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Abstract

This paper proposes and eval uates software techniques that increase register file utilization

for simultaneous multithreading (SMT) processors. SMT processors require large register files
to hold multiple thread contexts that can issue instructions, out of order, every cycle. By
supporting better inter-thread sharing and management of physical registers, an SMT processor
can reduce the number of registers required and can improve performance for a given register
filesize.

Our techniques specifically target register deallocation. While out-of-order processors with

register renaming are effective at knowing when a new physical register must be allocated, they
are limited in knowing when physical registers can be deallocated. We propose architectural
extensions that permit the compiler and operating system to (1) free registers immediately upon
their last use, and (2) free registers allocated to idle thread contexts. Our results, based on
detailed instruction-level simulations of an SMT processor, show that these techniques can
increase performance significantly for register-intensive, multithreaded programs.

1

I ntroduction

Simultaneous multithreading (SMT) is a high-performance architectural technique that

substantially improves processor performance by executing multiple instructions from multiple
threads every cycle. By dynamically sharing processor resources among threads, SMT increases
functional unit utilization, thereby boosting both instruction throughput for multiprogrammed
workloads and application speedup for multithreaded programs[5].

Previous research has looked at the performance potential of SMT [24], as well as several
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portions of its design, including instruction fetch mechanisms and cache organization [23][13].
This paper focuses on another specific design area that impacts SMT’ s cost-effectiveness: the
organization and utilization of its register file. SMT raises a difficult tradeoff for register file
design: while alarge register file is required to service the architectural and renaming register
needs of the multiple thread contexts, smaller register files provide faster access times.
Therefore, an SMT processor needs to use its register resources efficiently in order to optimize
both die area and performance.

In this paper, we propose and evaluate software techniques that increase register utilization,
permitting a smaller, faster register file, while still satisfying the processor’s need to support
multiple threads. Our techniques involve coordination between the operating system, the
compiler, and the low-level register renaming hardware to provide more effective register use
for both single-threaded and multithreaded programs. The result isimproved performance for a
given number of hardware contexts and the ability to handle more contexts with a given number
of registers. For example, our experiments indicate that an 8-context SMT processor with 264
physical registers, managed with the techniques we present, can attain performance comparable
to a processor with 352 physical registers.

Our techniques focus on supporting the effective sharing of registersin an SMT processor,
using register renaming to permit multiple threads to share a single global register file. In this
way, one thread with high register pressure can benefit when other threads have low register
demands. Unfortunately, existing register renaming techniques cannot fully exploit the potential
of ashared register file. In particular, while existing hardware is effective at alocating physical
registers, it has only limited ability to identify register deallocation points; therefore hardware
must free registers conservatively, possibly wasting registers that could be better utilized.

We propose software support to expedite the deall ocation of two types of dead registers: (1)
registers allocated to idle hardware contexts, and (2) registersin active contexts whose last use
has already retired. In the first case, when athread terminates execution on a multithreaded
architecture, its hardware context becomes idle if no threads are waiting to run. While the
registers allocated to the terminated thread are dead, they are not freed in practice, because
hardware register deallocation only occurs when registers in a new, active thread are mapped.
This causes a potentially-shared SMT register file to behave like a partitioned collection of per-
thread registers. Our experiments show that by notifying the hardware of OS scheduling
decisions, performance with aregister file of size 264 is boosted by more than 3 times when 2 or
4 threads are running, so that it is comparable to a processor with 352 registers.

To address the second type of dead registers, those in active threads, we investigate five
mechanisms that allow the compiler to communicate last-use information to the processor, so
that the renaming hardware can deallocate registers more aggressively. Without this
information, the hardware must conservatively deallocate registers only after they are redefined.
Simulation results indicate that these mechanisms can reduce register deallocation
inefficiencies; in particular, on small register files, the best of the schemes attains speedups of
up to 2.5 for some applications, and 1.6 on average. All the register deallocation schemes could
benefit any out-of-order processor, not just SMT.

The remainder of this paper is organized as follows. Section 2 briefly summarizesthe SMT
architecture and register renaming inefficiencies. Our experimental methodology is described in
Section 3. Section 4 describes the OS and compiler support that we use to improve register
usage. We discuss related work in Section 5 and offer concluding remarks in Section 6.
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2 Simultaneous Multithreading

Our SMT processor model is similar to that used in previous studies: an eight-wide, out-of-
order processor with hardware contexts for eight threads. On every cycle four instructions are
fetched from each of two threads. The fetch unit favors high throughput threads, selecting the
two threads that have the fewest instructions waiting to be executed. After fetching, instructions
are decoded, their registers are renamed, and they are inserted into either the integer or floating
point instruction queues. When their operands become available, instructions (from any thread)
are issued to the functional units for execution. Finally, instructions are retired in per-thread
order.

