
Parallel Algorithms for Relational Coarsest
Partition Problems

MS-CIS-93-71
GRASP LAB 354

Sangut hevar Rajasekaran
Insup Lee

University of Pennsylvania
School of Engineering and Applied Science

Computer and 1nformat.ion Science Depart,ment

Philadelphia, PA 19104-6389

July 1993

Parallel Algorithms for Relational Coarsest
Partition Problems *

S. Rajasekaran and Insup Lee

Department of Computer and Information Science

University of Pennsylvania

Philadelphia, PA 19104-6389

August 5 , 1993

Abstract

Relational Coarsest Partition Problems (RCPPs) play a vital role in verifying con-
current systems. It is known that RCPPs are P-complete and hence it may not be

possible to design polylog time parallel algorithms for these problems.

In this paper, we present two efficient parallel algorithms for RCPP, in which its

associated label transition system is assumed to have m transitions and n states. The

first algorithm runs in O(nl+') time using $ CREW PRAM processors, for any fixed

E < 1. This algorithm is analogous and optimal with respect to the sequential algorithm

of Kanellakis and Smolka. The second algorithm runs in O(n1og n) time using log n

CREW PRAM processors. This algorithm is analogous and nearly optimal with respect

to the the sequential algorithm of Paige and Tarjan.

Introduction

Relational Coarsest Partition Problems play an important role in verifying concurrent sys-

tems in the form of equivalence checking. In their pioneering work, Kanellakis and Smolka

[7] present a n efficient algorithm for RCPP with multiple relations. Their algorithm has a

run t ime of O(mn), where m is the total number of transitions and n is the number of states

'This research was supported in part by ONR N00014-89-J-1131, DARPA/NSF CCR90-14621 and ARO
DAAL 03-89-C-0031.

in the RCPP. Subsequently, Paige and Tarjan [lo] show that RCPP (with a single relation)

can be solved in O(m log n) time. Both these algorithms have been used in practice to verify

systems with thousands of states. The goal of this paper is to extend the applicability of

these algorithms with the use of parallelism.

In a recent work of Zhang and Smolka [ll], an attempt has been made to parallelize

the classical Kanellakis-Smolka algorithm. However, the main thrust of this work was from

practical considerations. In particular, complexity analysis has not been provided and was

not the main concern of this paper. On the other hand, it has been shown that RCPP (even

when there is only a single function) is P-complete [I]. P-complete problems are presumed

to be problems that are hard to efficiently parallelize. It is widely believed that there may

not exist polylog time parallel algorithms for any of the P-complete problems that use only

a polynomial number of processors.

Since RCPP has been proven to be P-complete, we restrict our attention to designing

polynomial time algorithms. In this paper we present two parallel algorithms for RCPP: 1)

An algorithm that runs in O(nl+') time using $ CREW PRAM processors for any fixed

r < 1; the same algorithm runs in time O(n log n) using log log n CRCW PRAM pro-

cessors; and 2) An algorithm that runs in time O(n log n) using only : log n CREW PRAM

processors. The first algorithm is optimal with respect to Kanellakis-Smolka algorithm. We

say a parallel algorithm that runs in time T using P processors is optimal with respect to

a sequential algorithm with a run time of S, if PT = O(S), i.e., the work done by the

parallel algorithm is asymptotically the same as that of the sequential algorithm. The two

parallel algorithms described in this paper are for single relation RCPP. They can, however,

be easily extended for multiple relation RCPP without changing their run-time complexities.

The rest of the paper is organized as follows. In Section 2, we provide some definitions

and useful facts about parallel computation. In Sections 2 and 3, we provide our two algo-

rithms, respectively. Finally in Section 4, we provide concluding remarks and list some open

problems.

Problem Definitions

Definition 1 A labeled transition system (LTS) M is (Q, Qo, A, T), where Q is a set of

states, Qo Q is a set of initial states, A is a finite set of alphabet, T C Q x A x Q is a

transition relation.

For a given LTS M = (Q, Qo, A, T), we define functions T,, T;' from Q to 2Q for every

a E A as follows:
T~(P) = { Q I (P , a7 Q) E T)

T 1 = {P~(P, a, q) E TI

That is, T,(p) is the set of next states of p and Ta-l(q) is the set of states which can lead to

q via a. We extend the functions Ta and T;' from 2Q to 2Q. That is, for every a E A and

Given a set S, a partition of S is a set of disjoint sets whose union is equal to S. We say

that a partition r' = {Bi, . . . Bi) is a refinement of a partition r = {B1,. . . B,) if every B;'
is contained in some Bj.

