
ALGORITHMIC REDISTRIBUTION

METHODS FOR BLOCK CYCLIC

DECOMPOSITIONS

A Dissertation

Presented for the

Doctor of Philosophy Degree

The University of Tennessee, Knoxville

Antoine Petitet

December 1996

Copyright c
 1996 by Antoine Petitet

All rights reserved

ii

To my parents

iii

Acknowledgments

The writer expresses gratitude and appreciation to the members of his disser-

tation committee, Michael Berry, Charles Collins, Jack Dongarra, Mark Jones and

David Walker for their encouragement and participation throughout my doctoral

experience.

Special appreciation is due to Professor Jack Dongarra, Chairman, who pro-

vided sound guidance, support and appropriate commentaries during the course

of my graduate study.

I also would like to thank Yves Robert and R. Clint Whaley for many useful

and instructive discussions on general parallel algorithms and message passing

software libraries. Many valuable comments for improving the presentation of

this document were received from L. Susan Blackford. Finally, I am grateful to

the Department of Computer Science at the University of Tennessee for allowing

me to do this doctoral research work here.

A special debt of gratitude is owed to Joanne Martin, IBM POWERparallel

Division, for awarding me an IBM Corporation Fellowship covering the tuition as

well as a stipend for the 1994-96 academic years. This work was also supported

by the Defense Advanced Research Projects Agency under contract DAAH04-95-

1-0077, administered by the Army Research O�ce.

The author acknowledges the use of the Intel Paragon XP/S 5 computer, lo-

iv

cated in the Oak Ridge National Laboratory Center for Computational Sciences

(CCS), funded by the Department of Energy's Mathematical, Information, and

Computational Sciences (MICS) Division of the O�ce of Computational and Tech-

nology Research.

This research was also conducted using the resources of the Cornell The-

ory Center, which receives major funding from the National Science Foundation

(NSF) and New York State, with additional support from the Advanced Research

Projects Agency (ARPA), the National Center for Research Resources at the Na-

tional Institutes of Health (NIH), IBM Corporation, and other members of the

center's Corporate Partnership Program.

v

Abstract

This research aims at creating and providing a framework to describe algo-

rithmic redistribution methods for various block cyclic decompositions. To do so

properties of this data distribution scheme are formally exhibited. The exami-

nation of a number of basic dense linear algebra operations illustrates the appli-

cation of those properties. This study analyzes the extent to which the general

two-dimensional block cyclic data distribution allows for the expression of e�cient

as well as
exible matrix operations. This study also quanti�es theoretically and

practically how much of the e�ciency of optimal block cyclic data layouts can be

maintained.

The general block cyclic decomposition scheme is shown to allow for the ex-

pression of
exible basic matrix operations with little impact on the performance

and e�ciency delivered by optimal and restricted kernels available today. Second,

block cyclic data layouts, such as the purely scattered distribution, which seem

less promising as far as performance is concerned, are shown to be able to achieve

optimal performance and e�ciency for a given set of matrix operations. Conse-

quently, this research not only demonstrates that the restrictions imposed by the

optimal block cyclic data layouts can be alleviated, but also that e�ciency and

exibility are not antagonistic features of the block cyclic mappings. These results

are particularly relevant to the design of dense linear algebra software libraries as

well as to data parallel compiler technology.

vi

Contents

1 Introduction 1

1.1 The Parallel Programming Problem : A Concrete Example : : : : 6

1.2 Motivation : 11

1.3 Problem Statement : 16

1.4 Organization of This Dissertation : : : : : : : : : : : : : : : : : : 17

2 Properties of The Block Cyclic Data Distribution 19

2.1 Introduction : 19

2.2 De�nitions : 21

2.3 Block Properties : 27

2.3.1 Notation and Elementary Theorems : : : : : : : : : : : : : 27

2.3.2 Properties : 28

2.4 Solving Linear Diophantine Equations : : : : : : : : : : : : : : : 38

2.5 LCM Tables : 41

2.6 Rationale : 56

vii

3 Algorithmic Redistribution 58

3.1 Introduction : 58

3.2 Terminology : 61

3.3 One-Dimensional Redistribution : : : : : : : : : : : : : : : : : : : 65

3.3.1 Non-Unit Stride : 68

3.4 Blocking Strategies : 69

3.4.1 Static Blocking : 70

3.4.2 Cyclic Ordering : 76

3.4.3 Physical Blocking : 78

3.4.4 Aggregation and Disaggregation : : : : : : : : : : : : : : : 81

3.4.5 LCM Blocking : 83

3.4.6 Aggregated LCM Blocking or Hybrid Schemes : : : : : : : 86

3.5 Two-Dimensional Redistribution : : : : : : : : : : : : : : : : : : : 86

3.6 Conclusions : 89

4 Performance Analysis 90

4.1 Introduction : 90

4.2 The Machine Model : 92

4.3 Estimation of the Machine Parameters : : : : : : : : : : : : : : : 95

4.3.1 The Intel XP/S Paragon : : : : : : : : : : : : : : : : : : : 96

4.3.2 The IBM Scalable POWERparallel System : : : : : : : : : 99

viii

4.4 Performance Analysis : 101

4.4.1 Physical Blocking : 104

4.4.2 Aggregation : 107

4.4.3 LCM Blocking : 109

4.4.4 One Dimensional Redistribution : : : : : : : : : : : : : : : 110

4.4.5 Two Dimensional Redistribution : : : : : : : : : : : : : : : 111

4.5 Conclusions : 112

5 Experimental Results 116

5.1 Introduction : 116

5.2 Determining a \Good" Block Size : : : : : : : : : : : : : : : : : : 118

5.3 Speci�cation of the Experiments : : : : : : : : : : : : : : : : : : : 121

5.4 Aligned Experiments : 125

5.4.1 Physical Blocking : 125

5.4.2 Aggregation - Disaggregation : : : : : : : : : : : : : : : : 127

5.4.3 LCM Blocking : 128

5.4.4 Complete Redistribution : : : : : : : : : : : : : : : : : : : 130

5.5 Non-Aligned Experiments : 133

5.5.1 Physical Blocking : 134

5.5.2 Aggregation - Disaggregation : : : : : : : : : : : : : : : : 136

5.5.3 LCM Blocking : 138

ix

5.5.4 Complete Redistribution : : : : : : : : : : : : : : : : : : : 141

5.6 Conclusions : 144

6 Conclusions 148

6.1 Application Domain of Algorithmic Operations : : : : : : : : : : 150

6.2 Recommendations for a Software library : : : : : : : : : : : : : : 153

6.3 Contributions of this Dissertation : : : : : : : : : : : : : : : : : : 155

6.4 Further Research Directions : 158

Bibliography 160

Appendix 176

A LCM Tables 177

A.1 LCM Table with First Partial Block : : : : : : : : : : : : : : : : : 177

A.2 Examples of LCM tables : 179

B Performance Results 183

Vita 192

x

List of Tables

2.1 Generalization of the block properties to the square block cyclic

distribution : 38

2.2 Properties of the k-diagonal for the block cyclic distribution : : : 50

4.1 Estimated parallel e�ciencies for various blocking variants : : : : 113

5.1 Performance in M
ops for distinct distribution block sizes : : : : 119

5.2 Speci�cation of the experiments : : : : : : : : : : : : : : : : : : : 122

A.1 The LCMT bounds characterizing block owning k-diagonals : : : 178

B.1 Performance results obtained on the Intel XP/S Paragon : : : : : 184

B.2 Performance results obtained on the IBM SP : : : : : : : : : : : : 188

xi

List of Figures

2.1 A 2 � 3 process grid : 21

2.2 A block-partitioned matrix, with M = 22, N = 40, r = 4, s = 6. : 23

2.3 The previous block-partitioned matrix mapped onto a 2�3 process

grid. : 24

2.4 A P � Q process grid with P = 4, Q = 6, lcm(P;Q) = 12,

gcd(P;Q) = 2. : 33

2.5 A square block-partitioned matrix distributed over a 2� 3 process

grid. : 35

2.6 The quadruplet solution intervals �h : : : : : : : : : : : : : : : : 40

2.7 Meaning of di�erent values of LCMT p;q
l;m with r = 6, s = 8 : : : : 42

2.8 LCM template : 44

2.9 The 1-LCM block obtained for P = 2, r = 2, Q = 2 and s = 3. : : 45

2.10 The 1-LCM tables obtained for P = 2, r = 2, Q = 2 and s = 3. : : 46

2.11 Ratio of tuples (P; r;Q; s)in[1::n]4 such that gcd(P r;Q s) = 1. : : 53

xii

2.12 Ratios of tuples (P; r;Q; s)in[1::n]4 such that r + s � gcd(r; s) or

r + s is greater or equal to gcd(P r;Q s). : : : : : : : : : : : : : : 55

3.1 Global view of one-dimensional redistribution : : : : : : : : : : : 65

3.2 Local view in process (pX ; qY) of one-dimensional redistribution : 66

3.3 Static general rank-K update : 71

3.4 Static symmetric rank-K update : : : : : : : : : : : : : : : : : : 72

3.5 Trapezoidal symmetric rank-K update (C22 = CT
22) : : : : : : : : 74

3.6 Physically blocked rank-K update : : : : : : : : : : : : : : : : : : 79

3.7 Global view of the LCM blocked rank-K update : : : : : : : : : : 84

3.8 Global view of two-dimensional redistribution : : : : : : : : : : : 87

4.1 A 3 � 4 processor mesh with wraparound connections : : : : : : : 93

4.2 Performance of the rank-K update on one processor of the Intel

Paragon : 97

4.3 Performance of the rank-K update on one processor of the Intel

Paragon : 98

4.4 Performance of the rank-K update on one processor of the IBM SP2100

4.5 Time repartition of the aligned LCM blocking variant (LCM) on a

4 � 8 IBM SP : 114

4.6 Time repartition of the non-aligned complete redistribution (RED)

variant on a 4� 8 IBM SP : 115

xiii

5.1 Performance in M
ops of algorithmic blocking variants for a \good"

physical data layout case and various process grids on the Intel

XP/S Paragon : 123

5.2 Performance in M
ops of algorithmic blocking variants for a \good"

physical data layout case and various process grids on the IBM SP 124

5.3 Performance of aligned physical blocking on a 4 � 4 Intel XP/S

Paragon : 125

5.4 Performance of aligned physical blocking on a 4� 8 IBM SP : : : 126

5.5 Performance of aligned aggregation on a 4� 4 Intel XP/S Paragon 127

5.6 Performance of aligned aggregation on a 4� 8 IBM SP : : : : : : 128

5.7 Performance of aligned LCM blocking on a 4� 4 Intel XP/S Paragon129

5.8 Performance of aligned LCM blocking on a 4 � 8 IBM SP : : : : : 130

5.9 Performance of aligned redistribution on a 4� 4 Intel XP/S Paragon131

5.10 Performance of aligned redistribution on a 4 � 8 IBM SP : : : : : 132

5.11 Performance in M
ops of algorithmic blocking variants for Experi-

ment XP NA on a 4� 4 Intel XP/S Paragon : : : : : : : : : : : : 133

5.12 Performance in M
ops of algorithmic blocking variants for Experi-

ment XP NA on a 2� 4 IBM SP : : : : : : : : : : : : : : : : : : 134

5.13 Performance of non-aligned physical blocking on a 4�4 Intel XP/S

Paragon : 135

5.14 Performance of non-aligned physical blocking on a 4� 8 IBM SP : 136

xiv

5.15 Performance of non-aligned aggregation on a 4�4 Intel XP/S Paragon137

5.16 Performance of non-aligned aggregation on a 4 � 8 IBM SP : : : : 138

5.17 Performance of non-aligned LCM blocking on a 4 � 4 Intel XP/S

Paragon : 139

5.18 Performance of non-aligned LCM blocking on a 4� 8 IBM SP : : 140

5.19 Performance of non-aligned redistribution on a 4 � 4 Intel XP/S

Paragon : 142

5.20 Performance of non-aligned hybrid (HYB) versus redistribution

(RED) techniques on a 4� 8 IBM SP : : : : : : : : : : : : : : : : 143

5.21 Performance of non-aligned hybrid (HYB) versus LCM blocking

techniques on a 4 � 4 Intel XP/S Paragon : : : : : : : : : : : : : 146

6.1 Application domain of algorithmically redistributed operations : : 151

A.1 The 1-LCM block obtained for P = 2, r = 2, Q = 3 and s = 4. : : 179

A.2 The 1-LCM tables obtained for P = 2, r = 2, Q = 3 and s = 4. : : 180

A.3 The 1-LCM block obtained for P = 3, ir = 2, r = 2, Q = 2, is = 3

and s = 4. : 181

A.4 The 1-LCM tables obtained for P = 2, ir = 2, r = 2, Q = 2, is = 3

and s = 4. : 182

xv

Chapter 1

Introduction

Il y a trois savoirs, le savoir proprement dit, le savoir-vivre et le savoir-faire.

Les deux derniers dispensent assez bien du premier.

Charles Maurice de Talleyrand (1754-1838)

In the past several years, the emergence of Distributed Memory Concurrent Com-

puters (DMCCs) and their potential for the numerical solution of Grand Challenge

problems [28, 62, 76, 77] has led to extensive research. As a result, DMCCs have

become not only indispensable machines for large-scale engineering and scienti�c

applications, but also common and viable platforms for commercial and �nancial

applications. Many DMCCs, such as the IBM Scalable POWERparallel SP-2, the

Intel Paragon, the Cray T3D, the nCube-2/3, Networks and Clusters of Work-

stations (NoWs and CoWs) have achieved scalable performance in these domains.

1

These scalable parallel computers comprise an ensemble of Processing Units (PUs)

where each unit consists of a processor, local memories organized in a hierarchical

manner, and other supporting devices. These PUs are interconnected by a point-

to-point (direct) or switch-based (indirect) network. Without modifying the basic

machine architecture, these distributed memory systems are capable of propor-

tional increases in performance as the number of PUs, their memory capacity and

bandwidth, and the network and I/O bandwidth are increased. As of today, DM-

CCs are still being produced and their success is apparent when considering how

common they have become. Still, their limitations have been revealed and their

successors have already appeared. The latter are constructed from a small number

of nodes, where each node is a small DMCC featuring a virtual shared memory.

These nodes are interconnected by a simple bus- or crossbar-based interconnection

network. Programming these machines as well as their production is facilitated by

the relative simplicity of the interconnection network. In addition, increasing the

computational capabilities of the PUs appears to be an easier task than increas-

ing the performance of the network. As opposed to large scale DMCCs where all

processors are much less powerful than the whole, the collection of nodes of this

hierarchical architecture is only slightly more powerful than its components. The

SGI SMP Power Challenge is an existing example of such an architecture. The

scalability of these machines can simultaneously take advantage of the progresses

made by the processor and network technologies as well as the hardware and/or

2

software mechanisms implementing the virtual shared memory. It is still unclear

how these machines will be programmed. Whether these machines will in the

future completely replace DMCCs is also a question that is di�cult to answer

today. In this dissertation, these machines will also be considered as DMCCs.

In order to fully exploit the increasing computational power of DMCCs, the

application software must be scalable, that is, able to take advantage of larger

machine con�gurations to solve larger problems with the same e�ciency. Thus,

the design of parallel algorithms and their software implementations should at the

very early stages plan for larger, maybe not even existing, hardware platforms.

These concerns usually cause the complexity of this software to become an im-

portant limiting factor and constraint. Indeed, the application software should

also be \easy to produce and maintain". Ideally, one would like to automatically

produce a parallel scalable executable from an existing serial program. In reality,

programming DMCCs has been a major challenge impeding the greater success

of these systems. In order to alleviate this di�culty, parallel programming models

have been speci�cally designed for DMCCs. A programming model is a collection

of program abstractions providing a programmer with a simpli�ed and transparent

view of the computer hardware/software system [58]. The basic computational

units in a running parallel program are processes corresponding to operations per-

formed by related code segments on the process's data set. A running program

can then be de�ned as a collection of processes [58]. Inter-process communication

3

de�nes what is called a running parallel program. In general there may be several

processes executed by one physical processor; therefore, without loss of generality,

the underlying DMCC will be regarded henceforth as a set of processes rather

than physical processors.

This dissertation is primarily focused on two parallel programming models,

the message passing model and the data parallel model. In the message pass-

ing model, two processes may communicate with each other by passing messages

through the interconnection network. This model is usually based on the send

and receive paradigm that requires matching operations by sender and receiver.

Such a semantic is often referred to as a two-sided communication. It has been

observed, however, that the coding of some applications can be facilitated when

using a one-sided communication semantic. Remote memory access allows one

process to specify all communication parameters, both for the sending side and

the receiving side. Such a semantic is usually based on the put and get paradigm.

The one-sided communication primitives can be implemented in terms of asyn-

chronous send and receive primitives as it is suggested in the current draft of

the extensions to the Message-Passing Interface [44]. Independently from the

semantic of the message passing model, this programming paradigm is tedious,

time-consuming, and error-prone for programmers in general, as it is ultimately

based on separate name spaces. In the data parallel model, parallelism, i.e.,

inter-process communication, is explicitly handled by hardware synchronization

4

and
ow control. Data parallelism can be implemented on DMCCs; however, be-

cause the communication delay caused by message passing is much longer than

that caused by accessing shared variables in a common memory, DMCCs are

considered to be loosely-coupled multiprocessors. In order to avoid global syn-

chronization after each instructions, the same program can be executed by each

processor asynchronously. Synchronization takes place only when processors need

to exchange data. This programming model is referred to as the Single Program

Multiple Data (SPMD) programming model [67]. This model is based on distinct

name spaces and loosely synchronous parallel computation with a distinct data

set for each process. Thus, data parallelism can be exploited on DMCCs by using

the data parallel programming model or the SPMD programming model. Finally,

the data parallel programming model requires a regular distribution of the data as

well as the tasks to be performed concurrently. These requirements considerably

facilitate the design of data parallel languages. In practice, such a language can be

directly derived from standard serial programming languages such as C or Fortran.

It follows that data parallel programs are easier to write and debug. However,

when the problem's data or even the tasks to be performed are irregular, the data

parallel programming model may not be a viable and/or useful abstraction.

In this dissertation, DMCCs will be regarded as MIMD computers from the

architectural point of view according to Flynn's classi�cation [42]. DMCCs will

however be considered as SPMD multicomputers from the programming point of

5

view; that is, the same program is executed by all of the processes simultaneously.

This parallel program operates on multiple data streams, and more precisely each

process of the parallel program operates on its own data set. Finally, the compu-

tations performed by these processes are loosely coupled.

1.1 The Parallel Programming Problem : A Concrete

Example

The tremendous commercial success of micro (personal) computing technology

can be attributed to a large extent to the early development and availability of

spreadsheet software products (VisiCalc). Indeed, preparing such worksheets is a

very common task in nearly all businesses. Likewise, to a lesser extent however,

the development of numerical linear algebra software has played a similar role for

the scienti�c supercomputing community, since linear algebra { in particular, the

solution of linear systems of equations { lies at the heart of a very large number of

calculations in scienti�c computing. The well-known BLAS [36, 35] and LAPACK

[5] numerical linear algebra software libraries are typical examples of such useful

and successful software packages for shared-memory vector and parallel processors.

The programming languages used to encode VisiCalc and LAPACK respec-

tively, have ultimately been essential building tools for the existence and success

of these software packages. Indeed, in a serial model of computation the transla-

6

tion of basic linear algebra expressions into a procedural programming language

is a well understood and relatively easy operation. The basic data structures

and
ow of control constructs available in such programming languages generally

match the concise mathematical notation reasonably well. Consequently, one can

develop general,
exible and re-usable numerical software in a reasonable amount

of time concentrating on its design, quality and e�ciency.

In a distributed memory computational environment these basic algebra ex-

pressions become meta-expressions. The simple global mathematical notation

does not adequately describe the actual operations that the individual processes

must perform. The di�erences between the translation of a concise mathematical

formula in a serial, versus distributed, computational environment cannot solely

be reduced to the addition of a few message exchanges across the interconnec-

tion network. The local operations di�er to a large extent too, and can be best

illustrated through the use of a simple example.

Let us consider the computation of the trace of a matrix. This operation is

trivially expressed in a serial model of computation using a simple loop construct

available in most programming languages. However, in a distributed memory

computational environment, because the data is distributed among the processes

memories, di�culty arises in locating the diagonal entries of the matrix owned by

each process, rather than in combining or computing the local results.

In the last decade three main approaches to designing dense linear algebra

7

libraries for DMCCs computers have been followed. These three approaches are

presented below and focus on di�erent optimality criteria.

1. optimal data layout and e�ciency,

2. data decomposition independence,

3. software reuse via high-level language support for data parallel programming.

First, because the data decomposition largely determines the performance and

scalability of a concurrent algorithm [21, 46, 48], a great deal of research [7, 12, 55]

has aimed at determining optimal data distributions [27, 54, 57, 72]. This ap-

proach tacitly makes two assumptions worth reiterating about the user's data and

the target architecture. First, the user's data may need to be redistributed to

match this optimal distribution [6]. Second, the target architecture is such that

all processes can be treated equally in terms of local performance, and, the com-

munication rate between two processes is independent of the processes considered.

E�ciency is the primary consideration justifying any restriction or requirement

that an implementation may have. As a result, the two-dimensional block cyclic

distribution [67] (see Chapter 2) has been suggested as the basic decomposition

for parallel dense linear algebra libraries due to its scalability [38, 67], load balance

and communication [54] properties. Let us illustrate the implications of this ap-

proach on the simple trace computation example. First, one would likely restrict

the trace computation to the leading submatrix of the initial distributed matrix

8

to simplify somewhat the index computations. Second, the usual and simple trace

computation algorithm clearly suggests viable data decomposition decisions for its

e�cient parallel implementation. Therefore, one could for example require either

a square block cyclic data layout onto a rectangular process grid such that the

numbers of process rows and columns are relatively prime, or perhaps the use

of a two-dimensional block Hankel wrapped storage scheme without any restric-

tions on the process grid. A de�nition of the block Hankel wrapped distribution

scheme can be found in [55] and references therein. For su�ciently small distribu-

tion blocking factors, both of these distribution choices ensure that the diagonal

blocks of the submatrix operand will be evenly distributed among all processes,

and thus a perfect load balance. With these restrictions, one is guaranteed to

produce an optimal trace computation implementation. Obviously, the blocking

factor used by the distribution would a�ect the performance of such an implemen-

tation, and the optimal value of this factor is also likely to be machine dependent.

Nevertheless, such an optimal value exists for each possible target architecture.

Another approach focused on
exible and general-purpose library routines.

Determining an appropriate decomposition that maximizes program performance

is inherently di�cult due to the very large number of distribution and alignment

possibilities. The above example is a good illustration of the distribution choice

dilemma, since the block cyclic or the block Hankel wrapped storage schemes

are indeed large families of distributions. As a matter of fact, the problem of

9

determining an optimal data distribution for one- or two-dimensional arrays has

been proven to be NP-complete [73]. Similarly, the problem of �nding a set

of alignments for the indices of multiple program arrays that minimizes data

movement among processes is also NP-complete [71]. A number of heuristics for

determining suitable distributions and alignments [71] have been proposed in the

literature. In addition to these theoretical results, it is intuitively clear that a

unique data distribution or alignment selection for an entire program may not

be enough to achieve the best possible performance. In other words, a particular

data decomposition that is well suited for one phase of a given algorithm may

not be as good, as far as performance is concerned, for the other phases. These

results have motivated this second approach where the user's decomposition is

generally not changed but passed as an argument and a suboptimal algorithm is

used. This approach is usually referred to as decomposition independent [41, 84].

The suboptimality of a routine must be weighted against the possibly large cost

of redistributing the input data.

Finally, the most potentially ambitious approach attempts to provide high-level

language support for data parallel programming. In the last few years, several data

parallel Fortran languages have been proposed, such as Fortran D [45] and Vienna

Fortran [88]. More recently, the High Performance Fortran (HPF) language [66]

has been developed as a community e�ort to standardize data parallel Fortran pro-

gramming for DMCCs. HPF includes many of the concepts originally proposed in

10

Fortran D, Vienna Fortran, and other data parallel Fortran languages. HPF sup-

ports an abstract model of parallel programming in which users annotate single-

threaded program with data-alignment and distribution directives. The compiler

uses these directives to partition the program's computation and distribute the

data as the basis to derive a SPMD program to be executed on each PU of the

parallel machine. Today, the �rst HPF compilers are slowly becoming available on

a wide range of machines, and it is unclear yet if those compilers will ful�ll their

highly di�cult goals in the near future. C-based data parallel extensions have

also been proposed, such as Data Parallel C [51] and pC++ [11]. The long term

objective here is to design a data parallel language to generate e�cient parallel

code from any serial code fragment.

1.2 Motivation

There are multiple sources of redistribution in a data parallel program, even when

it is not explicitly invoked by the programmer or a requirement imposed by a

parallel software library. For instance when the distribution or alignment of ac-

tual parameters does not match the distribution of the dummy arguments in the

subprogram interface, an implicit redistribution or realignment phase must take

place at the procedure boundary. Moreover, even if the actual parameters are

distributed accordingly to the requirements imposed by a subprogram interface,

11

this subprogram faces a dilemma. It can either use the physical distribution char-

acteristics of its parameters as a guideline to sequence the computation and com-

munication phases. Or, it may choose to reorganize logically and physically these

phases for e�ciency reasons. Substantial performance gains may be achieved by

changing array data decompositions, but only if the overhead of such operations

remains relatively small. Therefore, the e�cient and scalable implementation of

the explicit, implicit and algorithmic data redistribution mechanisms is important

to the overall performance of data parallel programs on DMCCs. Equally impor-

tant is the ability to avoid a redistribution phase that would lead to a degradation

in performance.

Many issues need to be considered to design e�cient and scalable data redis-

tribution operations. First, because redistribution is a communication dominant

task, the e�ciency of the selected communication patterns is essential. In ad-

dition, the redistribution may have to occur within a larger context. This will

be the case for example if this operation is part of a larger task taking advan-

tage of pipelined communication phases. It is then important to redistribute in

the same pipelined fashion whenever possible. Second, the total execution time

of the operation is rapidly proportional to the amount of data communicated.

Consequently, fast local indexing, packing and sorting techniques will bene�t re-

distribution performance. Third, the scalability of these redistribution operations

must be quanti�ed in order to either evaluate their performance as a function of

12

the amount of data and/or the number of processors or compare di�erent tech-

niques. Finally, redistribution mechanisms should be as independent as possible

from a particular architecture to allow for their portability across a wide range

of DMCCs. This last issue has been considerably simpli�ed by the recent devel-

opment of the Message Passing Interface (MPI) [43] and its adoption by a large

majority of machine vendors.

Most of the Fortran- and C-based data parallel languages incorporate explicit

and implicit redistribution capabilities. The Kali language [75] was one of the �rst

to do so. DINO [79] addresses the implicit redistribution of data at procedure

boundaries. The Hypertasking compiler [8] for data parallel C programs, Vienna

Fortran [14] and Fortran D [50] additionally specify data redistribution primitives.

For e�ciency purposes as well as simplicity of the compiler, these redistribution

operations are often implemented in a library of intrinsics [61].

Explicit and implicit data redistribution operations are necessary but not quite

su�cient. These expensive operations change the distribution of an entire operand

at once, where in a number of cases some of it can be delayed. In those cases, only

a more simple redistribution operation on a suboperand is required which can be

overlapped with other computational and/or communication phases. Such oper-

ations are more e�cient in terms of space and time. They are called algorithmic

redistribution methods because they in essence attempt to reorganize logically and

physically the computations and communications within a algorithmic context.

13

To derive algorithmically redistributed operations, it is �rst necessary to an-

alyze the reasons why the formulation of more general distributed operations is

di�cult for a given data decomposition. Such di�culties are intertwined with the

given data layout, even though one can usually de�ne this underlying data-process

mapping in a simple form. Indeed, this de�nition is by itself of little use unless it

is accompanied by a list of the mapping's properties. For instance being able to

tell in which process's memory the matrix entry a44 resides is undoubtly a valu-

able piece of information; it is, however, far more useful to be able to determine in

which process's memories the diagonal blocks reside and how far those are from

each other. Indeed, if one wants to access the diagonal entries of a matrix, one

must �rst know how to access a11, and second, how to access ai+1;i+1 from aii.

The formulation of general distributed matrix operations must be derived from

the properties that a given data layout may possess as opposed to the data layout

itself. These inherent properties should therefore be brought to the fore. One

aspect of this dissertation is to exhibit these properties along with a formal proof

as well as illustrate how they characterize a given data distribution scheme. Algo-

rithmic redistribution methods are then suggested for the general two-dimensional

block cyclic distribution.

