

Scheduling Multiprocessor Tasks

with Genetic Algorithms *

Ricardo c. Corrêat Afonso Ferreirat Pascal Rebreyend
NCE-UFRJ LIP -ENS-Lyon LIP -ENS-Lyon

Caixa Postal 2324 CNRS URA 1398 CNRS URA 1398
CEP 20001-970 RJ 69364 Lyon Cedex 07 69364 Lyon Cedex 07

Brazil France France
correa@nce. ufrj .br ferreira@lip.ens-lyon.fr prebreye@lip.ens-lyon.fr

Abstract

In the multíprocessor schedulíng problem a given program is to be scheduled in a given

multiprocessor system such that the program 's execution time is minimized. This problem being
very hard to solve exactly, many heuristic methods for finding a suboptimal schedule exist. We

propose a new combined approach, where a genetic algorithm is improved with the introduction
of some knowledge about the scheduling problem represented by the use of a list heuristic in

the crossover and mutatíon genetic operations. This knowledge-augmented genetic approach is

empirically compared with a "pure" genetic algorithm and with a "pure" list heuristic, both from
the literature. Results of the experiments carried out with synthetic instances of the scheduling

problem show that our knowledge-augmented algorithm produces much better results in terms
of quality of solutions, although being slower in terms of execution time.

Keywords: Multiprocessors, scheduling problems, list heuristics for scheduling problems,
genetic algorithms, NP-hard, optimization.

.This work was partially supported by the HCM project SCOOP -Soltling Combinatorial Optimization Problems
in Pa;allel- of the European Union. A preliminary short version of this paper appeared in the IEEE Symposium on
Parallel and Distributed Processing, New Orleans, October 1996.

tpartially supported bya CNPq fellowship and by the PROTEM-CC-II project ProMet ofthe CNPq (Brazil). He
was with LMC -IMAG, BP 53, 38041 Grenoble Cedex 9, France.

ICorresponding author. Part ofthis workwas done while with the School ofComputer Science, Carleton University,
Ottawa K1S 5B6, Canada. Partially supported by a Region Rhône-Alpes fellowship and NSERC.

1 Introd uction

Let a (homogeneous) multiprocessor system be a set of m identical processors, m > 1. Eacl1 proces-

sor has its own memory, and eacl1 pair of processors communicate exclusively by message passing

through an interconnection network. Additionaly, let a parallel program be a set of communicat-

ing tasks to be executed under a number of precedence constraints. To eacl1 task is associated a

cost, representing its execution time. A weighted acyc1ic task digraph can be used to represent the

tasks (vertices of the task digraph) and the precedence constraints (arcs of the task digraph). h1

order to be executed, eacl1 task of a given parallel program must be scheduled to some processor

of a given multiprocessor system. Consequently, tasks that communicate in the parallel program

may be scl1eduled to different processors, whicl11eads these processors to communicate during the

execution of the parallel program. h1 general, these communications slow down the execution of

the parallel program. Considering these communications and the precedence constraints between

tasks, it follows that different scl1edules of eacl1 task satisfying the precendence constraints lead

to different execution times of the parallel program. This is the motivation to the optimization

problem informally defined below.

Given a parallel program to be executed on a multiprocessor system, the (multiprocessor)

scheduling problem consists of finding a task scl1edule that minimizes the execution time of the

parallel program and the number of required processors. h1 this paper, we deal with a s1ightly

easier (although also NP-hardl) version of the scl1edu1ing problem where the number of processors

is fixed. Due to the importance of this optimization problem, it has been extensively studied by

a large number of researcl1ers (see for instance [2, 3, 4, 5, 6] and references therein). Since an

exhaustive searcl1 is often unrrea1istic, most of the work has been done on fast heuristic methods

to find suboptimal solutions, i.e., solutions whose optima1ity cannot be guaranteed. h1 other words,

the purpose of sucl1 heuristic methods is to be able to determine a good solution, even when the

instance size leads the exhaustive searcl1 to be too long. The most studied heuristic methods for

multiprocessor scl1edu1ing problems are the so called list heuristic [4].

Another heuristic method used in the scl1eduling problem context is the meta-heuristic known

as genetic algorithms [7, 8]. A genetic algorithm is a guided random searcl1 method where elements

(called individuals) in a given set of solutions (called population) are randomly combined and

modified (we call these combinations crossover and mutation, respectively) until some termination

lSince it can be expressed as a quadratic assignment problem (see [1]).

2

condition is achieved. The population evolves iteratively (in the genetic algorithm terminology,

through generations) in order to improve the fitness of its individuals. The fitness of an individual

SI is said to be better than the fitness of another individual S2 if the solution corresponding to SI is

closer to an optimal solution than S2. In each iteration, the crossovers generate a new population

in which the individuals are supposed to keep the good characteristics of the individuals of the

previous generation.

In the context of scheduling problems, Hou, Ansari and Ren [9], and Wang and Korfhage [10]

proposed pure genetic algorithms whose main difference lays in the way the individuals are coded.

Wang and Korhage use a bi-dimensional matrix to code a schedule, while Hou, Ansari and Ren

proposed a coding based on strings. In both algorithms, no knowledge about the problem is taken

into account, and the search is accomplished entirely at random considering only a subset of the

search space.

