IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y, MONTH, 1999 1

Basic Operations On The OTIS-Mesh

Optoelectronic Computer
Chih-fang Wang and Sartaj Sahni

Abstract— In this paper we develop algorithms for some
basic operations — broadcast, window broadcast, prefix sum,
data sum, rank, shift, data accumulation, consecutive sum,
adjacent sum, concentrate, distribute, generalize, sorting,
random access read and write — on the OTIS-Mesh [1] model.
These operations are useful in the development of efficient
algorithms for numerous applications [2].

Keywords— OTIS-Mesh, optoelectronic, broadcast, win-
dow broadcast, prefix sum, data sum, rank, shift, data accu-
mulation, consecutive sum, adjacent sum, concentrate, dis-
tribute, generalize, sorting, random access read, random ac-
cess write.

I. INTRODUCTION

HE Optical Transpose Interconnection System ( OTIS

), proposed by Marsden et al. [3], is a hybrid opti-
cal and electronic interconnection system for large parallel
computers. The QTIS architecture employs free space op-
tics to connect distant processors and electronic intercon-
nect to connect nearby processors. Specifically, to maxi-
mize bandwidth, power efficiency, and to minimize system
area and volume [4], the processors of an N? processor
OTIS computer are partitioned into N groups of N pro-
cessors each. Each processor is indexed by a tuple (G, P),
0 < G, P < N, where G is the group index ( i.e., the group
the processor is in ), and P the processor index within a
group. The inter group interconnects are optical while the
intra group interconnects are electronic. The optical or
OTIS interconnects connect pairs of processors of the form
[(G, P),(P,@)]; that is, the group and processor indices
are transposed by an optical interconnect. The electrical
or intra group interconnections are according to any of the
well studied electronic interconnection networks — mesh,
hypercube, mesh of trees, and so forth. The choice if the
electronic interconnection network defines a sub-family of
OTIS computers — OTIS-Mesh, OTIS-Hypercube, and so
forth. Figure 1 shows a 16 processor OTIS-Mesh. Each
small square represents a processor. The number inside a
processor square is the processor index P. Some processor
squares have a pair (P, Py) inside them. The pair gives
the row and column index of the processor P within its
V/N x v/N mesh. Each large square encloses a group of
processors. A group index G may also be given as a pair
(Gg,Gy) where G, and G are the row and column indices
of the group assuming a VN x v/N layout of groups. As
mentioned in [3], this optical connection is equivalent to an

Department of Computer and Information Science and Engi-
neering, University of Florida, Gainesville, FL 32611. E-mail:
{wang,sahni}@Qcise.ufl.edu .

*This work was supported, in part, by the Army Research Office
under grant DAA H04-95-1-0111.

10 |==| L1

group 2
(1,0)

Be

group 3
(1,1

Fig. 1. 16 processor OTIS-Mesh

N shuffle [4], and can be utilized as a multistage intercon-
nection network ( MIN ) [5].

Zane et al. [6] have shown that an N? processor OTIS-
Mesh can simulate each move of a VN x VN x /N x /N
four-dimensional ( 4D ) mesh computer using either one
electronic move or one electronic and two OTIS moves (
depending on which dimension of the 4D mesh we are to
move along ). They have also shown that an N? processor
OTIS-Hypercube can simulate each move of an N2 proces-
sor hypercube using either one electronic move or one elec-
tronic and two OTIS moves. Sahni and Wang [1], [7] have
developed efficient algorithms to rearrange data according
to bit-permute-complement ( BPC ) [8] permutations on
OTIS-Mesh and OTIS-Hypercube computers, respectively.
Rajasekaran and Sahni [9] have developed efficient random-
ized algorithms for routing, selection, and sorting on an
OTIS-Mesh.

In this paper, we develop deterministic OTIS-Mesh algo-
rithms for the basic data operations for parallel computa-
tion that are studied in [2]. As shown in [2], algorithms for
these operations can be used to arrive at efficient parallel
algorithms for numerous applications, from image process-
ing, computational geometry, matrix algebra, graph theory,
and so forth.

We consider both the synchronous SIMD and syn-
chronous MIMD models. In both, all processors operate in
lock-step fashion. In the SIMD model, all active processors
perform the same operation in any step and all active pro-
cessors move data along the same dimension or along OTIS
connections. In the MIMD model, processors can perform
different operations in the same step and can move data
along different dimensions.



2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y, MONTH, 1999

II. Basic OPERATIONS
A. Data Broadcast

Data broadcast is, perhaps, the most fundamental oper-
ation for a parallel computer. In this operation, data that
is initially in a single processor (G, P) is to be broadcast or
transmitted to all N2 processors of the OTIS-Mesh. Data
broadcast can be accomplished using the following three
step algorithm:

Step 1: Processor (G, P) broadcasts its data to all other
processors in group G.

Step 2: Perform an OTIS move.

Step 3: Processor G of each group broadcasts the data
within its group.

Following Step 2, one processor of each group has a copy
of the data, and following Step 3 each processor of the
OTIS-Mesh has a copy. In the SIMD model, Steps 1 and 3
take 2(v/N —1) electronic moves each, and Step 2 takes one
OTIS move. The SIMD complexity is 4(v/N — 1) electronic
moves and 1 OTIS move, or a total of 4+/N —3 moves. Note
that our algorithm is optimal because the diameter of the
OTIS-Mesh is 4y/N — 3 [1]. For example, if the data to be
broadcast is initially in processor (0,0), the data needs to
reach processor (N — 1, N — 1), which is at a distance of
4v/N — 3. In the MIMD model, the complexity of Steps 1
and 3 depends on the value of P = (P, P,) and ranges from
a low of approximately v/N — 1 to a high of 2(v/N — 1).
The overall complexity is at most 4(v/ N — 1) electronic
moves and one OTIS move. By contrast, simulating the
4D-mesh broadcast algorithm using the simulation method
of [6] takes 4(v/N —1) electronic moves and 4(v/N—1) OTIS
moves in the SIMD model and up to this many moves in
the MIMD model.

B. Window Broadcast

In a window broadcast, we start with data in the top left
w X w submesh of a single group G. Here w divides v/N.
Following the window broadcast operation, the initial w xw
window tiles all groups; that is, the window is broadcast
both within and across groups. Our algorithm for window
broadcast is:

Step 1: Do a window broadcast within group G.

Step 2: Perform an OTIS move.

Step 3: Do an intra group data broadcast from processor
G of each group.

Step 4: Perform an OTIS move.

