,8) | B € {0, 1} *}|

IN

Ik
forall 0<i<———1



[As h(i) — 1,h(i) + 2 € {x(0), (1), ....7(k — 1)}, h(i), h(i) + 1 € {7(0),7(1),...,7(l -

k — 1)}, the dilation of the embedding f (using the allocation d for d(i,(3), i €
{7(0),7(1),...,7(l —k —1)}) would be 2.]

Then, according to Claim A4 below, d can be changed to an allocation d such that:

I —k
1.) LetogigT—l. For 1 <j <4, let

nj = |d"'(r(i) = 2+ 5) N {(h(2), B), (h(2) + 1, 5) | B € {0,1}7F}],

nj = |d 7 (r(i) — 2+ 5) N {(h(), B), (h(s) + 1,5) | B € {0,1}'7*}].

Then,
nm o= ny,
Ny < maX{’fLQ,le + 1} if ny > 0,
ngzﬁg if 771,] :0,
ny < max{ng,ns + 1} if n4 >0,
ng =iy if iy =0,
’I’L4:77L4.

I —k
2.) For0<i< - 1, 8 = bxybrqry - - brgk-1) € {0, 1} F:

—d(h(i) + 1,bz(0) - - - bribr2it1)baite) - - - bra—r—1))| < 1.
It follows that the final embedding f (using the allocation d) has dilation 1 and load

[
—.9l=k] O
i

CLAIM Al:

The cross-edge (i, ) <> (i, (i), i = w(m), 0 < m < k—1, of CCC(I) is
mapped by [ onto a cross-edge in CCC(k).

PRrOOF OF CLAIM Al:
f maps (i,«) = (i,apa; ... ;1) onto
(d(4, az(o) - - - Or(1—k—-1)) Qx(0) - - - Or(k—1))
and (i, «(i)) onto

(d(i, az() - - - Or(1—k—1)): Qx(0) - - - Cr(m—1)Cr(m)Tr(m+1) - - - O (k1)) -



From (*),
(](7, U,;T(O) . aﬁ(l,k,l)) = d(w(m), (Lﬁ(o) . aﬁ(l,k,l)) =m.
Hence, there is a cross-edge in CCC(k) between the two image nodes of (i, ) and
(i, 0(1))
Cramm A2:

~ [ —k
a) d(h(i) —1,0) =r(i) for all 0 <i < 5 1, B e {0,1}F

- l—k
b) d(h(i)+2.8) = r(@) +1 forall0<i<—= 1, Fe {01} "

Proor orF CLAIM A2:

Proof of a):

First, notice that h(i) — 1 = «(r) for some r € {0,1,...,k — 1}. Hence, according
to (*), it suffices to show that

r(i) =r.

For this purpose, observe that

ro= [{0,1,...,h(i) — 1} n{x(0),w(1),...,7(k — 1)} —1
= h(i)—1—=[{0,1,....h(s) =1} n{x(0),7(1),...,7(l — k — 1)}
= h(i)—1-—2i
= r(i).
Proof of b):

First, notice that k(i) + 2 = 7(r) for some r € {0,1,...,k — 1}. Hence, according
to (*), it suffices to show that

r(i)+1=r.

For this purpose, observe that

ro= [{0,1,...,h(i) + 2} N {x(0),7(1),...,7(k— 1)} — 1
= h(i)+2—-|{0,1,....h(i)+ 2} n{m(0),7(1),...,7(l — k — 1)}
= h(i)+2—(2i+2)
= h(i)— 2i
= r(i)+1.



CLAIM A3:

W) (i) 1< d(h(i), B
I —k
for all OSiST—l,ﬂE{O,l}l*k,

A (r(i) — 1) N {(B(3). B), (h(i) +1,8) | B € {0,1}*}] < Fiﬁ.ykwl
l—k

for all OSiST—l,

b) d(h(i)+1,8) < r(i)+2
I —k
forall 0<i< - 1, Be{0,1}*

A (r() +2) N {(h(0), B), (W) + 1, 8) | B € {0, 1} *}]

-k
for all OSiST— .