The two-dimensional block cyclic data decomposition scheme is a natural can-

didate for such a study for multiple reasons. First, it provides a simple general

purpose way of distributing a block-partitioned matrix on DMCCs. It encom-

14

passes a large number of more speci�c data distributions such as the blocked or

purely scattered cases (see Chapter 2), and it has been incorporated into the High

Performance Fortran language [66]. Second, some of this mapping's properties

can be expressed in a simpler way if one restricts oneself to the square block

cyclic case (see Chapter 2). Some of these simpli�ed corollaries have already been

indirectly illustrated and applied in [22, 23, 25]. Laborious debugging sessions of

code fragments that were in fact relying on these corollaries are at the origin of

the development of this more formal approach. Finally, the way in which a matrix

is distributed over a set of processes has a major impact on the load balance and

communication characteristics of the concurrent algorithm, and hence largely de-

termines its performance and scalability. There is considerable evidence that the

square block cyclic mapping can lead to very e�cient implementations of more

complex matrix operations such as the LU, Cholesky or QR factorizations [20, 38]

or even the reductions to Hessenberg, tridiagonal and bidiagonal forms [19, 24].

The encouraging performance results mentioned above were obtained for par-

ticular process grid shapes and empirically chosen distribution parameters on

speci�c hardware platforms. It is natural to ask if restricting the supported data

layouts and providing basic operations with little
exibility are reasonable deci-

sions, even at the early design stages of a general purpose dense linear algebra

software library for DMCCs. Indeed, as the development progresses, these restric-

tions become more burdensome, eventually to the point where they prevent from

15

the formulation of more complicated algorithms. Examples of such algorithms are

out of core linear solvers, divide and conquer methods and algorithms involving a

large number of distributed matrices such as the generalized least squares solvers,

or even direct sparse linear solvers.

On the one hand, supporting the most general block cyclic decompositions

will not allow for any performance increase or decrease as far as the restricted

and optimal cases are concerned. On the other hand, allowing for more
exible

operations suggests a more intensive use of algorithmic blocking features, which

somewhat attenuate the communication overhead induced by the most general

data layouts. Consequently, algorithmic redistribution methods logically balance

the communication and computation operations, and, therefore, allow for im-

proved transportable performance. This dissertation quanti�es and models these

e�ects and discusses the possible tradeo�s between e�ciency and
exibility. Ex-

perimental results are also reported to evaluate the performance model.

1.3 Problem Statement

Basic algorithmically redistributed matrix operations on distributed memory archi-

tectures allow for the expression of e�cient and
exible general matrix operations

for various block cyclic mappings. This dissertation �rst investigates distinct log-

ical blocking techniques, as well as their impact on the scalability of these opera-

16

tions, and second to what extend
exibility and e�ciency are antagonistic features

for the general family of two-dimensional block cyclic data distributions.

This dissertation is distinguished as the earliest known research to propose a

portable and scalable set of
exible algorithmically redistributed operations, as well

as a framework for expressing these complicated operations in a modular fashion.

Their scalability is quanti�ed on distributed memory platforms for various block

cyclic mappings.

1.4 Organization of This Dissertation

Chapter 2 de�nes the two-dimensional block-cyclic data distribution. Elementary

results of the theory of integers are systematically brought to the fore. They fun-

damentally characterize the properties of the two-dimensional block cyclic data

distribution. In addition, these properties are the basis of e�cient algorithms

for address generation, fast indexing techniques and consequently e�cient data

redistribution and manipulation. Some of these algorithms are described in de-

tail along with the properties from which they are deduced. Related work is also

summarized. Chapter 3 presents various
exible and general basic algorithmic re-

distribution operations. Di�erent blocking techniques particularly well-suited for

the implementation of these basic dense linear algebra operations on DMCCs are

presented and discussed in detail. In addition to the easier case of general rect-

17

angular matrix operands, speci�c general blocking techniques for triangular and

symmetric matrices are shown. A minimal amount of data is exchanged among

process memories during these redistribution operations. These techniques feature

a variable logical blocking factor for e�ciency purposes and are independent of the

underlying machine architecture. The properties shown earlier ensure the porta-

bility of these techniques among distributed memory platforms. The optimality

of these techniques with respect to minimizing the amount of data exchanged

is shown in Chapter 4, along with a discussion of the importance of the vari-

able logical blocking factor. Chapter 4 also presents a framework for quantifying

the scalability of the algorithmic redistribution operations previously presented.

This framework is also used to assess the theoretical performance impact of the

logical blocking factor. This parameter is shown to allow for high performance

tuning and its theoretical relationship with some machine parameters is exhibited.

Chapter 5 validates the previously established performance model by comparing

its theoretical predictions with actual and experimental performance data. Chap-

ter 6 concludes this dissertation by explaining how algorithmically redistributed

operations can be used in the context of even more complex linear algebra com-

putations, such as matrix transposition, matrix-matrix multiplication, triangular

solve, classic matrix factorizations and reductions. This last chapter �nally sum-

marizes the major contributions of this dissertation and suggests potential future

research directions.

18

Chapter 2

Properties of The Block Cyclic

Data Distribution

2.1 Introduction

Due to the non-uniform memory access time of distributed memory concurrent

computers, the performance of data parallel programs is highly sensitive to the

adopted data decomposition scheme. The problem of determining an appropriate

data decomposition is to maximize system performance by balancing the compu-

tational load among processors and by minimizing the local and remote memory

tra�c. The data decomposition problem involves data distribution, which deals

with how data arrays should be distributed among processor memories, and data

alignment, which speci�es the collocation of data arrays. Since the data decom-

19

position largely determines the performance and scalability of a concurrent algo-

rithm, a great deal of research [21, 46, 48, 55] has aimed at studying di�erent data

decompositions [7, 12, 57]. As a result, the two-dimensional block cyclic distribu-

tion [67] has been suggested as a possible general purpose basic decomposition for

parallel dense linear algebra libraries [27, 54, 72] due to its scalability [38], load

balance and communication [54] properties.

The purpose of this chapter is to present and de�ne the two-dimensional

block cyclic data distribution. The contributions of this chapter are two-fold.

First, elementary results of the theory of integers are systematically brought to

the fore. They fundamentally characterize the properties of the two-dimensional

block cyclic data distribution. Second, these properties are the basis of e�cient

algorithms for address generation and fast indexing techniques, leading to conse-

quently e�cient data redistribution and manipulation. Some of these algorithms

are described in detail along with the properties from which they are deduced.

The two-dimensional block cyclic data distribution or decomposition is for-

mally de�ned. Its fundamental properties are then formally proved and presented

along with direct applications. The next two chapters illustrate how these proper-

ties can be applied to address and solve data alignment problems, i.e., to generate

and implement more complicated algorithms for data redistribution and logically

blocked operations. The correctness of these operations and the robustness of

their implementation rely on these properties.

20

2.2 De�nitions

De�nition 2.2.1 The mapping of an algorithm's data over the processes of a

distributed memory concurrent computer is called a data distribution. The block-

cyclic data distribution is one of these mappings.

In general there may be several processes executed by one processor, therefore,

without loss of generality, the underlying concurrent computer is regarded as a set

of processes, rather than physical processors. Consider a P �Q grid of processes,

and let � denote the set of all the process coordinates (p; q) in this grid:

� = f(p; q) 2 f0 : : : P � 1g � f0 : : : Q� 1gg:

Figure 2.1 illustrates a 2 � 3 process grid and the elements of �.

0 1 2

0

1 (1,0) (1,2)

(0,0) (0,2)(0,1)

(1,1)

Figure 2.1: A 2� 3 process grid

21

Consider an Mb �Nb array of blocks. Each block is uniquely identi�ed by the

integer pair (ib; jb) of its row and column indexes. Let �b be the set constructed

from all these pairs:

�b = f(ib; jb) 2 f0 : : :Mb � 1g � f0 : : : Nb � 1gg

= f(l P + p;m Q+ q) with ((p; q); (l;m)) 2 � ��g

with � = f(l;m) 2 f0 : : : bMb�1

P
cg � f0 : : : bNb�1

Q
cg.

De�nition 2.2.2 The block cyclic distribution is a mapping of �b onto � asso-

ciating to block coordinates the coordinates of the process into which it resides:

8>>><>>>:
�b �! �

(ib; jb) = (l P + p;m Q+ q) 7�! (p; q):

(2.2.1)

An M �N matrix A partitioned into blocks of size r � s is an Mb �Nb array

of blocks. The total number Mb (respectively Nb) of row blocks or blocks of rows

(respectively column blocks) of A as well as their size are easy to determine:

Mb =
M � 1

r
+ 1 = dM

r
e and Nb =

N � 1

s
+ 1 = dN

s
e with M;N � 1: (2.2.2)

All the blocks are of size r � s with the exception of the ones of the last row and

column of blocks. If M mod r = 0, the last row blocks contain the last r ma-

trix rows, and the last M mod r rows otherwise, where mod denotes the positive

22

modulo operator of two positive integers. The last column blocks contain the last

s matrix columns if N mod s = 0, and the last N mod s columns otherwise. An

example of a block-partitioned matrix is shown in Figure 2.2. Figure 2.3 illustrates

the mapping of this example onto a particular process grid.

6 7 12 13 18 19 24 25 30 31 36 37 401
1

4

5

8

9

16

17

20

21

22

12

13

A 00

A 10

A 20

A 30

A 50

A 40

A 01

A 11

A 21

A 31

A 02

A 12

A 22

A 32

A 42

A 03

A 13

A 23

A 33

A 43A 41

A 04

A 14

A 24

A 34

A 44

A 05

A 15

A 25

A 35

A 45

A 51 A 52 A 53 A 54 A 55

A 06

A 16

A 26

A 36

A 46

A 56

Figure 2.2: A block-partitioned matrix, with M = 22, N = 40, r = 4, s = 6.

De�nition 2.2.3 Let � be the set of all possible pairs (l;m) as de�ned above.

Consider the adjoint mapping from �b onto � that associates to a global block

coordinate pair its local coordinate pair:

8>>><>>>:
�b �! �

(ib; jb) = (l P + p;m Q+ q) 7�! (l;m)

(2.2.3)

23

Remark. Mapping (2.2.3) transforms the coordinates of a matrix block into

local values, i.e., the matrix block of coordinates (ib; jb) = (l P + p;m Q + q) is

the local block indexed by (l;m) into the process (p; q). This fact is illustrated in

Figure 2.3, where Alm
ibjb

denotes a matrix block of global coordinates (ib; jb) and

local coordinates (l;m). At this point, it is useful to re�ne the above De�nitions

(2.2.1) and (2.2.3).

0

1

0 1 2

5

8

16

13

21

22

13 18 31 367 12 25 3061
1

4

9

12

17

20

19 24 37 40

00
A 00

A 10

20

A 20

40

A 01

03

A 11

23

A 21

43

A 12

26

A 02

06

A
46

22

A 00

10

A 10

30

A 20

50

A 01

13

A 11

33

A 21

53

A 02

16

A 12

36

A 22

56

A 00

01
A 01

04

A 10

21
A 11

24

A 21

44
A 20

41

A 00

11

A 10

31

A 20

51
A 21

54

A 11

34

A 01

14
A 00

12
A 01

15

A 11

35

A 21

55

A 10

32

A 20

52

A 00

02

A 10

22

A 20

42

A 01

05

A 11

25

A 21

45

Figure 2.3: The previous block-partitioned matrix mapped onto a 2� 3 process grid.

De�nition 2.2.4 Consider �b, � and � as de�ned above. The block cyclic distri-

bution is de�ned by the following two related mappings associating to the global

block coordinates:

24

� the coordinates of the process in which this block resides

8>>><>>>:
�b �! �

(ib; jb) = (l P + p;m Q+ q) 7�! (p; q)

(2.2.4)

� the corresponding local coordinates of this block

8>>><>>>:
�b �! �

(ib; jb) = (l P + p;m Q+ q) 7�! (l;m):

(2.2.5)

Furthermore, this previous de�nition can be restated in terms of each matrix

entry aij instead of the block Aibjb to which it belongs. This de�nition is the most

appropriate and will best serve our purpose:

De�nition 2.2.5 Consider a P �Q grid of processes, where � denotes the set of

all process coordinates (p; q) in this grid:

� = f(p; q) 2 f0 : : : P � 1g � f0 : : : Q� 1gg:

Consider an M�N matrix partitioned into blocks of size r�s. Each matrix entry

aij is uniquely identi�ed by the integer pair (i; j) of its row and column indexes.

Let � be the set constructed from all these pairs:

� = f(i; j) 2 f0 : : :M � 1g � f0 : : : N � 1gg

= f((l P + p) r + x; (m Q+ q)s+ y); ((p; q); (l;m); (x; y)) 2 �� ���g

25

with � = f(l;m) 2 f0 : : : b M�1r

P
cg � f0 : : : b N�1s

Q
cgg and

� = f(x; y) 2 f0 : : : r � 1g � f0 : : : s� 1g:

The block cyclic distribution is then de�ned by the three following mappings

associating to a matrix entry index pair (i; j):

� the coordinates (p; q) of the process into which the matrix entry resides

8>>><>>>:
� �! �

(i; j) = ((l P + p) r + x; (m Q+ q) s+ y) 7�! (p; q)

(2.2.6)

� the coordinates (l;m) of the local block in which the matrix entry resides

8>>><>>>:
� �! �

(i; j) = ((l P + p) r + x; (m Q+ q) s+ y) 7�! (l;m)

(2.2.7)

� the local row and column o�sets (x; y) within this local block (l;m)

8>>><>>>:
� �! �

(i; j) = ((l P + p) r + x; (m Q+ q) s+ y) 7�! (x; y)

(2.2.8)

De�nition 2.2.6 The blocked decomposition is de�ned by De�nition 2.2.5

with r = dM
P
e and s = dN

Q
e, i.e., � = f(0; 0)g.

De�nition 2.2.7 The purely scattered or cyclic decomposition is de�ned

by De�nition 2.2.5 with r = s = 1, i.e., � = f(0; 0)g.

26

De�nition 2.2.8 The square block cyclic distribution is a special case of

the general two-dimensional block cyclic distribution (2.2.5) with r = s.

2.3 Block Properties

In this section, we state and prove some properties of the general block cyclic data

decomposition as de�ned in (2.2.5).

2.3.1 Notation and Elementary Theorems

The positive modulo of two positive integers a and b has been denoted above by

mod. When b evenly divides a, i.e., a mod b = 0, we equivalently write b div a.

The least common multiple and greatest common divisor of x and y are respec-

tively denoted by lcm(x; y) and gcd(x; y). A few elementary theorems that will

be used in the next sections are stated below. These theorems are direct implica-

tions of Euclid's division algorithm and their proof can be found in any elementary

integer theory textbook.

Theorem 2.3.1 8x; y 2 IN; x y = lcm(x; y) gcd(x; y):

Theorem 2.3.2 8 a; b 2 ZZ; the set of all linear integral combinations a t+ b u

with t and u in ZZ is exactly the set of all integral multiples of gcd(a; b). In other

words, for all t and u in ZZ, there exists k in ZZ such that a t+ b u = k gcd(a; b)

and conversely.

27

De�nition 2.3.1 The least common multiple and greatest common divisor of P r

and Qs are denoted by lcmb and gcdb respectively, i.e.,

lcmb � lcm(P r;Q s) and gcdb � gcd(P r;Q s):

With these notational conventions, it follows that P Q r s = lcmb gcdb.

2.3.2 Properties

In order to achieve an even distribution of the load in a data parallel program, one

has to �rst distribute evenly the data. Equivalently one must know the smallest

piece of data that is evenly distributed. The size of the smallest r � s block-

partitioned matrix evenly mapped onto a P � Q process grid according to the

block cyclic scheme is P r � Q s. This is trivially achieved by distributing one

r�s block per process. This matrix is in general rectangular as opposed to square,

and as such it is not a convenient partitioning unit for operations on triangular or

symmetric matrices. A more appropriate unit size is given by lcmb which is the

size of the smallest r � s block-partitioned square matrix similarly mapped onto

the same process grid. This square matrix is called an LCM block. Each process

owns exactly lcmb=P � lcmb=Q entries of this LCM block. This concept has been

originally introduced in the restricted context of square block cyclic mappings in

[22, 23, 25]. The purpose of this section is surely to formally exhibit properties of

28

the block cyclic distribution. More importantly, this collection of properties aims

at determining an elegant and convenient data structure that encapsulates and

reveals the essential features of the LCM block partitioning unit when used in the

context of algorithmic redistributed operations.

In preparation of the more general properties presented later in this chapter,

it is useful to �rst characterize the properties of the individual blocks Aibjb with

(ib; jb) in �b. More precisely, the blocks Aibjb such that ib = jb are of particular

importance in the development of the more general properties of interest.

De�nition 2.3.2 A matrix block Aibjb with (ib; jb) = (l P +p;m Q+q) such that

ib = jb with ((l;m); (p; q)) 2 �� � is called a D-block.

De�nition 2.3.3 A process of coordinates (p; q) in �, such that there is a pair

(l;m) in � verifying the equation: l P + p = m Q+ q is called a D-process.

Remark. A D-block or a D-process does not necessarily contain diagonal

entries of the matrix, e.g., the D-block A33 in Figure 2.2.

Property 2.3.1 There are exactly lcm(P;Q) D-processes.

Proof. Consider the D-blocks Aii and Ajj, with i 6= j and i; j � 0. Aii and

Ajj reside in the memory of the process of coordinates (p; q) if and only if

8>>><>>>:
(i� p) mod P = 0;

(j � p) mod P = 0;

and

8>>><>>>:
(i� q) mod Q = 0;

(j � q) mod Q = 0:

(2.3.9)

29

Since congruences for the same modulus may be added or subtracted, the previous

conditions can be rewritten as

(i� j) mod P = 0

(i� j) mod Q = 0

9>>>=>>>;, (i� j) mod lcm(P;Q) = 0: (2.3.10)

It follows that the set of pairs (Aii; Ajj) such that Aii and Ajj are D-blocks owned

by the same process is an equivalence relation having exactly lcm(P;Q) equiva-

lence classes.

Remark. A fundamental consequence of this proof is that the sequence of D-

blocks or D-processes is periodic and the smallest period is lcm(P;Q). This proves

that the LCM block introduced above is indeed the smallest square partitioning

unit. Second, all r� s blocks of relative coordinates say (r; s) with respect to the

LCM block to which they belong to are residing in the same process of coordinates

(r mod P; s mod Q). Finally, two of these blocks are adjacent if and only if their

corresponding LCM blocks are adjacent.

Property 2.3.2 The set of the D-processes of coordinates (p; q) in � is given by

the following equation

(p� q) mod gcd(P;Q) = 0; i:e:; gcd(P;Q) div (p � q): (2.3.11)

30

Proof. The coordinates of a D-block verify l P + p = m Q+ q, i.e.,

p � q = m Q� l P: (2.3.12)

A necessary and su�cient condition for this linear Diophantine equation to have

a solution in integers for l and m is that gcd(P;Q) divides p � q.

By setting p (or q) in Equation (2.3.11) to a constant value, it follows that

the distance between two consecutive D-processes in the same process row (or

column) is equal to gcd(P;Q). Moreover, the extended Euclid's algorithm [29]

can be used to solve the linear Diophantine Equation (2.3.12). The solution pairs

depend on the local process information (p; q). First, a particular solution (l�;m�)

of the equation

gcd(P;Q) = m� Q� l� P (2.3.13)

is found by computing gcd(P;Q). The set �pq of all solutions of the Equation

(2.3.12) is given by:

�pq = f(l;m) = (l� + t lcmp;m� + t lcmq); t 2 ZZg; (2.3.14)

with lcmp = lcmb=(P r) and lcmq = lcmb=(Q s).

Property 2.3.3 If Aii is a D-block residing in the process of coordinates (p; q),

the next D-block Akk residing in this same process with k = i + lcm(P;Q) is

31

locally separated from Aii by a �xed stride in the column and row directions,

namely lcmp and lcmq respectively.

Proof. This is a direct conclusion of the block cyclic decomposition De�nition

(2.2.5) and the above de�nition of �pq.

Property 2.3.4 The local coordinates of the �rst D-block residing in the process

of coordinates (p; q) are determined by the smallest positive pair (~l; ~m) in �pq.

This pair also provides an ordering of the D-processes.

Proof. By de�nition of the block cyclic distribution and since the Mapping

(2.2.3) is an increasing function of l and m, it is su�cient to prove this result by

reasoning on the matrix blocks. The set g�pq of the D-block coordinates residing

in a D-process is given by

g�pq = f(l;m) 2 �pq; such that l;m � 0g � IN2: (2.3.15)

g�pq is a discrete set that is bounded below; therefore, it has and contains its

smallest element (~l; ~m). Furthermore, the D-block (~l P+p; ~mQ+q), with ~l P+p =

~m Q+ q is the �rst D-block residing in the process (p; q). This implies that this

particular process is the (~lP + p+ 1)th D-process.

Figure 2.4 shows a 4�6 process grid, the D-processes are highlighted as darker

squares. The upper left and lower right corners of the process grid are labeled

32

by A and �A respectively. A simple graphical procedure to determine these D-

processes is to draw a diagonal starting from A. This diagonal is represented by a

bold dashed line on the �gure. When the diagonal reaches an edge of the process

grid, it should be continued on the opposite edge of the grid. For example the

diagonal starting from A �rst reaches an edge of the grid at B. The diagonal

should therefore be continued from the opposite edge of the grid precisely from

0

1

2

3

4

5

6

7

8

9

10

11

gcd(P,Q)

gcd(P,Q)

gcd(P,Q)

0 1

2

3

3

1

0

2 4 5

gcd(P,Q)

Process(2,4):

2−4 = mQ − lP

2+lP = 4+mQ = 10

i.e, process(2,4) is

P=4, Q=6; l=2, m=1

Ordering of the main
D−processes:

D−process.

the 11th main

A

AB

B

CC

D

D

Figure 2.4: A P �Q process grid with P = 4, Q = 6, lcm(P;Q) = 12, gcd(P;Q) = 2.

�B and so on. Ultimately, the diagonal will reach �A since the grid is �nite. One

may also picture the process grid folded onto a torus. In this case, A and �A label

the same point on the surface of the torus. This is also true of all other conjugate

pairs. Thus, �nding the D-processes can be achieved by drawing a \straight" line

33

on a torus surface. The dashed lines represent two matrix diagonals of a square

block-partitioned matrix mapped onto this grid. As noted above, the bold dashed

line is a D-diagonal, i.e., in one-to-one correspondence with the D-blocks. The

corresponding D-processes are represented by darker squares. The total number

of D-processes owning these D-blocks is lcm(4; 6) = 12. The distance between

two consecutive D-processes is equal to gcd(P;Q) = gcd(4; 6) = 2 as explicitly

noted in this �gure. In addition, this example also illustrates how to determine

the ordering of these D-processes by �nding the smallest positive solution of the

Equation (2.3.12). This computation is of importance when one wants to compute

the local number of D-blocks owned by a particular process. All of these results

were given by the above properties.

Figure 2.5 illustrates how to compute the local distance between D-blocks. It

represents a portion of a square block-partitioned matrix distributed over a 2� 3

process grid. The dashed lines materialize three matrix diagonals D0, D1 and

D2 of this square block-partitioned matrix. The bold dashed diagonal D0 is a D-

diagonal, i.e., in one-to-one correspondence with the D-blocks. The blocks residing

in the process of coordinates (p; q) are represented by darker squares. Note that

the global coordinates of the blocks residing in this process (p; q) represented on

the �gure have the form ((l+u)P+p; (m+v)Q+q)with u = 0 : : : 3 and v = 0 : : : 2.

The blocks of global coordinates (l P +p;mQ+q) and ((l+3)P+p; (m+2)Q+q)

are labeled by B0 and B3 respectively. The �gure illustrates the fact that the two

34

lP+p

(l+1)P+p

(l+2)P+p

(l+3)P+p

mQ+q

a=
1

P=2, Q=3: aQ − bP = gcd(P,Q) = 1 => a=1, b=1 and cQ − dP = −1 => c=1, d=2.

lcm(P,Q)=6

lcm(P,Q)=6

(m+1)Q+q (m+2)Q+q

lcmq=2

lcmp=3

D2

D1

D0

D0

D2

D1

B2

B1

c=1

b=1

d=
2

B0

B3

Figure 2.5: A square block-partitioned matrix distributed over a 2� 3 process grid.

35

consecutive D-blocks B0 and B3 are globally lcm(P;Q) = 6 blocks away from each

other in both row and column directions. This fact is indicated on the �gure by

the bold arrows. Locally within this process of coordinates (p; q) these same two

consecutive D-blocks B0 and B3 are lcmp = 3 blocks in the column direction and

lcmq = 2 blocks in the row direction distant from each other. Similarly, this fact

is indicated on the �gure by the bold dashed arrows. The two diagonals D1 and

D2 illustrated in the �gure by simple dashed lines do not not match exactly the

D-blocks. For these diagonals D1 and D2, this �gure shows the existence of other

blocks than the D-blocks that not only reside in the process of coordinates (p; q),

but also own diagonal entries. These blocks are labeled by B1 and B2. They lie

between the two previous consecutive D-blocks B0 and B3. The block labeled B1

(respectively B2) owns diagonals when the diagonal D1 (respectively D2) to be

considered is below (respectively above) the D-diagonal D0. It is interesting to

notice that the local jumps between blocks owning diagonal entries, i.e., between

the blocks B0, B1 and B3 or the blocks B0, B2 and B3, are solutions of the linear

Diophantine equations � gcd(P;Q) = l P � m Q depending on the position of

the diagonal. In the �gure, the two solution pairs are denoted by (a; b) and (c; d).

Simple arcs illustrate these local jumps. For example to go locally from B0 to B1,

one has to go d = 2 blocks south, and c = 1 block east. Finally, to go locally

from B1 to B3, one has to go a = 1 block south, and b = 1 block east. Reversing

this procedure allows one to explicitly �nd the path from B0 to B3 via B2. All of

36

these results were also given by the above properties.

Assume that the only problem one is interested in is to locate the diagonal

entries of a block-partitioned distributed matrix. Within this context, assume that

one is willing to restrict oneself to the purely scattered decomposition as de�ned

in (2.2.7). With these assumptions, subject to a renumbering of the processes,

a D-block is just a diagonal entry and conversely. Since the above properties

completely characterize the D-blocks and the D-processes, the problem of interest

is solved. These assumptions have been made by some researchers [12, 13, 54] to

implement the LINPACK benchmark and related dense linear algebra kernels on

distributed vector computers. These are also speci�cations data parallel languages

such as HPF are leaning towards.

Assume now that one is willing to restrict oneself to the square (r = s) block

cyclic decomposition as de�ned in (2.2.8) and is only interested by the D-diagonals

made of matrix entries aij such that ji � jj mod s = 0. In this case as well, the

diagonals of the D-blocks are the D-diagonal entries and conversely. Similarly as

above, the problem of locating the diagonals is solved. The square block cyclic

data decomposition is a particular case of the distributions HPF supports stan-

dardly [66]. This approach has also been chosen for the design of the dense routines

in the ScaLAPACK software library [16, 21, 22, 23, 25, 38]. The above properties

assume that the diagonals aij of interest are such that s evenly divides ji � jj.

When this is not the case, the properties can easily be adapted as indicated in Ta-

37

ble 2.1. This table shows how the above properties are generalized to all possible

diagonals for the square block cyclic distribution.

Table 2.1: Generalization of the block properties to the square block cyclic distribution

r = s D-Diagonals Other Diagonals
ji� jj mod r = 0 ji� jj mod r 6= 0

Blocks owning
diagonals

p� q = m Q� l P

(
p � q = m Q� l P
p � q � 1 = m Q� l P

Processes owning
diagonals

gcd(P;Q) div (p� q)

(
gcd(P;Q) div (p� q)
gcd(P;Q) div (p� q � 1)

Number of such
processes

lcm(P;Q) min(2; gcd(P;Q))� lcm(P;Q)

In all of the other cases the previous properties are insu�cient to solve the

problem of locating diagonals. More powerful techniques presented in the next

two sections should be used instead.

2.4 Solving Linear Diophantine Equations

The algorithm to solve linear Diophantine equations is described in this section.

It is historically attributed to the greek Diophantos (perhaps A.D. 250). The

method is nevertheless presented below, as it is still the best known method to

solve completely these equations and also one way to establish properties of the

38

block cyclic distribution. In order to locate the diagonals by solving directly a

linear Diophantine equation, one �rst consider the following equation:

m Q s� l P r = p r � q s+ x� y (2.4.16)

for (l;m) 2 � and (x; y) 2 �. This equation is deduced from the block cyclic

mapping de�ned in (2.2.5). To begin, one can instead solve

m� Q s� l� P r = gcdb = gcd(P r;Q s): (2.4.17)

The solution (l�;m�) of this equation can be found in O(log(max(P r;Q s)))

time and space by using the extended Euclid's algorithm [29] for computing gcdb.