Following Step 1 the initial window properly tiles group
G and we are left with the task of broadcasting from group
G to all other groups. In Step 2, data d(G, P) from (G, P)
is moved to (P,G) for 0 < P < N. In Step 3, d(G, P) is
broadcast to all processors (P,i), 0 < P,4 < N, and in Step
4 d(G, P) is moved to (i, P), 0 <1i,P < N.

Step 1 of our window broadcast algorithm takes 2(v/N —
w) electronic moves in both the SIMD and MIMD models,
and Step 3 takes 2(v/N — 1) electronic moves in the SIMD
model and up to 2(v/N — 1) electronic moves in the MIMD
model. The total cost is 4/ N — 2w — 2 electronic and 2
OTIS moves in the SIMD model and up to this many moves

in the MIMD model. A simulation of the 4D mesh window
broadcast algorithm takes the same number of electronic
moves, but also takes 4(v/N — 1) OTIS moves.

C. Prefix Sum

The index (G, P) of a processor may be transformed into
a scalar I = GN + P with 0 < I < N2. Let D(I) be the
data in processor I, 0 < I < NZ2. In a prefix sum, each
processor I computes S(I) = Efzo D(i), 0 < I < N2
A simple prefix sum algorithm results from the following
observation:

S(I) = SD(I) + LP(I)

where SD(I) is the sum of D(i) over all processors i that
are in a group smaller than the group of I and LP(I) is the
local prefix sum within the group of I. The simple prefix
sum algorithm is:

Step 1: Perform a local prefix sum in each group.

Step 2: Perform an OTIS move of the prefix sums com-
puted in Step 1 for all processors (G, N — 1).

Step 8: Group N — 1 computes a modified prefix sum of
the values, A, received in Step 2. In this modification,
processor P computes Ef:_ol A(i) rather than Ef;o A(i).

Step 4: Perform an OTIS move of the modified prefix sums
computed in Step 3.

Step 5: Each group does a local broadcast of the modified
prefix sum received by its N — 1 processor.

Step 6: Each processor adds the local prefix sum computed
in Step 1 and the modified prefix sum it received in Step
5.

The local prefix sums of Steps 1 and 3 take 3(vN — 1)
electronic moves in both the SIMD and MIMD models,
and the local data broadcast of Step 5 takes 2(v/N — 1)
electronic moves. The overall complexity is 8(v'N — 1)
electronic moves and 2 OTIS moves. This can be reduced to
7(v/N —1) electronic moves and 2 OTIS moves by deferring
some of the Step 1 moves to Step 5 as below.

Step 1: In each group, compute the row prefix sums R.
Step 2: Column /N — 1 of each group computes the mod-
ified prefix sums of its R values.

Step 3: Perform an OTIS move on the prefix sums com-
puted in Step 2 for all processors (G, N — 1).

Step 4: Group N — 1 computes a modified prefix sum of
the values, A, received in Step 3.

Step 5: Perform an OTIS move of the modified prefix sums
computed in Step 4.

Step 6: Each group broadcasts the modified prefix sum re-
ceived in Step 5 along column v/N — 1 of its mesh.

Step 7: The column v/ N — 1 processors add the modified
prefix sum received in Step 6 and the prefix sum of R values
computed in Step 2 minus its own R value computed in
Step 1.

Step 8: The result computed by column v/N —1 processors
in Step 7 is broadcast along mesh rows.

Step 9: Each processor adds its R value and the value it
received in Step 8.

If we simulate the best 4D mesh prefix sum algorithm,
the resulting OTIS mesh algorithm takes 7(v/N — 1) elec-
tronic and 6(v/N — 1) OTIS moves.



WANG AND SAHNI: BASIC OPERATIONS ON THE OTIS-MESH OPTOELECTRONIC COMPUTER 3

D. Data Sum

In this operation, each processor is to compute the sum
of the D values of all processors. An optimal SIMD data
sum algorithm is:

Step 1: Each group performs the data sum.
Step 2: Perform an OTIS move.
Step 3: Each group performs the data sum.

In the SIMD model Steps 1 and 3 take 4(v/N — 1) elec-
tronic moves, and step 2 takes 1 OTIS move. The total cost
is 8(v/N —1) electronic and 1 OTIS moves. Note that since
the distance between processors (0,0) and (N —1,N — 1)
is 4(v/N — 1) electronic and 1 OTIS moves and since each
needs to get information from the other, at least 8(v/N —1)
electronic and 1 OTIS moves are needed ( the moves needed
to send information from (0,0) to (N —1, N —1) and those
from (N —1,N — 1) to (0,0) cannot be overlapped in the
SIMD model ). Also, note that a simulation of the 4D
mesh data sum algorithm takes 8(v/N — 1) electronic and
8(v/N — 1) OTIS moves.

The MIMD complexity can be reduced by computing the
group sums in the middle processor of each group rather
than in the bottom right processor. The complexity now
becomes 4(v/N —1) electronic and 1 OTIS moves when N
is odd and 4v/N electronic and 1 OTIS moves when N
is even. The simulation of the 4D mesh, however, takes
4(v/N —1) electronic and 4(v/N — 1) OTIS moves. Notice
that the MIMD algorithm is near optimal as the diameter
of the OTIS-Mesh is 4/ N — 3 [1].

E. Rank

In the rank operation, each processor I has a flag S(I) €
{0,1}, 0 < I < N%. We are to compute the prefix sums
of the processors with S(I) = 1. This operation can be
performed in 7(v/N —1) electronic and 2 OTIS moves using
the prefix sum algorithm of Section II-C.

F. Shift

Although there are many variations of the shift oper-
ation, the ones we believe are most useful in application
development are:

(o) mesh row shift with zero fill — in this we
shift data from processor (G,,Gy,P:,P,) to processor
(Gz,Gy, Py, Py + 5), —V/N < s < /N. The shift is done
with zero fill and end discard ( i.e., if P, + s > v/N or
P, + s <0, the data from P, is discarded ).

(b) mesh column shift with zero fill — similar to (a), but
along mesh column P,.

(c) circular shift on a mesh row — in this we
shift data from processor (G,,Gy,P,,P,) to processor
(GwaG?tha (Py + 8) mod \/N)

(d) circular shift on a mesh column — similar to (c¢), but
instead P, is used.

(e) group row shift with zero fill — similar to (a), except
that G is used in place of P,.

(f) group column shift with zero fill — similar to (e), but
along group column G,.

(g) circular shift on a group row — similar to (c), but with
G rather than P.
(h) circular shift on a group column — similar to (g), with
G in place of G.

Shifts of types (a) through (d) are done using the best
mesh algorithms while those of types (e) through (h) are
done as below:

Step 1: Perform an OTIS move.

Step 2: Do the shift as a P, ( if originally a G, shift ) or
a P, ( if originally a G, shift ) shift.

