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AbstractÐWe consider the problem of load balancing in dynamic distributed systems in cases where new incoming tasks can make

use of old information. For example, consider a multiprocessor system where incoming tasks with exponentially distributed service

requirements arrive as a Poisson process, the tasks must choose a processor for service, and a task knows when making this choice

the processor queue lengths from T seconds ago. What is a good strategy for choosing a processor in order for tasks to minimize their

expected time in the system? Such models can also be used to describe settings where there is a transfer delay between the time a

task enters a system and the time it reaches a processor for service. Our models are based on considering the behavior of limiting

systems where the number of processors goes to infinity. The limiting systems can be shown to accurately describe the behavior of

sufficiently large systems and simulations demonstrate that they are reasonably accurate even for systems with a small number of

processors. Our studies of specific models demonstrate the importance of using randomness to break symmetry in these systems and

yield important rules of thumb for system design. The most significant result is that only small amounts of queue length information can

be extremely useful in these settings; for example, having incoming tasks choose the least loaded of two randomly chosen processors

is extremely effective over a large range of possible system parameters. In contrast, using global information can actually degrade

performance unless used carefully; for example, unlike most settings where the load information is current, having tasks go to the

apparently least loaded server can significantly hurt performance.

Index TermsÐLoad balancing, stale information, old information, queuing theory, large deviations.

æ

1 INTRODUCTION

DISTRIBUTED computing systems, such as networks of
workstations or mirrored sites on the World Wide

Web, face the problem of using their resources effectively. If
some hosts lie idle while others are extremely busy, system
performance can fall significantly. To prevent this, load
balancing is often used to distribute the workload and
improve performance measures such as the expected time a
task spends in the system. Although determining an
effective load balancing strategy depends strongly on the
details of the underlying system (such as, for instance, the
time for a task to access various servers), general models
from both queuing theory and computer science often
provide valuable insight and general rules of thumb.

In this paper, we develop general analytical models for

the realistic setting where old information about queue

lengths is available. For convenience, we generally refer to

the number of tasks queued at a server as its load. For

example, suppose we have a system of n servers and

incoming tasks must choose a server and wait for service. If

the incoming tasks know the current number of tasks

queued at each server, it is often best for the task to go to the

server with the shortest queue [25]. In many actual systems,

however, it is unrealistic to assume that tasks will have

access to up to date load information; global load informa-

tion may be updated only periodically or the time delay for

a task to move to a server may be long enough that the

load information is out of date by the time the task

arrives. In this case, it is not clear what the best load

balancing strategy is.
Our models yield surprising results. Unlike similar

systems in which up-to-date information is available, the

strategy of going to the shortest queue can lead to extremely

bad behavior when load information is out of date;

however, the strategy of going to the shortest of two

randomly chosen queues performs well under a large range

of system parameters. This result suggests that systems

which attempt to exploit global information to balance load

too aggressively may suffer in performance, either by

misusing it or by adding significant complexity.

1.1 Related Previous Work

The problem of how to use old or inexact information is

often neglected in theoretical work, even though balancing

workload from distributed clients based on incomplete or

possibly out-of-date server load information may be an

increasingly common system requirement. In the control

theory community, some work has considered how to

design optimal control policies in the face of delayed

information, although currently these results appear to

apply only to a single queue (see, e.g., [2], [3], [13]).
The idea of each task choosing from a small number of

processors in order to balance the load has been studied

before, both in theoretical and practical contexts. In many

models, using just two choices per task can lead to an

exponential improvement over one choice in the maximum

load on a processor. In the static setting, this improvement

appears to have first been noted by Karp et al. [11]. A more

complete analysis was given by Azar et al. [4]. In the

dynamic setting, this work was extended to a queuing

theoretic model in [18], [19]; similar results were indepen-

dently reported in [29].
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Other similar previous work includes that of Towsley
and Mirchandaney [24] and that of Mirchandaney et al. [15],
[16]. These authors examine how some simple load sharing
policies are affected by communication delay, extending a
similar study of load balancing policies by Eager et al. [6],
[7]. Their analyses are based on Markov chains associated
with the load sharing policies they propose, as well as
simulation results.

Our work is most related to the queuing models of the
above work, although it expands on this work in several
directions. We apply a fluid-limit approach in which we
develop a deterministic model corresponding to the limit-
ing system as n!1. We often call this system the limiting
system. This approach has successfully been applied
previously to study load balancing problems in [1], [18],
[19], [20], [22], [29] (see also [1] for more references or [21],
[28] for the use of this approach in different settings), and it
can be seen as a generalization of the previous Markov
chain analysis. Using this technique, we examine several
new models of load balancing in the presence of old
information. In conjunction with simulations, our models
demonstrate several basic but powerful rules of thumb for
load balancing systems, including the effectiveness of using
just two choices.

The remainder of this paper is organized as follows: In
Section 2, we describe a general queuing model for the
problems we consider. In Sections 3, 4, and 5, we consider
different models of old information. For each such model,
we present a corresponding limiting system and, using the
limiting systems and simulations, we determine important
behavioral properties of these models. In Section 6, we
briefly consider the question of cheating tasks, a concept
that ties our models to natural, but challenging, game
theoretic questions. We conclude with a section on open
problems and further directions for research.

2 THE BULLETIN BOARD MODEL

Our work will focus on the following natural dynamic
model: Tasks arrive as a Poisson stream of rate �n, where
� < 1, at a collection of n servers. Each task chooses one of
the servers for service and joins that server's queue; we
shall specify the policy used to make this choice subse-
quently. Tasks are served according to the First In First Out
(FIFO) protocol and the service time for a task is
exponentially distributed with mean 1. We are interested
in the expected time a task spends in the system in
equilibrium, which is a natural measure of system
performance, and, more generally, in the distribution of
the time a task spends in the queue. Note that the average
arrival rate per queue is � < 1 and that the average service
rate is 1; hence, assuming the tasks choose servers according
to a reasonable strategy, we expect the system to be stable in
the sense that the expected number of tasks per queue
remains finite in equilibrium. In particular, if each task
chooses a server independently and uniformly at random,
then each server acts as an M/M/1 queue (Poisson arrivals,
exponentially distributed service times) and is, hence,
clearly stable. We will examine the behavior of this system
under a variety of methods that tasks may use to choose
their server.

