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AbstractÐThe current fault-tolerant routing methods require extensive changes to practical routers such as the Cray T3D's

dimension-order router to handle faults. In this paper, we propose methods to handle faults in multicomputers with dimension-order

routers with simple changes to router structure and logic. Our techniques can be applied to current implementations in which the router

is partitioned into multiple modules and no centralized crossbar is used. We consider arbitrarily located faulty blocks and assume only

local knowledge of faults. We apply our techniques for torus networks and show that, with as few as four virtual channels per physical

channel, deadlock- and livelock-free routing can be provided even with multiple faults and multimodule implementation of routers. Our

simulations of the proposed technique for 2D tori and mesh indicate that the performance degradation is similar to that seen in the case

of cross-bar based designs previously proposed.

Index TermsÐCray T3D router, dimension-order router, fault-tolerant routing, multicomputer networks, message routing, torus

networks, wormhole routing.

æ

1 INTRODUCTION

MANY recent experimental and commercial multicom-
puters and multiprocessors [29], [23], [12] use direct-

connected networks with grid topology. A �k; n� network
has an n-dimensional grid structure with k nodes (a node is
a processor-memory-router element) in each dimension
such that every node is connected to two other nodes in
each dimension by direct communication links. The
majority of these multicomputers use dimension-order or
e-cube routing with wormhole switching [18]. Wormhole is a
form of cut-through routing in which blocked messages
hold on to the channels they already reserved.

In practice, the e-cube routing is implemented using
multiple modules such that each module handles routing of
messages in exactly one dimension. We refer to this
implementation as the multimodule or partitioned dimen-
sion-order router (PDR) implementation [19], [14], [29], [23],
[12]. For example, the Cray T3D uses a 3D torus network
with each PDR implemented using three chipsÐone chip
for each dimension module. An alternative router imple-
mentation is to use centralized crossbars or partitioned
crossbars (if it is infeasible to implement the entire crossbar
in a single chip) [25], [27] to handle the switching in each
router. While crossbar implementations can offer adaptivity
and more flexibility, each crossbar chip requires more
numbers of pins than the module chips used as the building
block for PDR implementations. Thus, for the same
technology, a PDR implementation yields wider channels
compared to the crossbar implementation.

While the e-cube is simple to implement and provides
high throughput for uniform traffic, it cannot handle even

simple node or link faults due to its nonadaptive routing.
Adaptive, fault-tolerant cut-through routing algorithms
have been the subject of extensive research in recent years
[11], [20], [16], [22], [26], [1], [4], [9], [21], [2], [17], [6]. These
results implicitly or explicitly assume routers with centra-
lized crossbars. Therefore, such techniques are not suitable
for multiprocessors with PDRs. Several other results (see,
for example, [24], [28] and the references therein) exploit the
rich interconnection structure of hypercubes and are not
suitable for high-radix, low-dimensional tori. The current
techniques to handle faults in torus and mesh networks
require one or more of the following: 1) new routing
algorithm, 2) substantial changes to router implementation,
in particular crossbars connecting input channels in two or
more dimensions to output channels in two or more
dimensions, 3) global knowledge of faults, 4) restriction
on the shapes, locations, and number of faults, 5) relaxing
the constraint of guaranteed delivery, deadlock- or livelock-
free routing.

In this paper, we propose a technique to incorporate fault
tolerance into networks with PDRs. Our approach is to
provide interprocessor communication among the fault-free
nodes, rather than to recreate or simulate the original
network topology. We have previously proposed similar
techniques for fault-tolerant routing in multicomputer
networks with crossbar based routers [4], [9], [7]. The main
contribution of this work is to show that partitioned
dimension-order routers also can be enhanced for fault-
tolerant routing without using crossbars. We show that with a
small increase in the resources and simple changes to the
router organization and routing logic, multiple block faults
can be handled without compromising livelock and dead-
lock freedom.

Our technique works with local knowledge of faults
(each fault-free node knows only the status of its and its
neighbors' links), handles multiple faults, and guarantees
livelock- and deadlock-free routing of all messages. Our

1026 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 10, NO. 10, OCTOBER 1999

. R.V. Boppana is with the Division of Computer Science, Universit of Texas
at San Antonio, San Antonio, TX 78249.
E-mail: boppana@cs.utsa.edu.

. S. Chalasani is with TM Floyd & Company, 6133 N. River Rd., Rosemont,
IL 60018. E-mail: surechalasani@hotmail.com.

For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 110037.

1045-9219/99/$10.00 ß 1999 IEEE



fault model allows multiple node and link faults as long as
the fault regions are convex in shapeÐrectangular in 2D
tori, cubic in 3D tori, etc. The convex fault model is simple
enough to provide modular routing, yet powerful enough
to model node and printed-circuit-board level faults. We
apply our techniques to torus networks and show that, with
as few as four virtual channels per physical channel, and
some modifications to the interconnection of dimension-
modules, PDRs can be used for fault-tolerant routing.

Section 2 gives an overview of dimension-order routers.
Section 3 describes the fault-model. Section 4 describes the
changes to the router required to handle faults. Section 5
gives the required modifications to the routing logic.
Section 6 presents simulation results on the performance
of mesh and torus networks under faults. Section 7
concludes this paper.

2 PARTITIONED DIMENSION-ORDER ROUTERS

A �k; n�-torus has n dimensionsÐDIM0; . . . ; DIMnÿ1, k nodes
per dimension, and N � kn nodes. Each node is uniquely
indexed by a radix-k n-tuple. Each node is connected via
communication links to two other nodes in each dimension.
The neighbors of the node x � �xnÿ1; . . . ; x0� in dimension i
are �xnÿ1; . . . ; xi�1; xi � 1; xiÿ1; . . . ; x0�, where addition and
subtraction are performed modulo k. Each link provides
full-duplex communication using two unidirectional phy-
sical channels. A link is said to be a wraparound link if it
connects nodes �xnÿ1; . . . ; xi�1; 0; xiÿ1; . . . ; x0� and

�xnÿ1; . . . ; xi�1; kÿ 1; xiÿ1; . . . ; x0�
in dimension i, 0 � i < n. Each node is a combination of
processor, memory, and router. Since our interest in this
paper is in the routing part of a node, we use node and
router synonymously. To illustrate our technique, we use a
2D or 3D torus as a typical network. However, our results
can be extended to multidimensional tori and meshes in a
straight forward manner.