In this paper, we study the impact of (a) adopting genetic operators such that all feasible

solutions are considered in the search, and (b) integrating knowledge -in the form of list heuristics

-into a genetic algorithm for multiprocessor scheduling. The idea of integrating knowledge into

a genetic algorithm for the MSP has been recently and independently addressed by Ahmad and

Dhodhi in [11]. In their algorithm, a Chromosome represents, for each task, a priority. Priorities are

defined, before the execution, as the longest path from a node to a node which sends no messages.

At any given point in the algorithm, a scheduling can be deduced from the priorities by means

of a list algorithm. Their genetic algorithm works on the priorities with standard crossover and

mutation. The list algorithm is then used only to build a solution from the Chromosome-coded

priorities.

In our approach we use the coding from [9] and propose two new genetic algorithms which

differ from the ones discussed in [9, 11] in that the knowledge is integrated inside the crossover

and mutation operators. Notice that this method is more flexible because different operators (i.e.,

different knowledges) can be used in the different operators.

The first original genetic algorithm we propose, when compared to the one in [9], extends the set

offeasible solutions that is considered in the search. Analitically, we were able to demonstrate that

a very important drawback of the algorithm from [9] is the fact that it does not take all the search

space into consideration, while ours does not suffer of this drawback. Our second genetic algorithm

keeps this positive feature, and integrate some knowledge about multiprocessor scheduling in the

3

2.1 Multiprocessor scheduling

In order to formalize the multiprocessor scheduling problem, we first define a (homogeneous) multi-

processor system and a parallel program. A (homogeneous) multiprocessor system is composed of a

set p = {Pl, ...,Pm} of m identical processors. They are connected by a complete communication

network, where all1inks are identical. Each processor can execute at most one task at a time and

task preemption is not allowed. While computing, a processor can communicate through one or

several of its 1inks.

The parallel program is described by an acyclic digraph 1) = (T, A) .The vertices represent the

set T = { t1 , ..., tn} of tasks and each arc represents the precedence relation between two tasks.

An arc (til' ti2) E A represents the fact that at the end of its execution, til sends a message whose

contents are required by ti2 to start execution. In this case, til is said to be an immediate predecessor

of ti2 , and ti2 itse1f is said to be an immediate successor of til. We suppose that tl is the only task

without any immediate predecessor. A path is a sequence of nodes < til' ..., tik > , 1 < k ~ n such

that til is an immediate predecessor of til+l , 1 ~ 1 < k. A task til is a predecessor of another task tik

if there is a path < til' ..., tik > in 1) .To every task ti, there is an associated weight representing its

duration, known before the execution of the program. In addition, all the communications are also

known at compile- time. Thus, to every arc (til' ti2) E A there is an associated weight representing

the transfer time of the message sent by til to ti2. To compute the transfer time we take as cost

model T L + fJ, where fJ is the cost to initialize the communication, T is the transfer time for a byte,

and L is the length of the message in bytes. If both message source and destination are scheduled

to the same processor, then the cost associated to this arc becomes null.

Hence, a scheduleis a vector s = {SI,...,Sn}, where Sj = {til'...'tin}, i.e., Sj is the set of
]

the nj tasks scheduled to Pj. For each task til E Sj, 1 represents its execution rank in Pj under the

schedule s. Further, for each task ti, we denote p(ti, s) and r(ti, S), respectively, the processor and

the rank in this processor of ti under the schedule s. The execution time yielded by a schedule is

called makespan. We consider uniquely the schedules whose computation of the introduction dates

for the tasks is done in a special way. They follow a list heuristic whose principIe is to schedule

each task ti to p(ti,S) according to its rank r(ti,S). In addition, the task is scheduled as soon as

possible depending on the schedule of its immediate predecessors.

A list heuristic builds a schedule step by step. At each step, the tasks that can be scheduled

(ca1led free tasks) are those whose all predecessors have already been scheduled. Then, we choose

5

one of such tasks, say ti, according to a certain rule R1. Additionaly, we choose a processor, say

Pj, to which ti will be scheduled according to another rule R2. We then schedule ti to Pj as soon

as possible. This algorithm finishes when a1l tasks have been scheduled. At an iteration k of this

algorithm, let O(k) be the set of tasks remaining to be scheduled, and F(k) the set of free tasks

from O(k). lnitia1ly, 0(0) = T and F(O) = {tl}. Thus, at an iteration k > 0, we choose a task from

F(k) , we take it out from both 0 (k) and F(k) , and we schedule it to p(ti, s) , as soon as possible.

This algorithms finishes when F(k) = 0.

We define that a schedule s is feasible if and only if the above algorithm that constructs s

finishes at iteration k = n. This means that a1l tasks could be scheduled since exactly one task is

scheduled at each iteration. It is clear that the schedule obtained is minimal with respect to the

makespan. Figure 1 illustrates a schedule and the introduction dates computed by the list heuristic

above.

P1I 1III,.!!III'il'.111 t4 t.

P2 t2

P. t.

t2 t3 o 1 2 3 4 ó 6 7 8 9 10 11 12

.timeMultlprOCesso~ system

cost : Schedule s ;
di=imod2+1u.t. {{tl.t4.tó}.{t2},{t3}}
c(i1,i2)=2u.t. ..T8Sk's mtroductlon sequence :

< t1,t2.t3,t4,tó >

-V di = execution time of the t8Sk ti

-c(i.j) = communication time needed between ti and tj
or V(s)

~

Figure 1: Example of a schedule.