Most components of an SMT processor are an integral part of any dynamically-scheduled,
wide-issue superscalar. Instruction scheduling is an important case in point: instructions are
issued after their operands have been calculated or loaded from memory, without regard to
thread; the register renaming hardware eliminates inter-thread register name conflicts by
mapping thread-specific architectural registers onto the processor’ s physical registers.

The major additions to a conventional superscalar are the instruction fetch unit mentioned
above and several per-thread mechanisms, such as program counters, return stacks, retirement
and trap logic, and identifiersin the TLB and branch target buffer. The register file contains
register state for all processor-resident threads and consequently requires two additional pipeline
stages for accessing it (one each for reading and writing). (See [23] for more details.)

2.1 Register Renaming and the Register Deallocation Problem

Register renaming eliminates false (output and anti-) dependences that are introduced when
the compiler’ s register allocator assigns an arbitrary number of pseudo-registersto the limited
number of architectural registersin the instruction set architecture. Dependences are broken by
dynamically aliasing each defined architectural register to a different physical register, enabling
formerly dependent instructions to be executed in parallel.

SMT assumes a register mapping scheme similar to that used in the DEC 21264 [8] and
MIPS R10000 [27]. The register renaming hardware is responsible for three primary functions:
(1) physical register allocation, (2) register operand renaming, and (3) register deallocation.
Physical register allocation occurs on demand. When an instruction defines an architectural
register, amapping is created from the architectural register to an available physical register and
is entered into the mapping table. If no registers are available, instruction fetching stalls. To
rename aregister operand, the renaming hardware locates its architectural -to-physical mapping
in the mapping table and aliases it to its physical number. Register deallocation works in
conjunction with instruction retirement. An active list keeps track of all uncommitted
instructions in per-thread program order. As instructions retire, their physical registers are
deallocated and become available for reallocation.

Renaming hardware handles physical register allocation and renaming rather effectively, but
fails to manage deallocation efficiently. A register is dead and could be deallocated once its last
use commits. The hardware, however, cannot identify the last uses of registers, because it has no
knowledge of register lifetimes. Consequently, hardware can only safely deallocate a physical
register when it commits another instruction that redefines its associated architectural register, as
shown in Figure 1.

2.2 Physical Register Organization and the Register Deallocation Problem
In fine-grained multithreaded architectures like the Tera[1], each hardware context includes
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1 1dl r 20, addr 1(r 22) Figure 1: This example illustrates the inability of the renaming hardware to
2 1dl r21, addr 2( r 23) efficiently deallocate the physical register for r20. (The destination registers are
3 addl r20.r21.r12 italicized). Instruction 1 defines r20, creating a mapping to a physical register, say
’ ’ PL. Instruction 3 isthe last use of r20. However, P1 cannot be freed until r20is
redefined in instruction n. In the meantime, several instructions and potentially a

large number of cycles can pass between the last use of P1 (r20) and its
nld 120 addra(r29)  gegpesi 0 P 20

<—— Renaming
registers

Architectural
registers

@

Thread 1 |
Thread 2 [
Thread3 [ ]
Threed4 [ ]

Thread 1
Thread 2
Thread 3
Thread 4

Figure 2: Logical register file configurations: (a) is a Tera-style, partitioned register file; (b) isan SMT register filein which
all threads share a common pool of physical registers; (c) isan SMT register file, given current register deallocation schemes:
each hardware context has dedicated physical registers for the | SA-defined architectural registers and only the renaming
registers are shared across all contexts.

aregister file for one thread, and a thread only accesses registers from its own context, as shown

in Figure 2a.% In contrast, in an SMT processor, a single register file can be shared among all
contexts (Figure 2b). We call this organization FSR ( Fully-Shared Registers), because the
register file is structured as a single pool of physical registers and holds the state of all resident
threads. SMT’ s register renaming hardware is essentially an extension of the register mapping
scheme to multiple contexts. Threads name architectural registers from their own context, and
the renaming hardware maps these thread-private, architectural registers to the pool of thread-
independent physical registers. Register renaming thus provides a transparent mechanism for
sharing the register pool.