As per dimension order routing, each message completes
the required hops (in a shortest path) in dimension DIMi

before taking any hops in DIMj, 0 � i < j < n, where n is the
number of dimensions in the network.

The Cray T3D [12] implements such a partitioned
dimention-order router in each node using three identical
router chips. A pair of 24-bit unidirectional lines (16-bit data
+ 8-bit control) interconnect appropriate dimension chips in
adjacent nodes in the Cray T3D router. In addition, each
chip has an input from the network interface (for injection
of messages) or from previous dimension router chip and
an output to the next dimension router chip or to the
network interface (for delivery of messages). So, each router
chip has three incoming 24-bit channels and three outgoing
24-bit channels. Not counting pins for power supply,
ground, etc., each router chip requires at least 144 pins for
data and control of virtual channels. For a crossbar based
router implementation, one chip is used per router. Such a
chip requires at least 336 pins (2 � 6 � 24 � 288 pins for
internode-connections and 2 � 24 � 48 pins for injection and
consumption channels). Thus, PDR implementations have
lower pin requirements per router chip. For the same

number of pins per chip, PDRs can provide wider channels.
The main disadvantages of PDRs are increased chip count
and additional bottlenecks in the form of interchip links
used by messages that need to change their dimensions.

Since channels are the resources for which messages
compete in wormhole routing, cyclic dependencies, and
deadlocks in a torus are avoided by simulating two
virtual channels (denoted high and low) on each physical
channel [18]. (The Cray T3D actually simulates four
virtual channels to handle two distinct classes of
messages with two virtual channels per class of mes-
sages.) In each dimension, a message starts with the low
virtual channel and switches to the high virtual channel
after taking a wraparound connection. This is one
example of breaking deadlocks using virtual channels.
Several variations of this are possible [18], [13].

3 FAULT MODEL

We model multiple simultaneous faults, which could be
connected or disjoint. We assume that the mean time to
repair faults is quite large, a few hours to many days, and
that the existing fault-free routers are still connected and
thus should be used for routing messages in the mean time.
We assume that all faults are nonmalicious faults; that is, a
failed component simply ceases to work. Therefore,
messages are injected into the network by processors with
nonfaulty router nodes. Furthermore, messages are des-
tined only to processors with nonfaulty router nodes. We
also assume that faults do not disconnect the network. (If
the network is disconnected, the proposed results can be
applied to the resulting subnetworks, which are meshes,
with some restrictions.) These assumptions are commonly
made in fault analyses in literature [11], [16].

Detection and isolation of faults is done locally. Also the
fault information is kept locally. That is each node knows
only the faults of its and its neighbors' links. Each node is
required to detect faults on its incoming physical channels
and its router chips. A node can detect its faulty
components, if any, using a suitable self-test sequence
periodically. A healthy node sends status signals to its
neighbors on its outgoing physical channels and monitors
status signals sent by its neighbors on its incoming physical
channels. Missing or incorrect sequences of signals indicate
malfunction of the link or the node sending them. The
nodes at the end of a malfunctioning link stop using that
link. When a node detects a faulty link, it reports this fault
to its neighbors reachable via the fault-free links. We
develop fault-tolerant algorithms, for which it is sufficient if
each nonfaulty node knows the status of the links incident
on it and its neighbors. Another approach for fault detection
is given in [2].

We consider router chip and internode link faults.
Interchip link faults can be treated as pin faults on router
chips, and are modeled as router-chip failures. Our fault
model is such that in a router node, either 1) one router chip
is faulty or 2) all router chips are faulty. If at most one of the
router chips is faulty, then the internode links in the
corresponding dimension are faulty. If two or more router
chips are faulty, then the entire node is marked faulty.
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We model block or convex faults [11], [4]. In the block fault
model, the set of faulty nodes or links can be partitioned
into disjoint subsets such that each subset can be contained
by an nD cube, the interior of which contains only the
components of the fault-set. Block faults have the shape of a
3D cube in a 3D torus, a rectangle in a 2D torus, and so on. It
is noteworthy that the fault set containing an entire row or
column of a 2D torus is not a valid block fault. A two-node
block fault in a 3D torus is shown in Fig. 1.

The block model is simple, yet models two common fault
scenarios: single faults and multiple dependent faults,
which can occur, for example, if a board (which has a
block of nodes) loses its power-supply or is removed for
repair. In addition, the routing techniques developed here
can be used to provide a secure computation environment
within a multiprogramming mode, where several users
share the processors and the network. To provide a secure
computing environment, a block of nodes may be allocated
such that the nodes and the links among them are not used
by other computations or messages resulting from them. By
treating such a block of processors and links as faulty in
routing the other messages, the proposed techniques can be
applied for on-the-fly allocation and release of blocks of
nodes for special-purpose computations.

A simple characterization of block faults is that a fault-
free node may have at most one faulty link incident on it.
Using this rule, any fault pattern can be blocked: If a node
has more than one faulty link, it marks itself faulty. Thus, a
fault is blocked within a finite number of steps, bounded by
the diameter of the network.

3.1 Fault Rings

Consider a 2D torus with a block fault. This block fault is
enclosed by a ring of nonfaulty nodes and links; the
smallest such ring is called the f-ring for that fault [4]. In an
nD torus, the block fault is an nD cube such that any 2D
cross-section of the fault is a 2D block fault. Therefore, for a
block fault in an nD torus, several fault rings are formed,
one for each possible 2D cross section of the fault. Examples
of fault rings for a 3D torus are shown in Fig. 1. An f-ring
represents a two-lane path to a message that needs to go

through the block fault contained by the f-ring. Thus, an f-
ring simulates four paths to route messages in two
dimensions.