We can represent an equivalence relation a Q x Q as a partition {Bili E I) where each

block B; represents an equivalence class in T .

For a state q E Q and a subset S of Q, let [q], denote the block in partition r which

includes q, and let [S], denote the set of blocks in partition a which include some state in

s, that is, [SIT = {[q],lq E S).
The notion of bisimulation equivalence as defined by Milner in [9] is used.

Definition 2 Given a labeled transition system S = (Q, Qo, A, T), a binary relation a

Q x Q is a (strong) bisimulation ifl

For p, q E Q, p and q are said to be bisimilar, denoted by p - q, if (p, q) E a for some

bisimulation .rr E Q x Q.

Definition 3 Suppose that a LTS Ml = (Q1, QO1, A, TI) and a LTS M2 = (Q2, QO2, A, T2).

We say two LTS Ml and M2 are bisimilar if for every p E Qol, there exists q E QO2 such

that p and q are bisimilar in a LTS M = (Q1 U Q2, Qol U QO2, A, TI U T2) , and vice versa.

To show whether or not two states are bisimilar, it suffices to show that there is a bisimulation

relation that includes both of them in the same equivalence class.

There are again two important problems in LTS: the bisimulation testing problem and

the greatest bisimulation finding problem. The bisimulation testing, for given two LTS's, is

to decide whether or not they are bisimilar.

The greatest bisimulation of a given labeled transition system is a bisimulation such that

any bisimulation relation in the system is a refinement of it. For a given LTS M, finding the

greatest bisimulation is the same as finding the minimum LTS that is bisimilar to M.

The state minimization problem, for a given LTS M = (Q, Qo, A, T) , is to find a bisimilar

LTS Mi = (Q', Qb, A, T') with the smallest possible number of states.

Suppose T is the greatest bisimulation of a LTS M = (Q, Qo, A, T) . Then, the minimal

LTS of M is the reduction of M according to the greatest bisimulation T, that is, M/T =

(T, [Qolr , A, Tr), where Tr = {([qlr, a, [qil=)l(q7 a, q') E T).
Both of these problems can be solved by an algorithm for the relational coarsest parti-

tioning problem, which is defined as follows:

Relational Coarsest Partitioning Problem (RCPP)

Input: An LTS M = (Q, Qo, A, T) with a finite state set Q, an initial partition 71.~ of a set

Q of states and relations TI, - . . , Tk on Q x Q.

Output: the coarsest (having the fewest blocks) partition T = {B1, - , Br) of Q such that

1. 71. is a refinement of T O , and

2. for every p, q in block B;, for every block Bj in T, and for every relation T,,

That is, either B; c Ti l (B j) or B; f l Ti l (Bj) = 8 .

2.1 Parallel Computation Models

A large number of parallel machine models have been proposed. Some of the widely accepted

models are: 1) fixed connection machines, 2) shared memory models, 3) the boolean circuit

model, and 4) the parallel comparison trees. Of these we'll focus on 1) and 2) only. The time

complexity of a parallel machine is a function of its input size. Precisely, time complexity is

a function g(n) that is the maximum over all inputs of size n of the time elapsed when the

first processor begins execution until the time the last processor stops execution.

A fixed connection network is a directed graph G(V, E) whose nodes represent processors

and whose edges represent communication links between processors. Usually we assume that

the degree of each node is either a constant or a slowly increasing function of the number of

nodes in the graph. Fixed connection networks are supposed to be the most practical models.

The Connection Machine, Intel Hypercube, ILLIAC IV, Butterfly, etc. are examples of fixed

connect ion machines.

In shared memory models (also known as PRAMS for Parallel Random Access Machines),

processors work synchronously communicating with each other with the help of a common

block of memory accessible by all. Each processor is a random access machine. Every step

of the algorithm is an arithmetic operation, a comparison, or a memory access. Several

conventions are possible to resolve read or write conflicts that might arise while accessing

the shared memory. EREW (Exclusive Read Exclusive Write) PRAM is the shared memory

model where no simultaneous read or write is allowed on any cell of the shared memory.

CREW (Concurrent Read Exclusive Write) PRAM is a variation which permits concurrent

read but not concurrent write. And finally, CRCW (Concurrent Read Concurrent Write)

PRAM model allows both concurrent read and concurrent write. Write conflicts in the above

models are taken care of with a priority scheme.

The parallel run time T of any algorithm for solving a given problem can not be less than

5 where P is the number of processors employed and S is the run time of the best known

sequential algorithm for solving the same problem. We say a parallel algorithm is optimal

if it satisfies the equality: PT = O(S). The product PT is referred to as work done by

the parallel algorithm. We say a parallel algorithm that runs in time T using P processors

is optimal with respect to a sequential algorithm with a run time of S , if PT = O(S), i.e.,

the work done by the parallel algorithm is asymptotically the same as that of the sequential

algorithm.