2.2 Genetic algorithms

As we have seen in the Introduction, a genetic algorithm starts with an initial population that

evolves through generations. This evolution starts with an initial population randomly generated,

and the ability of an individual to span through different generations and to reproduce depends on

6

its fitness. h1 our case, the fitness of an individual is defined as the difference between its makespan

and the one of the individuals having the largest makespan in the population. N otice that the best

individual correspond to the one having the smal1est makespan and the largest fitness. h1 what

follows, we review the operators that compose a genetic algorithm.

The selection operator al1ows the algorithm to take biased decisions favoring good individuals

when changing generations. For this, some of the good individuals are replicated, while some of

the bad individuals are removed. As a consequence, after the selection, the population is likely

to be "dominated" by good individuals. Starting from a population Pl, this transformation is

implemented iteratively by generating a new population P2 of the same size as Pl, as follows.

Initial1y, the best individual of Pl is replicated, with only copy kept in Pl and the other inserted in

P2. Then, at each iteration, we randomly select an individual Sl E Pl according to its fitness. Then,

Sl is duplicated into a new individual si, and Sl is kept in Pl while si is inserted into P2. This

process is repeated until P2 reaches the size of Pl. Notice that, using this scheme, each individual

can be selected more than once or not at al1. Thus, some individuals are eliminated from generation

to generation.

Genetic algorithms are based on the principles that crossing two individuals can result on

offsprings that are better than both parents, and that a slight mutation of an individual can also

generate a better individual. The crossover takes two individuals of a population as input and

generates two new individuals, by crossing the parents characteristics. Hence, the offsprings keep

some of the characteristics of the parents. The mutation randomly transforms an individual that

was also randomly chosen. It is important to notice that the size of the different populations are

all the same. Therefore, it is desirable that «bad" individuals generated by crossover and mutation

operators tend to be eliminated, while «good" individuals tend to survive and to reproduce. Thus,

the selection operator eliminates some individuals with poor fitness from generation to generation.

The structure of the algorithm is a loop composed of a selection followed by a sequence of

crossovers and a sequence of mutations. Let the population be randomly divided in pairs of indi-

viduals. The sequence of crossovers corresponds to the crossover of each of such pairs. After the

crossovers, each individual of the new population is mutated with some (low) probability. This

probability is fixed at the begining of the execution and is constant. Moreover, the termination

condition may be the number ofiterations, execution time, results stability, etc.

7

3 The starting genetic algorithm

As mentioned before, O1U example of a "p1Ue" genetic algorithm for multiprocessor scheduling is

the algorithm from [9], henceforth denoted HAR, for short. ill the following we recal1 its basic

ideas.

3.1 Coding of solutions

The coding of an individual s is composed of m strings { Sl , S2, ..., Sm} .There is a one to one

correspondance between processors and strings, where each string represents the tasks scheduled to

some specific processor. Each string Sj represents the tasks scheduled to processor Pj in S, and these

tasks appear in Sj in the order of their execution in the schedule s. Figure 1 shows an example of a

coding for three processors (hence, with three strings). It is easy to see that this encoding scheme

using strings may represent schedules not satisfying the precedence constraints. For this reason,

a method that guarantees that al1 strings in the initial population or produced by crossovers or

mutations will correspond to feasible schedules was proposed in HAR. This method is based on the

concept of height of tasks. Let ti be a task, hp(ti) be the maximum length of a path between tl

and an immediate predecessor of ti, and hs(ti) be the maximum length of a path between q and

an immediate successor of ti. Each task ti is then assigned a random height whose value is such

that hp(ti) < height(ti) < hS(ti). For instance, in Figure 1 we have

height(t1) = O,

height(t2) = 1,

height(t3) = 1 or 2,

height(t4) = 2,

height(t5) = 3.

The tasks heights induce a partial order on the tasks that helps representing the task dependencies

in terms of precedence relations. If a task til is a predecessor of a task ti2' then height(til) <

height(ti2). Final1y, in order to guarantee the feasibility of a given schedule coded as above, the

tasks are ordered according to their heights in each string.

3.2 Initial population

The initial population is random1y generated, the tasks being scheduled to the processors according

to their height as follows. Let T(h) be the set of tasks with height h in V. For each height h,

8

the following steps are performed. Choose at random r tasks, O .$: r .$: IT(h)l, from T(h) to be

assigned to Pl. Then, remove these r tasks from T(h) and assign them to Pl. Repeat this step for

a1l processors P2, ...,Pm-l. Fina1ly, schedule a1l remaining tasks from T(h) to Pm.

3.3 Genetic operators

The genetic operators selection, crossover and mutation used in HAR are described in the following.

3.3.1 Selection

Reca1l the principIe of a selection operation discussed in Subsection 2.2. m what follows, we

present the "roulette wheel" principIe used to randomly select an individual from Pl in HAR. m its

implementation, each individual is assigned an interval, whose length is proportional to its fitness.

For instance, task ti is assigned to the interval [1, fitness(tl)], task t2 is assigned to the interval

[fitness(t1 + 1), fitness(tl) + fitness(t2)] and so on. A number between 1 and 2::~1 fitness(ti)

is drawn at random. An individual is then selected if the randomly drawn number belongs to its

interval. Thus, the better the fitness of an individual, the better the odds of it being selected.