A fault ring corresponding to each 2D cross-section of a
fault-block can be formed in a distributed manner using a
two-step process. In the first step, each node that detected a
faulty neighbor sends this information to its neighbors in
other dimensions. In the second step, based on the set of
messages received in the first step, each node that is to be
on the f-ring determines its neighbors on the f-ring [4].

There can be several fault rings, one for each f-region, in
a faulty network with multiple faults. Up to two f-rings in a
2D torus may have a common link, and up to four f-rings
may have a common node. Overlapped f-rings produce
more channel dependencies, and require more classes of
virtual channels to avoid deadlocks.

4 MODIFICATIONS TO PARTITIONED DIMENSION-
ORDER ROUTERS

In this section, we discuss the hardware modifications to
provide additional connections between the router chips in
a node. The next section discusses the changes to the
routing logic.

For n-dimensional (nD) networks there are n router
chips, one for each dimension from 0 to nÿ 1. The following
modifications to the router structure are necessary for nD
networks (see Fig. 2):

1. Connections from injection channels to the inputs of
all router chips.

2. Connections from the output of each router chip to a
multiplexer; the output of this multiplexer is
connected to the consumption channel of the
processor.

3. Connections from the output of router chip i to the
i n p u t s o f r o u t e r c h i p s �iÿ 1�mod n a n d
�i� 2�mod n, for 0 � i < n.

Note that the two new interchip connections are in
addition to the default i to i� 1 connection in the original
PDR. The i to iÿ 1 connection is to facilitate adaptive
routing in two adjacent dimensions. The i to i� 2
connection is used to skip a failed DIMi�1 chip. With these
connections, any single chip failure or faulty links in any
one dimension can be tolerated. For n � 2 and n � 3 even
fewer connections are required. For example, for a 2D torus,
only the following new connections are required: a
connection from DIM1 to DIM0 router chip, injection channel
input to DIM1 chip, and consumption channel output from
DIM0 chip. An example of this design is given in Fig. 3.

The proposed modifications increase the number of pins
used for interchip channels (within a node). Prior to the
modifications, each router chip has one interchip incoming
(injection from previous dimension router chip) channel.
With the proposed modification, we need extra pins to
provide up to four (up to three for interchip and one for
injection) incoming channels. It is noteworthy that this is the
worst case increase in the pin count of a router chip, and is
independent of the dimension of the torus. If desired, the
pin count may be reduced by multiplexing multiple
interchip channels (see Fig. 2) from different neighbor chips
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Fig. 1. Example of a block fault and the corresponding f-rings in a 3D
torus. Shaded nodes and the links incident on them are faulty. For the
3D torus, wraparound links and faulty links are not shown for clarity and
internal healthy links are indicated by dotted lines. Thick lines indicate
the fault rings.



onto one single incoming channel of a chip. There are two
possible ways of doing this. One idea is very similar to the
sharing of a bus by multiple processors in a symmetric
multiprocessor. This will require a few additional pins for
request and grant, but will avoid two additional sets of data
and other control pins. The arbitration logic is simple and
not likely to use up too much of space inside a chip. If this is
not feasible, an external multiplexer may be used, but it has
the undesirable effect of increasing the chip count. When
there are no faults, there is no reduction of bandwidth for
interchip communication. Only for nodes on an f-ring the
interchip channels are used more. Also, the attempts to save
pins incur more delay because of bus arbitration or
multiplexers. But, this additional delay is not too significant
compared to the delay through the router chip or the
queuing delay at moderate to high traffic loads. Also, this
additional delay does not affect the network throughput,
since the router chips operate in a pipelined fashion.

5 FAULT-TOLERANT DIMENSION-ORDER ROUTING

We begin with modifications to the routing logic in each
router chip. Our approach is to use the nonadaptive
dimension-order routing if a message path is not blocked
by faults. For messages blocked by faults, we provide
alternative paths around the faults. The techniques are
livelock- and deadlock-free and guarantee delivery of each
and every message injected into the network. We present

our technique for 2D tori and extend it to higher
dimensional tori.

5.1 Fault-Tolerant Routing in 2D Tori

At any time, the next hop of a message is specified by the
default (shortest-path, nonadaptive) e-cube, or the fault-
tolerant routing logic. We distinguish between the two
types of hop specifications.

Definition 1. Normal hop. At any given time, the path
specified by e-cube from the current host to the destination of
the message is called its e-cube path; the first hop in that path is
its normal hop from the current host node.

Message types. To route messages around the f-rings,
messages are classified into one of the following types:
DIM0ÿ, DIM0�, DIM1�, or DIM1ÿ. The type of a message can be
determined by an intermediate node using the message's
destination and status (discussed below). For easier
description, we call DIM0� messages collectively as row
messages, and DIM1� messages as column messages. With the
normal dimension-order routing, a row message can turn
into a column message, but not vice versa. When there are
faults, we preserve this property by avoiding a message's
type determination while it is being misrouted.

Normal versus misrouted messages. To handle misrout-
ing of messages blocked by faults, we introduce a 2-bit
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Fig. 3. A modified 2D dimension-order router to support fault-tolerant routing.



status field in the message header. The first bit indicates the
statusÐmisrouted or normalÐof the message. For a
message not currently blocked by a fault, this bit is cleared.

If a message is blocked by a fault, then its status bit is set

until it is misrouted to the extent that the original

dimension-order routing can be used. There are two

pathsÐclockwise and counter-clockwiseÐon the f-ring to

misroute a blocked message. When a normal message is

blocked by a fault, an appropriate orientation is chosen

based on its type and its destination. The specified

orientation is indicated in the second bit of the status field.