The model assumed in this paper is the PRAM. Though a PRAM is supposed to be

impractical, it is easy to design algorithms on this model and usually algorithms developed

for this model can be easily mapped on to more practical models. Also there is a simulation

algorithm that will map any PRAM algorithm into an algorithm for the hypercube network

(such as Ncube, Intel Hypercube, Connection Machines) with at the most a logarithmic

factor of slow down [8]. Thus, all the time bounds mentioned in this paper will apply to the

above machines if multiplied by a logarithmic factor.

2.2 Some Useful Facts

In this section, we state some well-known results which are used to analyze algorithms

presented in this paper.

Lemma 1 [3] If W is the total number of operations performed by all the processors using

a parallel algorithm in time T , we can simulate this algorithm using P processors such that

the new algorithm runs in time 151 + T .

As a consequence of the above Lemma we can also get:

Lemma 2 If a problem can be solved in time T using P processors, we can solve the same

problem using P' processors (for any PI 5 P) in time 0 (9).
Given a sequence of numbers kl, kz, . . . , k,, the problem of prefix sums computation is to

output the numbers kl, k1 + k2, . . . , kl + k2 + . . . + k,. The following Lemma is a folklore [5] :

Lemma 3 Prefix sums of a sequence of n numbers can be computed in O(1og n) time using

"- ERE W P R A M processors. log n

The following Lemma is due to Cole [4]

Lemma 4 Sorting of n numbers can be done in O(1og n) time using n E R E W P R A M pro-

cessors.

The following Lemma concerns with the problem of sorting numbers from a small uni-

verse:

Lemma 5 [2] n numbers in the range [0, nC] can be sorted in O(1og n) time using f& log log n

CRCW P R A M processors, as long as c is a constant. The same problem can be solved in

O(nE) time for any fixed c < 1, using 3 C R E W P R A M processors.

Algorithm I

In this section, we present a parallel algorithm for RCPP with a single relation. This algo-

rithm runs in time O(nl+') using $ CREW PRAM processors, for any fixed t < 1. The same

algorithm runs in O(n log n) time on a CRCW PRAM using f& log log n processors. Since

our algorithm is analogous to the Kanellakis- Smolka algorithm, we present their algorithm

in Figure 1 for the case of a single relation before we describe ours.

Each run of the for loop of Kanellakis-Smolka's Algorithm takes O(m) time and this loop

can be executed at most n times. Thus, the run time of this algorithm is O(mn).

Figure 2 describes our parallel algorithm, which is based on Kanellakis-Smolka's Algo-

rithm. We first explain the definitions and data structures used in our algorithm.

n := no

/* Initially n' is empty */

while .rr' # n do
.- .- n

for every B in n' do
select a state p from B
B1 := 0 /* B1 = { q E BIT(q) = T (P)) */
B2 := 0 /* B:! = {q E B I T (q) # T (p)) */
for every q in B do

if [T(q)], , = [T(p)], , then
add q into B1

else add q into B2
end for
if B1 and B2 are not empty then /* B is split */

T := (T - { B)) U { B 1 , B 2)
end for

end while

Figure 1: Kanellakis-Smolka's Algorithm for the Single RCPP

P A R T I T I O N
T R A N S I T I O N S

B

Table 1: Contents of Data Structures: An Example

I I 4 I I I I

(1 ' 5)
(1 , 2)

2

T S I Z E 1 2 1 3 1 3 1 3 4 I 1 1

(1 , 7)
(1 , 4)

3

(2 , l)
(2 , 4)

2

(2 , 3)
(2 ,5)

3

(3 , 2)
(2 , 7)

1

(3 , 4)
(3 , 2)

3

. . .

. . .
1

Definitions and Data Structures. Let T(p) stand for {q E Q I (p,q) E T), i.e., T(p) is

the set of states to which there is a transition from p. Similarly define T-'(p).

The current partition is represented as an array PARTITION. It is an array of size n

with (block id, state) pairs. For example, a pair (i, q) represents that the state q currently

belongs to the ith block. We maintain that the states are stored in the array PARTITION

such that states belonging to the same block appear consecutively.

The array TRANSITIONS is used to store the T relation of a LTS. In particular, the

array is of size m and each entry contains the (from-state id, to-state id) pair. In the array

TRANSITIONS, we store the transitions of T(1), followed by the transitions of T(2), and

so on. T S I Z E is an array of size n such that TSIZE[q] stands for JT(q)J for each q in &.
Note that the arrays TRANSITIONS and T S I Z E are never altered during the algorithm.