IN

I —k
—_2l7k -1
e

ProOF oF CLAIM A3:
Proof of a):

The number of nodes in {(7(:),3) | 0 < i <1l—k—1,8 € {0,1}}"%} between
(h(i),0"%) and (7(I — k — 1),1"%) in lexicographical order is (I — k — 2i) - 2% If

-k
this number does not exceed the minimal capacity (k—r(i)+1)- ({T : Qlk-‘ - 1>

of the nodes between r(i) — 1 and k — 1, then a) follows. Hence, we have to check
that

(1—k—2i)-27%F < (k-—r(z’)+1)-d%-21ﬂ —1).

This is true, because

(k—r(i)+1)- q% : Ql’ﬂ — 1)

= (k—h(i)+2i+2)- ({%-2”{‘ —1)

(i) 2]

121 3k I —k
S . o 21 - —_2l7k_1
12k 3k I —k
_ . . _2l7k_1
(=) ()
k 3k
= (I—k—2)-2"%43. (1—k) k++—r2i— ——
— [ -k 21—k
>(3+ex)k >0 1—k>2/3k



4k + 3 3k

N ol—k
> (= k=20) 27 btk s —

>0

v

(1—k—2i)-2"F 4k
> (I —k—2i)-2"7F.

Proof of b):

The number of nodes in {(7(:),3) | 0 < i < 1l—k—1,8 € {0,1}}"*} between
(h(0),0%) and (h(i) + 1,1"%) in lexicographical order is (2 + 2) - 2. If this

-k
number does not exceed the minimal capacity (r(i)+3) - ({T : Qlk-‘ — 1> of the
nodes between 0 and r(i) + 2, then b) follows. Hence, we have to check that

(20 +2)-27F < (r(i) +3)- G%-Qlﬂ — 1> :

This is true, because

k 3k

(, . Koy
. l_k I—k .
= (2i+3- —)-2"F 3. (1—k)— 2+ o 3

3.2k

Z§+Ck <k >0
, 2 4k +3 Ik
> 2@+3-<§+3_22/3k>>-2 — 4k -3
N—_——
2/3k<l—k
2 4k + 3
> 27:+3-<§+ + ))-21’“4k3

11



CLAIM A4 :

Il —k
1.) LetOSiST—l. For1<j<4,let

nj = |d ' (r(i) = 2+ 3) N {(h(i), B), (h(3) +1,8) | B € {0,1}"F}],
= |d " (r(i) — 2+ 7) N {(h(i), B), (h(i) +1,8) | B € {0,1}'*}].

Then
nq :fl
Ny < max{ng,m +1}  if ny >0,
ne =no if N3 =0,
nggmaX{’ﬁg,fM‘i‘l} Zf ng >0,
ny=mn3 if ng=20,
n4:n4.

l—k
2) For0<:< —5 1, = bﬁ(g)bﬁ(l) . bﬁ(l,k,l) € {0, l}lfk :

br(0) - - - br2i—1)br(2iybr2it1) - - - brg—r-1))| < 1,

—d(h(i) + 1, bz(0) - - - br2i)br(2it1)br2i42) - - - br—k-1))| < 1.
Proor or CLAIM A4:

Let n:=1— k. d is constructed as follows:

a) Consider the following lexicographical numbering on {0, 1}":
x': {0,1}" = N,
Lex'(boby .. by 1) = bo2" ' 4+ 51272 4 4 by 27
+b2i+22n72i71 + b2i+32n72i72 + ...+ bn7122
+b2i+] 21 + b2i20 .
Now, define:

d(h(i),8) =r(i) —1 forall g€ {0,1}", 0 < Lex'(3)
d(h(i)+1,8) = r(i) forall g€ {0,1}" 0 < Lex'(f)
If 7y odd: d(h(i),3) =r(i) forall g€ {0,1}", Lexl(ﬁ) ﬁ,
b) Consider the following lexicographical numbering on {0, 1}":
x?: {0,1}" = N,
LGXQ(b[)bl .. bnfl) == bg?ni] + 6127172 + ...+ b2i712n72i
+b2i+22n72i71 + b2i+32n72i72 4+ o+ bn7122
+b9; 2% + by 120
Now, define:

<7
<n

12



d(h(i), B) = (i) + 2

for all g€ {0,1}", 2" — iy < Lex*(3) < 2" — 1,
d(h(i)+1,08) =r(i)+1

for all 8 € {0,1}", 2" — fy < Lex?*(3) < 2" — 1.
If iy odd: d(h(i), B) = r(i) + 1

for all 8 € {0,1}", Lex*(8) = 2" — iy — 1.