Although an SMT processor is best utilized when all hardware contexts are busy, some
contexts may occasionally be idle. To maximize performance, no physical registers should be
allocated to idle contexts; instead, all physical registers should be shared by the active threads.
However, with existing register deallocation schemes, when athread terminates, its architectural
registers remain allocated in the processor until they are redefined by a new thread executing in
the context. Consequently, the FSR organization behaves more like a partitioned file, as shown
in Figure 2c. (We call this partitioned organization PASR, for Private Architectural and Shared
Renaming registers.) Most ISAs have 32 architectural registers; consequently, thirty-two
physical registers must be dedicated to each context in a PASR scheme. So, for example, on an
eight-context SMT with 352 registers, only 96 (352-8* 32) physical registers are available for
sharing among the active threads.
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3 Methodology for the Experiments

We have defined several register file management techniques devised to compensate for
conservative register deallocation, and evaluated them using instruction-level simulation of
applications from the SPEC 95 [20] and SPLASH-2 [26] benchmark suites (Table 1). The SUIF
compiler [9] automatically parallelized the SPEC benchmarks into multithreaded C code; the
SPLASH-2 programs were already explicitly parallelized by the programmer. All programs
were compiled with the Multiflow trace-scheduling compiler [14] into DEC Alpha object files.
(Multiflow generates high-quality code, using aggressive static scheduling for wide issue, loop
unrolling, and other ILP-exposing optimizations.) The object files were then linked with our

Application data set instructions simulated
SPEC 95 FP applu 33x33x33 array, 2 iterations 2719M
hydro2d 2 iterations 4735M
mgrid 64x64x64 grid, 1 iteration 3.193B
su2cor 16x16x16x16, vector length 4096, 2 iterations 5.356 B
swim 512x512 grid, 10 iterations 4191 M
tomcatv 513x513 array, 5 iterations 189.1 M
turb3d 64x64x64 array, 1 timestep 1941 B
SPLASH 2 fft 64K data points 32.0M
LU 512x512 matrix 431.2M
radix 256K keys, radix 1024, 524288 max key value 58M
water-nsquared 512 molecules, 3 timesteps 869.9 M
water-spatial 512 molecules, 3 timesteps 7835M

Table 1: Benchmarks used in this study. For the SPEC95 applications, our data sets are the same size as the SPEC
reference set, but we have reduced the number of iterations because of the length of simulation time.

versions of the ANL [2] and SUIF runtime libraries to create executables.

Our SMT simulator processes unmodified Alpha executables and uses emulation-based,
instruction-level simulation to model in detail the processor pipelines, hardware support for out-
of-order execution, and the entire memory hierarchy, including the TLBs (128 entries each for
instruction and data TLBs), cache behavior, and bank and bus contention. The memory
hierarchy in our processor consists of two levels of cache, with sizes, latencies, and bandwidth
characteristics, as shown in Table 2. Because register file management is affected by memory

L11-cache L1 D-cache L2 cache
Size (bytes) 128K /32K 128K /32K 16M/2M
Associativity two-way two-way direct- mapped
Line size (bytes) 64 64 64

Banks

4

4

1

Accesses/cycle

2

2

1/2

Cache fill time (cycles)

2

2

4

Latency to next level

10

10

68

Table 2: Configuration and latency parameters of the SMT cache hierarchies used in this study.
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latencies: we experimented with two different memory hierarchies. The larger memory
configuration represents a probable SMT memory hierarchy for machines in production
approximately 3 years in the future. The smaller configuration serves two purposes: (1) it
models today’ s memory hierarchies, as well as those of tomorrow’ s low-cost processors, such as
multimedia co-processors, and (2) it provides a more appropriate ratio between data set and
cache size, modeling programs with larger data sets or data sets with less data locality than those
in our benchmarks[19].

We also examined a variety of register file sizes, ranging between 264 and 352, to gauge the
sensitivity of the register file management techniques to register size. With more than 352
registers, other processor resources, such as the instruction queues, become performance
bottlenecks. At the low end, at least 256 registers are required to hold the architectural registers

for all eight contexts, % and we provide an additional 8 renaming registers for a total of 264.
Smaller register files are attractive for several reasons. First, they have a shorter access time; this
advantage could be used either to decrease the cycle time (if register file accessis on the critical
path) or to eliminate the extra stages we allow for register reading and writing. Second, they
take up less area. Register filesin current processors occupy a hegligible portion (roughly 1%)
of the chip area, but alarge, multi-ported SMT register file could raise that to around 10%, an
area allocation that might not be acceptable. Third, smaller register files consume less power.