Then, one computes gcd(r; s) and rewrites � as a disjoint union of intervals �h =

[h gcd(r; s) : : : (h+1) gcd(r; s)) with h 2 ZZ. The expression x� y is rewritten as

�+
 with � mod gcd(r; s) = 0 and 0 �
 < gcd(r; s). Because gcd(r; s) divides �,

there exist � and � such that � r + � s = �. Thus, the Equation (2.4.16) can be

rewritten as

m Q s� l P r = (p + �) r � (q + �) s+
 (2.4.18)

This equation has a solution if and only if gcdb divides the right hand side. In

this case, a solution pair (lh;mh) is obtained from the particular solution (l�;m�)

previously computed. There is no guarantee that this solution pair will belong

39

to the correct interval, so some scaling may be necessary. It is then easy to

recover xh and yh. In addition, since the quadruplet solutions (lh;mh; xh; yh) may

be found in any order, sorting may also be necessary. The Equation (2.4.16) is

thus completely solved, and one precisely knows in every process which block

owns diagonal entries and how to �nd those diagonals within each block. Each

quadruplet solution corresponds uniquely to a multiple of gcdb in � as illustrated

in Figure 2.6. This one-to-one mapping implies that the quadruplet solutions are

0

2gcdb 4gcdb−2gcdb−4gcdb−6gcdb

1 − s r − 1

Figure 2.6: The quadruplet solution intervals �h

periodic and will be successively found by the above method, so that one can stop

as soon as a quadruplet solution has been found twice.

The approach of solving a set of linear Diophantine equations to determine

index sets, process sets and so on is recommended by data parallel compiler de-

signers as one way to proceed [15, 56, 64, 82]. Binary algorithms are available [65]

to solve these equations. This method is thus very general and relatively inex-

pensive in terms of time. Still, this approach is the most powerful and expensive

method in terms of memory requirements. Dynamic storage facilities are needed

for the quadruplet solutions [63]. It can be adapted to accommodate variations

of the block cyclic distributions that are supported by the HPF language.

40

2.5 LCM Tables

De�nition 2.5.1 The k-diagonal of a matrix is the set of entries aij such that

i� j = k.

Remark. With this de�nition the 0-diagonal is the \main" diagonal of a

matrix. The �rst subdiagonal and superdiagonal are respectively the 1-diagonal

and the �1-diagonal.

De�nition 2.5.2 Given a k-diagonal, the k-LCM table (LCMT) is a two-dimensional

in�nite array of integers local to each process (p; q) de�ned recursively by

8>>>>>>>><>>>>>>>>:

LCMT p;q
0;0 = q s� p r + k;

8l 2 IN; LCMT p;q
l;� = LCMT p;q

l�1;� � P r;

8m 2 IN; LCMT p;q
�;m = LCMT p;q

�;m�1 +Q s:

An equivalent direct de�nition is

8(l;m) 2 IN2 LCMT p;q
l;m = m Q s� l P r + q s� p r + k:

The equation for the 0-diagonal (2.4.16) is generalized to the k-diagonal by

LCMT p;q
l;m = x� y; (2.5.19)

41

with (x; y) in �. Thus, blocks owning the k-diagonal entries are such that

1� s � LCMT p;q
l;m � r � 1: (2.5.20)

In addition the value of LCMT p;q
l;m speci�es where the diagonal starts within a

block owning diagonals as illustrated in Figure 2.7.

x

yy

x

pq(LCMT lm,0)

lm
pq)(0,−LCMT

LCMTlm
pq = −1 <= 0 LCMT lm

pq = 2 >= 0

s s

rr

Figure 2.7: Meaning of di�erent values of LCMT p;q
l;m with r = 6, s = 8

Property 2.5.1 The local blocks in process (p; q) such that LCMT p;q

l;m � 0 own

matrix entries aij that are globally below the k-diagonal.

Property 2.5.2 The local blocks in process (p; q) such that LCMT p;q
l;m � 0 own

matrix entries aij that are globally above the k-diagonal.

Property 2.5.3 The local blocks in process (p; q) such that LCMT p;q
l;m � �s

correspond globally to strictly lower blocks of the matrix.

42

Property 2.5.4 The local blocks in process (p; q) such that LCMT p;q
l;m � r cor-

respond globally to strictly upper blocks of the matrix.

Property 2.5.5 Within each process, if the r�s block of local coordinates (l;m)

owns k-diagonal entries, the block of local coordinates (l + 1;m) (respectively

(l;m + 1)) owns either k-diagonals or matrix entries that are strictly below (re-

spectively above) the k-diagonal.

Property 2.5.6 Within each process, if the r�s blocks of local coordinates (l;m)

and (l + 1;m) (respectively (l;m + 1)) own k-diagonals, then the block of local

coordinates (l;m+1) (respectively (l+1;m)) owns matrix entries that are strictly

above (respectively below) the k-diagonal.

Proof. These last properties are direct implications of the LCM table de�-

nition.

Figure 2.8 shows an LCM block-partitioned matrix and the r � s blocks of

this matrix that reside in the process of coordinates (p; q). Depending on their

relative position to the k-diagonal, these blocks are identi�ed by a di�erent shade

of color. The arrangement of these blocks in process (p; q) is also represented and

denoted by the local array in process (p; q). This �gure illustrates the previous

properties and demonstrates that the essential piece of information necessary to

locate the diagonals locally in process (p; q) is contained in the diagonal LCM

blocks. These diagonal LCM blocks separate the upper and lower parts of the

43

matrix. Moreover, because of the periodicity of the distribution mapping men-

tioned earlier in this chapter, only one diagonal LCM block is needed in order

to locate the k-diagonals in every process of the grid. This implies that only a

very small fraction of the LCM table needs to be computed to solve the problem

of interest. Furthermore, the size of the meaningful part of the LCM table can

be computed in O(
p
lcmp2 + lcmq2) time. Thus, this information is very cheap

to obtain and one can a�ord to recompute it when needed as opposed to what

was done for the linear Diophantine equation method discussed in the previous

section.

Local array in process (p,q)

Upper

Lower

Diag

Upper

Lower

Diag

LCM block−partitioned matrix

Figure 2.8: LCM template

44

Figure 2.9 shows a 1-LCM block for a given set of distribution parameters

P , r, Q and s. Figure 2.10 shows the associated 1-LCM tables corresponding

to the 1-LCM block shown in Figure 2.9. Each of these tables is associated to

a distinct process of coordinates (p; q). These coordinates are indicated in the

upper left corner of each table. Examine for example the table corresponding to

111090 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

9

10

11

12

13

Figure 2.9: The 1-LCM block obtained for P = 2, r = 2, Q = 2 and s = 3.

process (0; 0). The value of the LCM table entry (0; 0) is 1. Since this value is

greater than �s = �3 and less than r = 2, it follows that this block (0; 0) owns

diagonals. Moreover, locally within this block the diagonal starts in position

45

0

1

4

5

8

9

−8 −2

2

(0,1) 3 4 5 9 10 11

12

13

10

−4

0 6

15

4

4

2

3

6

7

10

11

−2

−6

4

0

3 4 5 9 10(1,1)

2 8

11 15

2

−1

−5 1

5

876210(1,0)

2

3

6

7

10

11
−3−9

12

−1

1 7

3

−1−7

−3

(0,0)

0

1

4

5

8

9

0 1 2 6 7 8

13

12

−5−11

12

1

Figure 2.10: The 1-LCM tables obtained for P = 2, r = 2, Q = 2 and s = 3.

46

(LCMT 00
00 ; 0) = (1; 0). The periodicity in this table is shown by the block of

coordinates (3; 2) which is such that LCMT 00
00 = LCMT 00

32 = 1. One can also

verify that a block of local coordinates (l;m) in this table corresponds to a strictly

lower (respectively upper) block in the original 1-LCM block (see Figure 2.9) if

and only if LCMT 00
lm � �s (respectively LCMT 00

lm � r). These same remarks

apply to all of the other LCM tables shown in Figure 2.10.

Property 2.5.7 The number of r � s blocks owning k-diagonal entries is given

by 8>>><>>>:
lcmb (

r + s� gcd(r; s)

r s
) if gcd(r; s) divides k;

lcmb (
r + s

r s
) otherwise:

Proof. (sketch) First note that one can assume �s < k < r without loss of

generality by renumbering the processes with their relative process coordinates.

Second, consider an array of r � s blocks of size lcm(r; s). If k divides gcd(r; s),

there is exactly one r� s block such that its (r� 1; s� 1) entry belongs to the k-

diagonal. Otherwise, such a block does not exist. Third, the column (respectively

row) edges of the blocks will be cut exactly lcm(r; s)=s (respectively lcm(r; s)=r)

times by the k-diagonal. To see that lcmb=lcm(r; s) is indeed an integer, one may

observe that this quantity can be rewritten as ((u Q) P r+ (t P) Q s)=gcdb with

u and t in ZZ. Finally, there are exactly lcmb=lcm(r; s) such blocks in an LCM

block.

47

Property 2.5.8 If gcd(r; s) divides k, a su�cient condition for all P�Q processes

to own k-diagonals is given by r + s � gcd(r; s) � gcdb. Otherwise, i.e., when

gcd(r; s) does not divide k, a su�cient condition for all P � Q processes to own

k-diagonals is given by r + s � gcdb.

Proof. Remark that gcd(r; s) divides gcdb. If gcd(r; s) divides k (note that

this will always be the case if gcd(r; s) = 1), the number of multiples of gcd(r; s)

in the interval Ip;q = (p r � (q � 1) s : : : (p + 1) r � q s) is
r + s

gcd(r; s)
� 1. The

number of multiples of gcdb in the interval Ip;q is
gcdb

gcd(r; s)
. Thus, the inequality

r + s

gcd(r; s)
�1 � gcdb

gcd(r; s)
is a su�cient condition for a multiple of gcdb to be in this

interval Ip;q. Otherwise, i.e., when gcd(r; s) does not divide k, Equation 2.5.20

can be rewritten as

p r � (q + 1) s < m Q s� l P r + k < (p + 1) r � q s: (2.5.21)

For any given process of coordinates (p; q), there must exist a t 2 ZZ such that

m Q s � l P r = t gcdb verifying Inequality 2.5.21. Moreover, the interval of

interest Ip;q is of length r + s� 1. A su�cient condition for all processes to have

k-diagonals is given by r+ s� 1 � gcdb. Since gcd(r; s) 6= 1 and gcd(r; s) divides

gcdb, this su�cient condition can be equivalently written as r + s � gcdb.

Property 2.5.9 If gcd(r; s) divides k, a necessary condition for all P � Q pro-

cesses to own k-diagonals is given by r + s � gcd(r; s) � gcdb. Otherwise, when

48

gcd(r; s) does not divide k, a necessary condition for all P �Q processes to own

k-diagonals is given by r + s � gcdb.

Proof. Suppose there exists a process (p; q) having two distinct blocks owning

k-diagonals. Then, r+ s� gcd(r; s) � gcdb if gcd(r; s) divides k, and r+ s � gcdb

otherwise. Indeed, there are two multiples of gcdb in some interval Ip;q = (p r �

(q�1) s : : : (p+1) r�q s). Otherwise, each process owns at most one r�s block in

which k-diagonals reside. Therefore, the number of blocks owning k-diagonals is

equal to the number of processes owning these diagonals. The result then follows

from Property 2.5.7.

Corollary 2.5.1 A necessary and su�cient condition for every process to own

k-diagonal entries is given by r + s � gcd(r; s) � gcdb if gcd(r; s) divides k and

r + s � gcdb otherwise.

Proof. This result directly follows from the two preceding properties.

Corollary 2.5.2 The number of processes owning k-diagonal entries is equal to

the maximumof P�Q and the number of blocks owning k-diagonals. This number

is given by

8>>>><>>>>:
max(P Q (

r + s� gcd(r; s)

gcdb
); P Q) if gcd(r; s) divides k;

max(P Q (
r + s

gcdb
); P Q) otherwise:

49

Proof. The result follows from the fact that lcmb=(r s) = (P Q)=gcdb and

Properties 2.5.7, 2.5.8 and 2.5.9.

These last properties generalize the results presented in Table 2.1. They are

summarized below in Table 2.2. The end of this section aims at determining the

probability that the quantities r+s or r+s�gcd(r; s) are greater or equal to gcdb,

that is, the probability that every process owns k-diagonals entries. The result

Table 2.2: Properties of the k-diagonal for the block cyclic distribution

Blocks
owning
k-diagonals

�s < m Q s� l P r + q s� p r + k < r

Processes
owning
k-diagonals

(9t 2 ZZ; such that
p r � (q + 1)s < t gcdb+ k < (p+ 1)r � q s

Number
of such
processes

8>>><>>>:
min(

P Q (r + s)

gcdb
; P Q) if k mod gcd(r; s) 6= 0;

min(
P Q (r + s� gcd(r; s))

gcdb
; P Q) otherwise:

obtained is particularly interesting because it quanti�es the complexity of general

redistribution operations as a function of the distribution parameters, namely the

perimeter r + s of the r � s partitioning unit and the quantities gcd(r; s) and

gcdb = gcd(P r;Q s).

50

Property 2.5.10 If P , r, Q and s are integers chosen at random, the probability

P1 that gcdb = gcd(P r;Q s) = 1 is

P1 =
Y

p prime

(1 � (
2 p � 1

p2
)2) � 0:21778 : : : :

Proof. A precise formulation of this property as well as its proof should care-

fully de�ne what is meant here by \chosen at random". This precision however,

does complicate the following argumentation in a useless manner. More informa-

tion on the random generation of integers for the purpose of a proof can be found

in [65]. For the sake of simplicity, only the essential arguments are presented

below. We �rst state and prove two useful lemmas.

Lemma 2.5.1 Let p be a prime and � a positive integer. The probability qp�

that p� divides the product P r where P and r are integers chosen at random is

given by

qp� =
(�+ 1) p � �

p�+1
:

Proof. If p� divides the product P r, then either p� divides P , or, p��k divides

P and p��k+1 does not divide P and pk divides r for all values of k in [1 : : : �]. It

follows that

q� =
1

p�
+

�X
k=1

1

p��k
(1� 1

p
)
1

pk
=

1

p�
(1 + � � �

p
) =

(�+ 1) p � �

p�+1
:

51

Lemma 2.5.2 Let d be an integer and d =
Y
i2Id

p�ii its decomposition into prime

factors. The probability qd that d divides the product P r where P and r are

integers chosen at random is given by

qd =
Y
i2Id

(�i + 1) pi � �i

p�i+1i

:

Proof. This result directly follows from the application of Lemma 2.5.1 to

each of the prime factors of d.

The probability that p prime divides P r and Qs is thus (
2 p � 1

p2
)2 by appli-

cation of Lemma 2.5.1. This probability is equal to the probability that p divides

gcdb = gcd(P r;Q s). However, the probability P1 is the probability that there

is not a prime dividing gcdb. Therefore, one considers the sequence of partial

products

Pn =
Y

first n primes p

(1� (
2 p � 1

p2
)2):

The partial products Pn form a positive strictly decreasing quadratically conver-

gent sequence. Therefore, P1 = lim
n!1

Pn exists. An easy computation show that

an approximate value of P1 is 0:21778 : : :.

Remark. With the help of a computer, it is possible to enumerate for a given

n all the 4-tuples (P; r;Q; s) lying in the �nite range 1 � P; r;Q; s � n such that

gcdb = 1. Figure 2.11 shows the obtained results for di�erent values of n � 500.

52

First, note that 500 corresponds to a 250000 process grid, which is by far larger

than any existing DMCC. It is also remarkable that the �nite ratio is always

larger than P1 � 0:21778 : : :. Second, the \convergence" rate of the probability is

incredibly rapid for small values of n. The value of this probability can therefore

be considered as almost exact or at worst a very accurate lower bound for all

possible values of the distribution parameters.

0 50 100 150 200 250 300 350 400 450 500
10

−1

10
0

n

ra
tio

Figure 2.11: Ratio of tuples (P; r; Q; s)in[1::n]4 such that gcd(P r;Q s) = 1.

Finally, an analogous result known as Dirichlet's theorem [34] states that the

probability that gcd(u; v) = 1 for u and v integers chosen at random exists and is

6

�2
. This result does not directly apply to the above property since in this latter

case one is interested in the number of divisors of a product of integers. The proof

techniques are however very similar.

53

Property 2.5.11 Let d be an integer and d =
Y
i2Id

p�ii its decomposition into

prime factors. If P , r, Q and s are integers chosen at random, the probability Pd

that gcdb = gcd(P r;Q s) = d is

Pd = q2d
Y

p prime

(1� q2pd)

where qd (respectively qpd) is the probability that d (respectively p d with p prime)

divides P r. Furthermore, we have

qd =
Y
i2Id

(�i + 1)pi � �i

p�i+1i

and qpd =

8>>>><>>>>:
(�i + 2)pi � (�i + 1)

((�i + 1)pi � �i)pi
qd if 9i 2 Idjp = pi;

2 p � 1

p
qd if p does not divide d:

Proof. The probability Pd is the product of the probability qd that d divides

gcdb and the probability that there is no prime factor p such the product p d divides

gcdb. The probability qd is obtained by a direct application of Lemma 2.5.2.

The probability that the product p d divides gcdb is more delicate to compute

since it depends on whether p is a prime factor of d or not. The result however

directly follows from Lemmas 2.5.1 and 2.5.2. The existence and convergence of

the product follows from the fact that jqpdj � jqdj.

The above properties do not lead in a straightforward manner to the desired

probability that all processes will own k-diagonal entries. However, these proper-

ties illustrate the fact that this probability, if it exists, is likely to converge at a

54

high rate. Once again, it is possible to rely on a computer to enumerate all 4-tuples

in a �nite and practical range such that the quantities r+s�gcd(r; s) or r+s are

greater or equal to gcdb. The results are presented in Figure 2.12. It is important

gcd(Pmb,Qnb) <= mb+nb−gcd(mb,nb)
gcd(Pmb,Qnb) <= mb+nb

0 50 100 150 200 250 300 350 400 450 500
0.85

0.9

0.95

1

n

ra
tio

Figure 2.12: Ratios of tuples (P; r; Q; s)in[1::n]4 such that r + s � gcd(r; s) or r + s is
greater or equal to gcd(P r;Q s).

to notice that in practice, i.e., for a �nite range of values (1 � P; r;Q; s � n),

there is almost no di�erence between the �nite ratios of all 4-tuples verifying

these inequalities over n4. This �gure does not prove the existence of the limit

and therefore of the probability. However, if it exists, its value is likely to be

very close to 1. In other words, if one picks random and realistic distribution

parameters, it is very likely that all processes in the grid will own k-diagonals.

55

2.6 Rationale

First, Figure 2.12 not surprisingly shows that the ratios of distribution parameters

such that k-diagonals are evenly distributed tends towards one. More interesting

is the fact that this function increases very rapidly (r(10) � :88, r(20) � :90,

r(50) � :93). Therefore, it is very likely that all processes in the grid will own

k-diagonals. The Corollaries (2.5.1) and (2.5.2) say that the distribution of the

k-diagonals essentially depends on the perimeter of the r � s partitioning unit as

opposed to its shape. This says that restricting the data decomposition to a square

block cyclic mapping does not a�ect in any way the problem of locating the k-

diagonals, and consequently the complexity of redistribution operations. Finally,

assume that the complexity of redistribution operations in terms of the number of

messages exchanged for the same volume of data to be communicated grows with

the number of processes owning k-diagonals. The next two chapters will con�rm

the validity of this assumption. In this case, it follows that small blocking factors

are favorable for interconnection networks featuring a large startup time or latency,

but high bandwidth. Conversely, small startup time and lower bandwidth are

more well-suited for medium and large blocking factors, as far as the performance

of redistribution operations is concerned. Consequently transportable e�ciency

for redistribution operations requires the support of the parameterized family of

block cyclic mappings.

56

The de�nitions of an LCM table given in this chapter can easily be generalized

to a block cyclic distribution with a partial �rst block. In other words, the �rst

block of rows (respectively columns) is of size ir (respectively is) instead of r

(respectively s). This more general de�nition, as well as a number of examples

of LCM tables, have been added to Appendix A of this document. An alternate

de�nition of an LCM table entry would be the global number of columns up to

the blocks of local coordinates (�;m) minus the global number of rows up to the

blocks of local coordinates (l; �). This constructive de�nition is more general than

the one used in this dissertation. It encompasses the entire family of Cartesian

mappings [9].

The algorithmic redistributed operations described later in this dissertation

can be expressed in terms of locating diagonals of a distributed matrix. The

next chapters also illustrate the fundamental role played by LCM tables and the

properties presented above in the formulation of these operations. Moreover, the

implications of these properties are analyzed in greater detail as these operations

are speci�ed in this document. Still, the correctness of these operations and the

robustness and reliability of their implementation depend entirely on the material

presented in this chapter.

57

Chapter 3

Algorithmic Redistribution

3.1 Introduction

In a serial computational environment, transportable e�ciency is the essential

motivation for developing blocking strategies and block-partitioned algorithms

[3, 5, 33, 60]. The linear algebra package (LAPACK) [5] is the archetype of such a

demarche. The LAPACK software is constructed as much as possible out of calls to

the BLAS (Basic Linear Algebra Subprograms). These kernels con�ne the impact

of the machine architecture di�erences within a small number of routines. The

e�ciency and portability of the LAPACK software are then achieved by combining

native and e�cient BLAS implementations with portable high-level components.

The BLAS are subdivided in three levels, each of which o�ering increased scope

for exploiting parallelism. This classi�cation criterion happens to also correspond

58

to three di�erent kinds of basic linear algebra operations:

� Level 1 BLAS [68]: for vector operations, such as y �x+ y,

� Level 2 BLAS [36]: for matrix-vector operations, such as y �Ax+ �y,

� Level 3 BLAS [35]: for matrix-matrix operations, such as C �AB + �C.

Here, A, B, and C are matrices, x and y are vectors, and � and � are scalars.

The performance potential of the three levels of BLAS is strongly related to the

ratio of
oating point operations to memory references, and the reuse of data

when it is stored in the higher levels of the memory hierarchy. Consequently, the

Level 1 BLAS cannot achieve high e�ciency on most modern supercomputers.

The Level 2 BLAS can achieve near-peak performance on many vector processors.

On RISC microprocessors, however, their performance is limited by the memory

access bandwidth bottleneck. The greatest scope for exploiting the highest levels

of the memory hierarchy as well as other forms of parallelism is o�ered by the

Level 3 BLAS [5].

The previous reasoning applies to distributed memory computational envi-

ronments in two ways. First, in order to achieve overall high performance, it is

necessary to express the bulk of the computation local to each process in terms of

Level 3 BLAS operations. Second, developing a set of BLAS for DMCCs should

lead to a straightforward port of the LAPACK software. This is the path followed

by the ScaLAPACK research project [16, 39] as well as others [1, 13, 26, 41].

59

Such a design sounds simple and reasonable, even if little is said on the adequate

blocking strategies for a distributed memory hierarchy. One answer is given by

the physical blocking approach, where the distribution blocking factors are used

as computational blocking units, hence inducing alignment restrictions on the

operands. Most of the parallel algorithms proposed in the literature are physi-

cally blocked [25, 26, 74, 83]. High performance is achievable on a wide range of

DMCCs, but usually depends on the distribution blocking factors. The alignment

restrictions simplify the expression and implementation of these algorithms, but

also limit their application scope in a way that does not satisfy general purpose

library requirements. High performance can be maintained across platforms by

parameterizing the user's data distribution or across library function calls by using

general redistribution packages [78].

The purpose of this chapter is to propose alternatives to the physical block-

ing strategy. The originality of the algorithms presented here is their systematic

derivation from the properties of the underlying mapping. These blocking strate-

gies are expressed within a single framework using LCM tables. The resulting

blocked operations are appropriate for library software. They indeed feature po-

tential for high performance without any speci�c alignment restrictions on their

operands. This says that the antagonism between e�ciency and
exibility is not a

property of the block cyclic mapping, but merely a characteristic of the algorithms

that have been so far proposed to deal with a distributed memory hierarchy.

60

3.2 Terminology

This section de�nes some basic objects and terms that are heavily used in the

rest of this chapter. An e�ort has been made to maintain consistency with the

notations used in (2.2.5). The objects de�ned here are common and sometimes

very intuitive. Hence, their de�nition may seem a little obscure. It corresponds

however to the usual data structure used for their storage in a computer.

De�nition 3.2.1 An M � N matrix A is a two-dimensional array of elements

indexed by their relative row and column coordinates

A = faij with (i; j) 2 �A = f0 : : :M � 1g � f0 : : : N � 1gg:

�A is called a virtual matrix (VM) or the index set associated with the matrix A.

De�nition 3.2.2 AnM�N (block cyclic) distributed matrix (DM) A is a P �Q

matrix of matrices:

8>>><>>>:
A = fApq with (p; q) 2 �g

Apq = fapqij with (i; j) 2 �Apqg

with �Apq = f(l r + x;ms + y) such that (l;m; x; y) 2 � � �g. The set �A =

f�Apq with (p; q) 2 �g is called a distributed virtual matrix (DVM) or the index

set associated with the distributed matrix A.

61

Remark. When �A is empty, A is denoted by ; and called the null (dis-

tributed) matrix. In a computer, the null matrix is represented by a valid address

in memory pointing to no data.

De�nition 3.2.3 An M � N 1-dimensional column distributed matrix A is a

distributed matrix such that there exists q0 in f0 : : : Q� 1g and

8>>><>>>:
8p 2 f0 : : : P � 1g; 8q 2 f0 : : : Q� 1g n fq0g; �Apq = ; and

�Apq0 = f(l r + x;ms+ y) j (l;m; x; y) 2 f0 : : : b M�1r

P
cg � f0 : : : N�1

s
g ��g:

De�nition 3.2.4 An M � N 1-dimensional row distributed matrix A is a dis-

tributed matrix such that there exists p0 in f0 : : : P � 1g and

8>>><>>>:
8q 2 f0 : : : Q� 1g; 8p 2 f0 : : : P � 1g n fp0g; �Apq = ; and

�Ap0q = f(l r + x;ms+ y) j (l;m; x; y) 2 f0 : : : M�1
r
g � f0 : : : b N�1s

Q
cg ��g:

De�nition 3.2.5 An M � N local matrix A is a distributed matrix such that

there exists (p0; q0) 2 � and

8>>><>>>:
8(p; q) 2 � n f(p0; q0)g; �Apq = ; and

�Ap0q0 = f(l r + x;ms+ y) j (l;m; x; y) 2 f0 : : : M�1
r
g � f0 : : : N�1

s
g ��g:

There is another type of distributed matrix that occurs in a large number of

distributed dense linear algebra computations. These are the replicated variants of

62

the last three de�nitions. It is useful to incorporate these distributed matrices in

our general re
ection because they frequently contain intermediate results needed

to avoid unnecessary communication phases.

De�nition 3.2.6 An M�N 1-dimensional column replicated distributed matrix

A is a distributed matrix such that there exists q0 in f0 : : : Q� 1g and

8>>>>>>>><>>>>>>>>:

8p 2 f0 : : : P � 1g; 8q 2 f0 : : : Q� 1g n fq0g;

Apq = Apq0 = fapq0ij with (i; j) 2 �Apq0g and

�Apq0 = f(l r + x;ms+ y) j (l;m; x; y) 2 f0 : : : b M�1r

P
cg � f0 : : : N�1

s
g ��g:

De�nition 3.2.7 An M �N 1-dimensional row replicated distributed matrix A

is a distributed matrix such that there exists p0 in f0 : : : P � 1g and

8>>>>>>>><>>>>>>>>:

8q 2 f0 : : : Q� 1g; 8p 2 f0 : : : P � 1g n fp0g;

Apq = Ap0q = fap0qij with (i; j) 2 �Ap0qg and

�Ap0q = f(l r + x;ms+ y) j (l;m; x; y) 2 f0 : : : M�1
r
g � f0 : : : b

N�1
s

Q
cg ��g:

De�nition 3.2.8 An M � N local column replicated matrix A is a distributed

matrix such that there exists (p0; q0) 2 � and

8p 2 f0 : : : P � 1g; 8q 2 f0 : : : Q� 1g n fq0g; �Apq = ; and Apq0 = Ap0q0:

63

De�nition 3.2.9 AnM�N local row replicated matrixA is a distributed matrix

such that there exists (p0; q0) 2 � and

8q 2 f0 : : : Q� 1g; 8p 2 f0 : : : P � 1g n fp0g; �Apq = ; and Ap0q = Ap0q0:

De�nition 3.2.10 An M �N local replicated matrix A is a distributed matrix

such that there exists (p0; q0) 2 � and

8p 2 f0 : : : P � 1g n fp0g; 8q 2 f0 : : : Q� 1g n fq0g Apq = Ap0q0:

Finally, the notion of equality and equivalence of two distributed matrices with

respect to the block cyclic distribution can be de�ned as follows:

De�nition 3.2.11 Two M�N distributed matricesA and B are said to be equal

with respect to their distribution if and only if �A = �B.

De�nition 3.2.12 Two M�N distributed matricesA and B are said equivalent,

noted �A � �B, with respect to their distribution if and only if there are two

integers u and t such that

8(p; q) 2 �;�Apq = �Bvw with v = (p+ u) mod P and w = (q + t) mod Q:

Property 3.2.1 If �A = �B, then �A � �B.