A misrouted row message travels on a coulmn of the

corresponding f-ring, and becomes normal when it reaches

a corner node of the f-ring. Also, the row hops as specified

by the dimension-order routing are unavailable for a

misrouted row message until it reaches a corner node of

the f-ring. A misrouted column message becomes normal

only when it reaches the other row of the current f-ring such

that it is in the same column as its destination.
Fault-tolerant routing logic. The fault-tolerant version of

the dimension-order routing is given in Fig. 4. A message,

say M, comes into an intermediate node in its path as a

normal or misrouted message and leaves it as a normal or

misrouted message. The incoming status is used to

determine M's type and status for the next hop. It is easier

to understand the algorithm if it is assumed that a

message's type is indicated in its header using an additional

type field. (But, the type of a message can be determined by

each intermediate node unambiguously without having to

maintain it in the message header. For a normal message, its

type is determined by the dimension-order routing logic.

For a misrouted message, its type can be determined by

noting the current dimension of travel and virtual channel

used.) The ºifº conditions in step 2 of the algorithm in Fig. 4

ensure that the misrouted message has traversed far enough

on the f-ring so that the original dimension-order routing

can be used again. An implementaion of this algorithm is

may be found in the simulation code available via the web.1.

Example. In Fig. 5, node �1; 2� and link < �3; 2�; �4; 2� > are
faulty, which give rise to two nonoverlapping f-rings.
Message M originates at �1; 0� and is destined for �4; 2�. It
begins at its source as a DIM0� message and travels to
�1; 1�. At �1; 1� its e-cube path is blocked by the faulty
node �1; 2�. This message then travels to �2; 1� as a
misrouted message. It becomes normal again at �2; 1� and
travels to �2; 2�. M becomes a DIM1� message at �2; 2�, and
is misrouted from �3; 2� to �4; 2�.
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Fig. 4. Pseudocode of fault-tolerant routing logic used by nodes. C++ style comments and block letters for keywords are used.



5.2 Fault-Tolerant Routing in nD Tori

The fault-tolerant algorithm described above for 2D tori can
be extended to n-dimensional (nD) tori using the planar-
adaptive routing (PAR) technique [11]. A block fault in an
nD torus satisfies the condition that each 2D cross-section of
the fault is rectangular in shape (see Section 3). Each such
fault-ring sits in a 2D plane. Let DIMi ÿ DIMj denote the 2D
plane involving dimensions i and j, where 0 � i; j � nÿ 1
and i 6� j. The routing algorithm still needs only four virtual
channels per physical channel. The key issue is how virtual
channels and planes are used to route messages.

A normal message that needs to travel in DIMi, 0 � i < n,
as per the e-cube is a DIMi message and is routed in a plane
of the type DIMi ÿ DIMi�1�modn�. Depending on its direction of
travel in DIMi, a message can be further classified as DIMi� or
DIMiÿ. A DIMi message that completed its hops in the ith
dimension becomes a DIMj message, where j > i is the next
dimension of travel as per the e-cube algorithm. A blocked
message uses the f-ring in its current 2D plane to get around
faults in an appropriate direction as determined in the case
of a 2D torus. For DIMi, 0 � i < nÿ 1, messages, the extent of
misrouting around a fault is the same that in the case of DIM0

messages in the 2D case presented above, but DIMnÿ1

messages are misrouted on three sides of an f-ring in the
same manner as DIM1 messages are misrouted in the 2D
case. Fig. 6 illustrates the misrouting of messages around a
fault in a 3D torus.

5.2.1 Allocation of Virtual Channels

In a fault-free network with dimension-order routing, each
physical channel is used by a specific type of message. With
faults, however, blocked messages are misrouted and some
physical channels around f-rings are used by multiple types
of messages. This creates cyclic dependencies. To break
these new dependencies and to keep the routing deadlock-
free, we use two new classes in addition to the original two
classes required for deadlock-free routing in a fault-free
torus. These additional virtual channels require additional
flit-buffers in each router chip. Let the four classes of virtual
channels be c0; c1; c2; c3. On each physical channel (inter-
node as well as intranodeÐbetween router chips), a virtual
channel of each class is simulated. Depending on the

direction and dimension a message is traveling before being
blocked by a fault, it can be one of 2n possible types: -DIMi�
and DIMiÿ, i � 0; . . . ; nÿ 1. The channel allocation is such
that any new dependencies among these types of messages
caused by sharing of the physical channels on f-rings are
broken. DIM0 messages use virtual channels of class c0 before
taking a hop on a DIM0 wraparound channel and c1-virtual
channels thereafter. A DIM0 message that has completed
hops in DIM0 but not reached its destination will turn into a
DIM1 message and continues routing as a DIM1 message.
Similarly, a DIM1 message uses c2 or c3 virtual channels and
turns into a DIM2 message after completing hops in DIM1. This
continues for DIM0; . . . ; DIMnÿ2. The allocation of virtual
channels is slightly different for the highest dimension
message. For odd n, a DIMnÿ1 message uses c0 or c1 while
traveling in DIMnÿ1 and c2 or c3 while traveling in DIM0

(because of misrouting). For even n, a DIMnÿ1 message uses
c2 or c3 while traveling in DIMnÿ1 and in DIM0 (if misrouted).
These rules for fault-tolerant routing of messages are
summarized in Table 2. In Fig. 5, the message uses c0

channels from �1; 0� to �2; 2� and c2 channels thereafter.
A message that has completed hops in a dimension goes

to the next dimension router chip using a virtual channel on
the interchip link to that chip. The virtual channel used on
the interchip link can be the one it will use in traversing the
next dimension (as a normal message). If it does not need to
travel in the next dimension, then it can use any virtual
channel that can be used by a message of that dimension on
the interchip link to the following dimension chip. For
example, if a DIM0 message has completed its hops, then it
goes to DIM1 chip using c0 or c1 channel on the interchip link.
If it does not need to take any hops in DIM1, then it uses c2 or
c3 on the link from DIM1 chip to DIM2 chip.