For branch prediction, we used a McFarling-style hybrid predictor with a 256-entry, 4-way
set-associative branch target buffer, and a hybrid predictor (8k entries) that selects between a
global history predictor (13 history bits) and alocal predictor (a 2k-entry local history table that
indexes into a4k-entry, 2-bit local prediction table) [16].

Because of the length of the simulations, we limited our detailed simulation results to the
parallel computation portion of the applications (the norm for simulating parallel applications).
For the initialization phases of the applications, we used a fast simulation mode that warmed the
caches, and then turned on the detailed simulation mode once the main computation phases were
reached.

4 Techniquesfor improving register file management

Despiteits flexible organization, an SMT register file will be underutilized, because
renaming hardware fails to deallocate dead registers promptly. In this section, we describe
communication mechanisms that allow the operating system and the compiler to assist the
renaming hardware with register deallocation, by identifying dead registers that belong to both
idle and active contexts.

4.1 Operating system support for dead-register deallocation

As explained in Section 2.2, when an executing thread terminates, the thread’ s physical
registers remain allocated. Consequently, active threads cannot access these registers, causing a
fully-shared register file (FSR) to behave like one in which most of the registers are partitioned
by context (PASR).

After athread terminates, the operating system decides what to schedule on the newly-
available hardware context. There are three options, each of which has a different implication
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for register deallocation:

1. Idlecontexts: If there are no new threadsto run, the context will beidle. The terminated
thread’ s physical registers could be deallocated, so that they become available to active
threads.

2. Switching to a new thread: Physical registers for a new thread’ s architectural registers are
normally allocated when it begins execution. A more efficient scheme would free the
terminated threads' s physical registers, allocating physical registersto the new thread on
demand. Unallocated physical registers would then be available to other contexts.

3. Switching to a swapped-out thread: Context switch code loads the register state of the new
thread. Asthese load instructions retire, physical registers used by the terminated thread are
deallocated.

All three scenarios present an opportunity to deallocate a terminated thread’ s physical
registers early. We propose a privileged, context deallocation instruction (CDI) that triggers
physical register deallocation for athread. The operating system scheduler would execute the
instruction in the context of the terminated thread. In response, the renaming hardware would
free the terminating thread' s physical registers when the instruction retires.

Three tasks must be performed to handle the context deallocation instruction: creating a new
map table, invalidating the context’ s register mappings, and returning the registers to the free
list. When a CDI enters the pipeline, the current map table is saved and a new map table with no
valid entries is created; the saved map table identifies the physical registers that should be
deallocated, while the new table will hold subsequent register mappings. Once the CDI retires,
the saved map is traversed, and all mapped physical registers are returned to the free list.
Finally, al entriesin the saved map are invalidated. If the CDI is executed on a wrong-path and
consequently gets squashed, both the new and saved map tables are thrown away.

Much of the hardware required for these three tasks already exists in out-of-order processors
with register mapping. When a branch enters the pipeline, a copy of the map table is created,;
when the branch is resolved, one of the map tables is invalidated, depending on whether the
speculation was correct. If instructions must be squashed, the renaming hardware traverses the
active list (or some other structure that identifies physical registers) to determine which physical
registers should be returned to the free list. Although the CDI adds a small amount of logic to
existing renaming hardware, it allows the SMT register file to behave as atrue FSR register file,
instead of a PASR by deallocating registers more promptly.

Experimental results

To evaluate the performance of the fully-shared register organization (FSR), we varied the
number of active threads and register set sizes, and compared it to PASR with identical
configurations. We modeled an OS scheduler that frees all physical registers for terminated
threads, by making all physical registers available when a parallel application began execution.

The results of this comparison are shown in Figure 3. With PASR (Figure 3a), only
renaming registers are shared among threads. Execution time therefore was greater for smaller
register files and larger numbers of threads, as more threads competed for fewer registers. FSR,
shown in Figure 3b, was less sensitive to both parameters. In fact, the smaller register files had
the same performance as larger ones when few threads were executing, because registers were
not tied up by idle contexts. Except for the smallest configuration, FSR performance was stable
with varying numbers of threads, because the parallelism provided by additional threads
overcame the increased competition for registers; only the 264-register file had a performance
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Figure 3: Execution time for FSR and PASR with the larger memory hierarchy. Each register file organization is
normalized to its 352 register, 1 thread execution. Results with the smaller SMT memory hierarchy had identical trends.
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Figure 4: FSR speedups over PASR for the larger () and smaller (b) memory hierarchies, at different register file sizes.

sweet spot.