64

3.3 One-Dimensional Redistribution

The operations described in this section involve only M �N one-dimensional dis-

tributed matrices as de�ned in (3.2.3) and (3.2.4). Let X and Y be such matrices.

Let PX and rX (respectively QY and sY) be the distribution parameters associ-

ated with X (respectively Y). In order to redistribute X into Y , one considers

the DVM induced by X and Y and speci�ed by the distribution parameters PX ,

QY , rX and sY . The Figure 3.1 shows the block-partitioned operands X and Y

X

Y

M

M

N

N

s

r

Figure 3.1: Global view of one-dimensional redistribution

as well as the induced DVM. For a given row of X, the corresponding diagonal

entry of this DVM determines the corresponding column of Y . A block of rows of

X that could be packed together is represented in the �gure by a gray rectangle.

65

The corresponding diagonal block of the DVM and the corresponding columns of

Y are colored with the same shade of gray. Figure 3.1 illustrates the importance

of locating the diagonals in the context of one-dimensional redistribution. The

process grid PX �QY is called a virtual process grid. Without loss of generality,

one can assume that X (respectively Y) resides in column (respectively row) 0

N

N

Y

X

r

s

Figure 3.2: Local view in process (pX ; qY) of one-dimensional redistribution

of this virtual process grid. If a process of coordinates (pX ; qY) owns diagonal

entries of the associated M �M virtual matrix, then some data residing in the

process (pX ; 0) should be sent to the process of coordinates (0; qY). Figure 3.2

shows the local viewpoint of one-dimensional distribution in the virtual process

of coordinates (pX ; qY). The blocks of the DVM owning diagonals are represented

66

by darker rectangles in which the diagonals are symbolized by a white segment.

Moreover, the rows of X marked in gray can be packed in a single message and

sent to process (0; qY). The knowledge of the source process coordinates allows

the receiving process to determine a priori the size of the message to be received

as well as its packed form and the location of each message entry. Consequently,

unless X and Y are equivalent in the sense of (3.2.12), the number of messages

to be exchanged is equal to the number pd of processes owning diagonals of the

DVM. The average size of each message is thus M N=pd. This approach using

LCM tables allows the handling of the shift and transpose operations in the same

framework. Indeed, when X and Y are distributed along the same axis of the

actual process grid, the operation shifts X into Y along this axis. Otherwise X

is physically transposed into Y . The implementation of such an operation should

take advantage of such a savings opportunity. In addition, since it is possible

to detect via a simple test on the distribution parameters distribution equiva-

lence, this scheme can be easily made optimal for the simpler cases. Note that the

operands X and Y could be distributed on distinct process grids without a�ecting

the packing strategy induced by the LCM tables. Moreover, if one uses the LCM

table de�nition to handle a �rst partial block, this scheme naturally accommodates

non-aligned operands. Finally, it is straightforward to handle replicated operands

by taking replication into account when computing the LCM table entries. The

next chapter will discuss the possible communication patterns associated with the

67

one-dimensional redistribution as well as their complexity. Pseudo algorithms will

then be presented.

3.3.1 Non-Unit Stride

The computation of the LCM table can be easily adapted if one wants to access

the entries of a M�1 one-dimensional distributed matrix separated by a non unit

stride s. The block cyclic distribution De�nition (2.2.5) gives

(l PX + p) rX + x = k s with k 2 IN; i:e:; p rX � k s� l PX rX < p rX :

Therefore, the processes p having entries of this scattered one-dimensional matrix

are such that

p rX � m gcd(s; PX rX) < (p+ 1) rX : (3.3.1)

This problem is then a particular instance of locating the diagonals of a DVM

distributed over a PX � 1 process grid and partitioned into rX � s blocks. The

construction of the LCM tables is su�cient if one only wants to access the data.

However, it may be necessary to redistribute this scattered operand in order to

perform some computation with it. This redistribution phase is facilitated by

noticing that the column index of the LCM table uniquely identi�es the global

index of the entries of the scattered operand.

This scheme can be extended to two-dimensional distributed matrices. This

68

corresponds to a stride di�erent from the leading dimension in a serial Fortran

environment. The implementation is, however, slightly tricky because of the mul-

tiple addressing space of the target machines. Indeed, the local leading dimension

of the array storing the local pieces of a distributed matrix plays a role when two

consecutive scattered entries belong to two di�erent columns of this array. In this

case, the local stride or o�set within a block given by the LCM table may need to

be augmented by some local value that depends on the e�ective number of rows

stored in this local array and the leading dimension of this Fortran array.

3.4 Blocking Strategies

This section presents di�erent kinds of blocking strategies for distributed memory

hierarchies. Each of them exploits speci�c and sometimes antagonistic features

of di�erent operation contexts. They can all be formulated in terms of \LCM-

operations", i.e., operations relying on LCM tables for their expression and im-

plementation. Most of the blocking strategies presented below are known and

their use has mainly been illustrated in speci�c applications. The originality of

this section is mainly the presentation of these distinct techniques within a sin-

gle framework, making them suitable for their integration into a software library.

For some of these strategies little is known in terms of their impact on e�ciency

and/or ease of modular implementation. To our knowledge, no practical experi-

69

ments have been so far reported in the literature. This dissertation is the earliest

known document to present the results of such experiments. The same example

operation called a rank-K update is used to illustrate the di�erences between all

blocking strategies presented below. This operation produces an M � N matrix

C by adding to itself the product of an M �K matrix A and a K �N matrix B

C C +AB:

3.4.1 Static Blocking

The static blocking strategy deals only with purely local computational phases.

It is assumed that the operation has reached a stage where the operands have

already been redistributed if necessary by other techniques. Only local remaining

computations need to be performed. It may, however, be the case that a local

output operand has to be redistributed subsequently. Within this context, the

rank-K update operation is easy to describe. The matrix A has been replicated

in every process column and the matrix B replicated in every process row. The

update is performed by a single call to the matrix multiply subprogram. In this

particular case, the simplicity of the operation is due to the fact that the local and

global point of view are identical as illustrated in Figure 3.3. This �gure shows

the LCM block-partitioned matrices A, B and C. The blocks residing in the

process of coordinates (p; q) are indicated by gray rectangles. The arrangement of

70

these blocks in process (p; q) is also represented and denoted by the local arrays

in process (p; q).

Local arrays in process (p,q)

K

K

M

N

A

B

B

A C

C

LCM block−partitioned matrices

Figure 3.3: Static general rank-K update

The static blocking strategy becomes more interesting when the operation

involves a triangular or symmetric matrix C, for which only the upper or lower

triangle should be referenced. When C is symmetric, M is equal to N and B is

AT . As before, it is assumed that A and AT have already been replicated across

process columns and rows respectively. The distributed matrix C is partitioned

into diagonal and strictly upper or lower LCM blocks as shown in Figure 3.4. This

�gure shows the LCM block-partitioned matrices A and C and the r � s, r �K

71

and K � s blocks of these matrices that reside in the process of coordinates (p; q).

The arrangement of these blocks in process (p; q) is also represented and denoted

by the local arrays in process (p; q). Depending on their relative position to the

Local arrays in process (p,q)

K

K

N

A

A C

C

N

TA

TA

LCM block−partitioned matrices

Figure 3.4: Static symmetric rank-K update

diagonal, the r � s blocks of C are identi�ed by a di�erent shade of color. It is

usually easy to deal with the strict upper or lower part using the BLAS matrix-

matrix multiply. The diagonal LCM block requires however particular attention.

Two options are possible. First, one copies the part to be referenced into a bu�er

padding the rest of this bu�er with zeros. It is then possible to issue one single

call to the adequate BLAS kernel to deal with this block as well. More
oating

72

point operations than needed are obviously performed and some workspace is

required. The amount of workspace available triggers how much of the LCM

block can be handled in a single BLAS operation. It may also be necessary to

copy back the meaningful part of this bu�er when the triangular or symmetric

distributed matrix is an output parameter. This strategy is exactly what is done

in the current version of the ScaLAPACK software library [16, 25]. There is little

evidence, however, demonstrating the superiority of this strategy over the second

option. The latter avoids the unnecessary
oating point operations as well as the

data copy, and thus does not require any workspace to store these diagonal LCM

blocks. To do so, each r� s block owning diagonals of such a diagonal LCM block

is treated separately. The other blocks strictly below or above the diagonals are

grouped together for the computations. Still, it is likely that more BLAS calls

will be issued on smaller matrix operands. In both options described above, it

is necessary to locate the r � s blocks owning the diagonals of C. This can be

achieved by using the LCM tables described in the previous chapter.

The static blocking strategy, even in its simplest form, imposes strong restric-

tions on the alignment and distribution of the operands. This is, nevertheless

the last opportunity for a large operation to rearrange the computations. This

suggests the development of two sets of building blocks. The �rst one contains

appropriate operations for dealing with trapezoidal- symmetric and triangular ma-

trix blocks. It is referred to as the trapezoidal BLAS. The second set is comprised

73

of operations speci�cally designed to manipulate the diagonal LCM blocks. It is

referred to as the LCM BLAS. Both of these sets of building blocks are BLAS

extensions.

The upper trapezoidal symmetric rank-K update operation is illustrated in

Figure 3.5. From this �gure, it is fairly easy to generalize the derivation of other

1A

A 2

A 2
T A T

3

C23

C13C12

C22

Figure 3.5: Trapezoidal symmetric rank-K update (C22 = CT
22)

basic trapezoidal operations. The trapezoidal symmetric rank-K update shown

in Figure 3.5 can be solely expressed in terms of BLAS operations.

8>>>>>>>><>>>>>>>>:

[C12C13] [C12C13] + A1 [AT
2A

T
3] (matrix�multiply)

C22 C22 + A2A
T
2 (symmetric rank�K update)

C23 C23 + A2A
T
3 (matrix�multiply)

The Levels 2 and 3 BLAS dealing with symmetric and triangular matrices can be

extended to the trapezoidal cases. Native implementations of the latter can take

advantage of better data reuse than what is suggested in the above pseudo code.

74

Or, a mitigated improvement could be achieved by using low overhead BLAS

kernels.

In order to handle diagonal LCM blocks, one needs to inspect the LCM table for

the blocks owning the diagonals by using the Properties (2.5.20), (2.5.1), (2.5.2),

(2.5.3) and (2.5.4). These blocks are trapezoidal blocks. At this point, it is

remarkable that the size of an LCM block is irrelevant and can be replaced by any

logical blocking factor NBlog. It is now possible to express a statically blocked

symmetric rank-K update in terms of these basic LCM operations. The pseudo

code for the upper case is presented below.

8>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>:

for i = 1; N; NBlog

ib = min(N � i+ 1; NBlog);

C(i : i+ ib� 1; i : i+ ib� 1) C(i : i+ ib� 1; i : i+ ib� 1) +

A(i : i+ ib� 1; :)A(i : i+ ib� 1; :)T ;

C(i : i+ ib� 1; i+ ib : N) C(i : i+ ib� 1; i+ ib : N) +

A(i : i+ ib� 1; :)A(i+ ib : N; :)T ;

end for

This pseudo-code suggests a global index interface for the LCM BLAS similar to

the one described in [18] for a set of parallel BLAS. Finally, it is possible to reuse

existing serial GEMM-based implementations of the Levels 2 and 3 BLAS [33, 60].

75

3.4.2 Cyclic Ordering

The cyclic ordering strategy is distinguished by the fact that the computations

are cyclically distributed as opposed to the data. The block cyclic data distri-

bution allocates the data in a cyclic fashion. The computation then proceeds in

consecutive order just like a conventional serial algorithm. For example, the usual

LU factorization algorithm [49] handles �rst the �rst column of the matrix, then

the second and so on. The dual of this framework can be described as follows.

First, the data is allocated or distributed in consecutive order, i.e., according to

the blocked distribution de�ned in (2.2.6). Second, the computation proceeds in

cyclic fashion. This approach is called cyclic ordering. It has been used through-

out the CMSSL library [81]. It is shown in [72] that block cyclic order elimination

can be used e�ectively on distributed memory architectures to achieve load bal-

ance as an alternative to block cyclic data allocation. The Connection Machine

system compilers were designed to use consecutive data allocation as a default, or

blocked data distribution as de�ned in (2.2.6). Thus, the designers of the CMSSL

library chose to use cyclic order elimination to achieve good load balance. As

suggested at the beginning of this section cyclically ordered algorithms proceed

di�erently than the equivalent serial algorithms. It has been therefore necessary

to develop these cyclic elimination algorithms, without being able to reuse much

of the existing software. Nevertheless, this approach has been proven to lead to

76

e�cient and scalable parallel algorithms [72].

The rank-K update operation [74] can easily be expressed within such a frame-

work. The matrices A, B and C are assumed to be allocated in consecutive order

over the process grid, that is blocked distributed. The pseudo code is presented

below.

8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

for kk = 1; K; NBlog

kb = min(K � kk + 1; NBlog);

Broadcast A(:; kk : kk + kb� 1) within process rows;

Broadcast B(kk : kk + kb� 1; :) within process columns;

C C +A(:; kk : kk + kb� 1) �B(kk : kk + kb� 1; :);

end for

This algorithm is extremely e�cient for three reasons. First, the logical block-

ing factor NBlog can be empirically chosen to be optimal for a given hardware

platform. Second, it is possible to pipeline the communication phases in both di-

mensions of the process grid. Finally, a given process broadcasts all of its columns

of A or rows of B before its east or south neighbor broadcasts. The communi-

cations can then be \perfectly" pipelined, that is, at all stages of the pipeline

some computation is performed. In theory, communications can be completely

overlapped with computations. When a process broadcasts its last piece, some

attention is required to maintain the communication pipelines, but that is a mi-

77

nor and solvable detail. For more complicated operations such as a triangular

solve or the LU factorization with partial pivoting, it is necessary to permute

the cyclically ordered output into its original consecutive order. This somewhat

complicates the hierarchical design of building blocks. However, the restrictions

on the data layout simpli�es the speci�cation of these permutation operations.

Misaligned data can occur, but redistributing from one speci�c data decomposi-

tion into itself can be achieved by simple and e�cient algorithms. Finally, the

cost of designing new algorithms based on cyclic elimination should be weighted

against the gains in terms of simplicity and e�ciency for the compilers, operating

and run-time systems. This approach seems to be one of the most reasonable and

viable software designs if one wants to develop the entire software collection that

a given hardware platform needs to be operational.

3.4.3 Physical Blocking

The physical blocking strategy uses the distribution blocking factors as a unit for

the computational blocks. In other words, the computations are partitioned ac-

cordingly to the data distribution. The blocks used to decompose the matrix

are the same as those used to partition the computation. No attempts are made

to either gather rows or columns residing in distinct processes, or scatter rows

or columns residing in a single process row or column. It is assumed that the

distribution parameters have been determined a priori presumably by the user.

78

Optimally, the latter should take into account the implications of physical block-

ing. This strategy is used in most of the parallel algorithms presented in the

literature [2, 7, 9, 10, 26, 27, 39, 47, 48, 52, 57, 69, 70, 85].

The rank-K update operation shown in Figure 3.6 is based on a physical

blocking strategy and is relatively easy to express. Just as for the static blocking

strategy, strong alignment and distribution assumptions are made on the matrix

operands. The pseudo code is almost the same as the one given above for cyclic

ordering. The only modi�cation to be made is to replace the logical blocking

factor NBlog by the physical blocking factor used to decompose the columns of

31C

C11 C12 C13

C21 C22 C23

C32 C33

C41 C42 C43

N

K

K

M

B31

B11

B21

B32

B

B

12

22

B33

B

B

13

23

A43A41 A42

A33A31 A32

A23A21 A22

A13A11 A12

Figure 3.6: Physically blocked rank-K update

79

A and the rows of B. Similarly as in the cyclic ordering algorithm, it is possible

to take advantage of communication pipelines in both directions of the process

grid. However the cyclic data allocation imposes that the source process of the

broadcasts changes at each iteration in a cyclic fashion. That is, a given process

broadcasts all of its columns of A or rows of B in multiple pieces of size propor-

tional to the value of the physical blocking factor. The smaller this value is, the

larger the number of messages and the lower the possible data reuse during the

following computational phase. In other words, the performance degrades as the

value of the physical blocking factor is decreased. If the value of this factor is very

large, the communication computation overlap decreases causing a performance

degradation. Moreover, the stages of the communication pipelines are longer, and

the pipeline startup cost is larger than for cyclic ordering. This is because the

processes issuing the broadcasts are the south and east neighbors of the processes

that have issued the previous broadcasts. These source processes change at every

iteration of the loop. High performance and e�ciency can still be achieved for a

wide range of di�erent values of the blocking factors. This has been reported in

[2, 38, 74, 83].

The use of physical blocking in conjunction with static blocking can lead to a

comprehensive and scalable dense linear algebra software library. Existing serial

software such as LAPACK [5] can be reused. The ScaLAPACK software library

is the result of this reasoning. As suggested above, if one limits oneself to static

80

and physical blocking, strong alignment restrictions must be met by the matrix

operands. It is argued that these restrictions are reasonable because, �rst, general

redistribution software is available. Second, the user is ultimately responsible

for choosing the initial data layout. Finally, the majority of practical cases are

covered by this approach.

3.4.4 Aggregation and Disaggregation

The aggregation or algorithmic blocking strategy operates on a panel of rows or

columns that are globally contiguous. The local components of this panel before

aggregation are also contiguous. The size of this panel is a logical blocking unit

factor that depends on the target machine characteristics. If this logical value is

equal to the physical distribution blocking factors, then algorithmic and physi-

cal blocking are the same. Otherwise, a few rows or columns which are globally

contiguous and residing in distinct processes, are aggregated into a single pro-

cess row or column and this panel becomes the matrix operand. This strategy

is required for e�ciency if the physical blocking factor is so small that Level 3

BLAS performance cannot be achieved locally on each process. Obviously, the

aggregation phase induces some communication overhead. However, this must

be weighted against the local computational gain. The problem is then to deter-

mine a logical blocking factor NBlog that keeps this overhead as low as possible

and simultaneously optimizes the time spent in local computation. The feasibil-

81

ity and performance characteristics of this approach have been illustrated for the

numerical resolution of a general linear system of equations and the symmetric

eigenproblem in [12, 13, 53] for the purely scattered distribution as de�ned in

(2.2.7). Similarly, it is sometimes bene�cial to disaggregate a panel into multiple

panels in order to overlap communication and computation phases. When appli-

cable, this last strategy also presents the advantage of requiring a smaller amount

of workspace. The pseudo code of the rank-K update operation using aggregation

follows.

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

for kk = 1; K; NBlog

kb = min(K � kk + 1; NBlog);

Aggregate A(:; kk : kk + kb� 1) in one process column;

Broadcast A(:; kk : kk + kb� 1) within process rows;

Aggregate B(kk : kk + kb� 1; :) in one process row;

Broadcast B(kk : kk + kb� 1; :) within process columns;

C C +A(:; kk : kk + kb� 1) �B(kk : kk + kb� 1; :);

end for

The aggregation and disaggregation techniques are attempts to address the cases

where the physical blocking strategy is not very e�cient, i.e., for very small or

large distribution blocking factors. In both techniques, the consecutive order of

matrix columns or rows is preserved. It is therefore possible to use both techniques

82

for algorithms that feature dependent steps such as a triangular solve or the LU

factorization with partial pivoting. The disaggregation technique however can only

be applied e�ciently for operations that do not feature any dependence between

steps, such as a matrix-multiply. The disaggregated data remains consecutively

ordered. Therefore, it cannot improve signi�cantly the load imbalance caused by

consecutive allocation and consecutive elimination [59].

3.4.5 LCM Blocking

The LCM blocking strategy operates on a panel of rows or columns that are locally

contiguous. The size of this panel is also a logical blocking unit factor that depends

on the target machine characteristics. However, one packs rows or columns that

may not be locally contiguous according to an external criterion, typically the

distribution parameter of another operand.

Consider the rank-K update operation illustrated in Figure 3.7. The LCM

blocking strategy proceeds as follows. One is interested in �nding the columns

of A residing in a particular process column q and the rows of B residing in a

particular process row p that could be multiplied together in order to update

the matrix C. In Figure 3.7, these columns of A and rows of B are indicated

in gray. To accomplish this, one can consider the virtual matrix, denoted V M

in the �gure, de�ned by the column distribution parameters of A and the row

distribution parameters ofB. Locating the 0-diagonals of this VM in the process of

83

coordinates (p; q) exactly solves the problem as illustrated in the �gure. This can

be realized by using LCM tables as shown in Chapter 2. As opposed to the physical

blocking strategy, this technique does not assume the distribution equivalence of

the columns of A and rows of B as suggested in Figure 3.7. Moreover, the packing

of these columns of A and rows of B is a local data copy operation, i.e., without

communication overhead. For a given q, one just needs to go over all process rows

and thus treat all of the columns of A residing in this process column q. This

algorithm presents multiple advantages over the physically blocked version. First,

A

B

C

VM

M

NK

K

Figure 3.7: Global view of the LCM blocked rank-K update

as mentioned above, it does not assume an equivalent distribution of the columns

of A and rows of B. Second, the communication overhead of the physically blocked

variants has been partially replaced by a local data copy into a bu�er that was

84

needed anyway. The communication pipeline stages in the row direction have been

shortened. The cost of this pipeline startup has also been reduced considerably

by having the process column emitting the broadcasts remaining �xed as long

as possible. Finally, one has the opportunity to overlap communications and

computations in the process column direction as well. Indeed, the packing of the

rows of B in the process row (p + 1) can be performed in advance, so that this

communication pipeline is cheaper. This operation can also be logically blocked

by limiting the number of columns of A in process column q and corresponding

rows of B in the process row p that will be locally packed and broadcast.

This approach presents the advantage that the cost of aggregation phase is

put on the processor as opposed to the interconnection network. However, it

cannot be used for algorithms where each step depends on the previous one.

Typically, LCM blocking is well-suited for multiplying two matrices, where each

contribution to resulting matrix entries can be added in any order. To a certain

extent solving a triangular system can take advantage of such a blocking strategy.

The algorithm proceeds in an ordered sequence of steps that depend on each

other. It is, however, possible to block this algorithm and and express it in terms

of triangular solves and matrix multiplies [33, 60]. The LCM blocking strategy

is a typical algorithmic redistribution operation since it rearranges logically and

physically the communication and computation phases for increased e�ciency and

exibility.

85

3.4.6 Aggregated LCM Blocking or Hybrid Schemes

The aggregated LCM blocking strategy is an hybrid scheme that combines the

aggregation and LCM blocking strategies. In the aggregation scheme described

earlier, the blocks to be aggregated were globally contiguous. It is, however,

possible to use the same strategy for the local blocks obtained via LCM blocking.

Furthermore, disaggregated LCM blocking is also possible as noted above.

3.5 Two-Dimensional Redistribution

The operations described in this section involve M � N two-dimensional dis-

tributed matrices as de�ned in (3.2.2). They generalize the one-dimensional re-

distribution technique presented earlier. Let A and B be such matrices. Let

(PA; rA; QA; sA) (respectively (PB; rB; QB; sB)) be the distribution parameters

associated with A (respectively B). In order to redistribute A into B, one con-

siders the DVM induced by the columns of A and rows of B, as well as the one

induced by the rows of A and columns of B. Figure 3.8 shows the block-partitioned

operands A and B as well as the induced DVMs VM1 and VM2. For a given

row of A, the corresponding diagonal entry of the distributed virtual matrix VM2

determines the corresponding columns of B. A block of rows of A that could be

packed together is represented in the �gure by a gray rectangle. The correspond-

ing diagonal block of the distributed virtual matrix V M2 and the corresponding

86

columns of B are colored with the same gray. The same reasoning is applied to

the columns of A and rows B using the distributed virtual matrix VM1. The

gray intersections in A determines the entries that could be packed together in

one message. Figure 3.8 illustrates the importance of locating the diagonals in

the context of two-dimensional redistribution. As opposed to the one-dimensional

A

B

M

N

N

M

VM2

VM1

Figure 3.8: Global view of two-dimensional redistribution

case, there are two virtual process grids de�ned by PA, QB and QA, PB. If a

process of coordinates (pA; qB) owns diagonal entries of the associated M �M

virtual matrix VM2, and if a process of coordinates (pB; qA) owns diagonal en-

tries of the associated N �N virtual matrix V M1, then this says that some data

87

residing in process (pA; qA) should be sent to the process of coordinates (pB; qB).

The blocks of the DVMs VM1 and VM2 owning diagonals are represented by

darker rectangles in which the diagonals are symbolized by a white segment. The

knowledge of the source process coordinates allows the receiving process to cal-

culate a priori the size of the message to be received as well as its packed form

and the location of each message entry. Consequently, unless A and B are equiv-

alent in the sense of (3.2.12), the number of messages to be exchanged is equal

to the product of the number of processes owning diagonals in the DVMs VM1

and V M2. This approach using LCM tables allows one to express the copy and

transpose operations in a single framework. The implementation of such opera-

tions should take advantage of such a savings opportunity. In addition, since it

is possible to detect via a simple test on the distribution parameters distribution

equivalence, this scheme can easily be made optimal for the simpler cases. Note

that the operands A and B could be distributed on distinct process grids with-

out a�ecting the packing strategy induced by the LCM tables. Moreover, if one

uses the LCM table de�nition handling a partial �rst block, this scheme naturally

supports non-aligned operands. Finally, it is straightforward to handle replicated

operands by taking it into account when computing the LCM table entries. The

next chapter will discuss the possible communication patterns and their complex-

ity associated with the two-dimensional redistribution just described as well as

their complexity. Pseudo algorithms will also be presented.

88

3.6 Conclusions

This chapter summarized di�erent blocking strategies for block cyclicmappings. It

also introduced original LCM techniques extending the physical blocking scheme.

These LCM techniques allow for greater
exibility. They are also equivalent to

the usual techniques for the restricted cases. The presentation of these general

techniques stressed their systematic derivation from the properties of the under-

lying mapping. The importance of the LCM tables introduced in Chapter 2 has

been discussed and shown to provide an acceptable and convenient framework

to present algorithmic redistribution operations. The latter form the elementary

building blocks to express more complex parallel operations such as a complete,

e�cient and
exible set of parallel linear algebra operations. Four categories of

operations naturally emerge from the previous discussion:

� Statically blocked computational operations,

� Aggregation kernels,

� LCM blocking tools,

� One and two-dimensional redistribution.

These basic buildings blocks are well delimited. They can all be expressed within

a single framework using LCM tables. Such a partitioning is suitable for software

library design.

89

Chapter 4

Performance Analysis

4.1 Introduction

This chapter presents a framework for quantifying the scalability of the algorithmic

variants of the matrix-matrix multiplication presented in the previous chapter.

This framework is used to assess the theoretical performance impact of the logical

blocking factor NBlog. It is shown that under certain restrictions algorithmic

blocking allows for high performance tuning. In addition, the relationship of

NBlog with other machine and distribution parameters is addressed.

A theoretical model of a distributed memory computer is presented early in

this chapter. It is an abstraction of physical models, and provides a convenient

framework for developing and analyzing parallel distributed dense linear algebra

algorithms without worrying about the implementation details or physical con-

90

straints. The model can be applied to obtain theoretical performance bounds on

DMCCs or to estimate the execution time before or after the algorithm has been

implemented. This abstract model is used in the context of scalability and pro-

grammability analysis. The machine model described and used in this chapter is

a very crude approximation of reality. Its purpose is not to precisely re
ect all

the phenomena that occur during a general computation, but merely to identify

the dominant costs relevant to dense linear algebra computations. The target ar-

chitectures used for the experiments, as well as the machine parameters measured

during the experiments, are presented after the machine model. They justify the

reasonable approximations one can make when using the machine model. The

application of the model to each of the blocking strategies presented in Chap-

ter 3 allows for a characterization, evaluation and comparison of these blocking

techniques. It is shown in this chapter that none of these strategies is clearly

superior to its challengers. Instead, they are complementary. Independent of the

distribution parameters or alignment of the matrix operands for the operation of

interest, it is theoretically possible to use the machine resources at their best and

achieve asymptotically comparable e�ciency. As will be explained in the next

chapter, however, the previous statement needs to be slightly re�ned in practice

to accommodate physical memory size constraints as well as other factors.

91

4.2 The Machine Model

The DMCCs introduced in Chapter 1 consist of processors that are connected

using a message passing interconnection network. Each processor has its own

memory called the local memory, which is accessible only to that processor. As

the time to access a remote memory is longer than the time to access a local one,

such computers are often referred to as Non-Uniform Memory Access (NUMA)

machines. Strictly speaking, a NUMA architecture di�ers from a message passing

architecture in the sense that it provides hardware support for direct access to

other processor's memories, whereas in a message passing architecture, remote

access must be explicitly emulated via message passing [67].

The interconnection network of our machine model is static, meaning that it

consists of point-to-point communication links among processors. This type of

network is also referred to as a direct network as opposed to dynamic networks.