We will allow the task's choice of server to be
determined by load information from the servers. It will
be convenient if we picture the load information as being
located at a bulletin board. We strongly emphasize that the
bulletin board is a purely theoretical construct used to help
us describe various possible load balancing strategies and
need not exist in reality. The load information contained in
the bulletin board need not correspond exactly to the actual
current loads; the information may be erroneous or
approximate. Here, we focus on the problem of what to
do when the bulletin board contains old information (where
what we mean by old information will be specified in future
sections).

We shall focus on distributed systems, by which we mean
that the tasks cannot directly communicate in order to
coordinate where they go for service. The decisions made
by the tasks are thus based only on whatever load
information they obtain and (possibly) their entry time.
Note that, because of this lack of coordination among tasks,
natural policies such as round-robin are not generally
feasibleÐsuch a policy would require tasks to pass though
a central coordinated server. Although our modeling
technique can be used for a large class of strategies, in this
paper, we shall concentrate on the following natural,
intuitive strategies:

. Choose a server independently and uniformly at
random.

. Choose d servers independently and uniformly at
random, check their load information from the
bulletin board, and go to the one with the smallest
load. (Ties are broken randomly.)

. Check all load information from the bulletin board
and go to the server with the smallest load.

The strategy of choosing a random server has several
advantages: It is easy to implement, it has low overhead, it
works naturally in a distributed setting, and it is known that
the expected lengths of the queues remain finite over time.
However, the strategy of choosing a small number of
servers and queuing at the least loaded has been shown to
perform significantly better in the case where the load
information is up to date [6], [18], [19], [29]. It has also
proven effective in other similar models [4], [11], [19].
Moreover, the strategy also appears to be practical and to
have a low overhead in distributed settings, where global
information may not be available, but polling a small
number of processors may be possible. Going to the server
with the smallest load appears natural in more centralized
systems where global information is maintained. Indeed,
going to the shortest queue has been shown to be optimal in
a variety of situations in a series of papers, starting, for
example, with [25], [27]. Hence, it makes an excellent point
of comparison in this setting. Other simple schemes that we
do not examine here but can easily study with this model
include threshold-based schemes [6], [20], where a second
choice is made only if the first appears unsatisfactory.

We develop analytical results for the limiting case as
n!1, for which the system can be accurately modeled by
a limiting system. The limiting system consists of a set of
differential equations, which we shall describe below, that
describe, in some sense, the expected behavior of the
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system. This corresponds to the exact behavior of the
system as n!1. More information on this approach can
be found in [8], [14], [18], [19], [20], [22], [28], [29]; we
emphasize that here we will not detour into a theoretical
justification for this limiting approach and, instead, refer the
reader to these sources for more information. (We note,
however, that this approach works only because the
systems for finite n have an appropriate form as a
Markov chain; indeed, we initially require exponential
service times and Poisson arrivals to ensure this form.)
Previous experience suggests that using the limiting
system to estimate performance metrics such as the
expected time in the system proves accurate, even for
relatively small values of n [6], [18], [19], [20]. We shall
verify this for the models we consider by comparing our
analytical results with simulations.

3 PERIODIC UPDATES

The previous section described possible ways that the
bulletin board can be used. We now turn our attention to
how a bulletin board can be updated. Perhaps the most
obvious model is one where the information is updated at
periodic intervals. In a client-server model, this could
correspond to an occasional broadcast of load information
from all the servers to all the clients. Because such a
broadcast is likely to be expensive (for example, in terms of
communication resources), it may only be practical to do
such a broadcast at infrequent intervals. Alternatively, in a
system without such centralization, servers may occasion-
ally store load information in a readable location, in which
case, tasks may be able to obtain old load information from
a small set of servers quickly with low overhead.

We therefore suggest the periodic update model, in which
the bulletin board is updated with accurate information
every T seconds. Without loss of generality, we shall take
the update times to be 0; T ; 2T; . . . . The time between
updates shall be called a phase and phase i will be the phase
that ends at time iT . The time that the last phase began will
be denoted by Tt, where t is the current time.

The limiting system we consider will utilize a two-
dimensional family of variables to represent the state space.
We let Pi;j�t� be the fraction of queues at time t that have
true load j but have load i posted on the bulletin board. We
let qi�t� be the rate of arrivals at a queue of size i at time t;
note that, for time-independent strategies, which we focus
on in this section, the rates qi�t� depend only on the load
information at the bulletin boards and the strategy used by
the tasks and, hence, is the same as qi�Tt�. In this case, the
rates qi change whenever the bulletin board is updated.

We first consider the behavior of the system during a
phase or at all times t 6� kT for integers k � 0. Consider a
server showing i tasks on the bulletin board, but having j
tasks: We say such a server is in state �i; j�. Let i; j > 1. What
is the rate at which a server leaves state �i; j�? A server
leaves this state when a task departs, which happens at rate
� � 1, or when a task arrives, which happens at rate qi�t�.
Similarly, we may ask at what rate tasks enter such a state.
This can happen if a task arrives at a server with load i
posted on the bulletin board, but having jÿ 1 tasks, or a
task departs from a server with load i posted on the bulletin

board, but having j� 1 tasks. This description naturally
leads us to model the behavior of the system by the
following set of differential equations:

dPi;0�t�
dt

� Pi;1�t� ÿ Pi;0�t�qi�t� ; �1�

dPi;j�t�
dt

� �Pi;jÿ1�t�qi�t� � Pi;j�1�t�� ÿ �Pi;j�t�qi�t� � Pi;j�t��;
j � 1:

�2�
These equations simply measure the rate at which servers
enter and leave each state. (Note that the case j � 0 is a
special case.) While the queuing process is random,
however, these differential equations are deterministic,
yielding a fixed trajectory once the initial conditions are
given. In fact, these equations describe the limiting behavior
of the process as n!1, as can be proven with standard
(albeit complex) methods [8], [14], [19], [20], [22], [28], [29].
Here, we take these equations as the appropriate limiting
system and focus on using the differential equations to
study load balancing strategies.