We also maintain an array B such that for each state p in Q, B k] is the id of a block in

the current partition T, which p belongs to. In addition, for each state p E Q, we let [p] stand

for the set, {B[q] I q E T(p)}. We emphasize here that no repetition of elements is permitted

in [p]. For any state q in Q, we let [T(q)] stand for the sequence B[pl], Bb2] , . . . , B[pt],
where T(q) = {pl, p2, . . . ,pt). Notice that [T(q)] can have multiple occurrences of the same

element.

As an example to illustrate our data structures, consider the following initial partition, T O :

{{5,7), {1,3), {2,4,6)). Let the transition relation T be defined as follows: T(1) = {2,4);

T(2) = {4,5,7); T(3) = {2,6,7); T(4) = {1,5,6); T(5) = {1,2,6,7}; T(6) = {2,4,6);

T(7) = (1).

Table 1 shows the contents of PARTITION, TRANSITIONS, B, and T S I Z E at the

beginning.

Assume that there is a processor associated with each transition and each state of the

LTS. At the beginning, PARTITION has tuples corresponding to the initial partition. The

array TRANSITIONS never gets modified in the algorithm. Array B is also initialized

appropriately. For any state q , processors associated with T(q) will know the position of

state q in the array PARTITION.

The algorithm repeats as long as there are possibilities of splitting at least one of the

blocks in the current partition and is described in Figure 2. Given that T = {B1, B2, . . . , Be),

t , j , i , Pi,j,2, . . . , Pi,j,mii3 }, Steps 1-3 are to construct Bi = {qi,l, qi,2, - - . 7 qi,ni), and T(qi j) = { P . .

the sequence L:

L I , ~ , L1,2, . . . L1,nl , L2,1, . . L2,az - . , Le,ne

where Li,j is a sequence of triples:

Steps 4-6 are to eliminate duplicates in L and compress the array L. At the end of Step 6,

the array L contains [p] for every state p in each block in the current partition. Furthermore,

for each block B = {pl,. . . ,pk), [pl], b2], . . . , bk] appear consecutively in L.

Step 7 identifies blocks that can be split. Note that even if there is a single j such that

[q;,j] # [Q ~ , ~] , we may end up splitting the block Bi and thus the block Bi is marked.

Step 8 picks one of the marked blocks arbitrarily and splits it. If the block B; is chosen,

then Bi is split into B, and BPSI, where Bt+1 = {p E Bi([p] # [qi,l]) and B; is updated to

be Bi - Be+l. After the splitting, we update PARTITION such that states belonging to

the same block appear consecutively. Note that we could have split all those blocks that are

marked instead of just one such block as done in Step S; even then, the worst case run-time

of the algorithm would be the same.

Analysis. We assume that there are n + m processors, one for each state and one for each

transition.

Step 1 takes O(1) time using n processors. Steps 3,5, and 7 also take O(1) but need

m processors. In Step 2, prefix computation can be done using & processors in O(1og n)

time (see Lemma 3). In Step 4, we need to sort m numbers in the range [0, n3], and hence,

we could apply Lemma 5 to infer that it can be done in O(1og m) = O(1ogn) time using

"- log n log log n processors, or in n' time using $ processors for any fixed c < 1. Step 6 takes

O(1og m) = O(1og n) time using processors (see Lemma 3). In Step 8, prefix computation

takes O(1og n) time using & processors and the rest of the computation can be completed

in O(1) time using n processors.

Thus, each run of the while loop can be completed in either: 1) O(1og n) time with a

total work of m log log n, or 2) O(n') time with a total work of O(m). Since the while loop

can be executed at most n times, we get by applying Lemma 1:

Theorem 1 RCPP with in transitions and n states can be solved 1) in O(n log n) time

using log log n C R C W P R A M processors, or 2) in O(nl+') time and $ C R E W P R A M

processors, for a n y fixed E < 1.