Step 3: Perform an OTIS move.

Shifts of types (a) and (b) take s electronic moves on
the SIMD and MIMD models; (c) and (d) take v/N elec-
tronic moves on the SIMD model and max{|s|, VN — |s|}
electronic moves on the MIMD model; (e) and (f) take s
electronic and 2 OTIS moves on both SIMD and MIMD
models; and (g) and (h) take v/N electronic and 2 OTIS
moves on the SIMD model and max{|s|, /N — |s|} elec-
tronic and 2 OTIS moves on the MIMD model.

If we simulate the corresponding 4D mesh algorithms,
we obtain the same complexity for (a) — (d), but (e) and
(f) take an additional 2s — 2 OTIS moves, and (g) and (h)
take an additional 2 x max{|s|, VN — |s|} —2 OTIS moves.

G. Data Accumulation

Each processor is to accumulate M, 0 < M < +/N, val-
ues from its neighboring processors along one of the four
dimensions G, Gy, P;, Py. Let D(G,, Gy, P;, Py) be the
data in processor (G, Gy, Py, Py). In a data accumulation
along the G, dimension ( for example ), each processor
(G4, Gy, Py, Py) accumulates in an array A the data values
from ((G; + i) mod VN, Gy, P;, P,), 0 < i < M. Specifi-
cally, we have

Ali] = D((G4 + i) mod VN, G, P, P,)

Accumulation in other dimensions is similar.

The accumulation operation can be done using a circular
shift of —M in the appropriate dimension. The complexity
is readily obtained from that for the circular shift operation
( see Section II-F ).

H. Consecutive Sum

The N? processor OTIS-Mesh is tiled with one-
dimensional blocks of size M. These blocks may align with
any of the four dimensions G, Gy, P, and P,. Each pro-
cessor has M values X[j], 0 < j < M. The ith processor
in a block is to compute the sum of the X[i]s in that block.
Specifically, processor 4 of a block computes

M-1

S(i)= Y X[(),0<i<M

=0

where 7 and j are indices relative to a block.

When the one-dimensional blocks of size M align with
the P, or P, dimensions, a consecutive sum can be per-
formed by using M tokens in each block to accumulate the
M sums S(i), 0 < i < M. Assume the blocks align along



4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y, MONTH, 1999

P,. Let pg,p1,---,pm—1 be the M processors, left-to-right,
in a block. The consecutive sum algorithm works in two
phases. In the first phase, processor M — 1 initiates tokens
to,t1,.--,ta—2 one by one. These tokens move leftwards.
When a processor receive token t;, it adds its X[i] value
to it and transmits the token to the processor on its left.
The first phase operates for M — 1 moves and at the end
of this phase, p; has token t; = E]Ai;h X[i](§). The sec-
ond phase is similar to the first. This time, py initiates
the tokens th, 1,ths o,...,t] and the tokens move right-
wards. Following M — 1 moves, token ¢} is in processor p;
and t} = Z;;t X[i](j). Following phase 2, p; computes the
desired result t; + ¢; + X[i](¢). The total number of moves
is 2(M — 1).

In the MIMD model, the left and right moves can be
done simultaneously, and only M — 1 electronic moves are
needed.

When the one-dimensional size M blocks align with G,
or Gy, we first do an OTIS move; then run either a P, or
P, consecutive sum algorithm; and then do an OTIS move.
The number of electronic moves is the same as for P, or
P, alignment. However, two additional OTIS moves are
needed.

Simulation of the corresponding 4D mesh algorithm
takes an additional 4M — 6 OTIS moves for the case of
G, or G alignment in the SIMD model and an additional
2M — 4 OTIS moves in the MIMD model.

I. Adjacent Sum

This operation is similar to the data accumulation op-
eration of Section II-G except that the M accumulated
values are to be summed. The operation can be done with
the same complexity as data accumulation using a similar
algorithm.

J. Concentrate

A subset of the processors contain data. These proces-
sors have been ranked as in Section II-E. So the data is
really a pair (D,r); D is the data in the processor and
r is its rank. Each pair (D,r) is to be moved to proces-
sor 7, 0 < r < b, where b is the number of processors with
data. Using the (G, P) format for a processor index, we see
that (D, r) is to be routed from its originating processor to
processor (|r/N],r mod N). We accomplish this using the
steps:

Step 1: Each pair (D,r) is routed to processor r mod N
within its current group.

Step 2: Perform an OTIS move.

Step 3: Each pair (D,r) is routed to processor |r/N|
within its current group.

Step 4: Perform an OTIS move.

Theorem 1: The four step algorithm given above cor-
rectly routes every pair (D, ) to processor (|r/N|,r mod
N).

Proof: Step 1 does the routing on the second coordi-
nate. This step does not route two pairs to the same proces-
sor provided no group has two pairs (D1, 71), (D2,72) with
r1 mod N = r mod N. Since each group has at most N

pairs and the ranks of these pairs are contiguous integers,
no group can have two pairs with r; mod N = r, mod N.
So following Step 1 each processor has at most one pair and
each pair is in the correct processor of the group, though
possibly in the wrong group.

To get the pairs to their correct groups without chang-
ing the within group index, Step 2 performs an OTIS
move, which moves data from processor (G, P) to processor
(P,G). Now all pairs in a group have the same r mod N
value and different |7 /N | values. The routing on the |r/N |
values, as in Step 3, routes at most one pair to each proces-
sor. The OTIS move of Step 4, therefore, gets every pair
to its correct destination processor. |

In group 0, Step 1 is a concentrate localized to the group,
and in the remaining groups, Step 1 is a generalized concen-
trate in which the ranks have been increased by the same
amount. In all groups we may use the mesh concentrate
algorithm of [10] to accomplish the routing in 4(v/N — 1)
electronic moves. Step 3 is also a concentrate as the |r/N |
values of the pairs are in ascending order from 0,1,2,---.
So Steps 1 and 3 take 4(v/N — 1) electronic moves each
in the STIMD model and 2(v/N — 1) in the MIMD model
[10]. Therefore, the overall complexity of concentrate is
8(v/N —1) electronic and 2 OTIS moves in the SIMD model
and 4(v/N — 1) electronic and 2 OTIS moves in the MIMD
model.

We can improve the SIMD time to 7(v/N — 1) electronic
and 2 OTIS moves by using a better mesh concentrate algo-
rithm than the one in [10]. The new and simpler algorithm
is given below for the case of a generalized concentration
on a VN x /N mesh.

Step 1: Move data that is to be in a column right of the
current one rightwards to the proper processor in the same
row.

Step 2: Move data that is to be in a column left of the
current one leftwards to the proper processor in the same
row.