The latter are constructed from switches and communication links. These links are

connected to one another dynamically by the switching elements to establish at run

time the paths between processors' memories. Furthermore, the interconnection

network of the machine model considered here is a static two-dimensional P �Q

rectangular mesh with wraparound connections as illustrated in Figure 4.1. In

addition, it is assumed that all processors can be treated equally in terms of local

performance and the communication rate between two processors is independent

92

from the processors considered. Each processor in the two-dimensional mesh has

four communication ports. However, the model assumes that a processor can send

or receive data on only one of its ports at a time. This assumption is also referred

to as the one-port communication model [67].

P

M

P

M

P

M

P

M

P

M

P

M

P

M

P

M

P

M

P

M

P

M

P

M

Figure 4.1: A 3� 4 processor mesh with wraparound connections

The time spent to communicate a message between two processors is called

the communication time Tc. In our machine model, Tc is approximated by a linear

function of the number L of items communicated. Tc is the sum of the time to

prepare the message for transmission � and the time � L taken by the message of

length L to traverse the network to its destination, i.e.,

Tc = �+ � L:

93

This approximation of the communication time supposes that any two processors

are equidistant from a communication point of view (cut-through or wormhole

routing). For most current DMCCs, this approximation is reasonable. Finally,

the model assumes that the communication links are bidirectional, that is, the

time for two processors to send each other a message of length L is also Tc. A

processor can send and/or receive a message on only one of its communication

links at a time. In particular, a processor can send a message while receiving

another message on the same or di�erent link at the same time.

Since this dissertation is only concerned with a single regular local operation,

namely the matrix-matrix multiplication, the time taken to perform one
oating

point operation is assumed to be a constant
 in our model. This very crude

approximation summarizes in a single number all the steps performed by the

processor to achieve such a computation. Obviously, such a model neglects all the

phenomena occurring in the processor components, such as cache misses, pipeline

startups, memory load or store,
oating point arithmetic and so on, that may

in
uence the value of
 as a function of the problem size for example. Similarly,

the model does not make any assumption on the amount of physical memory per

node.

This machine model is a very crude approximation that is designed speci�cally

to illustrate the cost of the dominant factors to our particular case. More realistic

models are described for example in [67] and the references therein.

94

4.3 Estimation of the Machine Parameters

Two DMCCs, namely the Intel XP/S Paragon and the IBM Scalable POWER-

parallel System, have been used in the experiments that have been performed for

this dissertation. Both of these DMCCs di�er in many aspects from the machine

model. These di�erences are stressed to illustrate the crudeness of this model.

The relevant performance characteristics of both computers are highlighted and

commented. In addition to the information supplied by the manufacturers of

these computers, the machine parameters have been measured as part of the ex-

periments. The obtained results are presented below. It is convenient to present

these technical features in order to assess the relative importance of each param-

eter.

As mentioned earlier, the rank-K update operation has been selected to illus-

trate the di�erences between all blocking strategies presented in Chapter 3. This

operation globally produces an M �N matrix C by adding to itself the product

of an M �K matrix A and a K �N matrix B

C C +AB:

The number of
oating point operations required to perform this rank-K update

operation is assumed to be equal to 2M N K. It is important to notice that in

this particular case, the global distributed operation is also the local operation

95

performed by all processes. Locally in any given process, M (respectively N) is

then the local number of rows (respectively columns) of the distributed matrix

C contained in this process. Locally, K can be considered equal to NBlog as is

almost always the case.

In our experimental implementation, the local rank-K operation is performed

by calling the appropriate subprogram of the vendor-supplied BLAS. The com-

munication operations are implemented by explicit calls to the Basic Linear Alge-

bra Communications Subprograms (BLACS). The BLACS [37, 40] are a message

passing library speci�cally designed for distributed linear algebra communication

operations. The computational model consists of a one or two-dimensional grid

of processes, where each process stores matrices and vectors. The BLACS include

synchronous send/receive routines to send a matrix or submatrix from one pro-

cess to another, to broadcast submatrices, or to compute global reductions (sums,

maxima and minima). There are also routines to establish, change, or query the

process grid. The BLACS provide an adequate interface level for linear algebra

communication operations.

4.3.1 The Intel XP/S Paragon

The processing units of the Intel XP/S Paragon are nodes, based on the Intel's

i860 XP RISC processors. Each processor is capable of a peak performance of

75 M
ops. Multiprocessor (MP) nodes have three i860 XP processors - two to

96

execute application code and a third for use as either a message coprocessor or as

an application processor. General-purpose (GP) nodes are also available. Those

nodes have two XP application processors - one dedicated to applications and

the other to message-passing [31]. Figure 4.2 shows the GP node performance of

the vendor supplied matrix-matrix multiply library routine for distinct values of

M = N and K. In practice, the performance of such an operation was observed to

be at most 45 M
ops for those GP nodes. The machine used for our experiments

0
5

10
15

20
25

30

0

100

200

300

400

500
0

10

20

30

40

KM = N

M
flo

p
s

Figure 4.2: Performance of the rank-K update on one processor of the Intel Paragon

was primarily comprised of GP nodes having 16 MB of physical memory. Figure

4.2 shows that local performance is very sensitive to small values of K = NBlog.

However, when the local value of K = NBlog is large enough, the local perfor-

mance of the rank-K update is almost constant. Figure 4.3 shows the performance

97

degradation that occurs when the matrix operands do not �t in core, i.e., when

the operating system begins swapping. This �gure illustrates that the use of vir-

tual memory may cause a large performance decrease. In other words, from the

local computational point of view, very large values of K = NBlog should also be

avoided.

0

10

20

30

40

50

0
200

400
600

800
1000

0

10

20

30

40

50

K M = N

M
flo

p
s

Figure 4.3: Performance of the rank-K update on one processor of the Intel Paragon

On the Intel XP/S, the actual transmission of messages is performed by an

independent routing system of Mesh Router Components (MRCs), one for each

node, arranged in a two-dimensional mesh. These �xed- function devices route

messages between any two nodes in the system at hardware speeds of up to

175 MB/s. Hardware latency - the time to set up the transfer of the �rst byte

of a message - is so low (40 ns per MRC traversed) that the physical location of

98

nodes becomes unimportant for performance [31].

During our experiments, the performance of the BLACS communication prim-

itives implemented on top of the native Intel XP/S message passing library was

measured. For the message sizes relevant to our application, we found that the

values of � and � that best approximate in the least-square sense the communi-

cation time Tc = � + � L are given by � � 60:0 �s and ��1 � 70:0 MB/s. The

overhead induced by the BLACS primitives on this system compared to the native

Intel message passing library is negligible as shown earlier in [87].

4.3.2 The IBM Scalable POWERparallel System

The IBM Scalable POWERparallel System, or SP, consists of nodes (processors

with associated memory and disk) connected by ethernet and a high-performance

switch. The processors are POWER2 architecture RS/6000 processors, which are

superscalar pipelined chips capable of executing four
oating point operations per

cycle. The clock speed of this processor is 66.7 MHz, giving a peak performance

per processor of 266 MFLOPS. There are two types of nodes, known as thin nodes

and wide nodes. Thin nodes have a 64 KB data cache. Wide nodes have 256 KB

data cache [4, 30, 80]. This data cache size di�erence results in slower performance

on thin nodes for computationally intensive applications. The machine used for

our experiments consisted of thin nodes exclusively having 128 MB of physical

memory [4, 30, 80]. Figure 4.4 shows the thin node performance of the vendor

99

supplied rank-K update library routine for distinct values of M = N and K.

In practice, the performance of such an operation was observed to be at most

200 M
ops for those thin nodes. Figure 4.4 also shows that the local performance

of the rank-K operation is sensitive to small values of K = NBlog. However,

when the local value of K = NBlog is large enough, the local performance is

almost constant.

0
20

40
60

80
100

0

200

400

600

800

1000
0

50

100

150

200

KM = N

M
flo

p
s

Figure 4.4: Performance of the rank-K update on one processor of the IBM SP2

The interconnection network of the IBM SP is a two-level crossbar switch.

The TB2 switch adapter, which is the interface between the node and the switch,

features a Direct Memory Access (DMA) engine. For message passing libraries

optimized for the switch, the typical bandwidth is 35 MB/s with a latency of

approximately 50 �s [4, 30, 80].

100

During our experiments, the performance of the BLACS communication prim-

itives implemented on top of the native IBM message passing library (MPL) was

measured. For the message sizes relevant to our application, we found that the val-

ues of � and � that best approximate in the least-square sense the communication

time Tc = � + � L are given by � � 400:0 �s and ��1 � 28:0 MB/s. Comparing

the BLACS performance versus the native IBM message passing library requires

a more detailed explanation and can be found in [87].

4.4 Performance Analysis

In this section the machine model de�ned above is applied in turn to each block-

ing strategy presented in Chapter 3. The three matrix operands A, B and C are

considered to be square of order M = N = K. The distributed matrix A (respec-

tively B and C) is partitioned into rA � sA (respectively rB � sB and rC � sC)

blocks. All three matrices are distributed onto the same P � Q process grid.

When the distributions of the rows of the matrix operands A and C are equal in

the sense of De�nition 3.2.11, and the distributions of the columns of the matrix

operands B and C are equal, and the distributions of the columns of the matrix

operand A and the rows of the matrix operand B are equal, we say that the ma-

trix operands are \aligned" for the rank-K update operation. In this case, we say

that the operation is aligned, meaning that the operation is performed on aligned

101

data. Otherwise the operation is said to be \non-aligned". The major di�erence

between the aligned and non-aligned rank-K operations is the fact that the matrix

operands A and B must be redistributed before the aligned operation can take

place. Two strategies are possible. Either both A and B are redistributed at once

and the physical blocking variant is then used to �nish the computations. This

strategy is called RED thereafter. Or, the redistribution of A and B is interleaved

with partial rank-K updates. In this case, a panel of at most NBlog columns of

A and at most NBlog rows of B are formed using either the physical blocking

strategy (PHY), (dis)aggregation (AGG) or the LCM blocking strategy (LCM).

These panels are then shifted if needed using the algorithm described in Section

3.3 and a rank-NBlog update is performed. Since the blocking strategy uniquely

identi�es the interleaving policy, we use these three identi�ers PHY, AGG and

LCM to refer to the corresponding algorithms. In summary, four algorithms are

considered, denoted by PHY, AGG, LCM and RED. Depending on the initial

distribution of the operands considered, the operation may or may not be aligned.

When the operation is not aligned, the matrix operands A and B are redis-

tributed. The communication volume associated to a given operation is the total

length of all messages performed by that operation. The additional communi-

cation volume associated with the non-aligned rank-K update is therefore equal

to 2N2. When the operation is aligned and the panels of A and B have been

constructed, it is necessary to replicate the panel of columns of A in all pro-

102

cess columns, and the panel of rows of B in all process rows as shown in Figure

3.6. The volume of communication associated with this operation is given by

N2 (Q=P + P=Q). When the process grid is square, this volume of communica-

tion becomes 2N2. Consequently, the non-aligned operation roughly doubles the

communication volume, whereas the amount of computation remains the same.

The number of
oating point operations that have to be performed to update

one entry of the matrix operand C is equal to 2N + 1. The load imbalance of

the rank-K update can then be bounded above by the di�erence of the largest

number of entries of C owned by each process and the smallest number of entries

of C owned by each process. This number is given by

rC sC (d
dM
rC
e

P
edd

N

sC
e

Q
e � bd

M

rC
e

P
cbd

N

sC
e

Q
c)

It follows that the load imbalance for this operation is in general proportional

to the product of rC by sC. This suggests that very large distribution blocking

factors of C are likely to induce a large load imbalance of the computations.

The following sections estimate the execution time of the di�erent redistri-

bution and blocking variants on our machine model as a function of the local

computational speed (
), the communication time parameters (� and �), and

�nally the total number of processes p = P �Q.

An important performance metric is parallel e�ciency. Parallel e�ciency,

103

E(n; p), for a problem of size n on p processors is de�ned in the usual way [46] as

E(n; p) =
1

p

Tseq(n)

T (n; p)
(4.4.1)

where T (n; p) is the runtime of the parallel algorithm, and Tseq(n) is the runtime

of the best sequential algorithm. An implementation is said to be scalable if the

e�ciency is an increasing function of n=p, the problem size per processor (in the

case of dense matrix computations, n = N2, the number of words in the input).

We will also measure the performance of our algorithm in M
ops/s (or G
ops/s).

This is appropriate for large dense linear algebra computations since
oating point

dominates communication. For a scalable algorithmwith n=p held �xed, we expect

the performance to be proportional to p.

4.4.1 Physical Blocking

In this section, the performance analysis of the physical blocking strategy for

aligned operands is presented. A similar analysis can also be found in [2, 83]. The

reason for reproducing it hereafter is that it considerably simpli�es the presen-

tation of the performance analysis for the aggregation and LCM blocking strate-

gies. For the sake of simplicity, the underlying process grid is assumed to be a

p
p � pp square mesh of p processes. In addition, the partitioning unit of the

matrix operands is considered to be a square of size NBdis �NBdis(r = s). The

104

matrix operands are also considered to be N�N square matrices. These assump-

tions only simpli�es the expression of the performance analysis without modifying

its consequences. One could easily derive a more detailed analysis if needed. All

of our experiments were performed in double precision arithmetic. On both of our

testing platforms, a double precision real is 8 bytes long. Thus, the bandwidth

of the machine model is more conveniently expressed in double precision real per

second. In the following, �d denotes 8�.

The key-factor of this performance analysis is to model the cost of a sequence

of b broadcasts of messages of length n among
p
p processes. The cost of the

sequence of b minimum spanning tree broadcasts is given by

b log2(
p
p) (� + n�d):

During the last step of a minimum spanning tree broadcast, each of the
p
p pro-

cesses is sending or receiving a message of length n. There is thus no opportu-

nity to pipeline the messages and overlap the communications. Moreover, the

source process of each broadcast does not in
uence the total cost of the broad-

cast sequence since as mentioned above the minimum spanning tree algorithm

synchronizes all processes involved in the operation.

A more cost e�ective algorithm to perform such a broadcast sequence is to

use \ring" broadcasts. In this case, however, the source process of each broadcast

105

has an impact on the overall estimated execution time. If the source process of

each broadcast remains the same, the estimated execution time of this operation

is given by

(� + n�d) (
p
p� 1) + (b� 1) (� + n�d):

The �rst term of this expression is referred to as the startup time of the com-

munication pipeline. For su�ciently large values of b, the startup time becomes

negligible. The execution time of such an operation can then be approximated

by the second term of the above expression. It follows that the sequence of b

ring broadcasts is more e�cient than the sequence of b minimum spanning tree

broadcasts.

When the source process of each ring broadcast is the process following the

source process of the previous broadcast, the cost of the sequence of b ring broad-

casts becomes

(�+ n�d) (
p
p � 1) + (b� 1) 2 (� + n�d):

More generally, if the source process of each ring broadcast is the kth process on

the ring following the source process of the previous broadcast, the cost of the

sequence of b ring broadcasts is given by

(� + n�d) (
p
p� 1) + (b� 1) (k + 1) (� + n�d): (4.4.2)

106

In the physical blocking strategy, the source process of the broadcast sequence

is incremented at each step. In addition, the physical distribution blocking factor

NBdis = sA = rB is used to partition the communication and computation.

Therefore the execution time of this operation on the machine model is given by

TPHY (N; p) = 2 (� +
NBdisNp

p
�d) (
p
p � 1)+

4 (
N

NBdis

� 1) (� +
NBdisNp

p
�d) + 2

N3

p

� 2N3

p
(1 +

2

(

p�

NBdis N2
+

p
p �d

N
)) when

N

NBdis

� pp:

The parallel e�ciency of the physical blocking variant is then given by

EPHY (N; p) = (1 +
2

(

p�

NBdisN2
+

p
p �d

N
))�1 when

N

NBdis

�pp:

The physical blocking algorithm is thus scalable in the sense that if the memory

use per process (
p

N2
) is maintained constant, this algorithm maintains e�ciency.

The last equality shows that the physical block size NBdis can be used to lower

the importance of the latency �.

4.4.2 Aggregation

In this section, the performance analysis of the aggregation blocking strategy for

aligned operands is presented. This technique essentially performs a sequence

of accumulations followed by a ring broadcast. For the sake of simplicity, it is

107

assumed that k blocks of the same size are aggregated. In practice, the blocks are

only approximately of the same size. It is clear that k is bounded above by
p
p. In

addition, the logical blocking factor NBlog is used to partition the communication

and computation. It follows from Equation 4.4.2 that the estimated execution

time on our machine model for the aggregation strategy is given by

TAGG(N; p) � 2N3

p
(1 +

k

(

p�

NBlogN2
+

p
p �d

N
)) when

N

NBlog

� pp:

This result generalizes the result obtained above for the physical blocking strategy.

The parallel e�ciency of the aggregation variant is thus given by

EAGG(N; p) = (1 +
k

(

p�

NBlogN2
+

p
p �d

N
))�1 when

N

NBlog

� pp:

Consequently, the aggregation algorithm is also scalable. The value of k is a

constant that only depends on the ratio between the logical NBlog and physical

NBdis blocking factors. These formula show the communication overhead induced

by the aggregation strategy in terms of the number of messages as well as the

communication volume. When the physical blocking factor is larger than the

logical blocking factor, the physical blocks are split into smaller logical blocks.

Therefore, the estimated execution time of the disaggregation variant is bounded

above by the result obtained for the aggregation strategy.

108

4.4.3 LCM Blocking

In the LCM blocking strategy, one looks at the diagonals of the virtual distributed

matrix induced by the columns of A and rows of B residing in all process column

and row pairs. It is assumed in this section that each process in the grid owns a

number of diagonals that is proportional to NBlog. With these assumptions, the

estimated execution time of the LCM blocking strategy is given by

TLCM (N; p) =
2N3

p
(1 +

3

2

(

p�

NBlog N2
+

p
p �d

N
)) when

N

NBlog

�pp:

The parallel e�ciency is thus

ELCM (N; p) = (1 +
3

2

(

p�

NBlog N2
+

p
p �d

N
))�1 when

N

NBlog

� pp:

Our machine model assumes that the local data copy operation is free. In reality,

such an assumption is reasonable. The cost associated to the local data copy

performed by the LCM blocking variant is negligible when compared to the com-

munication time. It follows from the two preceding formula that the LCM blocking

variant is also scalable for aligned matrix operands. This variant is slightly more

e�cient than the physical and aggregation strategies.

109

4.4.4 One Dimensional Redistribution

When the matrix operands A and B are not aligned with the matrix C, it is nec-

essary to redistribute the matrices A and B. In the physical blocking, aggregation

and LCM blocking strategies, the matrix operands A and B are redistributed by

panels of global size N � NBdis or N � NBlog. In the redistribution of a single

panel,
p
p (
p
p�1) messages are exchanged. In our case, this redistribution phase

is immediately followed by a broadcast. Thus, we choose to perform this opera-

tion on two process columns or rows in order to limit the link contention. The

message scheduling policy used in our one-dimensional redistribution operation

is the \caterpillar" algorithm, where the messages are exchanged by pairs [78].

Other scheduling policies exist [67, 86]. These methods, however, do not feature

a contention-free message scheduling policy as well as an optimal communication

volume. Due to the simplicity of our machine model, it is not possible to cor-

rectly model the link contention of this redistribution operations. Therefore, the

estimated execution time given below for this operation should be regarded as

an approximation. In the context of the panel redistribution,
p
p processes are

involved. Each of them owns
N nbp

p
data items, where nb is either NBdis for the

physical blocking strategy, or NBlog for the aggregation or the LCM variants.

Each process sends and receives
p
p � 1 � pp messages of length

N nb

p
. The

estimated execution time for the one-dimensional redistribution of a single panel

110

is then given by

T1d�panel(N; p) � pp (�+
N nb

p
�d):

In the physical blocking, aggregation and LCM blocking strategies,
N

nb
pan-

els per matrix operands are redistributed. Since each process row and column

operates at best independently from each other, the total redistribution time is

approximately given by:

T1d�all(N; p) � N
p
p �

nb
+
N2 �dp

p
:

This estimated execution time illustrates that the one-dimensional algorithm fea-

tures an optimal volume of communication per panel. However, the number of

messages exchanged can be much larger than the minimal number (p).

4.4.5 Two Dimensional Redistribution

The last redistribution strategy considered in this dissertation involves the com-

plete redistribution of the matrix operands A and B beforehand. This operation

has been implemented in the ScaLAPACK library [78]. This two-dimensional re-

distribution software was used for our experiments. The algorithm implemented

features a minimal communication volume. The message scheduling policy is the

\caterpillar" algorithm. This scheme is not contention free. Therefore, the esti-

mated execution time given below should be regarded as a lower bound. In the

111

context of the two-dimensional redistribution, all p processes are involved. Each of

them owns
N2

p
data items. Each process sends and receives p�1 � p messages of

length
N2

p2
. The estimated execution time for the two-dimensional redistribution

of an entire distributed matrix operand is thus given by

T2d�all(N; p) � p� +
N2 �d
p

:

This estimated execution time illustrates that this two-dimensional algorithm fea-

tures an optimal volume of communication per matrix operand. The number of

messages exchanged during the operation is also minimal.

4.5 Conclusions

Table 4.1 summarizes the estimated parallel e�ciency for each variant studied in

this chapter. For aligned experiments, these e�ciencies show that all variants are

scalable in the sense given above, i.e., e�ciency is maintained if the memory-use

per process is kept constant. The LCM blocking variant features a slightly higher

e�ciency than the physical blocking strategy. This theoretical analysis also ex-

plains why one expects to observe better performance for the physical strategy

than the aggregation variant. For non-aligned experiments, all variants are scal-

able only if one neglects the latency factor. The complete redistribution (RED) is

shown to be more e�cient, because it is optimal in terms of communication vol-

112

ume for a matrix operand. The higher number of messages exchanged by the LCM

strategy is, however, likely to make the di�erence on platforms featuring a high

latency (�). Due to the crudeness of the machine model used for the performance

analysis of these algorithms, these theoretical predictions must be confronted to

Table 4.1: Estimated parallel e�ciencies for various blocking variants

Aligned experiments Non-aligned experiments

PHY (1 +
2

(

p �

NBdisN2
+

p
p �d

N
))�1 (1 +

1

(
(
p
p+ 2) p �

NBdisN2
+
3
p
p �d

N
))�1

AGG (1 +
k

(

p �

NBlogN2
+

p
p �d

N
))�1 (1 +

1

(
(k+

p
p) p �

NBlogN2
+
(k + 1)

p
p �d

N
))�1

k � d
NBlog

NBdis

e k � d
NBlog

NBdis

e

LCM (1+
3

2

(

p �

NBlogN2
+

p
p �d

N
))�1 (1 +

1

(
(3=2 +

p
p) p �

NBlogN2
+

5
p
p�d

2N
))�1

RED (1 +
1

((2 +

pNBdis

N
)

p �

NBdisN2
+

(2
p
p+ 1) �d
N

))�1

practical experiments. One also expects these theoretical results to di�er from the

reality in larger proportions for the non-aligned experiments due to the neglection

of the link contention by the machine model. It is worth noticing that for small

grid sizes and all variants, the estimated e�ciency of the aligned experiments is

113

approximately equal to the e�ciency of the non-aligned experiments. Similarly,

the time complexity obtained above for the one- and two-dimensional redistri-

bution does not take into account the fact that small physical blocking factors

simplify considerably these operations as shown in Chapter 2. Furthermore, the

aggregation and LCM blocking strategies should be regarded as complementary

variants as explained in Chapter 3. Indeed, for some algorithms, it is not possible

to reorder the operations as it is done by the LCM blocking strategy.

The estimated execution time can be used to predict the actual execution time

of an implementation of these algorithms. Another use of these results is to com-

pute the repartition of the total estimated execution time between communication

and computation. Figures 4.5 and 4.6 illustrate this use of the estimation for the

Latency

Bandwidth

Communication

Computation

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

matrix order

tim
e

di
st

rib
ut

io
n

Figure 4.5: Time repartition of the aligned LCM blocking variant (LCM) on a 4 � 8
IBM SP

114

LCM blocking strategy applied to an aligned experiment and the complete redis-

tribution (RED) applied to a non-aligned experiment. Both �gures indicate that

the model developed in this chapter is optimistic. Indeed, for even small-sized

matrices, the time spent communicating is rapidly less than 50 % of the total

execution time. This says that the model predicts very high performance for the

aligned and non-aligned experiments. These �gures also show the relative impor-

Latency

Bandwidth

Communication

Computation

0 500 1000 1500 2000 2500 3000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

matrix order

tim
e

di
st

rib
ut

io
n

Figure 4.6: Time repartition of the non-aligned complete redistribution (RED) variant
on a 4� 8 IBM SP

tance of the performance of the interconnection network within the context of

data redistribution. The relative performance impact of the communication per-

formance is larger for the non-aligned experiment. It also slowly decreases with

the problem size.

115

Chapter 5

Experimental Results

5.1 Introduction

In order to assess the performance of algorithmically redistributed operations,

many experiments have been performed. Each of them is aimed at illustrating

the e�ciency of these operations. This chapter presents and discusses the results

obtained. All experiments were performed in double precision arithmetic, and the

matrix operands were randomly generated. The vendor-supplied BLAS library

was used on the Intel XP/S Paragon and the IBM SP. The current native version

1.0 of the BLACS [17] was used on both systems. The experimental programs

were compiled and executed unchanged on both platforms. A testing program was

developed for debugging purposes as well as ensuring the validity of the results.

This program was adapted from the more general testing software accompanying

116

the PBLAS library [18]. The software passed statistically a large number of tests,

that is, for a �nite collection of random valid input arguments. Similarly, a timing

program was developed and used to obtain the results presented below. Most of

the experiments were performed twice or more. Only the best performance is

reported.

The experimental results are presented and classi�ed into two categories. First,

the matrix operands A, B and C have been distributed such that the rows of the

matrix operand A (respectively the columns of the matrix operand B) and the

rows (respectively columns) of the matrix operand C were residing in the same

process row (respectively column). These experiments are referred to as aligned

experiments thereafter. The second category of experiments considers matrix

operands that are not aligned, so that a complete redistribution of the matrix

operands A and B has to occur. These experiments are referred to as non-aligned

experiments. A single value of the logical value blocking factor NBlog has been

a priori determined for each platform and used for all the experiments. Finally,

for each category of experiments, di�erent values of the physical block sizes have

been timed.

Most of the experiments performed on the Intel XP/S Paragon have been per-

formed twice on a dedicated machine. Only the best performance is reported. All

experiments performed on the IBM SP were performed using a batch queueing

system. The machine was never set up in a single user mode. However, pre-

117

vious relevant timing results obtained on another dedicated system indicate no

meaningful di�erences with the results obtained by this batch queueing system.

For the sake of clarity, only limited results have been used for the plots pre-

sented in this chapter. Appendix B contains the tables of complete results. The

purpose of this chapter is to illustrate the general behavior of algorithmically

redistributed operations as opposed to presenting a collection of particular per-

formance numbers. One can still precisely identify the relationship between a

performance plot and the corresponding experiments. However, the presentation

style aims at facilitating the comparison of the di�erent blocking strategies for a

set of illustrative and particular cases. For example, for a given blocking variant,

one is interested in the performance variations as a function of the block sizes

used for the distribution matrix operands. Ideally, one would like to minimize

this dependence so that the performance of such an operation on a given machine

con�guration becomes a function of only the problem size.

5.2 Determining a \Good" Block Size

A \good" block size or blocking factor is one that maximizes the performance of

a block algorithm. According to the results presented in Figures 4.2 and 4.4, the

local performance is not very sensitive to the size of the matrix operands as soon

as their sizes remain large enough. This allows one to determine a lower bound on

118

the physical and/or logical block sizes under which the local performance would

be the main factor for overall slow performance. Figures 4.2 and 4.4 indicate that

the value of this lower bound is approximately 10 for the Intel XP/S Paragon and

20 for the IBM SP. A good value of the distribution block size can be empirically

determined by trying a few candidates for a given problem size and a given grid

size. Table 5.1 shows the performance in M
ops obtained for matrices of order

500 on a 2 � 2 process grid of the Intel XP/S Paragon, and matrices of order

1000 on a 2� 4 process grid of the IBM SP for di�erent values of the distribution

blocking factor NBdis. One should avoid selecting overly larges values for these

Table 5.1: Performance in M
ops for distinct distribution block sizes

2� 2 Intel XP/S Paragon 2� 4 IBM SP
NBdis M = N = K = 500 NBdis M = N = K = 1000

8 163.59 20 950.39
12 164.41 40 1063.99
14 168.85 60 1073.59
16 164.48 70 1103.12
18 169.12 80 1079.90

\good" block sizes in order to avoid load imbalance as well as limit the amount of

workspace required by the parallel subprograms. Finally, a few simple experiments

using the physical blocking variant allow one to determine somewhat arbitrarily

an approximate value of this \good" blocking factor. Table 5.1 shows some partial

results for a range of NBdis values that were used in determining a \good" blocking

factor for the Intel XP/S Paragon and the IBM SP. On the Intel XP/S Paragon,

119

we found that a reasonable value for this blocking factor is 14. On the IBM SP,

the value of 70 has been selected for the rest of our experiments. As mentioned

above, the results presented in Table 5.1 illustrate on a particular case that the

overall performance of this operation is not very sensitive to a range of values

for the blocking factor. Moreover, an optimal value maximizing performance for

all problem sizes does not exist. This value depends on the problem size, the

target machine as well as the process grid considered. Therefore, one could have

chosen other values within this acceptable range without greatly a�ecting the

performance of the parallel operation. In all of the performance results presented

hereafter, the value of the logical blocking factor has been chosen to be equal to

the \good" values indicated above.