For integers k � 0, at t � kT , there is a state jump as the
bulletin board is updated. At such t, necessarily, Pi;j�t� � 0
for all i 6� j as the load of all servers is correctly portrayed
by the bulletin board. If we let Pi;j�tÿ� � limz!tÿ Pi;j�z� so
that the Pi;j�tÿ� represent the state just before an update,
then

Pi;i�t� �
X
j

Pj;i�tÿ�:

3.1 Specific Strategies

We consider what the proper form of the rates qi are for the
strategies we examine. It will be convenient to define the
load variables bi�t� to be the fraction of servers with load i
posted on the bulletin board; that is, bi�t� �

P1
j�0 Pi;j�t�.

In the case where a task chooses d servers randomly, and
goes to the one with the smallest load on the bulletin board,
we have the arrival rate

qi�t� � �
P

j�i bj�t�
� �d

ÿ P
j>i bj�t�

� �d
bi�t� :

The numerator is just the probability that the shortest
posted queue length of the d choices on the bulletin board is
size i. To get the arrival rate per queue, we scale � the
arrival rate and with load i, the total fraction of queues
showing i on the board bi�t�. In the case where d � 1, the
above expression reduces to qi�t� � � and all servers have
the same arrival rate, as one would expect.

To model when tasks choose the shortest queue on the
bulletin board, we develop an interesting approximation.
We assume that there always exist servers posting load 0 on
the bulletin board and we use a model where tasks go to a
random server with posted load 0. As long as we start with
some servers showing 0 on the bulletin board in the limiting
system (for instance, if we start with an empty system), then
we will always have servers showing load 0 and, hence, this
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strategy is valid. In the case where the number of queues is
finite, of course, at some time all servers will show load at
least one on the billboard; however, for a large enough
number of servers, the time between such events is large
and, hence, this model will be a good approximation. So, for
the shortest queue policy, we set the rate

q0�t� � �

b0�t� ;

and all other rates qi�t� are 0.

3.2 The Fixed Cycle

In a standard deterministic dynamical system, a natural

hope is that the system converges to a fixed point, which is a

state at which the system remains forever once it gets there;

that is, a fixed point would correspond to a point P � �Pi;j�
such that

dPi;j
dt � 0. The above system clearly cannot reach a

fixed point since the updating of the bulletin board at time

t � kT causes a jump in the state; specifically, all Pi;j with

i 6� j become 0. It is, however, possible to find a fixed cycle

for the system. We find a point P such that if P � �Pi;j�k0T ��
for some integer k0 � 0, then P � �Pi;j�kT �� for all k � k0. In

other words, we find a state such that if the limiting system

begins a phase in that state, then it ends the phase in the

same state and, hence, repeats the same cycle for every

subsequent phase. (Note that it also may be possible for the

process given by the differential equations to cycle only

after multiple phases, instead of just a single phase. We

have not seen this happen in practice and we conjecture that

it is not possible for this system.)
To find a fixed cycle, we note that this is equivalent to

finding a vector ~� � ��i� such that if �i is the fraction of
queues with load i at the beginning of the phase, the same
distribution occurs at the end of a phase. Given an initial ~�,
the arrival rate at a queue with i tasks from time 0 to T can
be determined. By our assumptions of Poisson arrivals and
exponential service times, during each phase, each server
acts as an independent M/M/1 queue that runs for
T seconds, with some initial number of tasks awaiting
service. We use this fact to find the �i.

Formulae for the distribution of the number of tasks at
time T for an M/M/1 queue with arrival rate � and i tasks
initially have long been known (for example, see [5, pp. 60-
64]); the probability of finishing with j tasks after T seconds,
which we denote by mi;j, is

mi;j�T � � �1
2�jÿi�eÿ�1���T �Bjÿi�2T

���
�
p
� � �ÿ1

2Bi�j�1�2T
���
�
p
�

� �1ÿ ��
X1
k�1

�ÿ
1
2�1�k�Bi�j�k�1�2T

���
�
p
��;

where, here, Bz�x� is the modified Bessel function of the
first kind. If ~� gives the distribution at the beginning and
end of a phase, then the �i must satisfy �i �

P
j �jmj;i�T �,

and this can be used to determine the �i.
It seems unlikely that we can use the above characteriza-

tion to determine a simple closed form for the state at the
beginning of the phase for the fixed cycle in terms of T . In
practice, we find the fixed cycle easily by running a
truncated version of the system of differential equations

(bounding the maximum values of i and j) above until
reaching a point where the change in the state between two
consecutive updates is sufficiently small. This procedure
works under the assumption that the trajectory always
converges to the fixed cycle rapidly. (We discuss this more
in the next section.) Alternatively, from a starting state, we
can apply the above formulae for mi;j to successively find
the states at the beginning of each phase until we find two
consecutive states in which the difference is sufficiently
small. Simulating the differential equations has the advan-
tage of allowing us to see the behavior of the system over
time, as well as to compute system measurements such as
the expected time a task spends in the system.

3.3 Convergence Issues

Given that we have found a fixed cycle for the relevant
limiting system, important questions remain regarding
convergence. One question stems from the approximation
of a finite system with the corresponding limiting system:
How good is this approximation? The second question is
whether the trajectory of the limiting system given by the
differential equations always converges to its fixed cycle
and, if so, how quickly? For the first question, we note that
the standard methods referred to previously (based on
work by Kurtz [8], [14], [22]) provide only very weak
bounds on the convergence rate between limiting and finite
systems. By focusing on a specific problem, proving tighter
bounds may be possible (see, for example, the discussion in
[28]). In practice, however, as we shall see in Section 3.4, the
limiting system approach proves extremely accurate even
for small systems and, hence, it is a useful technique for
gauging system behavior.

For the second question, we have found in our
experiments that the system does always converge to its
fixed cycle, although we have no proof of this. The situation
is generally easier when the trajectory converges to a fixed
point, instead of a fixed cycle, as we shall see. (See also [19].)
Proving this convergence hence remains an interesting open
theoretical question.