The speedups in Figure 4 show that FSR equals or surpasses PASR for al register file sizes
and numbers of threads. FSR provides the greatest benefits when it has more registers to share
(several idle contexts) and PASR has fewer (small register files). For example, with 320
registers and 4 idle contexts (4 threads), FSR outperformed PASR by 8%, averaged over all
applications. With only 288 or 264 registers, FSR’ s advantage grew to 34% and 205%, and with
6 idle contexts (and 320 registers) to 15%. Taking both factors into account (288/264 registers, 6
idle contexts), FSR outperformed PASR by 51%/232%. Only when all contexts were active
were FSR and PASR comparable; in this case the architectural state for all threadsisresident in
both schemes.

FSR has a larger performance edge with smaller cache hierarchies, because hiding the longer
memory latencies requires more in-flight instructions, and therefore more outstanding registers.
This suggests that efficient register management is particularly important on memory-intensive
workloads or applications with relatively poor data locality.

In summary, the results illustrate that partitioning a multithreaded register file (PASR)
restricts its ability to expose parallelism. Operating system support for deallocating registersin
idle contexts, which enables the register file to be fully shared across all threads (FSR), both
improves performance, and makes it less dependent on the size of the register file and the
number of active threads.

4.2 Compiler support for dead-register allocation
As previously described, hardware register deallocation is inefficient, because the hardware
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has knowledge only of aregister’s redefinition, not its last use. Although the compiler can
identify the last use of aregister, it currently has no means for communicating this information
to the hardware.

In this section, we describe and evaluate several mechanisms that allow the compiler to
convey register last-use information to the hardware, and show that they improve register
utilization on SMT processors with an FSR register file organization. The proposed mechanisms
are either new instructions or fields in existing instructions that direct the renaming hardware to
free physical registers.

Number integer FP
of
registers || applu | hydro2d | swim | tomcatv | fft | LU | radix | water-n || applu | hydro2d | swim | tomcatv | fft | LU | radix | water-n

Large Cache Hierarchy

352 31 0.1 0.0 0.0 38 | 00 0.4 0.0 217 6.3 0.0 18.0 00 | 00 | 00 0.1
320 31 0.7 0.1 0.0 61| 01 | 369 0.1 40.2 177 0.1 20.3 00 | 00 | 00 0.6
288 19 16 0.4 0.0 215| 03 | 759 0.3 64.0 521 0.5 58.4 05 | 00| 00 14.1
264 15 22 219 0.0 582 | 22 | 911 0.6 87.8 83.0 0.6 90.1 81 (02| 00 739

Small Cache Hierarchy

352 3.4 10 0.4 0.0 84 | 13 | 120 0.0 323 34.4 53 45.7 05 | 17| 00 0.1
320 35 15 15 0.0 162 | 33 | 491 0.2 44.6 48.0 8.6 60.2 14 | 35| 00 0.6
288 26 21 53 0.0 252 | 105 | 835 0.3 67.5 70.1 132 79.8 53 | 55| 00 17.0
264 22 25 44.2 0.2 64.9 | 227 | 934 0.7 88.1 87.2 2.7 94.0 85 | 67 | 00 747

Table 3: Frequency (percentage of total execution cycles) that no registers were available when executing 8 threads. Bold entries
(frequencies over 10%) represent severe stalling due to insufficient registers.

Number integer FP
of
registers || applu | hydro2d | swim | tomcatv | fft | LU | radix | water-n || applu | hydro2d | swim | tomcatv | fft | LU | radix | water-n

Large Cache Hierarchy

352 74 69 29 52 135 | 110 312 168 120 153 73 136 68 | 42 48 199
320 74 68 29 53 134 | 110 311 168 120 153 73 136 68 | 42 36 199
288 75 64 29 52 132 | 110 301 168 17 152 73 135 67 | 42 48 199
264 7 57 29 51 140 | 110 211 168 m 150 73 133 71 | 42 48 198

Small Cache Hierarchy

352 74 62 30 54 132 | 147 | 265 168 121 158 7 141 68 | 88 24 199
320 74 61 30 55 132 | 147 | 258 167 121 157 76 141 68 | 81 21 216
288 74 58 30 55 131 | 110 231 168 118 155 76 139 69 | 50 44 199
264 76 54 32 54 137 | 110 173 168 113 152 76 136 72 | 50 48 198

Table 4: Average number of dead registers per cycle when executing 8 threads. Bold entries are those where no registers were
available more than 10% of execution cycles.