Good values of the physical or logical blocking factors are machine and algo-

rithm dependent. From a software portability point of view, one can store these

values in a table. At run-time, these values will be retrieved from this table. This

is the option that has been selected by the LAPACK [5] designers. It is how-

ever conceivable to determine such values at run-time by performing a few quick

experiments. On a distributed memory concurrent computer, such a method is

particularly attractive because the overhead of such trials is in general negligible.

However, the main problem with this approach is that all processes should agree

on the value of the logical blocking factor to be used. Thus, on heterogeneous or

unequally loaded homogeneous platforms, this requires a synchronization phase

120

that lowers the advantages of this run-time approach. Consequently, the most

appealing solution is to empirically determine those good blocking values before

the installation of the software. One would then encode them in a static table

and �nish installing the software. Recompilation of the software is required when

some hardware component of the system is changed; however, it is possible to

determine slightly better blocking factors.

5.3 Speci�cation of the Experiments

In this section the experiments are precisely speci�ed. Each experiment has been

given an encoded name of the formXX T#. XX identi�es on which target machine

the experiment has been run, either XP for the Intel XP/S Paragon or SP for the

IBM SP. T speci�es the type of the operation and can be either A or N. If T is

A, the operation is aligned as de�ned in Section 4.4. If T is N, the operation is

not aligned. # is a number or a string distinguishing each experiment. For each

experiment, the physical distribution parameters of the matrix operands A, B and

C are speci�ed, followed by an explanation of the purpose of the experiment. Table

5.2 contains the speci�cations of all of the experiments that have been performed.

In all of the experiments, the matrix operands were square of order N . The values

of N used for all experiments are 100, 250, 500, 1000, 1500, 2000 and 3000. Due

to memory size constraints, it was not always possible to perform the experiments

121

Table 5.2: Speci�cation of the experiments

Aligned Experiments

Experiment # XP A0, SP A0

Distribution rA = sA = rB = sB = rC = sC = NBlog

Comments Pure overhead of algorithmic blocking.

Experiment # XP A1, SP A1

Distribution rA = sA = rB = sB = rC = sC = 1
Comments Impact of distribution blocking factors � NBlog.

Experiment # XP A10

Distribution rA = sA = rB = sB = rC = sC = 10
Experiment # SP A20

Distribution rA = sA = rB = sB = rC = sC = 20
Comments Impact of distribution blocking factors � NBlog.

Experiment # XP A40

Distribution rA = sA = rB = sB = rC = sC = 40
Comments Impact of distribution blocking factors � NBlog.

Experiment # XP A100

Distribution rA = sA = rB = sB = rC = sC = 100
Experiment # SP A200

Distribution rA = sA = rB = sB = rC = sC = 200
Comments Impact of distribution blocking factors � NBlog.

Non-aligned Experiments

Experiment # XP NA, SP NA

Distribution rA = rC = 40; sB = sC = 40; sA = 5; rB = 7
Comments Columns of A are not aligned with rows of B.

Experiment # XP N1, SP N1

Distribution rA = sA = rB = sB = rC = sC = 1
Comments Impact of very small distribution blocking factors.

Experiment # XP NN, SP NN

Distribution rA = 3; sA = 5; rB = 7; sB = 2; rC = sC = 40
Comments Non-aligned operation, small distribution blocking factors.

122

for all of these values. All of the experiments have been performed on �ve distinct

process grids, namely 1� 2, 2� 2, 2� 4, 4� 4 and 4� 8. As suggested in Section

4.4, the four blocking and redistribution strategies (PHY, AGG, LCM and RED)

have been tried for almost all experiments. Unless otherwise speci�ed, the value

of the logical blocking factor NBlog has been chosen to be 14 on the Intel XP/S

Paragon, and 70 on the IBM SP.

Experiments XP A0 and SP A0 use the value of NBlog as the physical distri-

bution blocking factor for all of the matrix operands. These experiments aim at

verifying that the algorithmically redistributed variants do not a�ect the refer-

ence performance obtained by the physical blocking strategy. Figures 5.1 and 5.2

show the performance of the physical blocking (PHY), aggregation (AGG) and

PHY (XP_A0)

AGG (XP_A0)

LCM (XP_A0)

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

problem size

M
flo

ps

4x4

4x8

Figure 5.1: Performance in M
ops of algorithmic blocking variants for a \good" physical
data layout case and various process grids on the Intel XP/S Paragon

123

the LCM blocking (LCM) strategies using the value of NBlog as the logical and

distribution blocking factors for the three matrix operands. According to the con-

clusions of the previous chapter, the performance of the three variants is almost

identical on each platform with a slight advantage to the LCM blocking variant.

PHY (SP_A0)

AGG (SP_A0)

LCM (SP_A0)

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

problem size

M
flo

ps

4x4

4x8

Figure 5.2: Performance in M
ops of algorithmic blocking variants for a \good" physical
data layout case and various process grids on the IBM SP

In the rest of this chapter, the performance curves shown in Figures 5.1 and 5.2

are considered as a reference. The combined maximum of these curves has been

replicated on all of the other plots presented. This maximal curve is thereafter

always represented as a bold solid line. Ideally, one would like to observe no

di�erence between the performance obtained for this \good" physical layout and

the performance achieved by distributions induced by other physical blocking

factors.

124

5.4 Aligned Experiments

In this section, the performance results obtained for the aligned experiments are

presented for each blocking variant separately.

5.4.1 Physical Blocking

Figures 5.3 and 5.4 show the performance results obtained by the physical blocking

strategy on aligned data. The physical blocking variant uses the distribution

blocking factors as the computational unit. When the distribution parameters

XP_A1

XP_A10

XP_A40

XP_A100

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

100

200

300

400

500

600

700

800

problem size

M
flo

ps

Figure 5.3: Performance of aligned physical blocking on a 4� 4 Intel XP/S Paragon

are very small, one expects a large performance degradation because of the local

performance of the rank-K update for small values of K as shown in Figures 4.2

and 4.4. Similarly, very large distribution block sizes increase the computation

125

load imbalance as explained in Section 4.4. Figures 5.3 and 5.4 illustrate these two

phenomena. The load imbalance is characterized by highly irregular performance

results. For example in Figure 5.4, for N = 1500, each process has almost the same

amount of data. However, for N = 2000, the matrix operands are made of 10�10

blocks of size 200. Since 10 is not divisible by 4 or 8, the most loaded processes

have locally a 600� 400 matrix on which to operate. The matrices residing in the

SP_A1

SP_A20

SP_A200

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

problem size

M
flo

ps

Figure 5.4: Performance of aligned physical blocking on a 4� 8 IBM SP

least loaded processes are however of size 400 � 200. Therefore, some processes

have three times as much work to perform than others. The ragged curves shown

in Figures 5.3 and 5.4 are typical of load imbalance. When the distribution block

size is very small, the performance is dramatically degraded. This is the di�erence

that one should expect when using Level 1 or 2 BLAS based algorithms as opposed

126

to Level 3 BLAS based algorithms.

5.4.2 Aggregation - Disaggregation

Figures 5.5 and 5.6 show the performance results obtained for the aggregation

strategy on aligned data. These �gures show that the aggregation variant de-

creases by a large amount the dependence of the performance from the physical

distribution parameters, and thus smooths the performance results of the rank-

K update towards the result of reference. The (dis)aggregation strategy builds

XP_A1

XP_A10

XP_A40

XP_A100

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

100

200

300

400

500

600

700

800

problem size

M
flo

ps

Figure 5.5: Performance of aligned aggregation on a 4� 4 Intel XP/S Paragon

panels of NBlog globally continuous columns of A and rows of B. When the distri-

bution parameters are very small, one expects a large performance improvement

compared to the physical blocking strategy. This aspect is particularly evident

for both target platforms as shown in Figures 5.5 and 5.6. The aggregation phase

127

induces some communication overhead that somewhat limits the potential of this

strategy. This phenomenon is not particularly well illustrated on the Intel XP/S

Paragon due to the high speed of the interconnection network compared to the

local computational performance. However, on the IBM SP, even if the per-

SP_A1

SP_A20

SP_A200

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

problem size

M
flo

ps

Figure 5.6: Performance of aligned aggregation on a 4� 8 IBM SP

formance of Experiment SP A1 has been considerably improved, it remains much

lower than the reference performance because of the less favorable communication-

computation performance ratio of this machine.

5.4.3 LCM Blocking

Figures 5.7 and 5.8 show the performance results obtained for the LCM blocking

strategy on aligned data. These �gures show that the LCM blocking variant pro-

duces the same e�ect as the aggregation strategy. It desensitizes the performance

128

results from a poor choice of the blocking factor. The LCM results are however

better than the ones shown above for the aggregation variant. In particular, the

performance results observed for Experiments XP A1 and SP A1 have been con-

siderably improved. On the Intel XP/S Paragon, the performance obtained for

very small physical blocking factors is now superior to the performance observed

XP_A1

XP_A10

XP_A40

XP_A100

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

100

200

300

400

500

600

700

800

problem size

M
flo

ps

Figure 5.7: Performance of aligned LCM blocking on a 4� 4 Intel XP/S Paragon

for physical blocking factors slightly larger than NBlog (XP A40). On the IBM

SP, there is virtually no performance di�erence between Experiments SP A1 and

SP A20. The impact of the less favorable communication-computation perfor-

mance ratio of this particular machine is somewhat hidden by the algorithmic

blocking strategy. This relatively low ratio is however, the reason for the per-

formance di�erence between the reference case and the Experiments SP A1 and

129

SP A20. The LCM blocking strategy builds panels of NBlog rows and columns

with less communication overhead because it essentially determines and regroups

the columns of A and rows of B that belong to a given process column and pro-

cess row pair. This phase is communication free. On both platforms, the results

SP_A1

SP_A20

SP_A200

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

problem size

M
flo

ps

Figure 5.8: Performance of aligned LCM blocking on a 4� 8 IBM SP

are spectacular. They show that for aligned data and uniform data distributions,

the performance di�erence due to various distribution blocking factors is no more

than a few percentage points from the reference as de�ned in Section 5.3.

5.4.4 Complete Redistribution

Figures 5.9 and 5.10 show the performance results when the matrix operands A

and B are aligned but redistributed for e�ciency reasons. Even if these plots show

the performance obtained for the same experiments as the last three sections, one

130

could argue that complete redistribution (RED) should only be used for the ex-

treme cases. A major feature of redistributing the entire matrix operands A and

B at once is the large memory cost required by this operation. This increases

the chances of the possible use of virtual memory by a large factor. Figure 5.9

illustrates the dramatic performance consequences of using virtual memory on

XP_A1

XP_A10

XP_A40

XP_A100

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

100

200

300

400

500

600

700

800

problem size

M
flo

ps

Figure 5.9: Performance of aligned redistribution on a 4� 4 Intel XP/S Paragon

the Intel XP/S Paragon. On this particular machine the complete redistribution

beforehand leads to lower performance than the one obtained by the LCM block-

ing variant. In other words, the cost of redistributing when needed beforehand

is larger than the cost induced by the algorithmically redistributed LCM strat-

egy. In both variants the amount of computation is performed at the same speed.

On the IBM SP, the complete redistribution beforehand leads to slightly higher

131

performance than the LCM blocking strategy. The lower total number of redistri-

bution messages of the complete redistribution strategy takes better advantage of

the low communication-computation performance ratio of this machine. It is clear

SP_A1

SP_A20

SP_A200

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

problem size

M
flo

ps

Figure 5.10: Performance of aligned redistribution on a 4� 8 IBM SP

that the IBM SP may need to use virtual memory for su�ciently large problem

sizes. However, the nodes of the machine we used for our experiments had each

at least 128 MB of physical memory. It was not feasible to estimate the impact

of the use of virtual memory in a reasonable amount of time.

132

5.5 Non-Aligned Experiments

Experiments XP AN and SP AN present the distinctive feature that only the

columns of the matrix operand A are not aligned with the rows of the matrix

operand B. Figures 5.11 and 5.12 show the performance results obtained for

these experiments. In this particular case, it is not necessary to redistribute

the operands A and B, but merely to perform a succession of rank-K update

operations as in the aligned case. Thus, one expects to draw the same conclusions

PHY (XP_NA)

AGG (XP_NA)

LCM (XP_NA)

RED (XP_NA)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

100

200

300

400

500

600

700

800

problem size

M
flo

ps

Figure 5.11: Performance in M
ops of algorithmic blocking variants for Experiment
XP NA on a 4� 4 Intel XP/S Paragon

as the ones obtained in the previous section. These are the reasons justifying the

presentation of these non-aligned experimental results separately. On the Intel

XP/S Paragon, the performance results obtained by the four variants are similar

133

with a slight advantage for the LCM blocking strategy (LCM). Just as it has

been observed above, the complete redistribution beforehand (RED) allows for

high performance as well, even if the physical memory constraints prevent from

the collection of decent results for the largest problems. On the IBM SP, the

PHY (SP_NA)

AGG (SP_NA)

LCM (SP_NA)

RED (SP_NA)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

500

1000

1500

problem size

M
flo

ps

Figure 5.12: Performance in M
ops of algorithmic blocking variants for Experiment
XP NA on a 2� 4 IBM SP

performance of the physical blocking strategy is considerably limited by the local

performance of the rank-K update for small values of K. There is very little

di�erence between the three variants AGG, LCM and RED.

5.5.1 Physical Blocking

Figures 5.13 and 5.14 present the performance results obtained for the physical

blocking strategy (PHY). These results are mainly presented for completeness

134

since this technique cannot achieve performance close to the reference for the se-

lected non-aligned experiments. Indeed, Experiments XP N1 and SP N1 feature

very small distribution blocking factors. Consequently, the local computational

performance is low as shown in Figures 4.2 and 4.4. Experiments XP NN and

SP NN feature also, in a slightly di�erent sense however, too small physical dis-

tribution blocking factors. At each step of the physical blocking strategy, no

XP_N1
XP_NN

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

100

200

300

400

500

600

700

800

problem size

M
flo

ps

Figure 5.13: Performance of non-aligned physical blocking on a 4�4 Intel XP/S Paragon

attempts are made to regroup columns of A (respectively rows of B) that are not

in the same block or the same process column (respectively process row). Conse-

quently, the local rank-K update operation is performed on at best the minimum

of sA and rB columns of A and rows of B. This also increases the number of

panel redistributions since in this case the values of sA and rB are smaller than

135

the value of NBlog in both target machines. The consequences of these remarks

are clearly illustrated on both �gures. The performance results obtained for the

physical blocking strategy are considerably lower than the ones used for reference.

SP_N1
SP_NN

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

problem size

M
flo

ps

Figure 5.14: Performance of non-aligned physical blocking on a 4� 8 IBM SP

5.5.2 Aggregation - Disaggregation

Figures 5.15 and 5.16 illustrate the performance achieved by the aggregation vari-

ant on non-aligned data. The performance results of the rank-K update are

smoothed towards the reference results. As shown, this technique is much more

e�cient than the physical blocking variant. On the Intel XP/S Paragon, due to

the high performance of the interconnection network, there is very little di�er-

ence with the results obtained on aligned data. As one may expect, this small

136

di�erence is the largest for small and medium problem sizes. In Figure 5.15 as

well as almost all of the �gures presented thereafter, the performance obtained

for Experiments XP N1 and SP N1 is higher than that measured for Experiments

XP NN and SP NN. Indeed, the redistribution phase for matrix operands dis-

tributed with very small physical block sizes is simpler and cheaper. For large

problem size, the performance loss is estimated to be approximately to 15%. On

XP_N1
XP_NN

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

100

200

300

400

500

600

700

800

problem size

M
flo

ps

Figure 5.15: Performance of non-aligned aggregation on a 4� 4 Intel XP/S Paragon

the IBM SP, the relative low performance of the interconnection network com-

pared to the computational speed of the nodes prevents the aggregation strategy

from obtaining much more than half of the reference performance. Still, small

physical distribution blocking factors perform slightly better than more general

distribution parameters. The gradual slope of the performance curve obtained for

137

Experiments SP N1 and SP NN is typical of lower communication performance.

For example, most of the performance curves shown for the Intel XP/S Paragon

feature a steep increase for small and medium size problems.

SP_N1
SP_NN

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

problem size

M
flo

ps

Figure 5.16: Performance of non-aligned aggregation on a 4� 8 IBM SP

5.5.3 LCM Blocking

Figures 5.17 and 5.18 show the performance results obtained by the LCM blocking

variant for the non-aligned Experiments XP N1, XP NN, SP N1 and SP NN.

Assuming that one can always �nd at least NBlog columns of A and rows of B

in every process column and row pair, one expects to observe slightly superior

performance results than the ones presented in the last section. This is exactly

what is shown in Figure 5.17 for the Intel XP/S Paragon. The performance

obtained for non-aligned data on this machine is impressive. When combining this

138

�gure with the one presented earlier for aligned experiments, one can conclude

that it is possible to achieve the highest (within 15 %) performance for aligned

and non-aligned data independent from the physical distribution parameters and

at a very low cost of physical memory.

XP_N1
XP_NN

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

100

200

300

400

500

600

700

800

problem size

M
flo

ps

Figure 5.17: Performance of non-aligned LCM blocking on a 4� 4 Intel XP/S Paragon

Figure 5.18 presents the performance results for the non-aligned experiments

obtained on the IBM SP. The performance di�erence with the reference is much

larger on this machine. Moreover, the performance obtained for Experiment

SP NN is much lower than that observed for Experiment SP N1. This is sur-

prising, especially when one considers the fact that so far the algorithmic block-

ing strategies have always smoothed the performance di�erence ascribed to the

physical data layout. This argument has to be weighted, however, against the

139

simpler redistribution operations performed in Experiment SP N1. When one

considers the di�erences in the experimentation methodologies used for the Intel

XP/S Paragon and the IBM SP, there is in fact only one di�erence that comes

to mind. The selected value of the logical blocking factor NBlog is much smaller

(14) on the Intel XP/S Paragon than on the IBM SP (70). The distribution

parameters for Experiment SP NN give lcm(P � rB; Q� sA) = lcm(40; 28) = 280.

SP_N1
SP_NN

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

problem size

M
flo

ps

Figure 5.18: Performance of non-aligned LCM blocking on a 4� 8 IBM SP

The corresponding LCM block is thus of order 280. For matrices of order 2000,

there are approximately 7 diagonal LCM blocks. Each LCM block has 280 di-

agonals distributed over 32 processes, i.e., there are approximately, and almost

exactly in this case, 63 = (280=32 � 9) � 7 diagonals per process. The LCM

blocking strategy uses these virtual diagonals to pack columns of A and rows of B

140

by considering a process column and process row pair. These packed panels are

then shifted along one dimension of the process grid. The algorithm performs thus

32 shift operations for each matrix operands. In Experiment SP N1, however, 8

out of 32 processes own 250 diagonals each. In this case 32 shift operations are

also performed for each matrix operands, but each of them consists of 12 = 4 + 8

point-to-point communications instead of 4 � 4 + 8 � 8 smaller messages. The

performance di�erence observed for Experiments SP N1 and SP NN is due to

these redistribution di�erences. On the Intel XP/S Paragon, this phenomenon is

hidden by the the high performance of the interconnection network. Moreover,

the small value of the logical blocking factor (14) on this platform also contribute

to attenuate this e�ect. Indeed, in a given process column - process row pair, it is

much easier to �nd 14 columns of A and rows of B rather than 70. These remarks

justify the introduction in Chapter 3 of the hybrid blocking strategy (HYB) com-

bining the advantages of the LCM variant and aggregation, i.e., minimizing the

amount of communication while maintaining the computational granularity.

5.5.4 Complete Redistribution

Figures 5.19 and 5.20 show the performance results obtained for the non-aligned

Experiments XP N1, XP NN, SP N1 and SP NN when the matrix operands A

and B are redistributed at once. The physical blocking variant of the rank-K

update operation is then performed to complete the computations. As it has

141

been previously observed, the redistribution phase requires a large amount of

workspace. Consequently, the use of virtual memory is inevitable for the largest

matrix operands producing a non-negligible performance degradation. This phe-

nomenon has been easier to observe on the Intel XP/S Paragon since the processors

of the machine used for our experiments had 16 MB of physical memory fromwhich

XP_N1
XP_NN

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

100

200

300

400

500

600

700

800

problem size

M
flo

ps

Figure 5.19: Performance of non-aligned redistribution on a 4� 4 Intel XP/S Paragon

approximately 8 MB are usable by the user's program. The overall performance

obtained by this technique is slightly better (a few percentage points) than the

LCM blocking strategy. The precise performance numbers for these experiments

are presented in Appendix B. On the IBM SP, the advantage of redistributing

beforehand is greater and is shown in Figure 5.20. When applicable, this strategy

appears to be the most e�cient. The machine used for our experiments consisted

142

of nodes having 128 MB or 256 MB of physical memory. Consequently, observing

the e�ects of virtual memory on the IBM SP has not been attempted. Figure

5.20 also shows the performance results of the hybrid (HYB) strategy described

above. The performance numbers have been reported in Appendix B. The hybrid

technique provides better performance than the simpler LCM blocking variant as

HYB (SP_N1)

HYB (SP_NN)

RED (SP_N1)

RED (SP_NN)

0 500 1000 1500 2000 2500 3000
0

500

1000

1500

2000

2500

3000

3500

4000

4500

problem size

M
flo

ps

Figure 5.20: Performance of non-aligned hybrid (HYB) versus redistribution (RED)
techniques on a 4� 8 IBM SP

illustrated by the Figures 5.20 and 5.18. This strategy delays the computational

phase until enough (NBlog) columns of the matrix operand A and rows of the

matrix operand B have been algorithmically blocked. The communication over-

head of this hybrid scheme is larger than the one induced by the LCM strategy.

It allows, however, the achievement in certain cases of a much higher local perfor-

mance rate. Obviously, the performance achieved by this hybrid scheme is always

143

greater or equal to the one obtained by the LCM blocking variant.

5.6 Conclusions

A large number of experimental results were presented in this chapter. For our

experiments, two platforms have been chosen with highly di�erent communication-

computation ratios. On one hand, the Intel XP/S Paragon allows for very e�cient

communications and relatively slow computations. On the other hand, the IBM

SP features highly e�cient processors for computational intensive applications

and a comparatively slower interconnection network. This study restricted the

scope of possible operations to a single one, namely the rank-K update operation.

This operation is mathematically equivalent to a �nite sequence of smaller rank-K

updates. For the sake of the clarity of the presentation the experiments have been

precisely speci�ed and organized into two main categories. First, the \aligned"

experiments feature simple and cheap redistribution phases due to restrictions on

the data layout of the matrix operands. Second, the \non-aligned" experiments

illustrate more general cases in terms of
exibility. Finally, four di�erent blocking

and redistribution strategies were studied. To perform the complete redistribu-

tion (RED) of a two-dimensional block cyclically distributed matrix into another

matrix of the same kind, we used the appropriate component of the ScaLAPACK

software library [78]. The rest of the software used in these experiments has been

144

developed for this dissertation.

The results presented in this chapter clearly show that for the aligned experi-

ments on both platforms, it is legitimate to use algorithmic redistribution variants.

By doing so, one can obtain high performance and e�ciency independent from the

distribution parameters. Furthermore, the performance numbers obtained by the

aggregation and LCM blocking techniques show a slight superiority for the latter.

However, both techniques are complementary in the sense that it is not always

possible to use the LCM blocking strategy as mentioned in Section 3.4.4. In order

to address the problems induced by badly balanced computations, it is always

possible to redistribute the matrix operand C, even if this somewhat contradicts

the \owner's compute" rule. Another possibly more e�ective solution is to educate

the users just like as has been done for the use of shared memory systems.

For non-aligned experiments, the results presented in this chapter not sur-

prisingly illustrate the increasing importance of the communication-computation

performance ratio. On the Intel XP/S Paragon, this ratio is quite high. In such a

con�guration, one can a�ord to redistribute the data \on the
y" without noticing

much di�erence with the reference performance achieved in the aligned cases. In

our context, redistributing the entire operands beforehand does not allow for any

signi�cant performance improvement on this platform. Interestingly, this strat-

egy pointed out its own paradox. Indeed, in terms of performance, the larger

the operands, the more bene�ts one should obtain from a complete redistribu-

145

tion. However, the amount of memory necessary to perform such an operation

grows with the number of items redistributed, and thus inhibiting operation on

the largest operands. This argumentation was at the beginning of our demarche

for developing algorithmically redistributed operations that require an amount of

memory proportional to the square root of the number of data items to be redis-

tributed. Figure 5.21 shows the performance obtained by the LCM and hybrid

HYB (XP_N1)

HYB (XP_NN)

LCM (XP_N1)

LCM (XP_NN)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

100

200

300

400

500

600

700

800

problem size

M
flo

ps

Figure 5.21: Performance of non-aligned hybrid (HYB) versus LCM blocking techniques
on a 4� 4 Intel XP/S Paragon

blocking variants for the non-aligned experiments on the Intel XP/S Paragon.

This �gure shows that almost no performance di�erence exists between these two

variants on this platform, as opposed to the results shown in Figures 5.18 and 5.20

for the IBM SP. On this latter platform, the communication-computation perfor-

mance ratio is less favorable to algorithmically redistributed operations. Con-

146

sequently, it is in general bene�cial to redistribute beforehand. This argument

is particularly pertinent for small and medium sized matrices for two reasons.

First, such redistribution operations require little workspace. Second, for large

operands, the computational cost will dominate no matter which strategy is used

to redistribute the operands.

147

Chapter 6

Conclusions

Il faut, autant qu'on peut, obliger tout le monde :

On a souvent besoin d'un plus petit que soi.

De cette v�erit�e deux fables feront foi,

Tant la chose en preuves abonde.

Entre les pattes d'un Lion

Un Rat sortit de terre assez �a l'�etourdie ...

Jean de La Fontaine (1621-1695)

Performing a �nite sequence of rank-k updates is the basic underlying operation of

most modern dense linear algebra algorithms. Computing the numerical solution

of linear systems and solving least squares matrix inequalities are traditionally

performed on a computer in two steps. First, the linear operator is factorized into

a product of two or more matrices featuring suitable properties for the resolution

148

of the problem. Second, the solution of the problem is obtained by solving sim-

pler matrix equalities typically involving triangular and/or orthogonal matrices

[5, 49]. This same framework forms the basis of modern algorithms solving al-

gebraic eigenvalue problems. The matrix representing the linear operator is �rst

reduced to a condensed form. The numerical solution is then obtained by applying

an iterative method to this condensed form [5, 49]. Block-partitioned algorithms

have been developed for most of the matrix factorizations and reductions. These

algorithms have been implemented in the LAPACK software library [5] for shared

memory systems. The bulk of computation in these algorithms is performed on the

matrix representation of the linear operator. When such a matrix is distributed

onto a process grid according to the block cyclic scheme, the operands of the

elementary rank-k updates feature natural alignment characteristics. A parallel

implementation of these algorithms can take advantage of such distribution prop-

erties. Parallel basic linear algebra operations such as the matrix-matrix multiply

or the triangular solve operations can also be expressed recursively as a succession

of themselves and rank-k updates [33, 60]. The algorithms proposed in the liter-

ature thus far focus on the naturally aligned cases used in the factorization and

reduction operations. This restricted interest prevents one from providing the

necessary
exibility that a parallel software library requires to be truly usable.

In addition, restricted operations considerably handicap the ease-of-use of such a

library since one often needs to reformulate general operations to match obscure

149

alignment restrictions that are di�cult to document and to explain.

This dissertation demonstrates that it is possible to alleviate natural alignment

restrictions for a low (sometimes negligible) performance cost for basic operations

and various block cyclic distributions. Moreover, the techniques used for this

purpose considerably reduce and often completely remove the complicated de-

pendence between the performance of parallel basic linear algebra operations and

the physical distribution parameters. We believe that the preceding statement is

the major contribution of this dissertation. Indeed, it says that the algorithms

presented in this document allow one to produce a general purpose and
exible

parallel software library of basic linear algebra subprograms. These algorithms

have been shown in this document to achieve high performance independently

from the actual block cyclic distribution parameters. E�ciency and
exibility are

not antagonistic objectives for basic dense linear algebra operations. This result

is presented in greater detail in the following sections.