3.4 Simulations

We present some simulation results, with two main
purposes in mind: First, we wish to show that the limiting
system approach does in fact yield a good approximation
for the finite case; second, we wish to gain insight into the
problem of load balancing using old information. We focus
on the expected time in the system, as this appears the most
interesting system measure. Because our limiting approach
provides a full description of the system state, however, it
can be used to predict other quantities of interest as well.

With regard to the first goal, we begin by noting that,
for systems of 100 queues, the difference between the
results from the simulations and the results obtained by
calculating the expected time using the fixed cycle
determined by the differential equations generally match
to within 2 percent for the strategy of choosing from two
or three servers (for the arrival rates presented here). In
the case of choosing the shortest queue, the simulations
are within about 10-20 percent of the limiting system.
More details are given subsequently. However, because
the results from simulations and the limiting system are
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essentially indistinguishable, we choose to plot only the
results from simulations to avoid excessive clutter (except
in the case where one server is chosen at random;
in this case, we simply apply standard formulae from
queuing theory).

This setup allows us to emphasize the second goal, that
of gaining insight into the behavior of these systems. Note
that the intuition we derive from the plots would not
change if we substituted the results from the equations,
since they are essentially the same. This methodology may
raise the question of why the limiting system models are
useful at all. There are several reasons: First, simulating the
differential equations is often faster than simulating the
corresponding queuing system (we shall say more on this
later). Second, the limiting systems provide a theoretical
framework for examining these problems that can lead to
formal theorems. Third, the limiting system provides good
insight into and accurate approximations of how the system
behaves, independent of the number of servers. This
information should prove extremely useful in practice.

In Figs. 1 and 2, the results for various strategies are
given for arrival rates � � 0:5 and � � 0:9 for n � 100
servers.1 Simulations were performed for 50,000 time steps,
with the first 5,000 steps ignored to allow the dependence
on the initial state to not affect the results; the results
presented are the average of three separate simulations. In
all cases, the average time a task spends in the system for
the simulations with n � 100 is higher than the expected
time in the corresponding limiting system. When � � 0:5,
the deviation between the two results is smaller than
1 percent for all strategies. When � � 0:9, for the strategy of
choosing from two or three servers, the simulations are

within 1-2 percent of the results obtained from the limiting
system. In the case of choosing the shortest queue, the
simulations are within 8-17 percent of the limiting system,
again with the average time from simulations being larger.
We expect that this larger discrepancy is due to the
inaccuracy of our model for the shortest queue system, as
described in Section 3.1; however, this is suitably accurate to
gauge system behavior. Again, we emphasize the accuracy
of the limiting system approach.

Several surprising behaviors manifest in the figures.
First, although choosing the shortest queue is best when
information is current (T � 0), for even very small values of
T the strategy performs worse than randomly selecting a
queue, especially under high loads (that is, large �).
Although choosing the shortest queue is known to be
suboptimal in certain systems with current information [26],
its failure in the presence of old information is dramatic.
Also, choosing from just two servers is the best of our
proposed strategies over a wide range of T , although, for
sufficiently large T , making a single random choice per-
forms better.

We suggest some helpful intuition for these behaviors. If
the update interval T is sufficiently small so that only a few
new tasks arrive every T seconds, then choosing a shortest
queue performs very well, as tasks tend to wait at servers
with short queues. As T grows larger, however, a problem
arises; all the tasks that arrive over those T seconds will go
only to the small set of servers that appear lightly loaded on
the board, overloading them while other servers empty. The
system demonstrates what we call herd behavior: Herds of
tasks all move together to the same locations. As a real-life
example of this phenomenon, consider what happens at a
supermarket when it is announced that ªAisle 7 is now
open.º Very often, Aisle 7 quickly becomes the longest
queue. This herd behavior has been noticed in real systems
that use old information in load balancing; for example, in a
discussion of the TranSend system, Fox et al. note that,
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1. In the simulations, queue choices were made without replacement.
There is no difference in the limiting system, although, in practice, making
choices without replacement yields small improvements. Also, the simula-
tions were performed for specific values of T ; specifically, they include
T � 0; 0:1; 0:5; 1:0; 2:0; 3:0; 4:0; 5:0; 10:0; 15:0; 20:0; 25:0; 50:0.

Fig. 1. Strategy comparison at � � 0:50, 100 queues.



initially, they found ªrapid oscillations in queue lengthsº
because their system updated load information periodically
[10, Section 4.5].

Interestingly, as the update interval T !1, the utility of
the bulletin board becomes negligible (and, in fact, it can
actually be misleading!). The limit as T !1 corresponds to
a setting with no information; in this case, in the distributed
setting, the best strategy is to choose a server at random.
Although this intuition is helpful, it remains surprising that
making just two choices performs substantially better than
even three choices over a large interval of values of T that
seem likely to arise in practice. Note that this holds even as
the number of queues grows arbitrarily large; these plots
accurately reflect the trends of the limiting system as the
number of queues grows to infinity!

The same behavior is also apparent even with a much
smaller number of servers. In Fig. 3, we examine simula-
tions of the same strategies with only eight servers, which is
a realistic number for a current multiprocessor machine.
In this case, the approximations given by the limiting
system are less accurate, although, for T > 1, they are still
within 20 percent of the simulations. Other simulations
of small systems demonstrate similar behavior and, as
the number of servers n grows, the limiting system grows
more accurate. Hence, even for small systems, the limiting
system approach provides reasonable estimates of system
behavior and demonstrates the trends as the update
interval T grows.

Finally, we note again that, in all of our simulations of
the differential equations, the limiting system rapidly
reaches the fixed cycle suggested in Section 3.2.

3.5 On Simulating the Limiting System

Although the limiting system approach provides a useful
technique for studying load balancing models, it becomes
difficult to use in the periodic update model (and other
models for old information) at high arrival rates or for large

values of T because the number of variables to track grows
large. For example, suppose we simulate the differential
equations, truncating the system at sufficiently large
values of i and j that we denote by I and J . Then, we
must keep track of I � J variables Pi;j. At high arrival rates
(say, � � 0:99) and/or high values of T , we will need to
make I and J both extremely large to obtain accurate
calculations and, hence, simulating the differential equa-
tions over a period of time becomes very slow, comparable
to or worse than the time required to simulated the
underlying queuing system.