First, however, we examine three factors that motivate the need for improved register
deallocation: (1) how often physical registers are unavailable, (2) how many registers are dead
each cycle, and (3) how many cycles pass between aregister’s last use and its redefinition,
which we call the dead-register distance Register unavailability is the percentage of total
execution cycles in which the processor runs out of physical registers (causing fetch stalls); itis
ameasure of the severity of the problem caused by current hardware register-deallocation
mechanisms. The average number of dead registers each cycle indicates how many physical
registers could be reused, and thus the potential for a compiler-based solution. Dead-register
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a) base b) Free Register (c) Free Mask
| dl | dl r 20, addr 1(r 22) | dl r20, addr 1(r 22)
r20, addr 1(r 22) freg r22 I dl r21, addr2(r23)
| dl | dl r21, addr 2(r 23) addl r20,r21,r24
r21, addr 2(r23) rfi ra23 addl r21,0x1,r21
addl r20,r21,r24 addl r20,r21,r24 .
addl r21,0x1,r21 rfi r20 st r12, addr 3(r21)
L. addl r21,0x1,r21 | dl r 20, addr 4(r 25)
st mask for reg 24
r12, addr3(r21) st r24, addr3(r21) Ida r25,0x1000(r31)
| dl freg r24,r21 ; mask for regs 20,21, 22, 23, 25
r20, addr 4(r 29) Idl r20, addr4(r259) I dah r25, 0x20f O(r 24)
freg r25 ;free int regs identified
; by mask
fmask r25
Figure 5: These code fragmentsiillustrate the register freeing mechanisms: @) is the original code fragment; b) shows the
Free Register instructions necessary to free registers r12 to r25, c) isthe Free Mask instructions necessary to free the same
registers

Number

of registers|| applu hydro2d swim tomcatv fft LU radix water-n average
int instrs 57.6 50.1 323 67.2 30.7 56.9 27 327 47.2
int cycles 214.6 155.4 27.8 2257 89.9 85.6 80 2154 1255
FPinstrs 184 309 117 226 20.4 7.1 327 185
FPcycles 97.1 157.4 284 120.0 65.7 224 133.7 81.8

Table 5: Dead register distance for 264 registers and the smaller cache hierarchy. The data indicate that registers are frequently not
deallocated until many cycles after their last use has retired. Figures for other register sizes were similar. Bold entries are those
where no registers were available more than 10% of execution cycles.

distance measures the average number of cycles between the completion of an instruction that
last uses aregister and that register’s deallocation; it is arough estimate of the likely
performance gain of a solution.

The datain Table 3 indicate that, while the projected SMT design (352 registersin an FSR
file) is sufficient for most applications, smaller register files introduce bottlenecks, often severe,
on many applications. (Register pressure was particularly high for integer registersin fft and
radix, and for floating-point registers in applu, hydro2d, tomcatv, and water-n.) Applications
also ran out of registers more frequently with smaller cache hierarchies. A closer examination
revealsthat in all cases where stalling due to insufficient registers was a problem (bold entriesin
Table 3), a huge number of registers were dead (shown in Table 4). Table 5 shows that if these
dead registers had been freed, they could have been reallocated many instructions/cycles earlier.
All this suggests that, if registers were managed more efficiently, performance could be
recouped and even a 264-register FSR might be sufficient.

Five compiler-based solutions

Using dataflow analysis, the compiler can identify the last use of aregister value. In this
section, we evaluate five alternatives for communicating last-use information to the renaming
hardware:
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1. FreeRegister Bit communicates |ast-use information to the hardware via dedicated
instruction bits, with the dual benefits of immediately identifying last uses and requiring no
instruction overhead. Although it is unlikely to be implemented, because most instruction
sets do not have two unused hits, it can serve as an upper bound on performance
improvements that can be attained with the compiler’ s static last-use information. To
simulate Free Register Bit, we modified Multiflow to generate atable, indexed by the PC,
that contains flags indicating whether either of an instruction’s register operands were |ast
uses. On each simulated instruction, the simulator performed alookup in this table to
determine whether register deallocation should occur when the instruction is retired.

2. FreeRegister isamore realistic implementation of Free Register Bit. Rather than
specifying last usesin the instruction itself, it uses a separate instruction to specify one or
two registers to be freed. Our compiler generates a Free Register instruction (an unused
opcode in the Alpha ISA) immediately after any instruction containing alast register use (if
the register is not also redefined by the same instruction). Like Free Register Bit, it frees
registers as soon as possible, but with an additional cost in dynamic instruction overhead.