3.3.2 Crossover

The crossover in HAR consists of cutting each string of each of the two parents in two parts -left

and right. This is obtained by simply randomly choosing a height h and separating the tasks whose

height is larger than h -right part -from the ones whose height is sma1ler than h -left part. The

left part of each string remains the same, while the right parts of the strings are exchanged. To

ensure consistency, a partition V1, V2 of the tasks is defined such that the left parts contain only

tasks in V1 and the right parts contain only tasks in V2. Consistency is ensured since there is no

dependency from a task in V2 to a task in V1.

3.3.3 Mutation

Mutation of a schedule s is implemented through a very simple protocol. First, a task til is randomly

chosen. Then, among a1l the tasks with the same height as til' another task ti2 is randomly chosen.

Fina1ly, the positions oftasks til and ti2 are exchanged in the schedule s, generating a new, mutated

schedule.

9

3.4 Shortfalls

The improvements we suggest on HAR are based on the following observations.

Observation 1 (Initial population) In the initial population of HAR, a processor Pi has in

average more tasks than Pi+l, 1 ~ i < m. This happens because the task distribution over the

processors is not uniform due to the initial population generation scheme.

Observation 2 (Crossover) The method proposed to implement the crossover operation is simple

and fast, but suffers of a severe drawback, namely that some feasible solutions cannot be generated.

As a matter of fact, the search space of HAR may not contain any optimal solution.

As an example of Observation 2, let us use the program described in Figure 2 below, where

tasks 1 to 6 and 8 to 10 have execution time 1, and task 7 has execution time 10. Suppose that we

have two processors Pl and P2 and that communication times are null. Applying HAR, we have:

height(l) = height(2) = height(3) = 0

height(4) = height(5) = height(6) = 1

height(7) = height(8) = height(9) = 2

height(10) = 3.

An optimal schedule assigns tasks 1,4, 7 and 10, in this order, to processor Pl, and the tasks

2,5,8,3,6 and 9, in this order, are assigned to processor P2. The makespan of this schedule is 13.

N otice, however, that by respecting the constraint over the heights as in HAR, task 3 (of height 0)

is necessarily scheduled before the tasks of height 1. In particular , task 3 is scheduled before tasks

4 and 5. In this case, task 7 has to be delayed since either task 4 or 5 will also be delayed. Hence,

the makespan can never equal13 time units, showing therefore that the search space in HAR may

not contain, in general, the optimal solution for the scheduling problem under consideration.

Observation 3 (Absence of knowledge) Finally, we note that the only knowledge about the

problem that is taken into account in the algorithm is of a structural nature, through the 'l1erification

of feasibility of the solutions. While working towards the correction of the main observations above,

we also tried to integrate into our algorithm the notion of quality of indi'l1iduals.

10

9

a

Figure 2: Example where the best schedule does not satisfy the constraints of height.

4 The full search genetic algorithm

The aim of the full search genetic algorithm presented in this section is to overcome the drawback

discussed in Observations 1 and 2. Instead of verifying the feasibility of a solution through the

tasks height values, we decided to use the task digraph V = (T, A) in order to determine whether

a transformation is possible. Thus, we need another precedence relation. It stems from the prece-

dences implyed by the tasks scheduled to the same processor in a given schedule, say s, and is

defined as follows.
A(s) = A U {(til ,ti2) I (til' ti2) rt A,

p(til' s) = p(ti2 , s) and (1)

r(til' s) = r(ti2' s) -1}.

We denote V(s) the digraph (T, A(s)). We also define the relation A+ as the transitive closure of

A, and analogously, A+(s) as the transitive closure of A(s). From these definitions, we have the

following property of feasible schedules.

Proposition 1 A schedule s is feasible if and only if V(s) is acyclic.

Proof. ~ Let us be given a feasible schedule s. Let (til' ti2) be any arc in A(s) -A. By

definition, p(til, s) = p(ti2 , s) and r(til, s) = r(ti2 , s) -1. By contradiction, suppose that there is a

cycle in V(s) including (til'ti2). Then, (ti2'til) E A+(s). Therefore, since s is feasible, we observe

that r(ti2's) < r(til's), a contradiction.

-<= Consider the list algorithm that constructs s. Suppose, by contradiction, that it finishes in

an iteration ko < n, implying that s is not feasible. Then, there is an iteration 1 ~ k ~ ko of the

list algorithm such that O(k) # 0, but F(k) = 0. This implies that every task in O(k) has an

immediate predecessor in O(k). Since V is finite, there is a cycle in V(s), a contradiction. O

11

m the following, we describe our full search genetic algoritlm1 based on (1) and Proposition 1.

m the rest of the paper, we ca1l this algoritlm1 FSG, for short.

4.1 Coding of solutions

We found out that the coding used in HAR was well suited for the extension of the searched space.

Therefore, we also code the individuals of a population as m strings { Sl , S2, ..., Sm } .

4.2 Initial population

As in HAR, each individual of the initial population is randomly genererated. For this purpose,

we use the digraph 1) to propose an iterative method to generate each individual of the initial

population. This method guarantees that the task distribution among the processors is uniform.