5.3 Proof of Deadlock-Free Routing

The above routing algorithm works for routers implemen-
ted using a full crossbar which can connect any input
channel of a node to any output channel. As mentioned
earlier, the previous works on fault-tolerant wormhole
routing algorithms implicitly assumed that the router in a
node is implemented using a crossbar, which provides full
switching capability among multiple dimensions [11], [16],
[3], [8]. In a multichip dimension-order router, changing
dimensions of travel by messages is complicated since
interchip channels are shared among different types of
messages. We prove below that these additional dependen-
cies resulting from sharing interchip links do not cause
deadlocks.

Lemma 1. The proposed fault-tolerant routing algorithm is
deadlock-free.

Proof. There are 2n types of messages: DIMi� and DIMiÿ,
i � 0; . . . ; nÿ 1. A particular set of virtual channels are
used for each message type. So, messages of a type travel
in a particular virtual network formed by all the nodes
and the set of virtual channels used by them. During the
routing, a message of one type may change into another
type (for example, a DIM0� message may change into
DIM1ÿ after completing its hops in DIM0). Our proof
technique relies on showing that there is a partial order
among all the virtual channels of the network and
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messages acquire them in an increasing order of ranks

[18]. For this we need to show that 1) the sets of virtual

channels used by the various types of messages are

pairwise disjoint, 2) the virtual network for each type is

acyclic, and 3) the virtual networks are used by messages

as per some partial order. The multiplexers do not cause

any new dependencies since they simply connect inputs

to outputs in a demand time-multiplexed manner.
The sets of virtual channels used by various types of

messages are pairwise disjoint. First, we show that the

set of virtual channels used by DIMi� messages is disjoint
from the set of virtual channels used by DIMiÿ messages.

Consider DIM0� and DIM0ÿ messages. If the sets of
virtual channels used by DIM0� and DIM0ÿ messages are
not disjoint, then they share virtual channels on inter-
node physical channels or interchip physical channels.
The DIM0� messages travel on positive direction DIM0

physical channels and the DIM1 physical channels among
nodes on the left boundary columns of f-rings. Similarly,
DIM0ÿ messages travel on negative direction DIM0 physical
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Fig. 5. Example of fault-tolerant dimension-order routing on nonoverlapping f-rings.

Fig. 6. Routing of six different message types around a fault in a 3D torus. The shaded area represents a faulty block, and directed lines indicate the

paths of messages on the f-ring around the fault. The type of virtual channels used are also indicated.



channels and DIM1 physical channels among nodes on the
right boundary columns of f-rings. This is illustrated in
Fig. 7 for an f-ring in DIM0 ÿ DIM1 cross-section of a 3D
torus. Since f-rings do not overlap, the column channels
are used by exactly one or none of the two classes of
messages. So, DIM0� and DIM0ÿ do not share virtual
channels on internode physical channels since the
physical channels they use are disjoint.

Because of multimodule implementation, DIM0� and
DIM0ÿ messages may share some virtual channels on
interchip links. With our fault-tolerant routing logic, this
cannot occur, however. Referring to Fig. 7 again, we note
that only DIM0� messages can reserve the c0 channel from
DIM0 chip to DIM1 chip in the middle nodes (node A in
Fig. 7) on the left column and the c0 channel from DIM1

chip to DIM0 chip in the corner nodes on the left boundary
column of the f-ring. A DIM0ÿ message does not use them.
Similarly, the c0 channels between DIM0 and DIM1 chips in
the nodes on the right boundary column of an f-ring are
used only by DIM0ÿ messages. For messages that took
hops on wraparound links in DIM0, the above argument
repeats with c1 as the virtual channel. Hence, there
cannot be sharing of virtual channels among DIM0�
messages.

From the above argument, it is clear that there are no
dependencies among DIM0� and DIM0ÿ classes of
messages. A normal message that completes its hops in
DIM0 becomes a DIM1 message and moves to the DIM1 chip
in the current node. The use of a virtual channel into DIM1

chip is similar to the use of the injection channel from
processor into DIM0 chip and does not cause any cyclic
dependencies.

This argument can be repeated to show that DIMi� and
DIMiÿ, 0 < i < nÿ 1, messages use disjoint sets of
physical channels.

The argument to show that DIM�nÿ1�� and DIM�nÿ1�ÿ
messages use disjoint sets of physical channels must take
into consideration that a DIMnÿ1 misrouted message
travels on three sides of the f-ring. However, the
principal argument is unchanged. As in the case of DIM0

messages, the interchip channel between DIMnÿ1 and DIM0

router chips in a node on an f-ring can be used by only
one of the DIM�nÿ1�� and DIM�nÿ1�ÿ types of messages. The
interchip channel usage by a DIM2� message on an f-ring
of a 3D torus is shown in Fig. 8.

Now, consider messages of two different dimensions.
By our virtual channel allocation given in Table 2, they
use different classes of virtual channels on the physical
channels they share. Only on disjoint physical channels
may they use virtual channels of the same class.

The virtual network for each message type is acyclic.
Consider DIM0� messages. A normal DIM0� message
always progresses towards its destination. It uses c0

channels before taking a hop on a DIM0 wraparound link
and c1 thereafter. Since the original dimension-order
routing is deadlock-free, there are no cycles among these
virtual channels. A misrouted DIM0� message travels on
the left column of an f-ring reserving channels c0 (or c1)
as per a linear order. Let cj�x; y� denote the virtual
channel of class cj on the physical channel that starts
from node x and ends in node y, one of its neighbors. If y
is a DIMi� neighbor of x (yi � �xi � 1�mod k), then x! y
is the DIMi� physical channel between them. DIMiÿ
channels are defined similarly.