3. FreeMask isan instruction that can free up to 32 registers, and is used to deall ocate dead
registers over alarge sequence of code, such as abasic block or a set of basic blocks. For our
experiments, we inserted a Free Mask instruction at the end of each Multiflow trace. Rather
than identifying dead registers in operand specifiers, the compiler generates a bit mask. In
our particular implementation, the Free Mask instruction uses the lower 32-bits of aregister
as amask to indicate which registers can be deallocated. The mask is generated and |oaded
into the register using apair of Ida and Idah instructions, each of which has a 16-bit
immediate field. (The example in Figure 5 compares Free Register with Free Mask for a
code fragment that frees integer registers 20 through 25.) Free Mask sacrifices the
promptness of Free Register’ s deallocation for a reduction in instruction overhead.

4. Free Opcode is motivated by our observation that 10 opcodes were responsible for 70% of

the dynamic instructions with last use bits set, indicating that most of the benefit of Free
Register Bit could be obtained by providing special versions of those opcodes. In addition to
executing their normal operation, the new instructions also specify that either the first,
second, or both operands are last uses. In this paper, we use the 15 opcodes listed in Table 6,
obtained by profiling Free Register Bit instruction frequencies on applu, hydro2d and
tomcatv.! Retrofitting these 15 instructions into an existing I SA should be feasible; for
example, all can be added to the DEC Alpha I SA, without negatively impacting instruction
decoding.

5. Free Opcode/M ask augments Free Opcode by generating a Free Mask instruction at the end
of each trace. This hybrid scheme addresses register last usesin instructions that are not
covered by our particular choice of instructions for Free Opcode.

Current renaming hardware provides mechanisms for register deallocation (i.e., returning
physical registers to the free register list) and can perform many deall ocations each cycle. For
example, the Alpha 21264 deallocates up to 13 registers each cycle to handle multiple

Page 11



Integer FP

Opcode Operand Opcode Operand
add| 1 addt 1
subl 1 subt 1
mull 1 mult 1,2
stl 2 Stt 1, both
beq 1 fcmov 1, both
Ida 1
dl 1

Table 6: The opcodes used in Free Opcode. Note that for mult, stt, and fcmov, two new versions of each must be
added. The versions specify whether the first, second, or both operands are last uses.

instruction retirement or squashing. All five proposed register deallocation techniques use a
similar mechanism. Free Mask is slightly more complex, because it can specify up to 32
registers; in this case deallocation could take multiple cyclesif necessary. (In our experiments,
however, only 7.2 registers, on average, were freed by each mask.)

The five register deallocation schemes are compared in Figure 6, which charts their speedup
versus no explicit register deallocation. The Free Register Bit bars show that register
deallocation can (potentially) improve performance significantly for small register files (77% on
average, but ranging as high as 195%). The Free Register Bit results highlight the most
attractive outcome of register deallocation: by improving register utilization, an SMT processor
with small register files can achieve large register file performance, as shown in Figure 7. The
significance of this becomes apparent in the context of conventional register file design. Single-
threaded, out-of-order processors often double their registers to support greater degrees of
parallelism (e.g., the R10000 has 64 physical registers, the 21264 has 80). With multiple register
contexts, an SMT processor need not double its architectural registersif they are effectively
shared. Our results show that an 8-context SMT with an FSR register file (i.e., support for
deallocating registersin idle contexts) needs only 96 additional registersto alleviate physical
register pressure, lowering the renaming register cost to 27% of the ISA-defined registers.
Compiler-directed register deallocation for active contexts drops the overhead even further, to
only 8 registers or 3% of the architectural register state.

The Free Register and Free Mask results highlight the trade-off between these two
alternative schemes. Free Register is more effective at reducing the number of dead registers,
because it deallocates them more promptly, at their last uses. When registers are a severe
bottleneck, as in applu, hydro2d, tomcatv, and radix with small register files, Free Register
outperforms Free Register Mask. Free Register Mask, on the other hand, incurs less instruction
overhead; therefore it is preferable with larger register files and applications with low register
usage.

Free Opcode and its variant, Free Opcode/Mask, * are the schemes of choice. They strike a
balance between Free Register and Free Mask by promptly deallocating registers, while
avoiding instruction overhead. When registers were at a premium, Free Opcode(/Mask)
achieved or exceeded the performance of Free Register; with the larger register file and for
applications with low register usage, Free Mask performance was attained or surpassed.