[Note that the definitions above are meaningful, because if we consider the
lexicographical numbering

Lex?’(bgbl . bQifleH_Q . bnfl) = b02n73 + 6127174 + ...+ bQi,12n72i72
b 92" BT by 3202 4 4,20

n
on {0,1}" 2 in the first case, we choose the first {Zl-‘ bitstrings, and in the

second case, we choose the last [ 1 -‘ bitstrings. To guarantee that these bit-

strings are different, we have to check that [%} + {%w < 2" But this is

l
true for 7> §]
The nodes from {(h(i), ), (h(i) +1,8) | 6 € {0,1}"} which have not been
assigned a value for d in a) and b) are assigned arbitrary values from {r(z), r(i)+
1} such that the requirements for ny and ng are fulfilled.

From the definition of d, it follows immediately that d has the claimed properties
1.) and 2.). O

(B)

We show that the construction of Section 3 can be adapted to yield an embedding of
[
CCCO(l) into COC (k) with dilation 1 and load h : 2““} :

For this, we specify the allocation d and the indices 7 (i) for the embedding f in the
construction of Section 3.

1

l—k—
ForOSiST—l,let

h(i)

[Then, A(0

Let

B 7:-21 3k
= | !

<7> if 7 even,
2

l—k—1
1,h< 1>E{16,l5}.]F0r0<i<lk2,let
h
? e -
(bJ>+l if 7 odd.

Al—k—1):=1-2.

13



Let 7(0),7(1),...,7(k—1) € {0,1,...,1 =1} \ {#(0),7(1),...,7(l — k — 1)} such that
7(0) < 7(1) < ... <w(k—1). [Note that {w(0),7(1),...,7(k—1)} U{7(0),7(1),...,7(I—
k—1)}={0,1,...,1—1}]

For the time being, we only construct the allocation d : {0,1,...,1 — 1} x {0,1}}\"%* —
{0,1,..., k — 1} partially, namely we specify d(i, 3) for i € {mw(0),w(1),...,7(k—1)}. Let

d(n(i),B) :=i| forall 0<i<Fk 1,3¢€{0,1})* (*)

[Later on, d(i, 3) is specified for i € {7(0),7(1),...,7(l—k—1)}. For the moment, d(i, 3)
may have an arbitrary value for i € {7(0),7(1),...,7(l —k—1)}.]

Now, the embedding f of CCC(I) into CCC(k) is defined as in the construction of Section
3

fli,apaq .. a;—1) == (d(Z, az(0) - - - Qr(t—k-1)), Ar(0) - - - Ar (k1))
forall 0<i<Il—1,apa;...aq ;€ {0,1}.

Note that (*) guarantees that all the cross-edges
(i,a) & (a(), i€ {m(0),7(1), .., n(k— 1)},

of CCC(I) are mapped onto a corresponding cross-edge in CCC' (k) [see Claim B1 below].
Now, we construct d(i, §) fori € {7(0),7(1),...,7(I=k—=1)}. Let a0y, ax(1), - - -, A1) €
{0,1}.  For the time being, we allocate the guest nodes {(i,apa...a; 1) | i €
{m(0),7(1),...,7(l — k — 1)}, azw),azqa),---,0zq-k-1) € {0,1}} balancedly on the host
cycle Ca gyan01).anyy according to the lexicographical order on {0,1,...,1—1} x{0, 1}k,
i.e. we use an allocation function d : {7(0),7(1),...,7(l — k — 1)} x {0,1}}% —
{0,1, ...,k — 1} such that

o d(7(0),00%) =0, d#(l—Fk—1),1"%) =k 1,

° d:is monotonic nondecreasing in the lexicographic ordering of the arguments [i.e.,
d(i,5) < d@i',p"), if (i,8) < (i',5') according to the lexicographical order on
{0,1,...,1 — 1} x {0,1}}%],

Ik . I~k
. {T-Qlﬂl < ld'(j)] < {T-Qlk-‘ forall j =0,1,...,k — 1.