T := TO; split := true

while split do

split := false; let T = {B1, B2, . . . , Be)
Unmark B1, B2, . . . ,Be
1. for i := 1 to n in parallel do

TEMP[i] := TSIZE[PARTITION[i].state]
2. Compute the prefix sums of TEMP[l], TEMP[2], . . . , T E M P [n]

Let the sums be vl, ~ 2 , . . . , V,

3. for i := 1 to n in parallel do
s; := PARTITION[i].state;

Let T[si] be {ql,. . - 7 qk)
for j := 1 to Ic in parallel do
Let processor in-charge of transition (s;, qj) write (i , j, B[qj]) in L[v;-l + j]

4. Sort the sequence L in lexicographic order.

5. for i := 1 to m in parallel do if L[i] = L[i + 11 then L[i] := 0
6. Compress the list L using a prefix computation

7. for each block B; (1 5 i 5 l) in parallel do
for each j , 2 5 j 5 n; in parallel do

if [q;,j] # [qitl] then mark B;
8. if there is at least one marked block then

split := true; l := t + 1

Pick one of the marked blocks (say B;) arbitrarily

for each p in B; do

if [P] # [qi ,~] then
B[p] := l + 1

Change the corresponding entry in P A R T I T I O N to (p, 4! + 1)
/* Be+l := B; - {p E B; : [I)] = [Q ; , ~]) and B; := B; - Be+l */
Using a prefix computation, modify P A R T I T I O N such that all tuples

corresponding to the same block are in successive positions.

When the array P A R T I T I O N is modified, positions of some

states q's might change; inform the processors associated with

the corresponding T(q)'s of this change. T has been thus modified.

Figure 2: Algorithm I

10

4 Algorithm I1

In this section, we present a parallel version of Paige and Tarjan's algorithm [lo]. This

algorithm has a run time of O(n1og n) using logn CREW PRAM processors. Thus, this

algorithm is nearly optimal with respect to [10I1s. We first give a brief description of Paige

and Tarj an's algorithm, followed by the parallel algorithm.

4.1 The Sequential Algorithm

Paige and Tarjan [lo] present an efficient algorithm for the "relational" partitioning problem

of an "unlabeled" transition system S = (Q, Qo, A,T), where T Q x Q. That is, there
is only one kind of relation. Without loss of generality, they assume IT(p)l > 1 for all

p E Q. The reason is that given an initial partition TO, it can be refined into x1 U az , where

xl = {B' # 0IB' = B n T-'(Q)) and 7rz = {B' # 81B' = B - T- ' (Q)) . Since the blocks in

rz will not be split, it suffices to consider only nl.

For S Q and a partition a, we define split(S,a) to be a new partition a' such that

each block D in x is replaced by D n T-'(S) and D - T-'(S). If either of them is empty

set, then it is not included in a'. The resulting x' has the following properties: 1) x' is a

refinement of a , and 2) a' consists of the largest blocks that are stable with respect to S.

The major idea behind Paige and Tarjan's algorithm is to show that spZit(S-B, split(B, x))

can be computed in O(IT-l(B1)I) time, where B' is smaller of B and S - B. This idea,

called the process-smaller-half strategy, is as follows: Suppose S is a union of some blocks

of a such that x is stable with respect to S , and B C S is in x. For every block D E T , if

D n T-'(S) = 8, then D is stable with respect to B and S - B; otherwise, D can be split

by split(S - B, split(B, a)) into three blocks, Dl, D2, D3, as follows:

1. Dl = D - T-l(S - B): the successors of Dl are only in B since x is stable with respect

to S.

2. D2 = D n T-'(B) n T-' (S - B): the successors of Dz are in both B and S - B.

3. D3 = D - T-' (B): the successors of D3 are only in S - B.

For p E Q and a subset S of Q, let count(p, S) be the number of the next states of p in

S, that is, count(p, S) = IS n T(p) 1 . Assuming that we have already computed count(p, S)

and count(p, B) for all p E Dl we can decide which of the three blocks Dl , D2, D3 that p

belongs as follows:

1. p in Dl if count(p, B) = count(p, S) , i.e., there are transitions from p to B but not to

S - B .

2. p in Dz if 0 < count(p, B) < count(p, S) , i.e., there are transitions from p to both B

and S - B.

3. p in D3 if count(p, B) = 0, i.e, there are transitions from p to S - B but not to B.

The algorithm uses a set X of splitters. An element in X is a tree of height 0 or 1 with

the following properties: each leaf is a block in the current partition; the root is the union

of its children blocks; and the current partition is stable with respect to the root. There are

six major steps in the algorithm:

In Step 0, X is initialized with one tree whose children are blocks in the initial partition

TO. Throughout the algorithm, count(p, B) is maintained for each state p in Q and for each

block B that is a root in X such that p E T-'(B). Step 1 selects an arbitrary block B that is

going to be used to split the current partition T. Step 2 computes count(p, B) for p E T-'(B)

since B will become a new tree root in X. Step 3 carries out the three way splitting described

above. Step 4 updates count(p, S) for p E T-'(B) since B has been eliminated from the tree

rooted at S in X. For each block D that has been split into Dl , D2, D3, Step 5 updates .ir

to include the new blocks Dl, D2, D3 and also inserts them into X as potential splitters.