For most programs (all register set sizes and both cache hierarchies) Free Opcode(/Mask)
met or came close to the optimal performance of Free Register Bit. (For example, it was within
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4% on average for 264 registers, and 10% for 352, on the small cache hierarchy.) With further
tuning of opcode selection and the use of other hybrid schemes (perhaps judiciously combining
Free Opcode, Free Mask, and Free Register), we expect that the gap between it and Free
Register Bit will be narrowed even further, and that we will achieve the upper bound of
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Figure 7: Comparison of execution time for FSR with and without Free Register Bit for arange of register file sizes, on both
the larger and smaller cache sizes. The height of the solid black bar represents the execution time when Free Register Bit
isused. Thetotal height of the bar corresponds to the execution time when no deallocation is performed. The relatively
flat height of the black bars indicates that with Free Register Bit, smaller register files can achieve the performance of
larger register files.

compiler-directed register deall ocation performance.

In summary, by providing the hardware with explicit information about register lifetimes,
compiler-directed register deallocation can significantly improve performance on small SMT
register files, so that they become a viable alternative even with register-intensive applications.
Although particularly well-suited for SMT, register deallocation should benefit any out-of-order

processor with explicit register renaming.
5 Related work

Several researchers have investigated register file issues similar to those discussed in this
paper. Large register files are a concern for both multithreaded architectures and processors with
register windows. Waldspurger and Weihl [25] proposed compiler and runtime support for
managing multiple register setsin aregister file. The compiler tries to identify an optimal
number of registers for each thread, and generates code using that number. The runtime system
then tries to dynamically pack the register sets from all active threads into the register file. Nuth
and Dally’s[17] named state register file caches register values by dynamically mapping active
registersto asmall, fast set of registers, while backing the full register name space in memory.

To reduce the required chip areain processors with register windows, Sun designed 3-D
register files[22]. Because only one register window can be active at any time, the density of the
register file can be increased by overlaying multiple register cells so that they share wires.

Several papers have investigated register lifetimes and other register issues. Farkas, et al. [6]
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compared the register file requirements for precise and imprecise interrupts and their effects on
the number of registers needed to support parallelism in an out-of-order processor. They also

characterized the lifetime of register values, by identifying the number of live register values

present in various stages of the renaming process.

Franklin and Sohi [7] and L ozano and Gao [15] found that register values have short
lifetimes, and often do not need to be committed to the register file. Both proposed compiler
support to identify last uses and architectural mechanisms to allow the hardware to ignore writes
to reduce register file traffic and the number of write ports, but neither applied these concepts to
register deallocation. Pleszkun and Sohi [18] proposed a mechanism for exposing the reorder
buffer to the compiler, so that it could generate better schedules and provide speculative
execution. Sprangle and Patt [21] proposed a statically-defined tag | SA that exposes register
renaming to the compiler and relies on basic blocks as the atomic units of work. Part of the
register fileis used for storing basic block effects, and the rest handles values that are live across
basic block boundaries.

Janssen and Corporaal [10], Capitanio, et al. [3], Llosa, et al. [12], Multiflow [4], and
Kiyohara, et a. [11] also investigated techniques for handling large register files, including
partitioning, limited connectivity, replication, and the use of new opcodes to address an
extended register file.

6 Conclusions

Simultaneous multithreading has the potential to significantly increase processor utilization
on wide-issue out-of-order processors, by permitting multiple threads to issue instructions to the
processor’ s functional units within asingle cycle. As a consequence, SMT requires alarge
register file to support the multiple thread contexts. This raises a difficult design tradeoff,
because large register files can consume die area and impact performance.

This paper has introduced new software-directed techniques that increase utilization of the
registersin an SMT. Fundamental to these techniques is the global sharing of registers among
threads, both for architectural register and renaming register needs. By introducing new
instructions or additional fields in the ISA, we allow the operating system and compiler to signal
physical register deallocation to the processor, thereby greatly decreasing register waste. The
result is more effective register use, permitting either a reduction in register file size or an
increase in performance for agiven file size.

We have introduced explicit software-directed deallocation in two situations. First, when a
context becomes idle, the operating system can indicate that the idle context’ s physical registers
can be deallocated. This permits those registers to be freed in order to serve the renaming needs
of other executing threads. Our results show that such notification can significantly boost
performance for the remaining threads, e.g., aregister file with 264 registers demonstrates
performance equivalent to a 352-register file when only 4 threads are running. Second, by
allowing the compiler to signal the last use of aregister, the processor need not wait for a
redefinition of that register in order to reuse it. We proposed several mechanisms for signalling
last register use, and showed that on small register files, average speedups of 1.6 can be obtained
by using the most efficient of these mechanisms. While our results are shown in the context of
an SMT processor, these mechanisms would be appropriate for any processor using register
renaming for out-of-order instruction issue.
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