6.1 Application Domain of Algorithmic Operations

The performance results presented in Chapter 5 show that when the matrix

operands are aligned, the algorithmically redistributed operations based on ag-

gregation (AGG) and the LCM blocking (LCM) strategy are competitive in terms

of performance with the complete redistribution variant (RED). This conclusion

150

must be re�ned when the matrix operands must be redistributed before the aligned

operation can take place. Figure 6.1 summarizes the application domain of algo-

rithmically redistributed operations for the non-aligned cases. First, when the

number of processors p is small, the redistribution operations are considerably

simpli�ed because the total number of messages to be exchanged during such an

operation is proportional to p2. Therefore, in these cases, the algorithmically re-

Number of processors1

 Physical
distribution
 blocking
 factors

Load
imbalance

AGG / LCM

RED

Higher communication
computation ratio

Figure 6.1: Application domain of algorithmically redistributed operations

distributed operations are highly e�cient. Their performance is very similar to

the performance obtained by the corresponding aligned cases. Similarly, if one

restricts oneself to very small values of the physical distribution parameters for all

of the matrix operands, the redistribution operations are considerably simpli�ed

for the same reason as above. In all of the other cases, there is a tradeo� that

151

depends on the communication-computation performance ratio of the target com-

puter. This tradeo� is symbolized in Figure 6.1 by the curved border of the grey

area. This border divides the plane quarter into two distincts areas. The upper

right area is denoted by RED, and the other area is colored in grey and denoted

by AGG/LCM. Suppose �rst that the distribution parameters, i.e., number of

processors and physical blocking factors, are such that they identify a point in

the grey area. In this case, algorithmically redistributed operations based on ag-

gregation and the LCM blocking strategy are highly competitive. These methods

are likely to deliver performance within 15 % of the performance achieved for the

best aligned case. Second, if the distribution parameters identify a point in the

white area denoted by RED, then complete redistribution of the matrix operands

beforehand is more e�cient than algorithmically redistributed operations. The

position of the border separating both regions depends on the communication-

computation performance ratio of the target computer. If this ratio increases, the

curved border is shifted in the direction indicated by the arrows on the �gure. The

performance results presented in Chapter 5 show that the machine parameters can

be such that this border is never encountered. For example, on the Intel XP/S

Paragon, we never found a problem speci�cation such that complete redistribu-

tion (RED) overperforms algorithmically redistributed operations such as AGG

or LCM. On a machine featuring a less favorable ratio such as the IBM SP, it has

been observed that non-aligned data redistribution beforehand (RED) allows for

152

better performance as soon as the process grid and the physical blocking factors

are su�ciently large.

6.2 Recommendations for a Software library

The results shown in this dissertation have a direct impact on the eventual pro-

duction of a set of
exible parallel basic algebra subprograms. Indeed, we have

shown that for a variety of distribution and machine parameters one can a�ord to

redistribute the matrix operands \on the
y" without a signi�cant performance

degradation. However, for certain distributed memory concurrent computers fea-

turing slow communication performance compared to their computational power,

it is necessary to preserve the possibility of redistributing the data beforehand. It

has been observed that such a redistribution phase has such a high memory cost

that it is impractical for the largest problems �tting in the main physical mem-

ory. Such observations indicate that it is worthwhile to provide algorithmically

redistributed operations that feature the
exibility that a library user may expect.

This allows for fast prototyping and debugging of parallel algorithms. Moreover,

the performance of such algorithmically redistributed operations is always higher

or comparable to what currently exists. The user should be warned that slightly

higher performance may be achieved on certain platforms by redistributing the

data beforehand when it is feasible.

153

In order to address the high memory cost induced by redistributing beforehand,

one may think about two distinct approaches. First, instead of redistributing the

entire operands at once, it is possible to redistribute say only half of them in

two steps. At each step the same workspace can be reused and only part of

the computation performed. This approach is viable, even if it is problematic

from a software point of view to precisely estimate at run-time the amount of

usable memory on each process. Second, it is also possible to redistribute the

operands in place. A non trivial algorithm as well as its memory cost could not

be found in the literature. However, even if one assumes the availability of such an

algorithm, the later remains impractical from a software point of view. Indeed, the

size of the local arrays capable of storing the original and redistributed operands

highly depends on the distribution parameters of the redistributed operand. These

parameters may only be known at run time. Both of these preceding approaches

may be attractive for a particular application, but their practical realization seems

di�cult in a modular software library fashion.

A message-passing program is naturally complex. The experimental programs

written for this dissertation are by no means exceptions to this rule. These pro-

grams are complicated to write, debug and maintain. These facts have been

considered when these experimental programs were designed. First, whenever

possible, a \global interface" has been selected as used by the ScaLAPACK li-

brary and explained in [18]. If such an interface imposes some redundant index

154

computations, it allows for the reuse of sequential data and control structures

that are easier to write and debug. Second, the properties shown in Chapter 2

were used to verify and assert the correctness of the experimental programs. For

example, a subprogram computing the number of diagonals owned by a particular

process is not a trivial programming exercise. Such a task requires a good un-

derstanding of the data distribution properties. It is, however, easy to check the

validity of the result. Sequential unit testing programs were thus developed for

almost all of the subprograms computing indexes and local quantities. Writing a

parallel program is often considered as an implementation detail when compared

with the design of the algorithms. The complexity of a program is after all a

subjective matter, as opposed to the complexity of an algorithm. There is un-

doubtedly some truth in such a statement, even if it is overlooking the software

engineering aspects of distributed memory programming.

6.3 Contributions of this Dissertation

A number of properties of the block cyclic distribution were formally exhibited

in Chapter 2. These properties form the theoretical basis of a characterization

of the block cyclic distribution. They have been used to develop and ensure the

correctness of algorithmically redistributed operations, as well as the robustness

and reliability of their experimental implementation. This collection of properties

155

naturally suggests an elegant and convenient data structure that encapsulates and

reveals the essential features of the LCM block partitioning unit when used in the

context of algorithmic redistributed operations. The LCM table de�nition was

thus derived and shown to be a convenient framework for expressing algorithmi-

cally redistributed operations. It was noted that this approach can be generalized

to the family of Cartesian mappings. The relationship between the distribution

parameters and the complexity of the general one- and two-dimensional redistri-

bution operations was determined and presented in Corollary 2.5.1. The intuitive

result that the complexity of these operations increases with the perimeter of the

r�s partitioning unit was proved for a �nite range of possible and realistic values

of the distribution parameters.

Most of the parallel algorithms proposed in the literature rely on the physical

blocking strategy to e�ciently use a distributed memory hierarchy. Within the

restricted context of the rank-k update operation, algorithmically redistributed

operations were thus introduced and presented as alternatives to the physical

blocking strategy. The originality of the algorithms presented in Chapter 3 is

their systematic derivation from the properties of the underlying mapping. These

blocking strategies were expressed within a single framework using LCM tables.

It was noted that the modular design of the resulting operations was appropriate

for library software. Indeed, algorithmically redistributed operations feature a po-

tential for high performance without the alignment restrictions of the physically

156

blocked algorithms. De�ning and studying algorithmically redistributed opera-

tions attempts to show that the antagonism between e�ciency and
exibility is

not a property of the block cyclic mapping, but merely a characteristic of the

algorithms that have been so far proposed to deal with a distributed memory

hierarchy.

The scalability of the algorithmically redistributed operations proposed in

Chapter 3 is studied in Chapter 4. The performance analysis of these opera-

tions is presented for a simpli�ed theoretical machine model. It is shown for

this machine model that these operations are scalable, i.e., the parallel e�ciency

de�ned by Equation 4.4.1 is maintained if the memory use per process is kept con-

stant. Experimental performance results are presented in Chapter 5. The experi-

ments are conducted on two platforms featuring highly di�erent communication-

computation performance ratios. It is observed that when the matrix operands

verify certain data alignment properties, algorithmically redistributed operations

are competitive, in the sense that high performance can be achieved independently

from the distribution parameters of the matrix operands. When these alignment

restrictions are not met, the performance achieved by algorithmically redistributed

operations is sensitive to the communication-computation performance ratio of the

target architecture. For a distributed memory concurrent computer such as the

Intel XP/S Paragon featuring a high communication-computation performance

ratio, performance comparable to the one obtained in the aligned cases is ob-

157

served. When the communication-computation performance ratio is lower as it is

the case for the IBM SP, redistributing the data beforehand is in general more

e�cient than algorithmic redistribution.

6.4 Further Research Directions

There is undoubtly a need for a formal characterization of data decompositions.

The properties of such mappings as well as their derivation suggest natural parallel

algorithms. They also identify critical features of which one can take advantage.

For example, periodicity is an essential property since it is the source of e�cient

blocking techniques. Ease-of-use and
exibility are also factors to be considered.

These criteria may seem subjective and di�cult to estimate; it is, however, usually

the case that one can identify and characterize the di�erences of speci�c cases

from the general de�nition. In other words, it is interesting to show that the LU

factorization scales and performs well when the data is distributed according to

a given mapping. It is, however, more interesting to show what the properties of

the data decomposition should be able to produce an e�cient implementation of

the LU factorization.

The one- and two-dimensional redistribution algorithms presented and used

in this dissertation feature an optimal volume of communication. The scheduling

policies, however, are not contention free. Developing and/or characterizing such

158

policies for static and dynamic networks is a research area on its own. References

on the subject can be found in [32, 67]. More recent research work on this topic

can be found in [78, 86]. These problems are complex and di�cult to address.

The experimental results presented in the literature are usually machine depen-

dent. They are often based on empirical trials or heuristics. A comprehensive

and detailed comparative summary of the known scheduling policies could not be

found in the literature. Data redistribution can lead to a signi�cant performance

improvement. An inadequate scheduling policy can however ruin the performance

of the redistribution operation and suggest an incorrect interpretation of experi-

mental results.

159

Bibliography

160

Bibliography

[1] M. Aboelaze, N. Chrisochoides, and E. Houstis. The Parallelization of Level 2

and 3 BLAS Operations on Distributed Memory Machines. Technical Report

CSD-TR-91-007, Purdue University, West Lafayette, IN, 1991.

[2] R. Agarwal, F. Gustavson, and M. Zubair. A High Performance Matrix

Multiplication Algorithm on a Distributed-Memory Parallel Computer, Using

Overlapped Communication. IBM Journal of Research and Development,

38(6):673{681, 1994.

[3] R. Agarwal, F. Gustavson, and M. Zubair. Improving Performance of Linear

Algebra Algorithms for Dense Matrices Using Algorithmic Prefetching. IBM

Journal of Research and Development, 38(3):265{275, 1994.

[4] T. Agerwala, J. Martin, J. Mirza, D. Sadler, D. Dias, and M. Snir. SP2

System Architecture. IBM Systems Journal, 34(2):153{184, 1995.

[5] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du

161

Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and

D. Sorensen. LAPACK Users' Guide, Second Edition. SIAM, Philadelphia,

PA, 1995.

[6] I. Angus, G. Fox, J. Kim, and D. Walker. Solving Problems on Concurrent

Processors: Software for Concurrent Processors, volume 2. Prentice Hall,

Englewood Cli�s, N.J, 1990.

[7] C. Ashcraft. The Distributed Solution of Linear Systems Using the Torus-

wrap Data mapping. Technical Report ECA-TR-147, Boeing Computer Ser-

vices, Seattle, WA, 1990.

[8] M. Baber. Hypertasking Support for Dynamically Redistributable and Re-

sizeable Arrays on the iPSC. In Proceedings of the Sixth Distributed Memory

Computing Conference, pages 59{66, 1991.

[9] R. Bisseling and J. van der Vorst. Parallel LU Decomposition on a Transputer

Network. In G. van Zee and J. van der Vorst, editors, Lecture Notes in

Computer Sciences, volume 384, pages 61{77. Springer-Verlag, 1989.

[10] R. Bisseling and J. van der Vorst. Parallel Triangular System Solving on

a mesh network of Transputers. SIAM Journal on Scienti�c and Statistical

Computing, 12:787{799, 1991.

162

[11] F. Bodin, P. Beckman, D. Gannon, S. Yang, S. Kesavan, A. Malony, and

B. Mohr. Implementing a Parallel C++ Runtime System for Scalable Parallel

Systems. In Proceedings of Supercomputing'93, pages 588{597, 1993.

[12] R. Brent. The LINPACK Benchmark on the AP 1000. In Frontiers, 1992,

pages 128{135, McLean, VA, 1992.

[13] R. Brent and P. Strazdins. Implementation of BLAS Level 3 and LINPACK

Benchmark on the AP1000. Fujitsu Scienti�c and Technical Journal, 5(1):61{

70, 1993.

[14] B. Chapman, P. Mehrotra, H. Moritsch, and H. Zima. Dynamic Data Re-

distribution in Vienna Fortran. In Proceedings of Supercomputing'93, pages

284{293, 1993.

[15] S. Chatterjee, J. Gilbert, F. Long, R. Schreiber, and S. Tseng. Generating

Local Adresses and Communication Sets for Data Parallel Programs. Journal

of Parallel and Distributed Computing, 26:72{84, 1995.

[16] J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov, A. Petitet,

K. Stanley, D. Walker, and R. C. Whaley. ScaLAPACK: A Portable Lin-

ear Algebra Library for Distributed Memory Computers - Design Issues and

Performance. Computer Physics Communications, 97:1{15, 1996. (also LA-

PACK Working Note #95).

163

[17] J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrouchov, A. Petitet,

K. Stanley, D. Walker, and R. C. Whaley. Installation Guide for ScaLAPACK.

Technical Report UT CS-95-280, LAPACK Working Note #93, University of

Tennessee, 1995.

[18] J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker, and R. C. Wha-

ley. A Proposal for a Set of Parallel Basic Linear Algebra Subprograms. In

J. Dongarra, K. Masden, and J. Wa�sniewski, editors, Applied Parallel Com-

puting, pages 107{114. Springer Verlag, 1995. (also LAPACK Working Note

#100).

[19] J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker, and R. C. Whaley.

The Design and Implementation of the Reduction Routines in ScaLAPACK.

In J. J. Dongarra, L. Grandinetti, G. R. Joubert, and J. Kowalik, editors,

High Performance Computing: Technology, Methods and Applications, Ad-

vances in Parallel Computing, 10, pages 177{202. Elsevier, Amsterdam, The

Netherlands, 1995.

[20] J. Choi, J. Dongarra, S. Ostrouchov, A. Petitet, D. Walker, and R. C. Whaley.

The Design and Implementation of the ScaLAPACK LU, QR, and Cholesky

Factorization Routines. Scienti�c Programming, 5:173{184, 1996. (also LA-

PACK Working Note #80).

164

[21] J. Choi, J. Dongarra, R. Pozo, and D. Walker. ScaLAPACK: A Scalable

Linear Algebra Library for Distributed Memory Concurrent Computers. In

Proceedings of Fourth Symposium on the Frontiers of Massively Parallel Com-

putation (McLean, Virginia), pages 120{127. IEEE Computer Society Press,

Los Alamitos, California, 1992. (also LAPACK Working Note #55).

[22] J. Choi, J. Dongarra, and D. Walker. Parallel Matrix Transpose Algorithms

on Distributed Memory Concurrent Computers. In Proceedings of Fourth

Symposium on the Frontiers of Massively Parallel Computation (McLean,

Virginia), pages 245{252. IEEE Computer Society Press, Los Alamitos, Cal-

ifornia, 1993. (also LAPACK Working Note #65).

[23] J. Choi, J. Dongarra, and D. Walker. PUMMA: Parallel Universal Matrix

Multiplication Algorithms on Distributed Memory Concurrent Computers.

Concurrency: Practice and Experience, 6(7):543{570, 1994. (also LAPACK

Working Note #57).

[24] J. Choi, J. Dongarra, and D. Walker. The Design of a Parallel, Dense Linear

Algebra Software Library: Reduction to Hessenberg, Tridiagonal and Bidig-

onal Form. Numerical Algorithms, 10:379{399, 1995.

[25] J. Choi, J. Dongarra, and D. Walker. PB-BLAS: A Set of Parallel Block

Basic Linear Algebra Subroutines. Concurrency: Practice and Experience,

8(7):517{535, 1996.

165

[26] A. Chtchelkanova, J. Gunnels, G. Morrow, J. Overfelt, and R. van de Geijn.

Parallel Implementation of BLAS: General Techniques for Level 3 BLAS.

Technical Report TR95-49, Department of Computer Sciences, UT-Austin,

1995. Submitted to Concurrency: Practice and Experience.

[27] E. Chu and A. George. QR Factorization of a Dense Matrix on a Hyper-

cube Multiprocessor. SIAM Journal on Scienti�c and Statistical Computing,

11:990{1028, 1990.

[28] Mathemetical Committee on Physical and Engineering Sciences, editors.

Grand Challenges: High Performance Computing and Communications.

NSF/CISE, 1800 G Street NW, Washington, DC, 20550, 1991.

[29] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. The

MIT press, Cambridge, MA, 1990.

[30] IBM Corporation. IBM RS6000. (http://www.rs6000.ibm.com/), 1996.

[31] Intel Corporation. Intel Supercomputer Technical Publications Home Page.

(http://www.ssd.intel.com/pubs.html), 1995.

[32] M. Cosnard, Y. Robert, P. Quinton, and M. Tchuente, editors. Parallel

Algorithms and Architectures. North-Holland, 1986.

166

[33] M. Dayde, I. Du�, and A. Petitet. A Parallel Block Implementation of Level

3 BLAS for MIMD Vector Processors. ACM Transactions on Mathematical

Software, 20(2):178{193, 1994.

[34] G. Lejeune Dirichlet. Abhandlungen K�oniglich Preuss. Akad. Wiss., 1849.

[35] J. Dongarra, J. Du Croz, I. Du�, and S. Hammarling. A Set of Level 3 Basic

Linear Algebra Subprograms. ACM Transactions on Mathematical Software,

16(1):1{17, 1990.

[36] J. Dongarra, J. Du Croz, S. Hammarling, and R. Hanson. Algorithm 656: An

extended Set of Basic Linear Algebra Subprograms: Model Implementation

and Test Programs. ACM Transactions on Mathematical Software, 14(1):18{

32, 1988.

[37] J. Dongarra and R. van de Geijn. Two dimensional Basic Linear Algebra

Communication Subprograms. Technical Report UT CS-91-138, LAPACK

Working Note #37, University of Tennessee, 1991.

[38] J. Dongarra, R. van de Geijn, and D. Walker. Scalability Issues in the Design

of a Library for Dense Linear Algebra. Journal of Parallel and Distributed

Computing, 22(3):523{537, 1994. (also LAPACK Working Note #43).

[39] J. Dongarra and D. Walker. Software Libraries for Linear Algebra Com-

putations on High Performance Computers. SIAM Review, 37(2):151{180,

167

1995.

[40] J. Dongarra and R. C. Whaley. A User's Guide to the BLACS v1.0. Technical

Report UT CS-95-281, LAPACKWorking Note #94, University of Tennessee,

1995. (http://www.netlib.org/blacs/).

[41] R. Falgout, A. Skjellum, S. Smith, and C. Still. The Multicomputer Toolbox

Approach to Concurrent BLAS and LACS. In Proceedings of the Scalable

High Performance Computing Conference SHPCC-92. IEEE Computer Soci-

ety Press, 1992.

[42] M. Flynn. Some Computer Organizations and Their E�ectiveness. IEEE

Transactions on Computers, 21(9):948{960, 1972.

[43] Message Passing Interface Forum. MPI: A Message Passing Interface Stan-

dard. International Journal of Supercomputer Applications and High Perfor-

mance Computing, 8(3{4), 1994.

[44] Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing

Interface (Draft). (http://www.mcs.anl.gov/mpi), 1996.

[45] G. Fox, S. Hiranandani, K. Kennedy, C. Koebel, U. Kremer, C. Tseng, and

M. Wu. Fortran D Language Speci�cation. Technical Report TR90-141, Rice

University, Department of Computer Science, 1990.

168

[46] G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon, and D. Walker. Solving

Problems on Concurrent Processors, volume 1. Prentice Hall, Englewood

Cli�s, N.J, 1988.

[47] G. Fox, S. Otto, and A. Hey. Matrix Algorithms on a Hypercube I: Matrix

Multiplication. Parallel Computing, 3:17{31, 1987.

[48] G. Geist and C. Romine. LU Factorization Algorithms on Distributed Mem-

ory Multiprocessor Architectures. SIAM Journal on Scienti�c and Statistical

Computing, 9:639{649, 1988.

[49] G. Golub and C. van Loan. Matrix Computations. Johns-Hopkins, Baltimore,

second edition, 1989.

[50] M. Hall, S. Hiranandani, K. Kennedy, and C. Tseng. Interprocedural Compi-

lation of Fortran D for MIMDMachines. In Proceedings of Supercomputing'92,

pages 522{534, 1992.

[51] P. Hatcher and M. Quinn. Data-Parallel Programming On MIMD Computers.

The MIT Press, Cambridge, Massachusetts, 1991.

[52] M. Heath and C. Romine. Parallel Solution Triangular Systems on Dis-

tributed Memory Multiprocessors. SIAM Journal on Scienti�c and Statistical

Computing, 9:558{588, 1988.

169

[53] B. Hendrickson, E. Jessup, and C. Smith. A Parallel Eigensolver for Dense

Symmetric Matrices. Personal communication, 1996.

[54] B. Hendrickson and D. Womble. The Torus{wrap Mapping for Dense Matrix

Calculations on Massively Parallel Computers. SIAM Journal on Scienti�c

and Statistical Computing, 15(5):1201{1226, September 1994.

[55] G. Henry and R. van de Geijn. Parallelizing the QR Algorithm for the Unsym-

metric Algebraic Eigenvalue problem: Myths and Reality. Technical Report

UT CS-94-244, LAPACK Working Note #79, University of Tennessee, 1994.

[56] S. Hiranandani, K. Kennedy, J. Mellor-Crummey, and A. Sethi. Compila-

tion Techniques for Block-Cyclic Distributions. Technical Report CRPC-

TR95521-S, Center for Research on Parallel Computation, 1995.

[57] S. Huss-Lederman, E. Jacobson, A. Tsao, and G. Zhang. Matrix Multiplica-

tion on the Intel Touchstone DELTA. Concurrency: Practice and Experience,

6(7):571{594, 1994.

[58] K. Hwang. Advanced Computer Architecture: Parallelism, Scalability, Pro-

grammability. McGraw-Hill, 1993.

[59] S. L. Johnsson. Communication E�cient Basic Linear Algebra Computations

on Hypercube Architectures. Journal of Parallel and Distributed Computing,

2:133{172, 1987.

170

[60] B. K�agstr�om, P. Ling, and C. van Loan. GEMM-Based Level 3 BLAS: High-

Performance Model Implementations and Performance Evaluation Bench-

mark. Technical Report UMINF 95-18, Department of Computing Science,

Ume�a University, 1995. Submitted to ACM TOMS.

[61] E. Kalns. Scalable Data Redistribution Services for Distributed-Memory Ma-

chines. PhD thesis, Michigan State University, 1995.

[62] W. Kaufmann and L. Smarr. Supercomputing and the Transformation of

Science. Scienti�c American Library, 1993.

[63] K. Kennedy, N. Nedeljkovi�c, and A. Sethi. E�cient Address Generation For

Block-Cyclic Distributions. Technical Report CRPC-TR94485-S, Center for

Research on Parallel Computation, 1994.

[64] K. Kennedy, N. Nedeljkovi�c, and A. Sethi. A Linear-Time Algorithm for

Computing the Memory Access Sequence in Data Parallel Programs. In Pro-

ceedings of the Fifth ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, Santa Barbara, CA, 1995.

[65] D. Knuth. The Art of Computer Programming. Addison-Wesley, second

edition, 1973. Volume 1. Fundamental algorithms. Volume 2. Semi-numerical

algorithms. Volume 3. Sorting and searching.

171

[66] C. Koebel, D. Loveman, R. Schreiber, G. Steele, and M. Zosel. The High

Performance Fortran Handbook. The MIT Press, Cambridge, Massachusetts,

1994.

[67] V. Kumar, A. Grama, A. Gupta, and G. Karypis. Introduction to Parallel

Computing. The Benjamin/Cummings Publishing Company, Inc., Redwood

City, CA, 1994.

[68] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh. Basic Linear Algebra Sub-

programs for Fortran Usage. ACM Transactions on Mathematical Software,

5(3):308{323, 1979.

[69] G. Li and T. Coleman. A Parallel Triangular Solver for a Distributed-

Memory Multiprocessor. SIAM Journal on Scienti�c and Statistical Com-

puting, 9(3):485{502, 1988.

[70] G. Li and T. Coleman. A New Method for Solving Triangular Systems on

Distributed-Memory Message-Passing Multiprocessor. SIAM Journal on Sci-

enti�c and Statistical Computing, 10(2):382{396, 1989.

[71] J. Li and M. Chen. The Data Alignment Phase in Compiling Programs for

Distributed-Memory Machines. Journal of Parallel and Distributed Comput-

ing, 13:213{221, 1991.

172

[72] W. Lichtenstein and S. L. Johnsson. Block-Cyclic Dense Linear Algebra.

SIAM Journal on Scienti�c and Statistical Computing, 14(6):1259{1288,

1993.

[73] M. Mace. Memory Storage Patterns in Parallel Processing, 1987.

[74] K. Mathur and S. L. Johnsson. Multiplication of Matrices of Arbitrary Shapes

on a Data Parallel Computer. Parallel Computing, 20:919{951, 1994.

[75] P. Mehrotra and J. Rosendale. Programming Distributed Memory Architec-

tures Using Kali. The MIT Press, Cambridge, Massachusetts, 1991.

[76] O�ce of Science and Technology Policy, editors. A Research and Development

Strategy for High Performance Computing. Executive O�ce of the President,

1987.

[77] O�ce of Science and Technology Policy, editors. The Federal High Perfor-

mance Computing Program. Executive O�ce of the President, 1989.

[78] L. Prylli and B. Tourancheau. E�cient Block-Cyclic Data Redistribution.

Technical Report 2766, INRIA, Rhône-Alpes, 1996.

[79] M. Rosing, R. Schnabel, and R. Weaver. The DINO Parallel Programming

language. Journal of Parallel and Distributed Computing, 13:30{42, 1991.

173

[80] C. Stunkel, D. Shea, B. Abali, M. Atkins, C. Bender, D. Grice, P. Hochshild,

D. Joseph, B. Nathanson, R. Swetz, R. Stucke, M. Tsao, and P. Varker. The

SP2 High-Performance Switch. IBM Systems Journal, 34(2):185{204, 1995.

[81] Thinking Machines Corporation. CMSSL for Fortran, 1990.

[82] A. Thirumalai and J. Ramanujam. Fast Address Sequence Generation for

Data Parallel Programs Using Integer Lattices. In P. Sadayappan and al.,

editors, Languages and Compilers for Parallel Computing, Lecture Notes in

Computer Science. Springer Verlag, 1996.

[83] R. van de Geijn and J. Watts. SUMMA: Scalable Universal Matrix Multipli-

cation Algorithm. Technical Report UT CS-95-286, LAPACK Working Note

#96, University of Tennessee, 1995.

[84] E. van de Velde. Data Redistribution and Concurrency. Parallel Computing,

16:125{138, 1990.

[85] E. van de Velde. Experiments with Multicomputer LU-Decomposition. Con-

currency: Practice and Experience, 2:1{26, 1990.

[86] D. Walker and S. Otto. Redistribution of Block-Cyclic Data Distributions

Using MPI. Concurrency: Practice and Experience, 8(9):707{728, 1996.

174

[87] R. C. Whaley. Basic Linear Algebra Communication Subprograms: Analysis

and ImplementationAcross Multiple Parallel Architectures. Technical Report

UT CS-94-234, LAPACK Working Note #73, University of Tennessee, 1994.

[88] H. Zima, P. Brezany, B. Chapman, P. Mehrotra, and A. Schwald. Vienna

Fortran: A Language Speci�cation (Version 1.1), 1991.

175

Appendix

176

Appendix A

LCM Tables

A.1 LCM Table with First Partial Block

In order to take into account a �rst partial block of size (ir; is) into the data

distribution parameters, the LCM table de�nition (2.5.2) needs to be modify as

given below. For the sake of simplicity, the C conditional operator notation is

used. The complementary information provided here may seem slightly more

complicated than what is presented in the chapter 2. However, the di�erences

depend only on the process coordinates and therefore do not impact signi�cantly

the computation of the LCM table in each process.

177

De�nition A.1.1 Given a k-diagonal, the k-LCM table (LCMT) is a two-dimensional

in�nite array of integers local to each process (p; q) de�ned recursively by

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

LCMT p;q
0;0 = (q > 0 ? is + (q � 1)s : 0)� (p > 0 ? ir + (p � 1)r : 0) + k;

LCMT p;q
1;� = LCMT p;q

0;� � P r � (p > 0 ? 0 : ir � r);

LCMT p;q
l;� = LCMT p;q

l�1;� � P r; for l � 2;

LCMT p;q
�;1 = LCMT p;q

�;0 +Q s+ (q > 0 ? 0 : is� s);

LCMT p;q
�;m = LCMT p;q

�;m�1 +Q s for m � 2:

Finally, the bounds (2.5.20) against which an LCM table entry are compared

with in order to recognize a block that own k-diagonals depend on the process

coordinates (p; q) and need to be modi�ed as shown in table A.1.