The linear order of c0 channels on an f-ring is given by
c0�x; y� � c0�y; z�where x; y; z are nodes on the left column
of the f-ring and both x! y and y! z are DIM1� or DIM1ÿ
physical channels. For example, for the f-ring in Fig. 7,
c0�A0; A� � c0�A;B� and c0�B;A� � c0�A;A0�. Now, a
partial order can be defined among the virtual channels
used by DIM0� messages using the following rules:

. c0 channels are ranked lower than c1 channels.

. c0�w; x� � c0�x; y� and c1�w; x� � c1�x; y� if both
w! x and x! y are DIM0� or DIM0ÿ channels.

. c0�w; x� � c0�x; y� and c1�w; x� � c1�x; y� if 1) both
w! x and x! y are DIM1� or DIM1ÿ and 2) w; x; y
are nodes on the left column of an f-ring.

. c0 (respectively, c1) channels on the left column of
an f-ring in a DIM0 ÿ DIM1 plane are ranked higher
than the c0 (c1) channels on the DIM0� physical
channels that end in the left column nodes of the
f-ring, and are ranked lower than the c0 (c1)
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TABLE 2
Planes and Virtual Channels Used by Various Messages in an nD Torus with Fault-Tolerant PDRs



channels on the DIM0� channels that start from the
left column nodes.

Therefore, the virtual network of DIM0� messages is

acyclic. Similar rankings can be given to show that the

virtual networks for other message types are acyclic.
The virtual networks are used according to a partial

order. This directly follows from the dimension-order
routing. A DIMi�, i � 0; . . . ; nÿ 1, message never uses the

virtual network of a DIMiÿ message and the virtual
networks of DIMj� or DIMjÿ messages, j < i. It can be
easily verified that this defines a partial order. tu

Lemma 2. The proposed fault tolerant routing algorithm is

livelock-free and correctly routes all messages.

Proof. To see that messages are correctly delivered without

introducing livelocks in the faulty network, observe that:
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Fig. 7. Illustration of virtual channels used on interchip links. A misrouted DIM0� message uses interchip links in nodes A and B and a misrouted DIM0ÿ
message in nodes C and D. The interchip channels used are given by labeled, directed thick lines.

Fig. 8. Illustration of virtual channels used on interchip links. Nodes A, B, C, and D are the places where the misrouted DIM2� message uses interchip

links. The interchip channels used are given by labeled, directed thick lines.



1. A message is misrouted only around an f-ring,
2. A message may visit an f-ring only once without

changing its type,
3. There are a finite number of f-rings in the mesh,
4. A normal message progresses toward its destina-

tion with each hop, and
5. The destination node is accessible, since all

nonfaulty nodes are connected.

Since a message is misrouted only by a finite number of
hops on each f-ring and it never visits an f-ring twice, the
extent of misrouting is limited. This, together with the
fact that each normal hop takes a message closer to the
destination, proves that messages are correctly delivered
and that livelocks do not occur. tu

5.4 Fault-Tolerant Routing in Meshes

The above techniques for fault-tolerant routing can be
applied to mesh networks as well. For mesh networks, due
to the absence of wraparound links, the required number of
virtual channels is smaller than that for tori. For example,
two virtual channels per physical channel are sufficient to
handle nonoverlapping f-rings in meshes. However, in
meshes, faults on the boundaries of the network (for
example, topmost row in a 2D mesh) require special
handling. The treatment of meshes is similar to that given
in [3], [4]. The proof of deadlock-free routing is similar to
that given above for torus routers.

5.5 Extensions to Handle Overlapping f-Rings

If a pair of f-rings overlap, then they have a common
column, which is a left column for one f-ring and right
column for the other, or a common row, which is a top row
for one f-ring and bottom row for the other. We extend our
routing method to handle such overlapped f-rings in 2D
tori. Extensions to nD tori are similar to that given for the
nonoverlapping f-rings case.

5.5.1 Routing Logic

We retain the routing logic used for the nonoverlapping f-
rings case for both DIM0 and DIM1 messages. So, if a
misrouted column message is immediately blocked by
another fault region after traversing the current f-ring,
either clockwise (for DIM1� messages) or counterclockwise

(for DIM1ÿ messages) orientation is used to route the

message. This actually involves retracing some or all of its

hops taken on that common row as part of misrouting on

the previous f-ring. We use additional virtual channels and

assign them to messages suitably to break the cycles caused

by the overlaps of f-rings.
Row messages. The additional dependencies on row

messages are somewhat simpler than those for column

messages since they need to travel on only two sides of an f-

ring in the absence of overlaps. In the nonoverlapping case,

either DIM0� or DIM0ÿ messages traversed on any column of

an f-ring. With overlapped f-rings, both types of messages

may travel on a column of an f-ring. To ensure acyclic

dependencies, we give separate virtual channels for DIM0�
and DIM0ÿ messages when misrouted on columns of f-rings.

Column messages. For column messages, f-rings may be

stacked one on top of another, causing some row physical

channels of f-rings to be used by both types of column

messages. So, additional dependencies due to overlaps

occur only in the use of row channels of f-rings. It is

noteworthy that our fault-tolerant routing logic is such that,

once a message becomes a DIM1 message, its DIM1 hops

always (even when it is being misrouted) take it closer to its

destination.
First, consider the column messages that have taken hops

on wrapaound links in DIM1. These messages traverse in

separate halves of the network because of shortest-path

routing in DIM1 and never share row channels of f-rings. So,

we can use one class of virtual channels to route DIM1

messages after they have taken DIM1 wraparound links.
Now, consider the column messages that have not taken

hops on wraparound links in DIM1. Because of overlapping

f-rings, they now share physical channels in the common

rows of each pair of overlapping f-rings. Because DIM1� and

DIM1ÿ messages use the same class of virtual channels in the

nonoverlapping case, cyclic dependencies occur. We break

these cyclic dependencies by using separate virtual channel

classes for each message type: c2 for DIM1� messages and c3

for DIM1ÿ messages.
Table 3 gives the virtual channels used by each message

type to ensure deadlock-free routing.
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TABLE 3
Virtual Channels Assigned to Messages to Handle Overlapping f-Rings



6 SIMULATION-BASED PERFORMANCE STUDY

We have used a flit-level simulator to study the perfor-

mance of the fault-tolerant PDRs proposed in this paper.