Step 3: Move data that is to be in a smaller row upwards
to the proper processor in the same column.

Step 4: Move data that is to be in a bigger row downwards
to the proper processor in the same column.

In a concentrate operation on a square mesh data that
begins in two processors of the same row ends up in dif-
ferent columns as the rank of these two data differs by at
most vVN — 1. So Steps 1 and 2 do not leave two or more
data in the same processor. Steps 3 and 4 get data to the
proper row and hence to the proper processor. Note that
it is possible to have up to two data items in a processor
following Step 1 and Step 3. The complexity of the above
concentrate algorithm is 4(v/N — 1) on a SIMD mesh and
2(v/N —1) on an MIMD mesh ( we can overlap Steps 1 and
2 as well as Steps 3 and 4 on an MIMD mesh ).

For an ordinary concentrate in which the ranks begin at
1, Step 4 can be omitted as no data moves down a column
to a row with bigger index. So an ordinary concentrate
takes only 3(v/N — 1) moves. This improves the SIMD
concentration algorithm of [10], which takes 4(vN — 1)
moves to do an ordinary concentrate.



WANG AND SAHNI: BASIC OPERATIONS ON THE OTIS-MESH OPTOELECTRONIC COMPUTER 5

TABLE I
PROCESSORS WITH DATA TO CONCENTRATE

Gz Gy P, P,
0,0 0<P,<VN-1,0< P, <VN
0,1 P, =0,0< P, <VN

Go=1,0<Gy <VN -2 0< Py, Py <VN

vN —-1,0 0< P, <VN,Gy=0
VN —-1,1 0< P, <VvVN-1,0< Py <VN
VN —-1,v/N -1 VN -1,V/N -1

Actually, we can show that the four step concentration
algorithm just stated is optimal for the SIMD model. Con-
sider the ordinary concentrate instance in which the se-
lected elements are in processors (0,v/N —1), (1,v/N —2),

-+, (VN —1,0). The ranks are 0, 1, ---, v/N — 1. So the
data in processor (0,v/N — 1) is to be moved to proces-
sor (0,0). This requires moves that yield a net of v N — 1
left moves. Also, the data in processor (vN — 1,0) is to
be moved to processor (0,v/N — 1). This requires a net
of /N — 1 upward moves and v/N — 1 rightward moves.
None of these moves can be overlapped in the SIMD model.
So every SIMD concentrate algorithm must take at least
v/N — 1 moves in each of the directions left, right, and up;
a total of at least 3(v/N — 1) moves.

For the generalized concentrate algorithm, the ranks
need not start at zero. Suppose we have two elements to
concentrate. One is at processor (0,0) and has rank N —1,
and the other is at processor (v/N—1,v/N —1) and has rank
N. The data in (0,0) is to be moved to (VN —1,v/N —1)
at a cost of v/N — 1 net right and down moves. The data
in (VN —1,v/N —1) is to be moved to (0,0) at a cost of
VN —1 net left and up moves. So at least 4(v/N —1) moves
are needed.

Theorem 2: The OTIS-Mesh data concentration algo-
rithm described above is optimal for both the SIMD and
MIMD models; that is, (a) every SIMD concentration algo-
rithm must make 7(v/N — 1) electronic and 2 OTTS moves
in the worst case, and (b) every MIMD concentration algo-
rithm must make 4(v/N — 1) electronic and 2 OTIS moves.

Proof: (a) Suppose that the data to be concentrated
are in the processors shown in Table I. Let a denote
processor (VN —1,v/N —1,v/N —1,V/N — 1), let b de-
note processor (VN — 1,0,v/N — 1,0), and let ¢ denote
processor (0,1,0,0). The ranks of a, b, and ¢ are N3/2
N3/2 N 4++/N — 1, and N — v/N respectively. There-
fore, following the concentration the data D(a), D(b), and
D(c) initially in processors a, b, and ¢ will be in proces-
sors (0,1,0,0), (0,v/N —1,0,v/N —1), and (0,0,vVN —1,0)
respectively. Figure 2 shows the initial and concentrated
data layout for the case when N = 16. The change in
Gy, Gy, P, and P, values between the final and initial
locations of D(a), D(b), and D(c) is shown in Table II.

The maximum net negative change in each of G, Gy, P,
and P, is —(v/N—1). Since a net negative change in G, can
only be overlapped with a net negative change in P, and
since D(b) needs —(v/N — 1) negative change in both G,

oood

xOod
xgod
xOood
mood

O
O
O
O

O

O

0

O
o o o
o o o
o o o
o o o | o o

Fig. 2. Data Configuration: (a) Initial; (b) Concentrated

TABLE II
NET CHANGE IN Gz, Gy, Py, AND Py

data Gap Gy Py Py
D(a) —(VN-1)+1 — (VN -1) — (VN -1) — (VN —-1)
D(b) —(VN —-1) +(V/N - 1) —(vVN - 1) +(VN - 1)
D(e) 0 0 +(VN — 1) 0

and P,, we must make at least 2(v/N — 1) electronic moves
that decrease the row index within a mesh. Similarly, be-
cause of D(a)’s requirements, at least 2(v/N — 1) electronic
moves that increase the column index within a VN x v N
mesh must be made. Turning our attention to net positive
changes, we see that because of D(b)’s requirements there
must be at least 2(v/N — 1) electronic moves that increase
the column index. D(c) requires v/N — 1 electronic moves
that increase the row index. Since positive net moves can-
not be overlapped with negative net moves, and since net
moves along G, and P, cannot be overlapped with net
moves along Gy and P, the concentration of the configu-
ration of Table I must take at least 7(v/N — 1) electronic
moves.

In addition to 7(v/N — 1) electronic moves, we need at
least 2 OTIS moves to concentrate the data of Table I. To
see this consider the data initially in group (0,1). This
data is in group (0,0) following the concentration. At least
one OTIS move is needed to move the data out of group
(0,1). A nontrivial OTIS-Mesh has > 2 processors on a
row of a VN x /N submesh. For such an OTIS-Mesh,
at least two pieces of data must move from group (0,1) to
group (0,0). A single OTIS move scatters data from group
(0,1) to different groups with each data going to a different



6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y, MONTH, 1999

group. At least one additional OTIS move must be made
to get the data back into the same group. Therefore the
concentration of the configuration of Table I cannot be done
with fewer than 2 OTIS moves.