Table A.1: The LCMT bounds characterizing block owning k-diagonals

p = 0 and q = 0:

1� is � LCMT
p;q
0;0 � ir � 1;

1� s � LCMT
p;q
0;m � ir � 1; for m > 0;

1� is � LCMT
p;q
l;0 � r � 1; for l > 0;

1� s � LCMT
p;q
l;m � r � 1; for l;m > 0:

p = 0 and q > 0:
1� s � LCMT

p;q
0;� � ir � 1;

1� s � LCMT
p;q
l;� � r � 1 for l > 0:

p > 0 and q = 0:
1� is � LCMT

p;q
�;0 � r � 1;

1� s � LCMT
p;q
l;m � r � 1; for m > 0:

p > 0 and q > 0: 1� s � LCMT
p;q
l;m � r � 1:

178

A.2 Examples of LCM tables

The example shown in �gures A.1 and A.2 presents a distribution example where

some processes have two blocks locally adjacent that own k-diagonals. For in-

stance, the blocks of coordinates (0; 0) and (1; 0) in the process (0; 0) own exactly

one entry of the k-diagonal.

111090 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

9

10

11

12

13

Figure A.1: The 1-LCM block obtained for P = 2, r = 2, Q = 3 and s = 4.

179

−7

1

(0,0)

0

1

4

5

8

9

0 1 2

13

12

−11

123

−3

0

1

4

5

8

9

(0,1)

12

13

5

−7

4 5 6 7 16

1

−3

0

1

4

5

8

9

12

13

1

−3

(0,2) 8 9 10 11 20

5

9

0 1 2 123(1,0)

2

3

6

7

10

11

14

−1

−5

−9

2

3

6

7

10

11

14

−1

−5

2

3

6

7

10

11

14

(1,1) 4 5 6 7 8 9 10 11 2016

3

(1,2)

7

−1

3

Figure A.2: The 1-LCM tables obtained for P = 2, r = 2, Q = 3 and s = 4.

180

The example shown in �gures A.3 and A.4 presents a distribution example with

a �rst partial block. The value of LCMT 2;0
0;0 = �3 is compared to 1 � is = �2

instead of 1 � s = �3. Therefore this block does not contain k-diagonals as one

can easily check by looking at the �gures.

111090 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

9

10

11

12

13

12 13 14 15 16 17 18 19 20 21 22

14

15

16

17

18

19

20

21

22

23

Figure A.3: The 1-LCM block obtained for P = 3, ir = 2, r = 2, Q = 2, is = 3 and
s = 4.

181

1

(0,0)

0

1

0 1 2 9 10

−5

−11

−17

6

7

12

13

18

19

7 8

8 16

2

−4

−10 −2

4

10

15 16 17 18

0 1 2 9 107 8 15 16(1,0)

2

3

8

9

14

15

20

21

−1

−7

−13

−19

6

0

−6

−12

14

8

2

−4

17 18

0 1 2 9 107 8 15 16(2,0)

4

5

10

11

16

17

22

23

12

6

0

−6

4

−2

−8

−14−21

−15

−9

−3

17 18

0

1

6

7

12

13

18

19

3 4 5 6 11 12 13 14(0,1)

4 12 20

−2 6 14

−8 0 8

2−6−14

22212019

3 4 5 6 11 12 13 14 19 20 21 22(1,1)

2 10 18

−4 4 12

−10 −2 6

0−8−16

2

3

8

9

14

15

20

21

3 4 5 6 11 12 13 14

4

8

2−6

22212019

−2

(2,1)

4

5

10

11

16

17

22

23

0

−12

−18

−4

−10

16

10

Figure A.4: The 1-LCM tables obtained for P = 2, ir = 2, r = 2, Q = 2, is = 3 and
s = 4.

182

Appendix B

Performance Results

The Tables B.1 and B.2 presents most of the performance results obtained for this

dissertation. These results have been used to draw all the plots shown in Chapter

5. The results are for both of the selected target machines, namely the Intel XP/S

Paragon (see Section 4.3.1) and IBM SP (see Section 4.3.2), separately. Moreover,

for each machine, the results are presented for the experiments speci�ed in Table

5.2. All these experiments have been performed in double precision arithmetic.

The matrix operands have been randomly generated. Finally, the three matrix

operands were square of order N (See Section 5.3 for more details).

183

Table B.1: Performance results obtained on the Intel XP/S Paragon

Experiment # XP A0 N

Grid Variant 100 250 500 1000 1500 2000 3000

1� 2 PHY 56.4 79.3 85.8 - - - -

AGG 56.1 78.9 85.8 - - - -

LCM 55.7 78.8 85.7 - - - -

2� 2 PHY 89.0 150.7 168.6 175.9 - - -

AGG 89.6 149.6 168.8 175.9 - - -

LCM 90.3 147.7 168.3 176.0 - - -

2� 4 PHY 124.9 241.9 309.7 337.6 348.6 - -

AGG 121.7 239.7 308.5 337.5 348.5 - -

LCM 129.5 239.3 312.1 339.8 350.4 - -

4� 4 PHY 169.8 376.9 578.4 662.0 685.3 697.2 -

AGG 168.7 375.2 573.8 661.0 684.8 696.8 -

LCM 174.7 391.8 588.6 670.1 691.7 702.2 -

4� 8 PHY 211.7 526.1 917.5 1232.2 1266.9 1346.2 1393.4

AGG 191.8 506.9 907.3 1224.7 1266.5 1345.4 1393.3

LCM 176.5 540.7 934.6 1244.7 1281.0 1357.9 1401.9

Experiment # XP A1

1� 2 PHY 27.8 37.6 41.8 - - - -

AGG 54.1 76.9 84.6 - - - -

LCM 54.8 75.6 81.9 - - - -

RED 40.6 70.1 80.3 - - - -

2� 2 PHY 36.3 64.3 78.2 85.2 - - -

AGG 74.9 125.7 154.7 168.2 - - -

LCM 84.9 137.0 159.6 169.3 - - -

RED 44.4 92.6 128.6 21.3 - - -

2� 4 PHY 35.2 99.3 139.5 163.7 171.3 - -

AGG 71.5 178.5 259.7 307.2 328.6 - -

LCM 102.2 226.6 300.7 327.2 341.8 - -

RED 52.4 150.4 230.9 286.7 27.3 - -

4� 4 PHY 29.4 132.3 230.4 300.6 323.7 336.6 -

AGG 74.5 229.9 378.7 526.2 576.6 614.3 -

LCM 121.7 384.2 545.8 640.4 657.4 678.6 -

RED 63.4 234.9 411.4 558.7 605.3 63.1 -

4� 8 PHY 24.5 150.8 352.0 534.4 608.5 645.9 681.9

AGG 66.6 249.1 491.2 854.5 1006.2 1113.4 1229.4

LCM 148.1 512.9 906.1 1201.6 1252.6 1309.7 1368.1

RED 59.3 312.1 677.8 1022.8 1140.0 1223.1 43.2

184

Experiment # XP A10 N

Grid Variant 100 250 500 1000 1500 2000 3000

1� 2 PHY 62.1 77.0 85.3 - - - -

AGG 56.6 75.6 85.5 - - - -

LCM 58.4 76.4 85.2 - - - -

RED 46.7 68.1 80.6 - - - -

2� 2 PHY 102.5 141.7 170.8 176.8 - - -

AGG 80.3 129.4 163.1 174.3 - - -

LCM 87.3 141.1 166.3 175.9 - - -

RED 62.9 114.6 155.8 12.9 - - -

2� 4 PHY 122.8 233.6 304.0 339.3 348.7 - -

AGG 110.2 212.2 288.7 332.0 343.3 - -

LCM 116.8 234.3 300.3 339.9 348.1 - -

RED 75.8 194.9 277.4 322.8 13.5 - -

4� 4 PHY 148.1 381.0 544.8 672.3 679.2 701.0 -

AGG 132.7 337.3 506.4 641.0 665.6 693.2 -

LCM 128.9 394.0 554.7 668.1 683.1 705.6 -

RED 76.0 305.9 494.4 634.5 655.4 45.5 -

4� 8 PHY 143.7 553.6 900.2 1205.2 1290.4 1351.3 1389.7

AGG 114.5 470.6 832.5 1139.1 1252.7 1327.5 1366.7

LCM 147.6 549.8 916.0 1202.4 1300.1 1362.8 1394.4

RED 73.3 389.2 795.7 1139.3 1246.4 1316.7 93.1

Experiment # XP A40

1� 2 PHY 59.2 81.2 84.3 - - - -

AGG 53.1 76.7 83.0 - - - -

LCM 53.0 76.9 83.0 - - - -

RED 41.9 68.8 76.4 - - - -

2� 2 PHY 91.2 150.7 164.2 166.6 - - -

AGG 75.7 138.3 157.9 164.0 - - -

LCM 80.2 142.1 159.7 164.7 - - -

RED 47.8 110.2 147.6 13.4 - - -

2� 4 PHY 113.2 224.6 295.0 303.8 334.2 - -

AGG 97.9 202.7 277.0 296.6 329.5 - -

LCM 96.9 205.4 280.9 298.0 330.8 - -

RED 56.6 147.5 258.3 284.6 18.7 - -

4� 4 PHY 144.6 335.9 533.0 572.0 630.6 660.2 -

AGG 119.7 299.4 495.1 552.0 620.7 654.2 -

LCM 120.9 305.8 503.8 556.6 624.2 656.9 -

RED 65.0 245.5 459.8 532.6 606.9 40.2 -

4� 8 PHY 132.6 525.9 835.2 968.9 1203.2 1197.8 1318.8

AGG 114.4 474.8 769.7 920.5 1182.1 1183.2 1312.5

LCM 106.6 462.8 770.9 927.3 1190.3 1189.4 1317.6

RED 59.6 344.7 678.2 889.6 1139.7 1151.0 48.7

185

Experiment # XP A100 N

Grid Variant 100 250 500 1000 1500 2000 3000

1� 2 PHY 38.5 71.4 73.5 - - - -

AGG 34.9 67.5 72.4 - - - -

LCM 34.8 67.5 72.4 - - - -

RED 27.3 60.8 62.2 - - - -

2� 2 PHY 37.4 116.2 124.2 178.5 - - -

AGG 33.8 108.5 120.4 176.6 - - -

LCM 33.7 109.3 120.8 176.8 - - -

RED 27.6 96.3 113.4 20.0 - - -

2� 4 PHY 37.4 162.0 183.5 290.9 216.9 - -

AGG 34.0 151.1 175.5 287.8 301.7 - -

LCM 33.8 150.9 175.5 288.0 310.8 - -

RED 27.0 132.6 165.5 270.8 25.1 - -

4� 4 PHY 37.5 228.4 271.9 489.0 617.9 707.8 -

AGG 33.9 214.5 259.5 480.3 616.4 707.2 -

LCM 33.5 214.9 259.5 481.0 617.7 708.5 -

RED 26.9 179.2 245.1 459.6 592.9 77.1 -

4� 8 PHY 37.4 220.9 490.4 713.8 1188.2 1155.8 696.1

AGG 33.9 214.3 468.8 699.7 1180.0 1153.5 1109.0

LCM 33.6 213.0 465.3 698.1 1181.1 1154.9 1247.7

RED 25.2 167.0 429.3 667.8 1130.9 1116.6 90.6

Experiment # XP NA

1� 2 PHY 44.0 67.6 74.9 - - - -

AGG 50.0 74.8 82.0 - - - -

LCM 50.2 75.7 81.7 - - - -

RED 38.5 68.6 74.9 - - - -

2� 2 PHY 59.5 119.0 140.5 150.3 - - -

AGG 67.2 127.7 150.7 160.6 - - -

LCM 73.8 137.0 157.0 163.4 - - -

RED 47.9 121.5 147.0 21.0 - - -

2� 4 PHY 53.8 165.1 240.7 269.2 300.0 - -

AGG 77.3 177.3 254.4 284.8 320.3 - -

LCM 68.6 195.3 274.5 294.9 327.7 - -

RED 66.0 176.0 257.8 284.9 24.1 - -

4� 4 PHY 78.9 231.9 413.9 490.5 561.3 595.7 -

AGG 94.0 254.0 441.9 522.1 599.2 638.5 -

LCM 86.0 272.1 479.7 548.2 617.2 650.2 -

RED 71.7 249.1 452.4 529.3 602.3 51.0 -

4� 8 PHY 79.9 328.2 604.1 809.4 1040.6 1063.7 1182.5

AGG 89.5 380.4 669.1 857.1 1119.4 1141.3 1275.6

LCM 64.3 381.5 712.3 911.0 1173.1 1172.9 1302.2

RED 59.3 283.5 628.6 882.4 1133.2 1140.8 75.5

186

Experiment # XP N1 N

Grid Variant 100 250 500 1000 1500 2000 3000

1� 2 PHY 19.7 33.7 40.3 - - - -

AGG 41.2 71.0 81.6 - - - -

LCM 45.4 69.3 79.0 - - - -

RED 44.7 69.0 43.5 - - - -

2� 2 PHY 19.5 57.8 75.7 84.6 - - -

AGG 57.4 116.3 148.6 164.7 - - -

LCM 70.0 124.9 152.8 165.6 - - -

RED 43.2 97.9 133.9 11.2 - - -

2� 4 PHY 25.6 87.9 131.8 160.6 169.9 - -

AGG 70.0 161.7 245.5 297.8 321.5 - -

LCM 84.5 191.3 274.7 312.6 331.2 - -

RED 51.8 150.5 227.7 282.7 19.3 - -

4� 4 PHY 25.3 114.1 217.2 289.7 317.5 331.2 -

AGG 72.3 214.8 366.2 526.7 579.3 616.2 -

LCM 102.5 295.2 473.0 596.8 626.5 655.0 -

HYB 87.2 289.0 463.5 594.6 626.9 656.0 -

RED 61.1 227.5 399.7 544.9 588.5 40.2 -

4� 8 PHY 17.7 109.8 284.8 470.0 562.6 610.0 658.3

AGG 61.7 235.0 476.7 797.1 945.2 1062.6 1187.2

LCM 91.4 332.5 652.7 1004.1 1112.1 1195.6 1285.1

RED 60.4 315.4 690.9 1035.2 1150.4 1232.0 54.9

Experiment # XP NN

1� 2 PHY 24.8 53.9 67.4 - - - -

AGG 39.9 67.0 77.9 - - - -

LCM 39.1 66.7 77.0 - - - -

RED 41.2 68.4 78.1 - - - -

2� 2 PHY 28.5 78.5 113.3 135.4 - - -

AGG 43.5 101.2 131.3 148.8 - - -

LCM 46.6 105.2 136.1 151.5 - - -

RED 54.4 119.9 145.2 23.1 - - -

2� 4 PHY 23.9 94.1 173.9 230.6 270.7 - -

AGG 46.4 132.2 211.8 257.1 300.0 - -

LCM 54.3 136.4 228.8 272.1 310.5 - -

RED 64.5 175.4 258.5 282.7 28.8 - -

4� 4 PHY 28.6 113.2 255.1 401.4 489.4 534.3 -

AGG 55.3 178.2 351.1 468.6 555.5 594.3 -

LCM 41.7 170.1 362.6 496.1 570.8 600.2 -

HYB 58.7 193.6 383.8 499.1 574.5 603.7 -

RED 66.5 243.6 454.0 530.0 604.0 61.3 -

4� 8 PHY 26.3 110.7 283.8 557.7 763.8 870.8 1033.0

AGG 46.9 210.8 456.8 723.3 946.2 1022.4 1166.3

LCM 24.7 179.2 427.0 765.4 959.8 1053.3 1203.2

RED 42.9 302.2 644.5 885.3 1126.6 1131.2 104.8

187

Table B.2: Performance results obtained on the IBM SP

Experiment # SP A0 N

Grid Variant 100 250 500 1000 1500 2000 3000

1� 2 PHY 146.9 274.2 321.1 379.8 - - -

AGG 154.0 276.1 321.8 375.8 - - -

LCM 154.3 275.2 323.7 376.0 - - -

2� 2 PHY 171.3 419.2 526.6 711.9 744.2 - -

AGG 172.2 390.8 525.5 705.3 725.3 - -

LCM 174.8 384.4 529.1 690.0 729.0 - -

2� 4 PHY 150.0 498.6 772.9 1103.1 1252.4 1368.9 -

AGG 162.9 504.6 750.7 1082.7 1249.0 1363.5 -

LCM 166.1 465.6 800.2 1125.3 1241.3 1379.6 -

4� 4 PHY 154.0 500.2 1092.9 1706.6 2091.5 2349.1 2683.9

AGG 149.7 659.4 1158.7 1710.4 1942.6 2316.2 2691.2

LCM 131.0 594.6 1234.8 1795.5 1990.0 2415.0 2653.1

4� 8 PHY 106.8 406.2 1544.7 2454.2 3192.2 3876.2 4482.4

AGG 115.4 570.6 1541.9 2443.3 3086.1 3826.9 4374.5

LCM 111.0 525.3 1382.2 2696.3 3396.8 3921.3 4506.9

Experiment # SP A1

1� 2 PHY 56.6 42.9 48.0 50.1 - - -

AGG 147.9 253.0 324.4 363.0 - - -

LCM 155.5 269.2 328.6 352.4 - - -

RED 91.1 198.1 261.8 331.2 - - -

2� 2 PHY 59.4 67.5 88.8 95.6 100.0 - -

AGG 153.7 348.3 513.7 597.8 653.2 - -

LCM 138.8 320.0 527.9 646.9 643.3 - -

RED 94.5 177.1 386.7 534.5 606.7 - -

2� 4 PHY 56.7 136.2 150.6 178.9 184.9 187.4 -

AGG 123.2 325.8 599.9 893.5 1046.1 1155.5 -

LCM 147.8 352.5 668.5 1040.3 1180.6 1256.3 -

RED 106.5 170.1 488.2 854.1 997.1 1132.4 -

4� 4 PHY 56.7 167.4 223.5 312.4 347.6 351.1 372.1

AGG 131.1 399.3 780.6 1020.9 1585.2 1811.7 2107.0

LCM 174.2 436.9 831.8 1553.4 2044.0 2334.7 2286.9

RED 120.0 396.7 753.3 1363.0 1528.5 2042.4 2387.9

4� 8 PHY 40.5 150.6 306.4 473.2 570.1 582.7 660.9

AGG 102.1 311.7 622.6 1250.4 1796.4 2261.6 2865.5

LCM 190.0 569.7 930.5 2032.7 2564.2 3323.4 4229.4

RED 103.5 462.9 1147.0 1923.1 2794.9 3325.6 4081.0

188

Experiment # SP A20 N

Grid Variant 100 250 500 1000 1500 2000 3000

1� 2 PHY 145.4 237.2 290.6 311.7 - - -

AGG 134.2 258.4 326.3 372.7 - - -

LCM 155.0 279.1 337.6 375.5 - - -

RED 94.6 201.9 282.6 343.3 - - -

2� 2 PHY 189.5 374.6 480.6 595.6 591.7 - -

AGG 160.6 352.9 512.7 683.2 709.5 - -

LCM 140.6 340.2 518.7 699.9 710.1 - -

RED 118.8 298.4 438.2 612.2 653.4 - -

2� 4 PHY 173.7 469.2 727.1 986.1 1044.2 1108.1 -

AGG 130.7 227.4 648.9 940.6 1130.7 1230.8 -

LCM 144.6 391.4 721.9 1061.6 1253.8 1347.6 -

RED 108.9 350.6 604.4 969.9 1132.7 1248.4 -

4� 4 PHY 189.6 634.1 971.9 1544.0 1800.8 2020.5 2161.3

AGG 125.7 423.1 828.9 1313.1 1783.6 2030.7 2314.4

LCM 155.8 495.7 927.9 1481.6 2029.1 2446.6 2400.0

RED 105.8 460.5 951.2 1538.1 1906.2 2200.3 2471.4

4� 8 PHY 177.3 704.9 1233.5 2317.5 2765.0 3250.3 3674.7

AGG 122.3 468.6 929.1 1905.7 2623.8 3144.8 3902.8

LCM 190.7 537.7 1066.5 2115.1 2574.1 3306.3 4238.8

RED 48.8 349.6 1050.4 2293.1 2981.7 3515.2 4302.7

Experiment # SP A200

1� 2 PHY 117.6 202.8 308.2 329.6 - - -

AGG 116.7 197.0 285.7 324.8 - - -

LCM 114.2 203.4 303.6 323.5 - - -

RED 70.0 155.8 251.3 296.5 - - -

2� 2 PHY 108.8 168.0 476.7 527.8 689.2 - -

AGG 99.9 212.3 441.6 510.2 660.1 - -

LCM 99.4 204.6 415.8 501.6 666.6 - -

RED 67.2 133.8 374.1 451.2 603.7 - -

2� 4 PHY 107.6 231.9 599.0 752.0 1216.0 1221.0 -

AGG 98.7 201.0 597.9 728.9 1205.4 1214.1 -

LCM 98.9 203.0 536.3 678.4 1095.0 1134.1 -

RED 65.6 146.0 459.8 651.3 1042.1 1097.8 -

4� 4 PHY 35.9 233.1 729.1 1093.8 2151.3 1896.9 2494.3

AGG 101.0 191.8 718.7 1018.2 2137.6 1891.7 2420.7

LCM 84.4 182.0 593.7 900.0 1762.6 1713.0 2303.5

RED 29.2 158.8 583.4 932.8 1767.0 1689.2 2250.1

4� 8 PHY 77.0 233.4 665.2 1550.6 3364.8 2618.2 4431.6

AGG 89.6 172.7 697.3 1710.7 3515.6 2677.8 4473.4

LCM 82.3 182.9 576.9 1380.4 2399.7 2038.3 3545.6

RED 46.7 159.6 575.5 1369.5 2770.6 2335.7 3846.4

189

Experiment # SP NA N

Grid Variant 100 250 500 1000 1500 2000 3000

1� 2 PHY 82.3 103.0 124.3 117.3 - - -

AGG 128.6 249.4 322.4 356.5 - - -

LCM 160.0 280.8 342.8 363.4 - - -

RED 91.3 199.1 285.5 335.0 - - -

2� 2 PHY 89.6 136.2 219.3 222.4 235.2 - -

AGG 136.5 313.7 509.0 613.6 699.1 - -

LCM 123.8 257.4 421.9 574.7 677.4 - -

RED 113.4 167.6 448.9 576.8 661.0 - -

2� 4 PHY 102.4 165.3 350.7 387.0 427.4 434.7 -

AGG 113.9 304.3 597.6 823.6 1038.3 1182.7 -

LCM 125.2 303.5 524.3 826.9 1047.3 1191.1 -

RED 97.8 324.8 601.1 909.1 1117.6 1205.7 -

4� 4 PHY 102.9 324.2 536.9 687.2 757.0 798.0 850.6

AGG 104.1 344.8 733.2 1162.4 1600.6 1890.1 2207.1

LCM 128.5 266.1 624.4 891.9 1545.6 1392.2 1637.4

RED 98.0 422.1 891.0 1471.5 1865.2 2063.0 2489.3

4� 8 PHY 97.7 306.6 775.6 1053.6 1274.3 1341.7 1501.9

AGG 78.4 218.4 597.9 1210.4 1763.8 2228.6 2895.5

LCM 89.3 469.8 856.9 1398.7 1986.1 2107.3 3131.0

RED 80.5 478.9 1179.1 1989.1 2998.1 3422.6 4195.6

Experiment # SP N1

1� 2 PHY 28.5 38.5 46.1 49.1 - - -

AGG 95.4 190.2 267.9 334.5 - - -

LCM 89.1 190.2 256.8 252.5 - - -

RED 71.5 175.7 250.9 317.8 - - -

2� 2 PHY 31.3 53.2 77.8 92.1 96.8 - -

AGG 107.0 232.6 423.3 541.3 588.8 - -

LCM 95.5 245.4 414.8 569.3 589.3 - -

RED 75.6 210.9 360.9 517.1 595.3 - -

2� 4 PHY 27.1 76.6 126.5 166.4 175.8 188.8 -

AGG 104.1 267.7 483.7 764.2 933.5 1056.6 -

LCM 93.9 246.3 492.5 677.0 734.5 756.1 -

RED 81.5 289.3 519.0 867.3 1024.2 1162.2 -

4� 4 PHY 16.7 99.4 172.4 268.6 317.2 330.7 351.5

AGG 91.0 342.4 580.5 1091.0 1380.8 1640.7 1950.9

LCM 90.8 230.7 562.8 1163.2 1571.2 1849.0 1973.4

RED 101.3 292.5 778.3 1367.5 1741.0 2034.0 2349.3

4� 8 PHY 11.1 64.0 176.3 334.3 421.9 612.9 684.5

AGG 87.6 233.6 556.4 1149.1 1644.9 2051.3 2659.6

LCM 82.6 252.7 520.7 1155.1 1751.2 2270.4 2892.0

HYB 62.9 222.5 527.4 1305.4 1870.0 2532.8 3138.3

RED 41.6 420.3 1202.2 2053.8 2887.3 3435.7 4171.9

190

Experiment # SP NN N

Grid Variant 100 250 500 1000 1500 2000 3000

1� 2 PHY 39.6 83.9 104.6 108.4 - - -

AGG 84.4 183.7 256.8 320.0 - - -

LCM 72.1 128.9 164.7 184.2 - - -

RED 66.7 179.6 252.8 321.0 - - -

2� 2 PHY 45.2 116.4 183.1 217.5 217.1 - -

AGG 93.3 227.1 369.4 505.3 598.7 - -

LCM 80.0 175.2 323.4 480.9 579.3 - -

RED 27.7 180.4 404.5 545.0 621.5 - -

2� 4 PHY 38.9 122.3 239.3 348.3 379.1 419.0 -

AGG 85.7 234.4 438.0 693.5 885.4 1004.8 -

LCM 70.5 206.3 367.2 647.9 838.1 982.7 -

RED 24.5 155.8 599.1 868.7 1090.3 1168.4 -

4� 4 PHY 38.5 147.4 319.5 525.2 644.9 750.8 776.2

AGG 86.1 281.5 552.9 949.4 1308.8 1532.8 1912.9

LCM 54.6 185.7 331.7 515.9 987.2 1009.1 1388.0

RED 29.1 220.4 785.0 1352.4 1804.7 2068.4 2418.2

4� 8 PHY 22.4 71.5 276.5 592.7 812.0 927.2 1206.4

AGG 62.2 227.2 486.4 1024.1 1452.7 1850.6 2456.2

LCM 31.0 174.4 329.8 652.0 889.5 1045.1 1960.5

HYB 61.4 205.5 421.3 1159.1 1722.7 2274.2 2932.7

RED 23.1 176.9 752.2 1994.9 2823.5 3378.4 4034.7

191

Vita

Antoine Petitet was born in Neuilly sur Seine, France on April 22, 1966. He

received his high school education from the Coll�ege Saint Louis de Gonzague in

Paris, France. He graduated in 1984. From 1984 until 1987 he attended the

classes pr�eparatoires at the Lyc�ee Janson de Sailly in Paris, France. In June 1987

he entered the Ecole Nationale Sup�erieure d'Electrotechnique, d'Electronique,

d'Informatique et d'Hydraulique de Toulouse (ENSEEIHT), Toulouse, France. In

1990 he received the Engineer of Computer Science degree from the ENSEEIHT

and the Diplôme d'Etudes Approfondies in Parallel Architectures and Applied

Mathematics (1990) from the Universit�e Paul Sabatier, Toulouse, France. In Jan-

uary 1993 he entered the PhD program in Computer Science at the University of

Tennessee, Knoxville.

From November 1990 until March 1992 he did his military service working for

the French Nuclear Commission (Commisariat �a l'Energie Atomique) as Adviser

of the Counselor for nuclear questions at the French PermanentMission in Vienna,

Austria. Working experience had also included several visiting positions in Com-

puter Science laboratories. In 1989-1990 he was a trainee at the European Center

for Research and Advanced Education in Scienti�c Computing (CERFACS) in

Toulouse, France. In 1992 he worked as an engineer at the Etablissement Tech-

nique Central de l'Armement (ETCA) in Paris, France. During the summer of

1994 he visited the IBM T.J. Watson Research Center, Yorktown Heights, New-

192

York. During the summer of 1995 he visited the Danish Computing Centre for

Research and Education (UNI�C) and the Institute for Mathematical Modeling

of the Technical University of Denmark (IMM).

In 1995 Antoine Petitet was awarded a citation for extraordinary professional

promise by the Chancellor of the University of Tennessee, Knoxville. He was

awarded the Doctor of Philosophy degree in Computer Science from the University

of Tennessee in December of 1996.

193