Analysis. For timing analysis, the algorithm uses the following data structures: for each

block, the algorithm keeps the size and maintains its member states as a doubly linked

list. In addition, each block itself is a member of a doubly linked list. For each state, the

algorithm maintains a pointer to a block in which it is a member.

Step 0 takes O(m) time. Step 1 can be completed in constant time. Steps 2-4 take

O((T-I (B) 1) time, where TP1(B) = CpEB T-' (P). Step 5 also takes O(IT-'(B) I) time since

there are at most O(IT-I (B) I) marked blocks.

Each time state p is in a chosen splitter, it takes IT-' (p) (time to process it (in Steps 2-5).

Since each state can be in at most log n splitters due to the process-smaller-half strategy, the

total time incurred due to any state p is at most IT-'(p) 1 log n. Therefore, the total time is

The running time of the algorithm is O(m1og n) and the space used is O(n + m), where

n = IQI and m =]TI.

4.2 The Parallel Algorithm

Figures 4, 5 and 6 describe how to implement each of the above steps in parallel. The basic

steps are the same as those of the sequential algorithm. There are, however, some intricate

details in the definitions of and operations on the data structures used in our algorithm. X

is the collection of splitters. Each entry in X is a tree of height one or zero. A tree of height

one is called a compound splitter, whereas a tree of height zero is called a simple splitter. All

the simple splitters as well as leaves of compound splitters are blocks in the current partition.

Moreover, the current partition is stable with respect to each root in X (including simple

splitters). We do not maintain the current partition as a separate data structure, since the

current partition can be readily derived from X.

Data Structures. We employ the following data structures:

ITRANSITIONS is an array of size m. This array is a sequence of records, one record

per transition. Each record contains a pair (x, y) which corresponds to a transition

from state x to state y, and a number that equals to count(x, S), where S is the root

in X that y belongs to. These records are ordered according the second component of

(x, y) transition. That is, transitions to state 1 are placed before transitions to state

2, etc.

I T S I Z E is an array of size n. This array contains 1 for each p in Q

B is an array of size n. For each state p in Q, B[p] has a pointer to a node in X that

p belongs to.

XARRAY is an array of size O(n) . This array of records maintains both compound and

simple splitters. Each compound splitter has a structure shown in Figure 3. Children

of a compound splitter are represented as a doubly linked list. Each element in this list

is a block in the current partition which is represented as a doubly linked list of states.

For instance, a tree with three children blocks, say A, B, and C is shown in Figure 3.

Blocks A, B, and C themselves are doubly linked lists of states in the corresponding

blocks. The root of the tree is not represented as a separate node in XARRAY.

Compound splitters themselves are doubly linked. This linked structure is useful in the

following sense: When the current splitting block is removed from its splitter tree, if

this compound splitter tree has two children, then it is likely that this splitter becomes

simple. If this happens, the splitter tree is linked to the list of simple splitters. In the

next phase of the algorithm, we choose the next compound splitter following the link

structure of compound splitters. A similar structure is adopted for simple splitters as

well (see Figure 3).

The crucial fact about XARRAY is that we maintain this linked structure in the form

of an array of records. Each record has four pointers and a state id. These four pointers

are used to represent a tree structure, as shown in Figure 3.

This enables us to perform deletion of elements from these lists efficiently. In addition,

we could retrieve all the elements of any list efficiently in parallel. For instance in

Paige and Tarjan's algorithm, one of the basic steps to be performed is the selection

of a splitter block B .

One important aspect of XARRAY is that blocks always occupy mutually disjoint seg-

ments of XARRAY. Each segment includes contiguous array elements of XARRAY.

However, the number of array elements used to represent a block can be larger than

the size of the block. That is, there can be some array elements which contain no state

records for the block. Such elements are called "cavities."

Algorithm. The functionalities of each step in the parallel algorithm is the same as those

of a corresponding step in the sequential algorithm. In each phase of Paige and Tarjan's

algorithm, we pick a splitter block B that is a child of a compound splitter and perform

three way splitting of blocks, possibly including B. Deleting an element from any block can

be done in O(1) time. But then, this might create 'cavities' in the array XARRAY. When

we have to retrieve any block B, we have to look at all the elements of X that B used to

occupy before any cavities were created in B . Thus it seems like some unnecessary work

may be done in retrieving B. On the other hand, parallel retrieval of B amounts to just

one prefix computation. Whenever a block (say D) is split into (say) Dl , D2, D3, we delete

elements from D (that belong to Dl and D 2) and store these new blocks as lists by extending

the array (i.e., we store them starting from the first unoccupied position in the array). The

remaining list of D will be called D3.
As a result, now even though D3 may only have a few states, this list is stored in a space

that D used to occupy before. In order to retrieve D3 at a later stage we will have to search

the whole segment of the array that D once occupied. Note that we will have to retrieve any

block only if it has been chosen as the splitter block. In our analysis, we will account for all

__....-...-.-.__ ...

!