[At this point, we are not concerned with the obtained dilation. We will see later on
that the allocation d can be changed into an allocation d : {7(0),7(1),....7(l — k —
1} x {0,1}"%* — {0,1,...,k — 1} which guarantees dilation 1, while maintaining the
balancedness of the allocation.]

I —k—1
Let r(i) == h(i) —2i—1 for all 0 < i < — 1. Then, according to Claim B2 below,
it . . . lik* 1 I—k
a) d(h(i)—1,0) =r(i) forallOSzS?—l,ﬁe{O,l} :
- l—k—1
b) d(h(i)+2,8)=r()+1 forall0 < < — 1, B e {0, 1}k

(
(

¢) da(l—k—1)—1,8)=k—2 forall e {0,1}} %
(I—k—=1)+1,8)=k—1 forall g€ {0,1}*

14



Also, according to Claim B3 below,

a) r(i) —1<dh@),B8) <dhG)+1,3) <r@)+2
I—k—1
brﬂlOgig——j?———l,ﬁe{Qly*,

‘ﬂIJ%NU—UW{MULMJM0+L5H66{QHIﬂ|g[1zﬁglﬂ_1

I —k—1

forall 0 << 1,

@&%mn+mm{mu»m4mu+Lﬁnge{mulq|g[lzﬁazﬂ_l

o l—k—1
forall 0<i < —n—— —

1,
d) k-2 <d@@(l—k—1),68) < k-1
for all g € {0,1}*.

[As h(i) — 1,h(i) + 2,7l — k —1) - 1,7(l — k —1)+1 € {n(0),7(1),...,7(k — 1)},
h(i),h(i) +1,7(l —k —1) € {x(0),7(1),...,7(l — k — 1)}, the dilation of the embedding
f (using the allocation d for d(i, 3), i € {7(0),7(1),...,7(l — k —1)}) would be 2.]

Then, according to Claim B4 below, d can be changed to an allocation d such that:

[ —k
1.) LetOSigT—l. For 1 <j <4, let

nj = |d"'(r(i) — 2+ 5) N {(h(2), B), (h(2) + 1, 5) | B € {0,1}7F}],

nj=|d '(r(i) — 2+ 7) N {(h(:),B), (h(i) + 1,8) | B € {0,1}7F}].
Then,

ny =ny,

Ny < maX{’fLQ,le + 1} if ny > 0,
Ng = fl,g if fl,l = 0,

ng < max{ﬁg,fu + 1} if ny > 0,
— iy if =0,

-~
~
|
B
| .
—_
NI
~
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3) Fork—2<j<k-1:

a7 () {71~k = 1),8) [ B € {0,1}"*}

= |d'G)n i@~k —1).8) | 8 {01} F}.
For 8 € {0,1}\°F:

k—2<d(@(l—k—1).0) <k-1

It follows that the final embedding f (using the allocation d) has dilation 1 and load
[
—.9l=k] O

CrLAaiM B1:

The cross-edge (i,a) <> (i,c(i)), i = w(m), 0 < m < k —1, of CCC(I) is
mapped by [ onto a cross-edge in CCC(k).

Proor or CLAIM B1:

Exactly like the proof of Claim Al.

CrLamM B2:
. | Cl—k—1 -
a) d(h(i) —1,0) =r(i) forall(]gzgf—l,ﬂe{&l} ,
b) d(h(i)+2,8) =r(i)+1 for all0 < i< ”{% —1, B e {0,1}F,
c) (]Z(ﬁ(l—k—l)—l,ﬁ)zk—? for all 3 € {0,1}'7F,
d) di7l— k-1 +1,8) =k-1 forall §e{0,1})*

ProoOF oF CLAIM B2:

The proof of a) and b) is exactly like the proof of Claim A2. ¢) and d) follow directly
from the fact that 7(l —k—1) —1=m(k—2), 7(l —k—1)+1=7(k — 1) and from
(*) -

CraiMm B3:

a) r(i) =1 <d(h(i), §)
E—1

forall 0<i< _Til’ B e {0, 1},

A (r(i) — 1) N {(B(i). B), (h(i) +1,8) | B € {0,1}*}] < [% . Qzﬂ O

I —k—1
for all 0§i§T—1,
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b) d(h(i)+1,8) < r(i)+2

forall 0<i< l_kT_l —1, Be{0,1}F,
7' (r(i) +2) N {(h(i), B), (h(i) + 1,8) | B € {0,1}F}] < {%.Qlk-‘ q
o l—k-1
forall 0<i<——— —1,

¢) k—2 <d#@(l—k—1),08) < k-1
for all 3 € {0,1}F.