In practice, however, we expect such high arrival rates
and extremely large values of T are unlikely to be of
interest. In the normal case, then, we expect I and J to be
relatively small, in which case simulating the differential
equations is generally quicker than simulating the under-
lying queuing model.

An actual time comparison depends on such factors as
the time granularity used for simulating steps of the
differential equations, the length of time (or number of
times) one simulates the actual queuing process, as well as
the quality of the code. As an example, we have found that
simulating the differential equations for values � � 0:9,
I � J � 50, T � 5:0, and the granularity of successive time
steps dt � 0:01 for 500 seconds takes approximately the
same time as a single simulation for the queuing network
with 100 queues over 5,000 seconds.

Examining this comparison more closely, we see that
simulating the differential equations as described above
requires updating 2,500 entries Pi;j each 50,000 times, where
each update requires a small constant number of floating
point operations. Simulating a system of 100 servers as
described above requires handling approximately 450,000
arrival events and departure events. Ignoring cache issues
and assuming one cycle per instruction, we find that,
for the times to be equal, the cost for handling a task
would be approximately in the small thousands of
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instructions. Since each entering task requires generating
a random arrival and service time, placing a new entry in
a priority queue, choosing and comparing a random
selection of servers, updating the recorded statistics, etc.,
this appears reasonable.

Repeated simulations, however, appear necessary if one
is concerned with the variance introduced by the simula-
tion. Moreover, using the differential equations, one can
stop as soon as the appropriate fixed cycle is reached; with
simulations, one must rely on repeated simulations to
determine when the variance appears sufficiently small.

3.6 More Complex Centralized Strategies

In this section, we briefly consider centralized strategies
under this delay model. Although we focus on distributed
strategies throughout the rest of the paper, we detour
slightly here in order to demonstrate the use of limiting
systems for centralized strategies and to gain insight into
the potential gains from centralization.

One would expect that a more sophisticated strategy for
dealing with the old load information might yield better
performance. For instance, if the system uses the load
information on the bulletin board to develop an estimate for
the current load, this estimate may be more accurate than
the information on the board itself. Therefore, in this
section, we consider more complex strategies that attempt
to estimate the current queue length and gauge their
performance. These strategies require significant centraliza-
tion in that all incoming tasks must have access to the
complete bulletin board and more detailed information
about the entire system. We believe these strategies are
practical for systems of reasonable size (hundreds of
processors) and, hence, are worth examining.

Our model is still that the bulletin board is updated
every T seconds. Our first proposed strategy requires that
the arrival rate to the system and the entire composition of
the bulletin board be known to the incoming tasks; also,

tasks need to know the time since the last update. This

situation could arise if the bulletin board is periodically

broadcast to the servers generating the tasks. This strategy

still assumes that tasks do not coordinate actions and, thus,

the centralization required for this strategy is minimal. The

idea of the strategy is to use our knowledge of the arrival

rate to calculate the expected number of tasks at the servers

and, then, choose a server with the smallest expected load

uniformly at random. We describe a strategy that approx-

imates this one closely and has the advantage that the

underlying calculations are quite simple.
In this proposed strategy, which we call the time-based

strategy, we split each phase of T seconds into smaller

subintervals; in a subinterval �tk; tk�1�, a task will choose a

server randomly from all servers with load at most k. The

division of the phase is inductively determined by the loads

at the beginning of the phase, which is information

available on the bulletin board. At time 0, tasks choose

from all servers with load 0 posted on the board (if any

exist). Hence, t0 � 0. Tasks begin also choosing from servers

with load 1, when the expected number of arrivals to

servers of load 0 has been 1, so that

t1 � t0 � b0=�:

Similarly, tasks begin choosing from servers with load at

most k when the expected number of arrivals to servers of

load kÿ 1 is 1, or at

tk � tkÿ1 �
P

i<k bi
�

:

Intuitively, this strategy attempts to equalize the load at the

servers in the natural way.
A limiting system, given by a series of differential

equations, can be used to model this system. The equations

are entirely similar to (1) and (2), except that the expression
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for qi�t� changes depending on the subinterval tk. (We leave
the remaining work of the derivation to the reader.)

Our second proposed strategy, which we call the record-
insert strategy, requires more centralization in that we allow
the tasks to update the global bulletin board when they
choose a server. That is, every time a new task enters, the
system load for the server on the bulletin board is
incremented, but deletions are not recorded until the board
is updated (every T seconds). Tasks choose a queue
uniformly at random from those with the smallest load
on the board.2 This strategy may be feasible when the
tasks use a centralized system for placement, but there is
a large delay for servers to update load information. This
strategy is essentially the one used to solve the problem
of herding behavior in the TranSend system mentioned
previously [9], [10].

Again, a limiting system given by a family of differential
equations can model this system. We still use Pi;j to
represent the fraction of queues with load i on the bulletin
and j at the queue; however, the load at the board is now
incremented on arrival. The resulting equations are again
similar to (1) and (2) with this difference:

dPi;0�t�
dt

� Pi;1�t� ÿ Pi;0�t�qi�t� ; i � 0; �3�

dP0;j�t�
dt

� P0;j�1�t� ÿ P0;j�t� ; j � 1; �4�

dPi;j�t�
dt

� �Piÿ1;jÿ1�t�qiÿ1�t� � Pi;j�1�t��
ÿ �Pi;j�t�qi�t� � Pi;j�t�� ; i; j � 1:

�5�

Unfortunately, this system proves more complicated be-
cause the expression for qi�t� becomes more complicated.
Now, qi�t� is zero unless i is the smallest load apparent in
the system. Because the smallest load changes over time, the
system will have discontinuous behavior; this makes the
differential equations slightly harder to simulate.