.-. ...
*-. _... -.. ...____....~-

---._____._....--
A Tree Compound Splitters

..---.-... ...- ..---.---...__ .'... -...

*-;--- :
C .

i . .
A Block :..* o o o

-......_______...--- '-.~.._______..- ..-.

Simple Splitters

Figure 3: The Data Structures Used for Splitters

the unnecessary retrieval work performed.

Analysis. In Step 0, sorting can be done in time O(1og m) = O(log n) with a total work of

O(m log n) (see Lemma 4). The rest of the operations here can be completed in O(1og n) time

with a total work of O(n). Step 1 can be performed in O(1) time with a single processor.

Step 2(a) is nontrivial to analyze and discussed below in detail. In Step 2(b), the dominating

operation is sorting, which takes O(ITV1(B) I log n) work and O(1og n) time. The rest of the

tasks such as prefix computations can be completed within the same time and O(IT-'(B)I +
IBI) total work. Step 3(a) can be done in O(1) time and O(IT-l(B)I) work. Also in Step 3(b),

sorting takes the longest time to complete. The total work done is O(IT-I (B) 1 log n) and

the time needed is O(1og n). Steps 4 and 5 can be performed in O(1) time and O(IT-l(B)I)

work.

Notice that any state of Q can appear as a member of some splitting block at most log n

times. Taking into account Steps 1 through 5 (except 2(a)), whenever a state p appears

as a member of a splitting block, we spend a total work of O(JT-l(p)J log n) for this state.

Step 0:

Let SQ be a splitter whose leaves are all the blocks in 7ro.

/*Note that the union of the leaves of SQ = Q) */
X := {SQ)

/* Initially all blocks in T are unmarked */

For every (x, y) in ITRANSITIONS create (y, a) and sort these tuples.

Using this sorted tuples

for every p in Q in parallel do

count(p, Q) := I{q E Qlq E T(p)}l
end for

while X not empty d o

Step 1:
Select and remove any S from X.
Let B1 and B2 be the first two blocks in S.

if lBll 5 1B21 t h e n B := B1 else B := B2
Remove B from S and make it a simple splitter.

if S includes more than two blocks

thenput S back in its previous place.

else make it a simple splitter.

Step 2(a):

Let v be the size of the portion of XARRAY used to store B.
Using v processors, perform a prefix operation to retrieve B
in parallel and put the elements of B in TEMP' .

At the same time, compress the portion that B occupies.

Figure 4: Algorithm I1

Step 2(b):
Let T E M P " be the list of ITSIZE[q] for elements q's in T E M P '
IBI processors perform a prefix sums operation on the sequence T E M P f f
Using the above prefix sums and IT-'(B)\ processors,
retrieve T-' (B) and store the elements in T E M P .
Sort the list T E M P .
Using this sorted order and two prefix operations,
for every p in T E M P in parallel d o

count(p, B) := I{q E Blq E T(p))l
e n d for

Step 3(a):
for every p in T E M P in parallel d o

Let D be the block including p in T .

Mark D.
if count(p, B) = count(p, S) t h e n

label p as type I /* p belongs to Dl = D - T-'(B) */
else /* 0 < count(p, B) < count(p, S) */

label p as type I1 / * p belongs to D2 = D n T-'(B) n T- l (S - B) * /
e n d for

Step 3(b):
ITEMPI processors perform a prefix sums operation and
pick elements of T E M P that are of type I or 11.
Let the new list be TEMP' .
for every p in T E M P ' in parallel d o

Create a tuple (B[p], POS,) and add the tuple to TUPLES ,
where POS, is the position of elements p in X'4RRAY

Sort T U P L E S in lexicographic order / * These elements have to be deleted * /
Append the newly created blocks to XARRAY
Delete these elements from their respective blocks in XARRAIf;
The sorted array T U P L E S helps in setting the pointers correctly
in cases where more than one successive nodes will have to be
deleted in parallel from any list

Figure 5: Algorithm I1 (continued)

17

Step 4:
for every p in TEMP in parallel do

count (p, S) := count (p, S) - count(p, B)
end for

Step 5:
for every D in .;rr such that D marked in parallel do

Unmark D
P := {Di # Q)li = 1,2 ,3)
if IPI = 1 then /* D is not split */

retain the original position of D
else

if D is a child of a compound splitter S' in X then
Make Dl and Dz (if nonempty) as leaves of Sf .

else
Make D a compound splitter with leaves that are

all the blocks D; in P.
end for

end while

Figure 6: Algorithm I1 (continued)

For every splitting block B, we also spend a total work of O((B1). Therefore, summing

over the whole algorithm, the total work done in Steps 0 through 5 (excepting Step 2(a)) is

Cpeg log2 n, which simplifies to O(m log2 n).