Proor or CLAIM B3:

The proof of a) and b) is exactly like the proof of Claim A3. ¢) follows directly from
- I 5
the definition of d (and from the fact that A > 5) :

CLAM B4:

l—k—1
1.) LetOSiST—l. For1<j<4,let

nj = |d "' (r(i) — 2+ 5) N {(h(i), B). (h(i) + 1, 8) | B € {0, 1} *}],
ny = |d (i) = 2+ 3) N {(h(0), ). (h(i) + 1, 8) | B € {0,1}" *}].

Then,

ny =np,

ny < max{ng,ny +1} if 73 >0,
Ny =iy if =0,

ng < max{ng,ns +1} if ny >0,
ny=nz if ng=0,

ngy = 771,4 .
k-1 -k
2) For 0 S 1 S T - 1, ﬂ = bﬁ-(o)bﬁ-(]) ce bﬁ(l,k,]) S {0, 1} J
r(i) — 1< d(h(i), B) < r(i) + 1,
r(i) < d(h(i) + 1, 8) < r(i) + 2,
|d(h(i) + 1, 8) — d(h(i), B)| <1,
|d(h(i), bx(o) - - - ba(i- 1)) i
—d(h(i), bz(0) - - - br(2im1)bz2i)br(2it1) - - - Dr—k-1))| < 1,

3.) Fork—2<j<k-—1:

™) N {(x(l = k= 1),8) | Be{0,1}F}
= [d'() {1~k —1),8) [ B {0, 1} F}.
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For 3 € {0,1}/7F:
koo<di(l—k—1),8) <k 1.
ProoF oF CLAIM B4:
The proof of 1.) and 2.) is exactly like the proof of Claim A4. For 3.), define

d7(l —k—1),8) = d@(l —k —1),8) forall g e {0,1}* Then, the claimed
properties in 3.) follow immediately from the corresponding properties of d. O

5 Conclusion

In this paper, we have presented a new technique for the embedding of large cube-
connected cycles networks into smaller ones. Using the new embedding strategy, we
showed:

5 [ 4k + 3
Let k,l € IN, k > 8, such that 3 +op < =<2 ¢ = + Then, there is

k 3.92/3k "
l
a dilation 1 embedding of CCC(I) into CCC(k) with load h : 2lﬂ :

[
This is optimal, and improves the results from [16]. In the case that 7 2k ¢ IN, the
embedding technique can be adapted to yield an even stronger result:

5 1 [
Let k,l € IN such that 3 < z < 2, T oLk ¢ IN. Then, there is a dilation 1

!
embedding of CCC(1) into CCC(k) with load h : 2"“} :

3 L 5
The embedding technique can also be applied in the case 3 < z < 3 + ¢, yielding:

4k + 3

+ g, Cp = 3 ok Then, there is a

3
k) with load Kg + ck> -Qlk-‘ :

l

| ot

<

D
1. Let k,l € IN, k > 8, such that 3 <

—~ W

k
dilation 1 embedding of CCC(l) into CCC

3 [ ) bp—4 {
2. Let k,1 € IN such that 3 < z < 3 Let p € {1,2,...} such that 3}232 < Z <
op+1

1 Then, there is a dilation 1 embedding of CCC(l) into CCC(k) with load
P

op+1 olk
3p+1 )

This also improves results from [16].

Unfortunately, the new embedding technique does not lead to any improvement in the

case 1 < ; < 7 Hence, it is still of interest to improve the load of the non-optimal

[ 5
dilation 1 embeddings when 1 < z < 3 + ¢ (or to prove their optimality). Finally, a
further study should also consider the congestion of the embeddings.
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