(b) Consider the initial configuration of Table I. Since
the shortest path between processor b and its destination
processor is 4(v/N — 1) electronic and one OTIS move, at
least that many electronic moves are made, in the worst
case, by every concentration algorithm. The reason that
at least 2 OTIS moves are needed to complete the concen-
tration is the same as for (a). ]

K. Distribute

This is the inverse of the concentrate operation of Sec-
tion II-J. We start with pairs (Do, do), ..., (Dy,dq), do <
dy < --- < dg, in the first ¢ + 1 processors 0,1,...,q and
are to route pair (D;,d;) to processor d;, 0 < ¢ < g. The
algorithm of Section II-J tells us how to start with pairs
(D;,14) in processor d;, 0 < ¢ < ¢ and move them so that D;
is in ¢. By running this backwards, we can start with D; in
i and route it to d;. The complexity of the distribute oper-
ation is the same as that of the concentrate operation. We
have shown that the concentrate algorithm of Section II-J
is optimal; it follows that the distribute algorithm is also
optimal.

L. Generalize

We start with the same initial configuration as for the
distribute operation. The objective is to have D; in all pro-
cessors j such that d; < j < dij11 ( set dgq1 to NZ—-1).
If we simulate the 4D mesh algorithm for generalize using
the simulation strategy of [6], it takes 8(v/N — 1) electronic
and 8(v/N — 1) OTIS moves to perform the generalize op-
eration on an SIMD OTIS-Mesh. We can improve this
to 8(v/N — 1) electronic and 2 OTIS moves if we run the
generalize algorithm of [10] adapted to use OTIS moves as
necessary. The outer loop of the algorithm of [10] examines
processor index bits from 2p — 1 to 0 where p =log, N. So
in the first p iterations we are moving along bits of the G
index and in the last p iterations along bits of the P index.
On an OTIS-Mesh we would break this into two parts as
below:

Step 1: Perform an OTIS move.

Step 2: Run the GENERALIZE procedure of [10] from bit
p — 1 to 0, while maintaining the original index.

Step 3: Perform an OTIS move.

Step 4: Run the GENERALIZE algorithm of [10] from bit
p—1to0.

On an MIMD OTIS-Mesh the above algorithm takes
4(v/N —1) electronic and 2 OTIS moves.

We can reduce the SIMD complexity to 7(v/N — 1) elec-
tronic and 2 OTIS moves by using a better algorithm to do
the generalize operation on a 2D SIMD mesh. This algo-
rithm uses the same observation as used by us in Section II-
J to speed the 2D SIMD mesh concentrate algorithm; that
is, of the four possible move directions, only three are pos-
sible. When doing a generalize on a 2D v/ N x v/ N mesh
the possible move directions for data are to increasing row

indexes and to decreasing and increasing column indexes.
With this observation, the algorithm to generalize on a 2D
mesh becomes:

Step 1: Move data along columns to increasing row indexes
if the data is needed in a row with higher index.

Step 2: Move data along rows to increasing column indexes
if the data is needed in a processor in that row with higher
column index.

Step 8: Move data along rows to decreasing column in-
dexes if the data is needed in a processor in that row with
smaller column index.

The correctness of the preceding generalize algorithm can
be established using the argument of Theorem 1, and its
optimality follows from Theorem 2 and the fact that the
distribute operation, which is the inverse of the concentrate
operation, is a special case of the generalize operation.

The new and more efficient generalize algorithm may be
used in Step 2 of the OTIS-Mesh generalize algorithm. It
cannot be used in Step 4 because the generalize of this step
requires the full capability of the code of [10] which permits
data movement in all four directions of a mesh.

When we use the new generalize algorithm for Step 2
of the OTIS-Mesh generalize algorithm, we can perform a
generalize on a SIMD OTIS-Mesh using 7(v/N — 1) elec-
tronic and 2 OTIS moves. The new algorithm is optimal
for both SIMD and MIMD models. This follows from the
lower bound on a concentrate operation established in The-
orem 2 and the observation made above that the distribute
operation, which is a special case of the generalize opera-
tion, is the inverse of the concentrate operation and so has
the same lower bound.

M. Sorting

As was the case for the operations considered so far, an
O(V/'N) time algorithm to sort can be obtained by simu-
lating a similar complexity 4D mesh algorithm. For sort-
ing a 4D Mesh, the algorithm of Kunde [11] is the fastest.
Its simulation will sort into snake-like row-major order us-
ing 14N + o(\/ﬁ) electronic and 12v/N + o(\/N) OTIS
moves on the SIMD model and 7v/N 4 o(v/N) electronic
and 6v/N + o(v/N) OTIS moves on the MIMD model. To
sort into row-major order, additional moves to reverse al-
ternate dimensions are needed. This means that an OTIS-
Mesh simulation of Kunde’s 4D mesh algorithm to sort
into row-major order will take 18v/N + o(v/N) electronic
and 16v/N + o(v/N) OTIS moves on the SIMD model.
We show that Leighton’s column sort [12] can be imple-
mented on an OTIS-Mesh to sort into row-major order us-
ing 22v/N + o(v/N) electronic and O(N3/8) OTIS moves
on the SIMD model and 11v/N + o(v/N) electronic and
O(N?3/8) OTIS moves on the MIMD model.

Our OTIS-Mesh sorting algorithm is based on Leighton’s
column sort [12]. This sorting algorithm sorts an r x s
array, with » > 2(s — 1)2, into column-major order using
the following seven steps:

Step 1: Sort each column.
Step 2: Perform a row-column transformation.
Step &: Sort each column.



WANG AND SAHNI: BASIC OPERATIONS ON THE OTIS-MESH OPTOELECTRONIC COMPUTER 7

1 7 13 1 2 3
2 8 14|14 5 6
3 9 15 7 8 9
4 10 16 10 11 12
5 11 17| &' |13 14 15
6 12 18 16 17 18

Fig. 3. Row-Column Transformation of Leighton’s Column Sort

Step 4: Perform the inverse transformation of Step 2.
Step 5: Sort each column in alternating order.

Step 6: Apply two steps of comparison-exchange to adja-
cent rows.

Step 7: Sort each column.

Figure 3 shows an example of the transformation of Step
2, and its inverse. Figure 4 shows a step by step example
of Leighton’s column sort.

Although Leighton’s column sort is explicitly stated for
r x s arrays with r > 2(s—1)2, it can be used to sort arrays
with s > 2(r — 1)? into row-major order by interchanging
the roles of rows and columns. We shall do this and use
Leighton’s method to sort an N'/? x N3/2 array. We in-
terpret our N2 OTIS-Mesh as an N'/2 x N3/2 array with
G, giving the row index and Gy P, P, giving the column
index of an element processor. We shall further subdivide
G, ( Gy, Py, P,) into equal parts G, , G, Guy, and G,
from left to right. We use G,,_,, for example, to represent
G4, Gy, Gy, . Since p = log, N, G, has p/2 bits and G,
has p/8 bits. These notations are helpful in describing the
transformations in Steps 2 and 4 of the column sort, as we
use the BPC permutations of [8] to realize these transfor-
mations. A BPC permutation [8] is specified by a vector
A= [Ap—17 Ap_g, ceey Ao] where
(a) A; € {£0,%1,...,(p—1)},0<i < pand
(b) [|Ap=1],|Ap=2|,--.,|Ao]] is a permutation of [0, 1, ...
1].