Simulations of systems of 100 queues demonstrate that
these strategies can perform substantially better than
choosing two when n is reasonably large and T grows
large, as shown in Fig. 4. Again, we emphasize that the
results from the limiting systems provide results very close
to that of the simulations of 100 queues; for the expected
time in the system, our simulation results are within
4 percent for the time-based strategy and within 2 percent
for the record-insert strategy. We present simulation results
only for convenience; the same intuitions can be derived
from the differential equations alone.

As one might expect, record-insert does better than time-
based, demonstrating the power of the tasks being able to
update an actual centralized bulletin board directly.
However, choosing the shortest of two random servers still
performs reasonably well in comparison, demonstrating
that, in distributed settings where global information may
be difficult to maintain or the arrival rate is not known in
advance, it remains a strong choice. We also compare these
strategies with a simple round-robin strategy, which is the
natural choice for load balancing in a centralized system
where no load information is available. Indeed, as pre-
viously mentioned, the record-insert strategy becomes a
round-robin strategy in the limit. The expected time a job
spends in a round-robin system with n servers in equilibrium
can be calculated using standard queuing theory, as each
queue behaves like a G/M/1 queue (see, e.g., [12, chapter 6]).
Again, as one might expect, for suitably small delays, making
use of the available load information even in limited ways
yields better performance.
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2. We note that performance improves slightly if the tasks break ties in
some fixed order, such as by machine index; in this case, for sufficiently
long updates T , the strategy becomes a round-robin scheme. However, this
model cannot be easily described by a limiting system.

Fig. 4. Comparing centralized strategies vs. distributed strategies: Centralized strategies can perform better.



4 CONTINUOUS UPDATE

The periodic update system is just one possible model for
old information; we now consider another natural model
for distributed environments. In a continuous update system,
the bulletin board is updated continuously, but the board
remains T seconds behind the true state at all times. Hence,
every incoming task may use load information from
T seconds ago in making its destination decision. This
model corresponds to a situation where there is a transfer
delay between the time incoming jobs determine which
processor to join and the time they join.

We will begin by modeling a similar scenario. Suppose
that each task, upon entry, sees a billboard with information
with some time X ago, where X is an exponentially
distributed random variable with mean T , and these
random variables are independent for each task. We
examine this model and later consider what changes are
necessary to replace the random variable X by a constant T .

Modeling this system appears difficult because it seems
that we have to keep track of the past. Instead, we shall
think of the system as working as follows: Tasks first enter a
waiting room, where they obtain current load information
about queue lengths and immediately decide upon their
destination according to the appropriate strategy. They then
wait for a time X that is exponentially distributed with
mean T and independent among tasks. Note that tasks have
no information about other tasks in the waiting room,
including how many there are and their destinations. After
their wait period is finished, they proceed to their chosen
destination; their time in the waiting room is not counted as
time in the system. We claim that this system is equivalent
to a system where tasks arrive at the servers and choose a
server based on information from a time X ago, as
described. The key to this observation is to note that if the
arrival process to the waiting room is Poisson, then the exit
process from the waiting room is also Poisson, as is easily
shown by standard arguments. Interestingly, another
interpretation of the waiting room is as a communication
delay, corresponding to the time it takes a task from a client
to move to a server. This model is thus related to similar
models in [15].

The state of the system will again be represented by a
collection of numbers for a set of ordered pairs. In this case,
Pi;j will be the fraction of servers with j current tasks and
i tasks sitting in the waiting room; similarly, we shall say
that a server is in state �i; j� if it has j tasks enqueued and i
tasks in the waiting room. In this model, we let qj�t� be the
arrival rate of tasks into the waiting room that choose
servers with current load j as their destination. The
expression for qj will depend on the strategy for choosing
a queue and can easily be determined, as in Section 3.1.

To formulate the differential equations, consider first a
server in state �i; j�, where i; j � 1. The queue can leave this
state in one of three ways: A task can complete service,
which occurs at rate � � 1; a new task can enter the waiting
room, which occurs at rate qj�t�; or a message can move
from the waiting room to the server, which (because of our
assumption of exponentially distributed waiting times)
occurs at rate i

T . Similarly, one can determine three ways

in which a server can enter �i; j�. The following equations
include the boundary cases:

dP0;0�t�
dt

� P0;1�t� ÿ q0�t�P0;0�t� ;
dP0;j�t�
dt

� P0;j�1�t� � P1;jÿ1�t�
T

ÿ qj�t�P0;j�t�
ÿ P0;j�t� ; j � 1;

dPi;0�t�
dt

� q0�t�Piÿ1;0�t� � Pi;1�t� ÿ q0�t�Pi;0�t�

ÿ iPi;0�t�
T

; i � 1;

dPi;j�t�
dt

� Pi;j�1�t� �
�i� 1�Pi�1;jÿ1�t�

T
� qj�t�Piÿ1;j�t�

ÿ qj�t�Pi;j�t� ÿ Pi;j�t� ÿ iPi;j�t�
T

; i; j � 1:

4.1 The Fixed Point

Just as, in the periodic update model, the system converges

to a fixed cycle, simulations demonstrate that the contin-

uous update model quickly converges to a fixed point,

where
dPi;j�t�
dt � 0 for all i; j. We therefore expect that, in a

suitably large finite system, in equilibrium, the distribution

of server states is concentrated near the distribution given

by the fixed point. Hence, by solving for the fixed point, one

can then estimate system metrics such as the expected time

in the queue (using, for example, Little's Law). The fixed

point can be approximated numerically by simulating the

differential equations or it can be solved for using the

family of equations
dPi;j�t�
dt � 0. In fact, this approach leads to

predictions of system behavior that match simulations quite

accurately, as described in Section 4.3.
Using techniques discussed in [19], [20], one can prove

that, for all the strategies we consider here, the fixed point is
stable, which informally means that the trajectory remains
close to its fixed point (once it gets close). We omit the
straightforward proof here. Our simulations suggest that, in
fact, the limiting system converges exponentially to its fixed
point; that is, that the distance between the fixed point and
the trajectory decreases geometrically quickly over time.
(See [19], [20].) Although we can prove this for some special
cases, proving exponential convergence for these systems in
general remains an open question.