At each iteration of this method, the following steps are performed.

1-1. Determine the set F of tasks whose a1l predecessors according to 1) have been already sched-

uled.

1-2. Randomly choose a task tj in F .

1-3. Randomly choose a processor Pi .

1-4. Schedule tj on Pi.

Notice that HAR cannot use this method because the tasks are not necessarily scheduled in the

increasing order of their heights.

4.3 Genetic operators

The genetic operators must be revisited in order to take into account the new coding of solutions.

4.3.1 Selection

See Subsection 3.3.1.

4.3.2 Crossover

Let sl and S2 be two individuals which should generate two offsprings. As in HAR, the first step

consists of separating the two individuals into two parts. m order to ensure consistency, we need

12

again ta determine a partition V1, V2 of the tasks sucl1 that there is na dependency from a task in

V2 ta a task in V1. However, since we da not scl1edule the tasks according ta their heights, we use

(1) ta build a partition sucl1 that Proposition 1 is verified, as follows. We first define the digraph

(T, A(81) U A(82)) representing the dependencies sternrning from the task digraph as well as from

the two scl1edules 81 and 82. Then, let T = T. We execute the following steps while T ~ 0.

C-1. Choose randorn1y a task ti E T and V = Vj, j = 1 ar 2.

C-2. If V = V1 then

V1 ~ V1 U{ti} U

{til: ti' E T and (2)

(til, ti) E (A+(81) U A+(82))}

else

V2 ~ V2 U {ti} U

{til: ti' E T and (3)

(ti,til) E (A+(81) U A+(82))}

C-3. Delete a1l tasks inserted into V1 ar V2 from T .

In (2), ti and a1l ofits predecessors that remain in T are inserted in V1. Equivalently, ti and a1l

of its successors that remain in T are inserted in V2 in (3). It is not diflicult ta see that V1 and V2

correspond ta the required partition when T = 0.

Fina1ly, the two offsprings are generated from 81 and 82 as in HAR. If the tasks in V1 represent

the left part of 81 and 82, and the tasks in V2 their right part, the offsprings are generated by

exchanging the right parts.

4.3.3 Mutation

Let 8 be an individual ta whicl1 the mutation operator is ta be applied. We start by constructing

the digraph 1)(8) = (T, A(8)) .Then, the new individual is generated using the iterative method

for the generation of eacl1 individual of the initial population (Subsection 4.2), where step 1-1 is

replaced by the following:

1-1 '. Determine the set F of tasks whose a1l predecessors according ta 1)(8) have been already

scl1eduled.

13

tasks (those in V2) are scheduled according to a greedy algorithm run over the graph 1)(S2). We

use a list heuristic with the following rules.

R1: compute the minimal introduction date of each free task. This is computed in function of the

precedence constraints and in function of the schedule of tasks previously scheduled. Choose

the task with smallest introduction date, say ti. h1 case of several possibilities, choose the

one with more successors. h1 case of several possibilities, choose at random.

R2: choose a processor at random among the processors where the task ti can be scheduled as soon

as possible.

The generation of s~ is analogous, with the tasks in V2 being scheduled under the constraints

in 1)(Sl). Feasibility ofboth Sl and S2 is guaranteed by Proposition 1, since both 1)(s~) and 1)(s~)

are acyclic. Call this list heuristic earliest date/most immediate successors first (ED /MISF).

5.3.3 Knowledge-augmented mutation

The knowledge represented by list heuristics is also integrated into the mutation operator as follows.

Let s be an individual to which the operator mutation is to be applied. We start by constructing

the digraph 1)(s) = (T,A(s)). Then, the new individual is formed by using a list heuristic. The

rules used are the same as the crossover, where R1 is modified such that the minimal introduction

dates of the tasks are computed exclusively in function of the precedence constraints. This can be

performed just once at the beginning of the operation.

5.4 Discussion

Notice that the list heuristic used in the mutation operator is simpler than the one used in the

crossover operator. The difference is the computation of the minimal introduction dates. h1 the

mutation operator, these values are computed just once at the beginning of the mutation operation

since they depend uniquely on the extended task graph. However , in the crossover operator ,

these introduction dates take into account the schedule of the tasks previously scheduled during

the execution of the list heuristic. Hence, the computation of these introduction dates must be

performed at each iteration of the list heuristic. The reasons for adopting these two rules are the

following.

15

Crossover The crossover operator is supposed to generate "good" individuals. Then, we adopt

the ru1es that, in general, bring the list heuristic to give better schedules. The inconvenient

is the time spent in each crossover .

Mutation The main objective of mutation operations is to produce a slight perturbation in the

search in order to, eventually, quit local minima. Then, the accuracy of the new individual

generated from a mutation is not crucial. For this reason, we adopt simple and fast ru1es for

the mutation operator .

6 Results, comparisons and analyses

In this section, we present the comparison results and analyses of the different approaches. We

implemented the four algorithms described before, namely ED /MISF , HAR, FSG, and our com-

bined genetic-list algorithm, denoted CGL, for short. All our results correspond to tests run with

our testbench, for scheduling tasks on a 16 processors multiprocessor system. Running times and

makespans are given in seconds.