The destination for the data in any processor may be
computed in the following manner. Let m,_1m,_2...mg
be the binary representation of the processor’s index. Let
dp_1d,_» .. .dy be that of the destination processor’s index.
Then,

da =1 mi if Ai>0,
A=Y 1—m; if A;<O.
In this definition, —0 is to be regarded as < 0, while 40 is
> 0. Table III shows an example of the BPC permutation
defined by the permutation vector A = [-0,1,2,—3] on a
16 processor OTIS-Mesh.

In describing our sorting algorithm, we shall, at times,
use a 4D array interpretation of an OQTIS-Mesh. In this in-
terpretation, processor (G, Gy, P;, P,) of the OTIS-Mesh
corresponds to processor (G, Gy, Py, Py) of the 4D mesh.
We use g, to denote the bit positions of G, that is the
leftmost p/2 bits in a processor index, g,, to represent the
leftmost p/8 bit positions, p, to represent the rightmost
p/2 bit positions, py,_, to represent the rightmost p/4 bit
positions, and so on. Our strategy for the sorting steps 1, 3,
5, and 7 of Leighton’s method is to collect each row ( recall

yP—

TABLE III
SOURCE AND DESTINATION OF THE BPC PERMUTATION
[-0,1,2,—3] IN A 16 PROCESSOR OTIS-MESH

Source Destination
Processor | (G,P) | Binary | Binary | (G, P) | Processor
0 (0,00 | 0000 | 1001 | (2,1) 9
1 (0,1) 0001 0001 (0,1) 1
2 (0,2) | o010 1ol | (3,1) 13
3 (0,3) | 0011 | o101 | (1,1) 5
4 (1,0) 0100 1011 (2,3) 11
5 (1,1) | o101 0011 | (0,3) 3
6 (1,2) | otto | 1111 | (3,3) 15
7 (1,3) 0111 0111 (1,3) 7
8 (2,0) 1000 1000 (2,0) 8
9 (2,1) | 1001 | 0000 | (0,0) 0
10 (2,2) 1010 1100 (3,0) 12
11 (2,3) | 1011 | 0100 | (1,0) 4
12 (3,0) 1100 1010 (2,2) 10
13 (3,1) 1101 0010 (0,2) 2
14 (3,2) | 1110 1110 | (3,2) 14
15 (3,3) 1111 0110 (1,2) 6

that since we are sorting an N'/2 x N3/2 array, the column-
sort steps of Leighton’s method become row-sort steps ) of
our N/2 x N3/2 array into an N3/8 x N3/8 x N3/8 x N3/8
4D submesh of the OTIS-Mesh, and then sort this row by
simulating the 4D mesh sort algorithm of [11]. This strat-
egy translates into the following sorting algorithm:
Step 1: [ Move rows of the N'/2 x N3/2 array into N3/8 x
N3/8 x N3/8 x N3/8 4D submeshes | Perform the BPC
permutation Po = [ga; 9y, Par Py G2 Jyo—aJesPra_sJraPyaal-
Step 2: [ Sort each row of the N'/2 x N3/2 array | Sort
each 4D submesh of size N3/8 x N3/8 x N3/8 x N3/8,
Step 3: [ Do the inverse of Step 1, perform a column-
row transformation, and move rows into N3/8 x N3/8 x
N?3/8 x N3/8 submeshes | Perform the BPC permutation
FP. = [gzz—4gz1gyzpmz—4gyapy2—49y49y1pz1py1]-
Step 4: | Sort each row of the N'/2 x N3/2 array ] Sort
each 4D submesh of size N3/8 x N3/8 x N3/8 x N3/8,
Step 5: [ Do the inverse of Step 1, perform a row-column
transformation, and move rows into N3/8 x N3/8 x N3/8 x
N?3/8 submeshes | Perform the BPC permutation P! =
(92491 -5 Pys Gy1 Py Pys Pys Gys— s PyaPza—a)-
Step 6: [ Sort each row in alternating order ] Sort each 4D
submesh of size N3/8 x N3/8 x N3/8 x N3/8.
Step 7: [ Move rows back from 4D submeshes | Perform the
BPC permuta‘tion Pzi = [gx1gy1pw1py1nggy2_49mapmz_4gw4
Pya_al-
Step 8: Apply two steps of comparison-exchange to adja-
cent rows.
Step 9: [ Move rows into submeshes of size N3/8 x N3/8 x
N3/8 x N3/8 | Perform the BPC permutation P, =
[gz1gy1pz1py1gu9y2_4.%3p22_49z4py2_4]-
Step 10: [ Sort each row of the N'/2 x N3/2 array ] Sort
each 4D submesh of size N3/8 x N3/8 x N3/8 x N3/8,
Step 11: [ Move rows back from 4D submeshes | Perform
the BPC permutation P(i = [gz1gy1pz1py1gzzgy2_4gz3pz2_4
9o4Pya_s]-

Notice that the

row to 4D submesh transform



accomplished by the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y, MONTH, 1999

Fig. 4. Example of Leighton’s Column Sort

BPC permutation P,

Step 3: Sort in each subarray.

79 12 2 3 1 2 4 7 1 4 7
4 16 1 4 5 6 10 15 18 2 5 8
18 5 14 7 9 8 3 5 9 3 6 9
2 17 8 | =110 11 12| 2P| 11 16 17 | 210 13 14 | =
15 11 6 15 16 13 1 6 8 11 15 17
10 3 13 18 17 14 12 13 14 12 16 18
1 3 11 1 14 11 1 11 14 1 7 13
4 6 15 2 13 12 2 12 13 2 8 14
79 17 4 10 15 4 10 15 3 9 15
2 10 12| |5 9 16| |5 9 16| (4 10 16
5 13 16 7 6 17 6 7 17 5 11 17
8 14 18 8 3 18 3 8 18 6 12 18