We have simulated 16� 16 mesh and torus networks for the

uniform traffic pattern with geometrically distributed

message interarrival times. In practice, fixed length

messages give better manageability of resources, such as

injection and consumption buffers, and small message sizes

are more suitable for fine-grain computations. Hence, we

have used fixed length messages of 20 flits, which could be

suitable for transmitting four 64-bit words together with

header, checksum, and other information on 16-bit wide

physical channels.
For torus simulations, we have simulated four virtual

channels on each internode and interchip physical channel,

and, for mesh simulations, two virtual channels per

physical channel. On physical channels that are neither

faulty nor part of f-rings, all the simulated virtual channels

are used to route normal messages. Since, on each such

physical channel, only one-dimension messages travel,

extra channels are available to reduce channel congestion.

Recent studies [5], [15] have shown that using more virtual

channels than those necessary for deadlock-free routing

improves the performance of the e-cube considerably. On

physical channels that are part of f-rings, each virtual

channel is used for a specific type of message. The virtual

channels on a physical channel (internode as well as

interchip) are demand time-multiplexed and it takes one

cycle to transfer a flit on a physical channel.
We have assumed that messages experience processing

delays when passing through intermediate nodes. We used

a delay of three cycles to process header flits, and a delay of

two cycles to route data flits from an incoming channel to

an outgoing channel of an intermediate node. This is in

addition to any other delays that a flit may see because of

either round-robin processing of one incoming header at a

time by the router or virtual channel bandwidth allocation.
Each virtual channel has a buffer of depth four (holds

four flits) to pipeline message transmission smoothly.

Because of asynchronous pipelining of message transmis-

sion among nodes, bubbles are created with shallow buffers

of depth 1 or 2. So, mesh routers have 32 flits of storage and

torus routers 64 flits of storage.
To facilitate simulations at and beyond the normal

saturation points for each routing algorithm, we have

limited the injection by each node. This injection limit is

independent of the message interarrival time. After some

experimentation, we have set the injection limit to two,

which means that a node may inject a new message if fewer

than two of its previously injected messages are still in the

node. When there are faults in the network, the injection

limit has little effect on the latency and throughput values

prior to the saturation.
We use bisection utilization and average message latency

as the performance metrics. The bisection utilization (�b) is

defined as follows:

�b � Number of bisection messages delivered=cycle

� Message length

Bisection bandwidth
:

The bisection bandwidth is defined as the maximum
number of flits that can be transferred across the bisection
in a cycle and is proportional to the number of nonfaulty
links in the bisection of the networkÐfor example, the

row links connecting nodes in the middle two columns of
a 16� 16 mesh. A message is a bisection message if its
source and destination are on the opposite sides of the
bisection of the fault-free network. The average message
latency is the average duration from a message's injection to
its consumption.

We have simulated the mesh and torus networks with no
faults and with approximately 1 percent and 5 percent of
the total network links faulty. We have used a mixture of

node and link faults. Node faults cause more severe
congestion since a node fault blocks both row and column
messages, while a link fault blocks only one type of
messages. We have set one node and one link faulty for
the 1 percent-faults case, and four nodes and 10 links faulty
for the 5 percent-faults case. In each case, we have
randomly generated the required number of faulty nodes
and links such that isolated faults with nonoverlapping f-
rings are formed.

6.1 Performance under Faults

Figs. 9 and 10 give the simulation results for torus and mesh
networks, respectively. For each value reported in these
graphs, the 95 percent confidence interval is within 10
percent of the value.

In each case, the performance for fault-free routing is
much higher than the performance with faults. The peak
utilization for torus PDR without faults is 52 percent, but
drops to 32 percent with 1 percent faults and to 22 percent
with 5 percent faults. Similarly, the peak utilization for

mesh PDR without faults is 58 percent, but drops to 30
percent with 1 percent faults and to 27 percent with
5 percent faults. These results are consistent with the
performance degradations seen for crossbar-based fault-
tolerant dimension-order routers [4].
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Fig. 9. Performance of the fault-tolerant PDR for a 2D torus network with

four virtual channels per physical channel. The label dp indicates results

for d percent faults.



The high performance for fault-free networks is due to
use of the extra channels to avoid congestion. Even with a
single fault, the number of types of messages traveling on f-
ring links is increased and severe congestion occurs. Thus,
an f-ring becomes a hotspot causing performance degrada-
tion. Therefore, for graceful degradation of performance,
some form of adaptivity should be considered. We believe
that it should be feasible to provide limited adaptivity while
retaining the multimodule implementation of the router.

The performances of torus and mesh networks are not
directly comparable for several reasons. Mesh routers are
simulated with 32 flits of storage, while torus routers are
simulated with twice as much storage. Bisection utilization
is a ratio of achieved throughput to bisection bandwidth,
which is influenced by the topology. In terms of raw
throughput, the fault-free torus delivered messages at the
rate of 66 flits or 3.3 messages/cycle, while the fault-free
mesh delivered at the rate of 36 flits/cycle.

6.2 Impact on Fault-Free Performance

Our approach for deadlock-free routing uses a few extra
virtual channels to break cyclic dependencies among
channels. If a fault-free network already uses virtual
channels, then the impact of using a few more virtual
channels to provide fault-tolerant routing is not too severe.
Otherwise, adding virtual channels for fault tolerance may
affect the fault-free performance. For example, dimension-
order routing on a fault-free mesh is deadlock-free without
using any virtual channels. Since we need two virtual
channels per physical channel to provide fault-tolerant
routing, the cost and speed of PDRs are affected. The cost is
increased because of the additional switching and virtual
channel controllers at the outgoing channels. The speed
may be reduced because of the increased complexity of
selecting an outgoing channel and additional delays
through virtual channel controllers.