6.1 The testbench

We use as testbench instances provided by a tool called ANDES- Synth [12, 13]. As mentioned

earlier, it generates synthetic task digraphs that capture the main features of well known parallel

programs. The results reported in this work thus try to mimic reality. The task digraphs were the

following.

1. Bellford: this digraph represents the algorithm known as Be1lman-Ford, which solves the

shortest path problem from all nodes to a single destination in a weighted directed graph [15] .

2. Diamondl: the task digraph in this case is known as a space-time digraph representing a

systolic computation [16].

3. Diamond2: a systolic matrix multiplication as in [17] is represented by this digraph.

4. Diamond3: this is the digraph of fine grained systolic matrix multiplication [18].

5. Diamond4: this digraph corresponds to the systolic computation of the transitive closure of

a relation on a set of elements [19].

16

6. Divconq: this digraph has the shape of a tree. It represents a divide and conquer algorithm.

7. FFT: unidimensional fast Fourier transform.

8. Gauss: this digraph describes the execution of a Gaussian elimination used in the resolution

of 1inear systems.

9. Iterative: it corresponds to a generic iterative algorithm, each iteration being represented in

a same level of the digraph. The immediate successors of a task ti at level k are tasks at level

k + 1, corresponding to the next iteration.

10. MS-Gauss: consider a parallel computation of the kind series-parallel, where the parallel

component of the computation is composed of several iterations. The digraph MS-Gauss

represents such a computation containing successive resolutions of 1inear systems by Gaussian

e1imination.

11. Prolog: this graph corresponds to the resolution of a logic program. Its structure is random.

12. QCD: represents a gradient method for linear systems [15].

Table 1 shows the size of these graphs, given by the number of tasks, as well as their normalized

execution and communication times. The tasks execution times correspond to the number of

integer operations executed, and the communication times correspond to the number of integers

transferred. In order to obtain the actual execution times and to model an IBM SP-1, we multiply

the values in Table 1 by 287JLs. The communication of L integers costs (129 + 2430450L)JLs. The

actual communication times can be obtained by replacing L by the edges' weights in Table 1. The

digraphs were used with two sizes. For this reason, the smaller instance is called -m for middle,

while the largest is called -1 for large (size).

6.2 Initial population

In Table 2, we present the characteristics of the initial population in HAR, FSG and in CGL. We

note that our method often produces more regular and better initial populations.

6.3 Termination condition

A1l of the implemented genetic algorithms stop in a generation if the improvement on the best

solution of the initial population (in percentage points) becomes smaller than the number of gen-

17

erations. This termination condition is based on the idea that we should let the algoritlUI1 run as

long as it is improving the solution in a reasonable way. In other words, this termination condition

supposes that, when it is violated during the execution of the corresponding genetic algoritlUI1,

then this algoritlUI1 will not be able to improve the solution significantly. In practical applications,

other termination condition can be used.

6.4 Final results

The aim of our experiments is to compare our genetic algoritlUI1s with ED /MISF and HAR in terms

of the quality of the solution provided and the execution time to find this solution. Table 3 shows

these comparative results2. In general terms, the results obtained with HAR was able to improve

the ones obtained with ED /MISF with relatively small execution times (only for row 3 ED /MISF

obtained a better solution). Considering our genetic algoritlUI1s, the results confirnl that the search

in the entire search space and the integration of knowledge allow us to dramatically improve the

final solutions, but the elapsed time can be much higher.

Comparing the results obtained with FSG with those of HAR, we notice that the crossover

operator in HAR, which reduces the space of solutions actually considered, is indeed a drawback

in terms of the quality of the final solution. This is observed in the initial population (Table 2)

and in the final solution. Considering the entire search space, FSG performs better than HAR due

to two reasons. First, FSG randomly generates better solutions in the initial population. Second,

FSG considers, during the search, some solutions not considered by HAR. Consequently, FSG is

able to reach better solutions than HAR in its random search.

Table 3 also shows the comparison between the results obtained with our algoritlUI1, where

knowledge about the problem was implemented through knowledge-augmented crossovers and mu-

tations, and those obtained with ED /MISF and HAR. The results of our combined genetic algoritlUI1

are better than the ones of ED /MISF .Indeed, our combined algoritlUI1 performs well even for in-

stances where ED /MISF performs poorly. This may be explained by two facts. First, the genetic

approach allows us to find good begiImings of solutions, based on its random nature, while the list

approach is able to complete those partial solutions with eflicient assignments. Using the Schema

.Theorem terminology [7, 8], the number schemata whose solution has the makespan below the

average increases exponentially. In the specific case of CGL, the crossover and mutation operators

2The greedy ED/MISF algorithm was run 1000 times with each instance, and only the best result was kept.

18

lead two kinds of schemata to dominate, namely:

1. beginnings of below-average solutions; and

2. consider two tasks til and ti2 such that (til' ti2) ~ A + and (ti2 , til) ~ A + .The schemata

in this case are those defining a precedence relation between til and ti2 corresponding to

below-average solutions in which til and ti2 are scheduled to the same processor .

N otice that the integration of knowledge also al1ows us to dramatical1y improve the solutions in

HAR. Unfortunately, however, the elapsed time of our algorithm can be much higher in both cases.

An interesting point to observe is how HAR performs when run for as long as CGL is run.