4.2 Continuous Update, Constant Time

In theory, it is possible to extend the continuous update
model to approximate the behavior of a system where the
bulletin board shows load information from T seconds ago;
that is, where X is a constant random variable of value T .
The task's time in the waiting room must be made
(approximately) constant; this can be done effectively using
Erlang's method of stages. The essential idea is that we
replace our single waiting room with a series of r
consecutive waiting rooms such that the time a task
spends in each waiting room is exponentially distributed
with mean T=r. The expected time waiting is then T , and
the variance decreases with r; in the limit as r!1, it is as
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though the waiting time is constant. Taking a reasonably
sized r can lead to a good approximation for constant
time. Other distributions can be handled similarly. (See,
e.g., [20].)

In practice, this model is difficult to use, as the state of a

server must now be represented by an r� 1-dimensional

vector that keeps track of the queue length and number of

tasks at each of the r waiting rooms. Hence, the number of

states to keep track of grows exponentially in r. It may still

be possible to use this approach in some cases by truncating

the state space appropriately; however, for the remainder,

we will consider this model only in simulations.

4.3 Simulations

As in Section 3.4, we present results from simulating the

actual queuing systems. We emphasize that, for the

continuous update case, we only develop a useful limiting

system for the case where X is distributed exponentially; in

other cases, we rely solely on simulations of the actual

queuing system. We have chosen the case of n � 100 queues

and � � 0:9 as a representative case for illustrative

purposes. As one might expect, the limiting system proves

more accurate as n increases and the differences among the

strategies grow more pronounced with the arrival rate.
We first examine the behavior of the system when X, the

waiting room time, is a fixed constant T . In this case, the

system demonstrates behavior remarkably similarly to the

periodic update model, as shown in Fig. 5. For example,

choosing the shortest server performs poorly even for small

values of T , while two choices performs well over a broad

range for T .
When we consider the case when X is an exponentially

distributed random variable with mean T , however, the

system behaves radically differently (Fig. 6). All three of the

strategies we consider do extremely well, much better than

when X is the fixed constant T . One might think from these

results that there is some error in our simulation of this case.

The limiting system, however, verifies the simulation

results; we found that the results from the simulations

and the limiting system match within 1-2 percent when two

or three choices are used and 5-20 percent when tasks

choose the shortest queue, just as in the case of periodic

updates (Section 3.4).
We suggest an interpretation of this surprising behavior,

beginning by considering when tasks choose the shortest

queue. In the periodic update model, we saw that this

strategy led to ªherd behavior,º with all tasks going to the

same small set of servers. The same behavior is evident in

this model, when X is a fixed constant; it takes some time

before entering tasks become aware that the system loads

have changed. In the case where X is randomly distributed,

however, tasks that enter at almost the same time may have

different views of the system and, thus, make different

choices. Hence, the ªherd behaviorº is mitigated, improving

the load balancing. Similarly, performance improves with

the other strategies as well.
We justify this interpretation by considering other

distributions for X; results from simulations in the cases

where X is uniformly distributed on �T=2; 3T=2� and on

�0; 2T � are given in Fig. 7 and Fig. 8. Both perform noticeably

better than the case where X is fixed at T . That the larger

interval performs dramatically better suggests that it is

useful to have some tasks that get very accurate load

information (i.e., where X is close to 0); this also explains

the behavior when X is exponentially distributed.
This setting demonstrates how randomness can be used

for symmetry breaking. In the periodic update case, by

having each task choose from just two servers, one

introduces asymmetry. In the continuous update case, one

can also introduce asymmetry by randomizing the age of

the load information.
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This setting also demonstrates the danger of assuming

that a model's behavior does not vary strongly if one

changes underlying distributions. For example, in many

cases in queuing theory, results are proven for models

where service times are exponentially distributed (as these

results are often easier to obtain) and it is assumed that

the behavior when service times are constant (with the

same mean) is similar. In some cases, there are even

provable relationships between the two models (see, for

example, [17], [23]). In this case, however, changing the

distribution of the random variable X causes a dramatic

change in behavior.

5 INDIVIDUAL UPDATES

In the models we have considered thus far, the bulletin

board contains load information from the same time t for all

the servers. It is natural to ask what happens when servers

update their load information at different times, as may be

the case in systems where servers individually broadcast

load information to clients. In an individual update system,

the servers update the load information at the bulletin

board individually. For convenience, we shall assume the

time between each update for every server is independent

and exponentially distributed, with mean T . Note that, in

this model, the bulletin board contains only the load

16 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 11, NO. 1, JANUARY 2000

Fig. 6. Each task sees the loads from X seconds ago, where the X are independent exponential random variables with mean T .

Fig. 7. Each task sees the loads from X seconds ago, where the X are independent uniform random variables from �T=2; 3T=2�.



information and does not keep track of when the updates

have occurred.
The state of the system will again be represented by a

collection of ordered pairs. In this case, Pi;j will be the

fraction of servers with true load j but load i posted on the

bulletin board. We let qi�t� be the arrival rate of tasks to

servers with load i posted on the bulletin board; the

expression for qi will depend on the strategy for choosing a

queue. We let Si�t� be the total fraction of servers with true

load i at time t, regardless of the load displayed on the

bulletin board; note Si�t� �
P

j Pj;i�t�.
The true load of a server and its displayed load on the

bulletin board match when an update occurs. Hence, when

considering how Pi;i changes, there will a term correspond-

ing to when one of the fraction Si of servers with load i

generates an update. The following equations are readily

derived in a similar fashion as in previous sections.

dPi;0�t�
dt

� Pi;1�t� ÿ Pi;0�t�qi�t� ÿ Pi;0�t�=T ;

dPi;j�t�
dt

� Pi;jÿ1�t�qi�t� � Pi;j�1�t� ÿ Pi;j�t�qi�t�
ÿ Pi;j�t� ÿ Pi;j�t�=T ; j � 1 ; i 6� j;

dP0;0�t�
dt

� Pi;1�t� ÿ Pi;0�t�qi�t� ÿ P0;0�t�=T � S0�t�=T ;

dPi;i�t�
dt

� Pi;iÿ1�t�qi�t� � Pi;i�1�t� ÿ Pi;i�t�qi�t�
ÿ Pi;i�t� ÿ Pi;i�t�=T � Si�t�=T ; i � 1:

As with the continuous update model, in simulations

this model converges to a fixed point and one can prove

that this fixed point is stable. Qualitatively, the behavior

appears similar to the periodic update model, as can be seen

in Fig. 9. We note again that the simulations and the results

from the differential equations are very close. For two or

three choices, the results are within 1 percent for small T

and within 5 percent for larger T . For the strategy of going

to the shortest queue, the deviation is slightly larger.
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6 COMPETITIVE SCENARIOS

We have assumed thus far in our models that all tasks

adopt the same underlying strategy and the goal has been to

reduce the expected time for all tasks. In a more competitive

environment, tasks may instead independently act in their

own best interests and it is necessary to consider the effects

of antisocial, competitive tasks which may not follow the

proposed universal strategy.

We consider briefly a specific example. Suppose we have

a system where each task is supposed to choose from the

shortest of two randomly chosen servers. In this case, an

antisocial task may attempt to improve its own situation by

obtaining the entire bulletin board and proceeding to a

server with the smallest posted load. Do such tasks do

better than other tasks? If so, in a competitive environment,

tasks have little motivation to follow the suggested strategy.

We study the problem by examining the situation where

each task adopts the antisocial strategy with probability p.

With such a model, it is possible to set up a corresponding

limiting system since each task's strategy can be expressed

as a probabilistic mixture of two strategies; for example, in

this case,

q0�t� � p�

b0�t� �
�1ÿ p�� P

j�0 bi�t�
� �2

ÿ P
j>0 bi�t�

� �2

b0�t�

�
� p� �1ÿ p��1ÿ P

j>0 bi�t�
� �2

�
� �

b0�t� :

For i > 0,

qi�t� � �1ÿ p��
P

j�i bi�t�
� �d

ÿ P
j>i bi�t�

� �d
bi�t� :

We consider the case where all tasks see load informa-
tion from exactly T seconds ago. In this case, as discussed in
Section 4.3, we do not use a limiting system, as the state
space grows rather complex; instead, we use simulations.3

The results demonstrate some interesting behaviors. Table 1
provides numerical results based on simulations for � � 0:9
and n � 100 servers. When T is small or the fraction p of
competitive tasks is sufficiently small, competitive tasks
reduce their average time by acting against the standard
strategy. In cases where choosing two servers performs
poorly, introducing competitive tasks can actually reduce
the average time for everyone, although, more often,
antisocial tasks do better at the expense of other tasks. For
larger values of T or p, system performance degrades for all
tasks and the average time antisocial tasks spend in the
system can grow much larger than that of other tasks. In
this sense, tasks are motivated not to choose the shortest for,
if too many do so, their average time in the system will be
larger than those that do not.

The situation becomes even more interesting, however, if
the measure of performance is not the average time in the
system, but a more complicated measure. For example, it
may be important for some tasks to finish by a certain
deadline and, in this case, the goal is to maximize the
probability that it finishes by its deadline. Our simulations
have also shown that, in the model described above, even
when p and T are such that choosing the server with the
shortest posted queue increases the average time for a task,
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Comparing Simulation Results for Antisocial Tasks (which Choose the Shortest) against those that Choose Two,

for � � 0:9 and n � 100

3. We could instead have presented results for the periodic update
setting, where the board is updated every T seconds. In this case, the
limiting system again matches simulations of 100 servers quite well. One
finds similar behaviors in such systems.



the variance in the time in the system of tasks which adopt
this strategy can be lower than other tasks (Table 1).
Intuitively, this is probably because some tasks that make
only two choices will be quite unlucky and choose two very
long queues. Hence, tasks with deadlines may be motivated
to try another strategy, even though it appears worse in
terms of the average time in the system.

We believe there are many open questions to consider in
this area, and we discuss them further in the conclusion.

7 OPEN QUESTIONS AND CONCLUSIONS

We have considered the question of how useful old
information is in the context of load balancing. In examin-
ing various models, we have found a surprising rule of
thumb: Choosing the least loaded of two random choices
according to the old load information performs well over a
large range of system parameters and is generally better
than similar strategies, in terms of the expected time a task
spends in the system. We have also seen the importance of
using some randomness in order to prevent tasks from
adopting the same behavior, as demonstrated by the poor
performance of the strategy of choosing the least loaded
server in this setting.

We believe that there is a great deal more to be done in
this area. Generally, we would like to see these models
extended and applied to more realistic situations. For
example, it would be interesting to consider this question
with regard to other load balancing scenarios, such as in
virtual circuit routing, or with regard to metrics other than
the expected time in the system, such as in a system where
tasks have deadlines. A different theoretical framework for
these problems, other than the limiting system approach,
might be of use as well. In particular, it would be
convenient to have a method that yields tighter bounds in
the case where n, the number of servers, is small. Finally,
the problem of handling more realistic arrival and service
patterns appears quite difficult. In particular, it is well-
known that, when service distributions are heavy-tailed, the
behavior of a load balancing system can be quite different
than when service distributions are exponential; however,
we expect our rule of thumb to perform well in this scenario
as well.

An entirely different flavor of problems arises from
considering the problem of old information in the context of
game theory. We have generally assumed in our models
that all tasks adopt the same underlying strategy and the
goal has been to reduce the expected time for all tasks. In a
more competitive environment, tasks may instead indepen-
dently act in their own best interests and, hence, in Section 6,
we considered the effects of antisocial tasks which may not
follow the proposed strategy. More generally, we may think
of these systems as multiplayer games, which leads to
several interesting questions: If each task is an individual
player, what is the optimal strategy for a self-interested
player (i.e., a task whose only goal is to minimize its
own expected time in the system, say)? How easily can
this strategy be computed on-line? Is this strategy different
than the optimal strategy to minimize the average expected
time and, if so, how? Are there simple stable strategies in

which no task is motivated to deviate from the strategy for

its own gain?
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