In this paper, we address the impact of the reduced
speed on message delays and network throughput. For the
sake of simplicity, assume that the node delays for flits is
one cycle in the PDR without virtual channels. The
reduction of router speed can be handled in one of the
following two ways:

. Unpipelined routers: Transit time for each flit
through an intermediate node is still one cycle. But
the router operates with a slower clock.

. Pipelined routers: Clock rate of the router is kept the
same. However, the transit time for a flit through a
node equals multiple clock cycles.

Chien [10] analyzed several wormhole router organizations
and concluded that adding virtual channels could increase
the clock cycle time of a router substantially. This analysis is
based on the assumption that routers are unpipelined. An
unpipelined router has to examine the header of a message
on an incoming channel, select an appropriate outgoing
channel, and place the header on the selected outgoing
channel (in the absence of contention) in one clock cycle. So,
introducing virtual channels increases the delays seen by
messages in their intermediate nodes.

An alternative is to pipeline the message path within a
router. By pipelining the message path, the clock rate need
not be reduced when virtual channels are introduced. A
message still sees larger node delays in the form of multiple
clock cycles. For example, a message header may see a
three-stage processing: buffering at input channel, selecting
and switching to an appropriate outgoing channel, and
virtual channel controller at the output channel. Once a
path is established for a message, its subsequent data flits
cut through each intermediate node in two stages: buffering
at input channel and virtual channel controller at the output
channel.

We have conducted simulations to compare message
delays and throughputs for both types of routers. Fig. 11
gives the results. For the pipelined router, at each
intermediate node visited, header flits see 3-cycle delays
and data flits 2-cycle delays. For the unpipelined router, the
node delays are constantÐone cycle.

If the unpipelined router has the same clock rate as the
pipelined router, then the former has about 30 cycles lower
latency and 5 percent higher bisection utilization. If clock
cycle time of the unpipelined router is about 30 percent
more than the pipelined router, then both give rise to the
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Fig. 10. Performance of the fault-tolerant PDR for a 2D mesh network

with two virtual channels per physical channel. The label dp indicates

results for d percent faults.

Fig. 11. Performances of unpipelined and pipelined PDRs in a (16, 2)-
mesh with two virtual channels per physical channel. The unpipelined
router is simulated with 1-cycle delay for flits going through an
intermediate node. The pipelined router is simulated with 3-cycles delay
for header flits and 2-cycles delay for data flits.



same message delays. However, the pipelined router gives
over 20 percent higher throughput in terms of bytes/
second.

In our earlier simulations for a 16� 16 mesh with
crossbar-based routers, one virtual channel (same as no
virtual channels) per physical channel, and channel buffer
depths of 8, we obtained about 60 percent bisection
utilization [3]. From the results in Fig. 11, a pipelined
PDR with two virtual channels and channel buffer depth of
4 achieves similar throughputs. The main difference is
message delays are higher in the pipelined router. In both
cases, the router clock cycle time and amount of buffer
space per physical channel are the same.

This shows that adding virtual channels to a network
that does not already have virtual channels may not reduce
the throughput. Pipelining the message path within a router
is the key. Thus, adding additional virtual channels to
provide fault-tolerant communication does not necessarily
reduce the performance for the fault-free case.

If a network already uses virtual channels for the fault-
free case, then adding a few more virtual channels causes
only small increases to the cost and clock cycle time. In such
cases, the throughput increased by adding a few extra
virtual channels (as in the torus case) usually outweighs any
small increases in message delays.

7 CONCLUDING REMARKS

We have presented a technique to enhance the nonadaptive
dimension-order algorithm for fault-tolerant wormhole
routing in torus networks. This technique requires simple
changes to the routing logic and implementation, works
with strictly local knowledge of faults, as per which each
fault-free node knows only the status of its links, handles
multiple faults, and guarantees livelock- and deadlock-free
routing of all messages.

We have used the block-fault model in which faulty
processors and links form multiple rectangular regions. The
concept of fault-rings is used to route around the fault-
regions. Our algorithms are deadlock- and livelock-free and
correctly deliver messages between any pair of nonfaulty
nodes provided a path exists. If the network is discon-
nected, then our techniques can be applied with some
modifications to each subnetwork.

Particular attention has been paid to the applicability of
proposed techniques for current multicomputers which use
partitioned dimension-order routers (PDRs). Since PDRs do
not have centralized crossbars, most of the previously
proposed techniques for fault-tolerant routing cannot be
implemented without redesigning the existing routers. With
the proposed techniques, however, multiple faults can be
tolerated while retaining the PDR implementation.

Fault tolerance is always expensive. The cost of fault
detection and isolation is common to every routing method
that needs to handle faults at the network level. The
additional cost of implementation of our proposed methods
is small compared to many previously proposed routing
methods. First, multiple virtual channels are required to
provide fault-tolerant routing. When f-rings do not overlap
with one another, four virtual channels per physical
channel are sufficient. Overlapping f-rings can be handled

using five virtual channels. Second, a special bit in the
message header is needed to indicate message status:
normal or misrouted. Third, the router logic should handle
misrouting on fault rings. This can be easily implemented
by making the routing logic programmable as in the Cray
T3D implementation. Finally, each node should have
additional logic to send status messages to its neighbors
and determine its position in fault rings. This can be
achieved using a distributed two-step algorithm [4].

Our previous simulation studies for mesh networks with
crossbar-based dimension-order routers exhibited graceful
degradation of performance under faults [4]. The simulation
results presented in this paper also indicate that the
proposed technique achieves similar graceful degradation
of performance even when partitioned dimension-order
routers are used.

The concept of fault rings can be extended to faults with
more complex shapes, such as diamond and ªL,º which
may occur when multiple adjacent blocks are faulty. In such
cases, fault rings are not regular. Our preliminary investi-
gations indicate that the proposed techniques can be
applied to such faults with some changes. We are currently
working on this problem.
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