In order to give an insight into this issue, we also run HAR with a more permissive termination

condition. This 'persevering' HAR algorithm stops when the number ofgenerations is equal to 2 or

4 times the number of generations of HAR. We note that, in spite of execution times significantly

larger than those of HAR, the improvements on the final solution are modest (see Table 4) .In fact ,

persevering HAR spent an additionallong time getting on1y s1ight improvements. This suggests

that the inability of HAR to generate al1 feasible solutions is a severe drawback which prevents

HAR to significantly improve the results in Table 3.

D

~

D

~
mnMS mnGau88 mnMS-Gau88

Figure 3: The shape of MS, Gauss and MS-Gauss.

Another interesting aspect of our results is the comparison between the qua1ity of the final

solution obtained with the algorithms we tested and the sequential solution, i.e., the execution time

.on one processor of the program corresponding to each of the DAG 's considered. These comparisons

are based on the speed'Up, which is defined as the ratio between the makespan of the sequential and

paral1el solution. The speedups are shown in Table 5. Recal1 that the paral1el solutions correspond

to 16 processors. With the medium size DAG 's, the speedup is limited because the paral1e1ism is

19

restricted by the precedence constraints. On the other hand, speedups close to 16 were obtained

with the larger DAG's. Considering the average values in Table 5, we observe that some of the

results obtained with CGL are very close to optimal.

It is clear from our e:x:periences that FSG is a compromise between a pure and fast genetic

approach which yields poor solutions, or the combined approach that we proposed here, which

yields very good solutions, although paying the price of a larger computation time.

7 Conclusion

As mentioned in [9], genetic algorithms are well adapted to multiprocessor scheduling problems.

In this paper, we tested three genetic algorithms with synthetic task digraphs, and we obtained

solutions whose speedup are very close to 1inear .Moreover, one of the qualities of genetic algorithms

we tested is that it can be easily extended to other instances of the scheduling problem, e.g., where

a topology different from the complete graph is given for the interconnection network.

The experimental results presented in this paper demonstrate that the integration of knowledge

about the multiprocessor scheduling problem, through the use of a list heuristic in knowledge-

augmented crossovers and mutations, helps to dramatical1y improve the quality of the solutions

that can be obtained with both a pure genetic and a pure list approaches. Unfortunately, the price

to pay is the nmning time of the combined algorithm, which can be much larger than when running

the pure genetic algorithm.

One should notice, however, that the running times (in the order of some hours for diflicult

graphs) are still reasonable, given that the problem is NP-hard and the instances are big. On the

other hand, the rllllning time is larger then pure genetic and list approaches, but smal1er then the

combined approach. As a perspective, we shal1 try to design a paral1el version of our combined

algorithm in order to lower its elapsed time.

Acknowledgement

We are very greatful to João Paulo Kitajima for his substantial help with ANDES-Synth.

References

[1] P. Pardalos and H. Wolkowicz, Eds., Quadratic assignments and related problems, vol. 16

20

of DIMACS Series in Discrete Mathematics and Theoretical Computer Science, American

Mathematical Society, 1994.

[2] T. Casavant and J. Kuhl, " A taxonomy of scheduling in general-purpose distributed computing

systems" , IEEE Transactions on Software Engineering, vol. 14, no.2, Feb. 1988.

[3] E. Coffman, Computer and Job-Shop Scheduling Theory, Wiley, New York, 1976.

[4] M. Cosnard and D. Trystram, Parallel Algorithms and Architectures, futernational Thomson

Computer Press, 1995.

[5] B. Malloy, E. Lloyd, and M. Soffa, "Scheduling DAG's for asynchronous multiprocessor exe-

cution", IEEE Transactions on Parallel and Distributed Systems, vol. 5, no.5, May 1994.

[6] M. Norman and P. Thanisch, "Models of machines and computations for mapping in multi-

computers", ACM Computer Surveys, vol. 25, no.9, pp. 263-302, Sep 1993.

[7] D. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-

Wesley, Reading, Mass., 1989.

[8] J. Holland, Adaptation in Natural and Artificial Systems, MIT Press, Mass., 1992.

[9] E. Hou, N. Ansari, and H. Ren, " A genetic algorithm for multiprocessor scheduling" , IEEE

Transactions on Parallel and Distributed Systems, vol. 5, no.2, pp. 113-120, Feb. 1994.

[10] P.-C. Wang and W. Korfuage, "Process scheduling using genetic algorithms", in IEEE Sym-

posium on Parallel and Distributed Processing, San Antonio, Texas, USA, Oct. 1995, pp.

638-641.

[11] I. Ahmad and M.K. Dhodhi, "Multiprocessor Scheduling in a genetic paradigm", Parallel

Computing, vol. 22, pp. 395-406, 1996.

[12] J. Kitajima and B. Plateau, "Model1ing parallel program behaviour in ALPES", Information

and Software Technology, vol. 36, no.7, pp. 457-464, July 1994.

..[13] J. Kitajima, C. Tron, and B. Plateau, " ALPES: A tool for the performance evaluation of par-

allel programs" , in Environments and Tools for Parallel Scientific Computing, J. J. Dongarra

and B. Tourancheau, Eds., Amsterdam, The Netherlands, 1993, pp. 213-228, North-Holland,

Series: Advances in Parallel Computing vol. 6.