[gmgy1pz1py1gzzgy2_4gzspz2_4gz4py2_4]- Elements in the
same row of our N'/2 x N3/2 array interpretation have
the same G, value; but in our 4D mesh interpreta-
tion, elements in the same N3/8 x N3/8 x N3/8 x N3/8
submesh have the same G, Gy, P, Py, value. P, re-
sults in this property. To go from Step 2 to Step
3 of Leighton’s method, we need to first restore the
N1/2 x N3/2 array interpretation using the inverse per-
mutation of P,, that is, perform the BPC permutation
Py = 921 9y1Po1Pys 92 Gys— 1 95 Pas_s JoaPya—s; then perform
a column-row transform using BPC permutation p, =
[9yPzPyg:]; and finally map the rows of our N'/2 x N3/2 ar-
ray into 4D submeshes of size N3/8 x N3/8 x N3/8 x N3/8
using the BPC permutation P,. The three BPC permu-
tation sequence P!P,P, is equivalent to the single BPC
permutation Pe = (o, _, 921 9yoPoo—oJysPys—a9ys 9y P21 Py, ]-

The preceding OTIS-Mesh implementation of column
sort performs 6 BPC permutations, 4 4D mesh sorts, and
two steps of comparison-exchange on adjacent rows. Since
the sorting steps take O(N3/8) time each ( use Kunde’s
4D mesh sort [11] followed by a transform from snake-like
row-major to row-major ), and since the remaining steps
take O(N'/2) time, we shall ignore the complexity of the
sort steps.

We can reduce the number of BPC permutations from
6 to 3 as follows. First note that the P, of Step 1 just
moves elements from rows of the N'/? x N3/2 array into
N3/8 x N3/8 x N3/8 x N3/8 4D submeshes. For the sort
of Step 2, it doesn’t really matter which N3/2 elements
go to each 4D submesh as the initial configuration is an
arbitrary unsorted configuration. So we may eliminate Step
1 altogether. Next note that the BPC permutations of
Steps 7 and 9 cancel each other and we can perform the
comparison-exchange of Step 8 by moving data from one
N3/8 x N3/8 x N3/8 x N3/8 4D submesh to an adjacent one
and back in O(N?/8) time.

With these observations, the algorithm to sort on an
OTIS-Mesh becomes:
Step 1: Sort in each subarray of size N3/8 x N3/8 x N3/8 x
N3/8
Step 2: Perform the BPC permutation P,.

Step 4: Perform the BPC permutation P..

Step 5: Sort in each subarray.

Step 6: Apply two steps of comparison-exchange to adja-
cent subarrays.

Step 7: Sort in each subarray.

Step 8: Perform the BPC permutation P,.

Using the BPC routing algorithm of [1], the three BPC
permutations can be done using 36N electronic and
3logy, N + 6 OTIS moves on the SIMD model and 18V N
electronic and 3log, N + 6 OTIS moves on the MIMD
model. A more careful analysis based on the develop-
ment in [8] and [1] reveals that the permutations P}, P,
and P! can be done with 28v/N electronic and log, N + 6
OTIS moves on the SIMD model and 14v/N electronic and
3logs N + 6 OTIS moves on the MIMD model. By using

pfz = [gwlgy1p$1py1nggyzpwzpyzgwsgy3pz3pysgw4gy4pw4py4]a
Dc [gzz-4gw1gyz-4gy1pmz-4pw1pyz-4py1]: and plc
[gugzl_3gy4gy1_spw4pw1_spy4py1—3]a the permUtation cost
becomes 22v/N electronic and log, N 4+ 5 OTIS moves on
the SIMD model and 11v/N electronic and log, N+5 OTIS
moves on the MIMD model. The total number of moves is
thus 22v/N +O(N3/8) electronic and O(N3/8) OTIS moves
on the SIMD model and 11v/N + O(N3/8) electronic and
O(N?3/8) OTIS moves on the MIMD model. This is supe-
rior to the cost of the sorting algorithm that results from
simulating the 4D row-major mesh sort of Kunde [11].

N. Random Access Read ( RAR )

In a random access read (RAR) [2] processor I wishes
to read data variable D of processor dr, 0 < I < N2. The
steps suggested in [2] for this operation are:

Step 0: Processor I creates a triple (I, D, dy) where D is
initially empty.

Step 1: Sort the triples by dr.

Step 2: Processor I checks processor I + 1 and deactivates
if both have triples with the same third coordinate.

Step 3: Rank the remaining processors.

Step 4: Concentrate the triples using the ranks of Step 3.
Step 5: Distribute the triples according to their third co-
ordinates.



WANG AND SAHNI: BASIC OPERATIONS ON THE OTIS-MESH OPTOELECTRONIC COMPUTER 9

Step 6: Load each triple with the D value of the processor
it is in.

Step 7: Concentrate the triples using the ranks in Step 3.
Step 8: Generalize the triples to get the configuration we
had following Step 1.

Step 9: Sort the triples by their first coordinates.

Using the SIMD model the RAR algorithm of [2] take
79(v/N—1) electronic moves and O(N3/8) OTIS moves. On
the MIMD model, it takes 45(v/N — 1) electronic O(N3/8)
OTIS moves.

O. Random Access Write ( RAW )

Now processor I wants to write its D data to processor
dr, 0 < I < N?. The steps in the RAW algorithm of [2]
are:

Step 0: Processor I creates the tuple (D(I),dr), 0 < I <
N2,

Step 1: Sort the tuples by their second coordinates.

Step 2: Processor I deactivates if the second coordinate of
its tuple is the same as the second coordinate of the tuple
inI+1,0<I<N2?-1.

Step 3: Rank the remaining processors.

Step 4: Concentrate the tuples using the ranks of Step 3.
Step 5: Distribute the tuples according to their second co-
ordinates.

Step 2 implements the arbitrary write method for a con-
current write. In this, any one of the processors wishing
to write to the same location is permitted to succeed. The
priority model may be implemented by sorting in Step 1
by d; and within d; by priority. The common and com-
bined models can also be implemented, but with increased
complexity.

On the SIMD model, an RAW takes 43(v/N — 1) elec-
tronic and O(N®/®) OTIS moves while on the MIMD
model, it takes 26(v/N — 1) electronic and O(N3/8) OTIS
moves.

III. CONCLUSION

We have developed OTIS-Mesh algorithms for the basic
parallel computing algorithms of [2]. Our algorithms run
faster than the simulation of the fastest algorithms known
for 4D meshes. Tables IV and V summarizes the complex-
ities of our algorithms and those of the corresponding ones
obtained by simulating the best 4D-mesh algorithms on
SIMD and MIMD respectively. Note that the worst case
complexities are listed for the broadcast and window broad-
cast operation, and that of the case when v/N is even is
presented for the data sum operation on the MIMD model.
Also, the complexities listed for circular shift, data accu-
mulation, and adjacent sum assume that the shift distance
is < v/N/2 on the MIMD model. Tables IV and V give
only the dominating /N terms for sorting. Our algorithms
for data broadcast, data sum, concentrate, distribute, and
generalize are optimal.