We now analyze Step 2(a). Assume that we never compress XARRAY. How large can

the array grow? Observe that whenever we split any block D, we might create new blocks

and hence use new space in XARRAY. Clearly, an upper bound for the new space used in

any run of the while loop is IT-'(B)I, implying that we will never have to extend XARRAY

to more than m log n in length.

How much total time is spent in Step 2(a)? Notice that whenever we have to retrieve

a block (say B) as a splitter block, we have to search through the whole space (including

cavities) that B is stored in. If each such region is searched no more than once, then the total

work done in Step 2(a) is clearly O(m log n). But the same region may have to be searched

again and again. However, whenever we retrieve a block B , we compress it immediately.

We, thus, charge an additional work of O(IB1) for compression whenever a splitter block is

retrieved (this accounts for the next time that this region may have to be searched).

Therefore, the total work needed for repeated searches of the regions is no more than

O(IB1) summed over all the splitter blocks used in the whole algorithm, which is O(n log n).

In sum, the total work needed for processing Step 2(a) in the whole algorithm is O(m log n).

The total time spent in each run of the while loop is O(1og n), but there could be at most

n runs of the while loop. Thus, the total run time is O(n log n).

An application of Lemma 1 yields the following theorem.

Theorem 2 Single relation CRPP can be solved in O(n log n) time using log n CREW

PRAM processors.

Memory Management. As stated, the above algorithm seems to use O(m log n) memory

to maintain XARRAY. But we could easily reduce the memory needed for XARRAY to

O(n) as follows: Whenever the memory needed to store XARRAY exceeds 212 records, we

perform a compression of the array so that at the end of compression, XARRAY will be of

size n records. The amount of work done for compression is O(n). Such a compression is

done at most log n times in the algorithm since the array can only grow up to m log n in

size. Therefore, the total work done for compression is O(m log n).

5 Conclusions

We have presented two parallel algorithms for RCPP. An interesting open problem is to

design optimal versions of these algorithms. The bottleneck in these algorithms is the use

of sorting. Another important open problem will be to design algorithms with better run

times. Since RCPP is known to be P-complete, a reasonable time to aim for will be O(nc) ,

for any fixed 6 < 1.

References

[l] C. Alvarez, J.L. Balcazar, J. Gabarro, and M. Santha, Parallel Complexity in the Design

and Analysis of Concurrent Systems, Springer-Verlag LNCS 505, 1991.

[2] P.C.P. Bhatt, K. Diks, T. Hagerup, V.C. Prasad, T. Radzik, and S. Saxena, Improved

Deterministic Parallel Integer Sorting, Information and Computation 94, 1991, pp. 29-

47.

[3] R.P. Brent, The Parallel Evaluation of General Arithmetic Expressions, Journal of the

ACM 21(2), 1974, pp. 201-208.

[4] R. Cole, Parallel Merge Sort, SIAM Journal on Computing 17, 1988, pp. 770-785.

[5] J. Jii Jii, An Introduction to Parallel Algorithms, Addison-Wesley Publications, 1992.

[6] P.C. Kanellakis, S.A. Smolka, CCS Expressions, Finite State Processes, and Three Prob-

lems of Equivalence, Proc. 2nd Annual ACM Symposium on Principles of Distributed

Computing, 1983, pp. 228-240.

[7] P.C. Kanellakis, S.A. Smolka, CCS Expressions, Finite State Processes, and Three

Problems of Equivalence, Information and Computation 86, 1990, pp. 43-68.

[8] T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays-Trees-

Hypercubes, Morgan-Kaufmann Publishers, San Mateo, California, 1992.

[9] R. Milner, Communications and Concurrency, Prentice-Hall Publishers, 1989.

[lo] R. Paige and R.E. Tarjan, Three Partition Refinement Algorithms, SIAM Journal on

Computing, 16(6), 1987, pp. 973-989.

[ll] S. Zhang and S.A. Smolka, Towards Efficient Parallelization of Equivalence Checking

Algorithms, Manuscript, 1993.