21

Digraph number length weight of the

oftasks ofa task ti arc (ti"ti2)

1 -m 365 10000 400

-1 992 10000 400

2 -m 258 10000 400

-1 1026 10000 400

3 -m 486 10000 400

-1 1227 10000 400

4 -m 731 10000 400

-1 1002 10000 400

5 -m 731 10000 400

-1 1002 10000 400

6 -m 382 10000 5120, if i1 = 1

-1 766 10000 ~, if i1 > 1

and tio = pred(ti,)-
7 -m 194 5000 800

-1 1026 5000 800

8 -m 782 10000 4000

-1 1227 10000 4000

9 -m 262 2500 25600, if i1 = 0

-1 938 2500 100, if i1 # 0

10 -m 768 10000, if Gauss 4000, if Gauss

76800, if MS 76800, if MS

-1 1482 10000, if Gauss 4000, if Gauss

148200, if MS 148200, if MS

11 -m 214 10000 4000

-1 1313 10000 4000

12 -m 326 10000 4000

-1 1026 10000 4000

Table 1: Characteristics of test graphs.

23

HAR FSG and CGL

Digraph best worst average standard best worst average standard

schedule schedule deviation schedule schedule deviation

1 -ll1 438 799 609 88 170 234 201 15

-1 1517 2114 1797 158 410 501 449 20

2 -ll1 439 534 480 22 272 373 319 28

-1 1604 1936 1806 75 842 981 913 35

3 -ll1 593 672 633 20 591 852 711 50

-1 1228 1429 1351 44 1210 1588 1397 110

4 -ll1 1028 1546 1301 114 458 554 510 23

-1 1461 2109 1729 150 571 702 627 37

5 -ll1 588 770 670 37 391 487 433 21

-1 783 1036 913 59 471 586 546 28

6 -ll1 497 765 651 78 224 286 251 16

-1 943 1682 1300 187 365 448 396 22

7 -ll1 147 204 176 14 71 103 89 8

-1 653 1083 913 98 221 278 250 12

8 -ll1 1182 1514 1348 74 504 593 550 20

-1 1822 2146 2067 96 701 825 765 34

9 -ll1 89 140 120 12 81 109 95 7

-1 369 466 419 25 237 285 261 12

10 -ll1 15946 17960 17149 537 8098 9051 8583 218

-1 15549 17216 16350 458 6488 7127 6846 166

11 -ll1 241 526 374 70 124 182 145 15

-1 1636 3212 2187 382 415 522 480 23

12 -ll1 5409 6870 6222 365 2299 2595 2441 76

-1 17519 20078 18679 654 5709 6355 6015 163

Table 2: Characteristics of initial population for 26 individuals in HAR, FSG and CGL.

24

HAR Persevering HAR

2 times 4 times

Digraph Parallel Execution Parallel Execution Parallel Execution

solution time solution time solution time

1 -m 332 24 323 46 318 90

-1 1168 111 1154 193 1129 355

2 -m 326 11 308 22 303 43

-1 1511 73 1470 90 1443 123

3 -m 525 20 510 34 486 60

-1 1148 123 1127 150 1089 203

4 -m 933 31 907 48 895 81

-1 1251 64 1197 98 1166 157

5 -m 548 41 521 57 501 85

-1 722 85 699 108 676 152

6 -m 337 20 326 43 309 86

-1 864 19 844 39 807 71

7 -m 115 7 112 15 109 29

-1 488 64 484 118 477 220

8 -m 967 43 917 70 882 121

-1 1618 96 1572 125 1494 181

9 -m 76 6 74 12 71 24

-1 277 37 269 75 261 143

10 -m 14380 52 14170 80 13864 117

-1 13700 304 13493 364 13232 445

11 -m 215 5 215 11 198 21

-1 1522 161 1433 420 1432 795

12 -m 4591 22 4591 39 4591 73

-1 15854 168 15794 238 15794 370

Table 4: Absolute values of final solutions and execution times obtained with HAR and persevering

HAR algorithms.

26

Digraph ED/MISF HAR FSG CGL

1 -m 1.02 3.04 9.88 14.61

-1 1.01 2.44 11.72 15.73

2 -m 2.04 2.26 3.85 6.34

-1 1.75 1.95 5.25 10.74

3 -m 2.11 1.34 1.72 8.48

-1 1.81 1.53 2.03 11.58

4 -m 1.44 2.25 7.49 12.63

-1 1.41 2.30 8.52 12.91

5 -m 1.21 1.93 4.33 9.60

-1 1.24 1.99 4.90 13.09

6 -m 2.00 3.28 7.51 11.62

-1 1.99 2.54 8.84 12.31

7 -m 1.30 2.37 6.80 10.88

-1 1.14 3.02 9.81 15.02

8 -m 1.28 2.32 6.49 12.38

-1 1.22 2.18 6.94 13.49

9 -m 1.06 2.53 4.17 9.14

-1 1.03 2.43 4.07 10.18

10 -m 1.13 1.87 5.64 3.33

-1 1.16 1.94 7.36 13.3

11 -m 1.44 2.83 7.79 9.97

-1 1.47 2.62 11.58 14.75

12 -m 1.12 2.04 7.45 8.52

-1 1.07 1.86 9.34 15.47

average -m 1.43 2.34 6.09 9.79

-1 1.36 2.23 7.53 13.21

Table 5: Speedup.

27