REFERENCES

[1] Sartaj Sahni and Chih-Fang Wang, “BPC permutations on the
OTIS-Mesh optoelectronic computer,” in Proceedings of the

fourth International Conference on Massively Parallel Process-
ing Using Optical Interconnections (MPPOI’97), 1997, pp. 130—
135.

[2] Sanjay Ranka and Sartaj Sahni, Hypercube Algorithms with
Applications to Image Processing and Pattern Recognition,
Springer-Verlag, 1990.

[3] Gary C. Marsden, Philippe J. Marchand, Phil Harvey, and
Sadik C. Esener, “Optical transpose interconnection system ar-
chitectures,” Optics Letters, vol. 18, no. 13, pp. 10831085, July
1 1993.

[4] A. Krishnamoorthy, P. Marchand, F. Kiamilev, and S. Esener,
“Grain-size considerations for optoelectronic multistage inter-
connection networks,” Applied Optics, vol. 31, no. 26, Sept.
1992.

[5] Chih-Fang Wang and Sartaj Sahni, “OTIS optoelectronic com-
puters,” in Parallel Computation Using Optical Interconnec-
tions, Keqin Li, Yi Pan, and S. Q. Zhang, Eds. Kluwer Academic
Publishers, 1998.

[6] Francis Zane, Philippe Marchand, Ramamohan Paturi, and
Sadik Esener, “Scalable network architectures using the opti-
cal transpose interconnection system (OTIS),” in Proceedings of
the second International Conference on Massively Parallel Pro-
cessing Using Optical Interconnections (MPPOI’96), 1996, pp.
114-121.

[7] Sartaj Sahni and Chih-Fang Wang, “BPC permutations on the
OTIS-Hypercube optoelectronic computer,” Informatica, 1998,
To appear.

[8] David Nassimi and Sartaj Sahni, “An optimal routing algorithm
for mesh-connected parallel computers,” Journal of the Associ-
ation for Computing Machinery, vol. 27, no. 1, pp. 6-29, Jan.
1980.

[9] Sanguthevar Rajasekaran and Sartaj Sahni, “Randomized rout-

ing, selection, and sorting on the OTIS-Mesh optoelectronic

computer,” IEEFE Transactions on Parallel and Distributed Sys-
tems, 1998, To appear.

David Nassimi and Sartaj Sahni, “Data broadcasting in SIMD

computers,” IEEE Transactions on Computers, vol. C-30, no.

2, pp. 101-107, Feb. 1981.

Manfred Kunde, “Routing and sorting on mesh-connected ar-

rays,” in Proceedings of the 3rd Agean Workshop on Computing:

VLSI Algorithms and Architectures, Lecture Notes on Computer

Science. 1988, vol. 319, pp. 423-433, Springer Verlag.

Tom Leighton, “Tight bounds on the complexity of parallel

sorting,” IEEE Transactions on Computers, vol. C-34, no. 4,

pp- 344-354, Apr. 1985.

[10]

[11

(12]

Chih-fang Wang got his M.Sc. degree from
Mathematics and Computer Science, Univer-
sity of Miami in 1993, and his Ph.D. degree
from Computer and Information Science and
Engineering, University of Florida in 1998. His
research interests include design and analysis of
sequential, parallel and distributed algorithms,
reconfigurable networks, optical interconnec-
tion computers, and all-optical networks.

Sartaj Sahni is a University of Florida Re-
search Foundation Professor of Computer and
Information Sciences and Engineering and a
Fellow of IEEE, ACM, AAAS, and Minnesota
Supercomputer Institute. He received his
B.Tech. (Electrical Engineering) degree from
the Indian Institute of Technology, Kanpur,
and the M.S. and Ph.D. degrees in Computer
Science from Cornell University. Dr. Sahni has
published over one hundred and fifty research
papers and written several texts. His research
publications are on the design and analysis of efficient algorithms, par-
allel computing, interconnection networks, and design automation.
In 1997, he was awarded the IEEE Taylor L. Booth Education
Award “for contributions to Computer Science and Engineering ed-
ucation in the areas of data structures, algorithms, and parallel al-
gorithms”. Dr. Sahni is a co-editor of the Journal of Parallel and




10

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. Y, MONTH, 1999

TABLE IV
COMPARISON OF COMPLEXITIES ON SIMD MODEL

Simulation Ours

Operation Electronic OTIS Electronic OTIS
Broadcast 4(vV/N -1) 4(v/N -1) 4(v/N -1) 1
Window Broadcast | 4V/N — 2w —2 | 4(vV/N = 1) | 4/N — 2w — 2 2
Prefix Sum 7(WVN-1) |6(WN-1)| 7(V/N-1) 2
Data Sum 8(VN-1) [4WN-1)| 8+N-1) 1
Rank 7WVN-1) |6(N-1)| 7(V/N-1) 2
Regular Shift s 2s s 2
Circular Shift VN 2V N VN 2
Data Accumulation VN 2V N VN 2
Consecutive Sum 2(M -1) 4(M -1) 2(M -1) 2
Adjacent Sum VN 2V N VN 2
Concentrate 8(vN —1) 8(vN —1) 7(vVN =1) 2
Distribute 8(VN-1) [8WN-1)| 7(V/N-1) 2
Generalize 8(VN-1) |[8WN-1)| 7(V/N-1) 2

Sorting 14V N 12V N 22\/N O(N3/%)
TABLE V
COMPARISON OF COMPLEXITIES ON MIMD MODEL
Simulation Ours

Operation Electronic OTIS Electronic OTIS
Broadcast 4(vV/N —1) 4(vV/N —1) 4(v/N —1) 1
Window Broadcast | 4/N —2w —2 | 4(vV/N —1) | 4/N — 2w — 2 2
Prefix Sum 7(WVN—-1) |6(WN-1)| 7(V/N-1) 2
Data Sum 4N 4/N 4/N 1
Rank 7WN-1) [6(/N—-1)] 7(/N-1) 2
Regular Shift S 2s s 2
Circular Shift s 2s s 2
Data Accumulation M M M 2
Consecutive Sum M-1 2(M —-1) M-1 2
Adjacent Sum M 2M M 2
Concentrate 4(V/N —1) 4(v/N —1) 4(v/N —1) 2
Distribute 4V/N-1) [4WN-1)| 4(+N-1) 2
Generalize 4V/N-1) [4WN-1)| 4(+N-1) 2

Sorting VN 6vN 11vVN O(N3/8)

Distributed Computing and is on the editorial boards of IEEE Par-
allel and Distributed Technology, and Computer Systems: Science
and Engineering. He has served as program committee chair, general
chair, and been a keynote speaker at many conferences.



