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AbstractÐIn this paper, we introduce a family of scalable interconnection network topologies, named Recursive Cube of Rings (RCR),

which are recursively constructed by adding ring edges to a cube. RCRs possess many desirable topological properties in building

scalable parallel machines, such as fixed degree, small diameter, wide bisection width, symmetry, fault tolerance, etc. We first examine

the topological properties of RCRs. We then present and analyze a general deadlock-free routing algorithm for RCRs. Using a

complete binary tree embedded into an RCR with expansion-cost approximating to one, an efficient broadcast routing algorithm on

RCRs is proposed. The upper bound of the number of message passing steps in one broadcast operation on a general RCR is also

derived.

Index TermsÐScalable computer systems, recursive cube of rings (RCR), plane property, embedding, message routing.
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1 INTRODUCTION

ACOMPUTER system is scalable if it can scale up its
resources to accommodate ever-increasing perfor-

mance and functionality demand. In a parallel computer
system with distributed-memory architecture, the design of
the interconnection network topology is critical to the
performance and scalability of the system. A general
scalable network topology should match as closely as
possible to the general communication patterns of various
practical parallel applications to achieve low network
latency and high throughput.

To satisfy the scalability requirement for interconnection

networks, it is desirable that an interconnection network

has a fixed degree, small diameter, wide bisection width,

symmetric nodes, and fault tolerance. In most existing

interconnection networks, these requirements are often in

conflict with each other. For example, although an N �N
mesh and torus have fixed degree, their diameters are 2N

and N , respectively (hence, relatively large). The node

degree of an n-cube (hypercube) increases logarithmically

with the size of the network though the diameter of

hypercube is small.
Recently, many new topologies have been proposed.

Taking the product of two classical topologies is a

prospective method of constructing new interconnection

networks [1]. Construction of such a product network

requires first choosing a base reference, such as de Bruijn

networks [2], shuffle-exchange networks [3], and complete

binary trees [4]. The base elements may be different [6], [8].

The cross product of interconnection networks outperforms

traditional topologies such as mesh and hypercube in

diameter, degree, and matching size [5]. Linear recursive

networks are networks that are produced by a linear

recurrence of the form:

Xn � a1:Xnÿ1 � a2:Xnÿ2 � � � � � ak:Xnÿk

where ai; 1 � i � k, are nonnegative integers and ak 6� 0

[11]. In each recurrence, the subscript n corresponds to the

dimension of the network Xn, while the parameter ai
indicates the number of occurrences of a lower dimensional

network Xnÿi within the n-dimensional network. The

degree of linear recursive networks increases logarithmi-

cally with the network scale. Considering the increasing

difficulty in layout and packaging, if the degree of a

network expands with the processor size [5], the benefit of

scalability from taking the product of interconnection

networks may be greatly diminished in practical applica-

tions. A network with fixed node degree is therefore greatly

desirable. A cube of rings (COR) network is a new proposed

network that offers a balance between scalability and

hardware overhead [10]. A cube of ring network is

constructed to replace each node of a hypercube with a

ring of the same size. It differs from cube-connected-cycle

in the way of determining the cube neighbors of each node.

The cube of rings has a fixed node degree and small

diameter but, as will be shown later, the network size that

may be chosen is very limited.

In this paper, we propose a new family of interconnec-

tion networks, named recursive cube of rings (RCR) network.

An RCR is constructed by recursive expansion on a given

generation seed (GS). A GS for an RCR consists of a number

of rings interconnected in a cube-like fashion. It can be

created according to certain criteria such as the desirable

size of the network. RCRs possess many desirable topolo-

gical properties in building scalable parallel machines, such

as fixed degree, small diameter, high bisection width, and

symmetry. Ring, hypercube, and cube-connected cycles are

special forms of the RCRs. In addition, we show that RCR
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possess plane property, in which each node of an RCR

network is located on at least one cube plane. All cube planes

are connected by ring planes. This property may greatly

simplify the routing algorithm design and improve the

embedding capability. For example, we may use the

symmetry and plane property of RCR to easily implement

a broadcast algorithm. Using a complete binary tree

embedded in an RCR with expansion-cost approximating

one, we develop an efficient broadcast routing algorithm

with very low upper bound of the number of message

passing. A general deadlock-free routing algorithm for the

RCR is also presented and analyzed.

The paper is organized as follows: We first describe the

proposed RCR topology and its recursive generation

method in Section 2. In Sections 3, we examine the

topological properties of RCR. The implementation of

broadcast operations based on a complete binary tree, as

well as a general message routing algorithm, are presented

and analyzed in Section 4, followed by a conclusion in

Section 5.

2 RECURSIVE CUBE of RINGS (RCR)

A general RCR consists of a number of rings interconnected

by some links, called cube links. The nodes within a ring are

connected by links called ring links. An RCR is denoted by

RCR(k; r; j), where k is the dimension of the cube, r is the

number of nodes on a ring, and j is the number of the

expansions from the generation seed.

A function f similar to modulo is defined for the

representation of node addresses and analysis of RCRs

properties. The definition of f is different from the modulo

in the case of 0 � a � b, which is defined as follows:

f�a; b� � bÿ a; 0 � a � b
aÿ a

b

� � � b; a � b
�

;where a; b; c 2 I:

The address of a node in an RCR is specified as

�amÿ1amÿ2 � � � a0; b�, where m � k� j; ai is a binary bit,

0 � i < m, a n d 0 � b < r. A n o d e w i t h a d d r e s s

�amÿ1amÿ2 � � � a0; b� has k cube neighbors with addresses

�amÿ1amÿ2 � � � af�b�j�x;k�j� � � � a0; b�, 1 � x � k, and two ring

neighbors with addresses �amÿ1amÿ2 � � � a0; f�b� 1; r�� and

�amÿ1amÿ2 � � � a0; f�bÿ 1; r��.
Given two parameters, an integer k and the number of

nodes in the network, N , the generation seed GS(k; r) for

RCR(k; r; j) is created as follows:

1. The GS(k; r) should have 2k rings of r nodes. Each
node has the address akÿ1akÿ2 � � � a0; b� �, where
ai 2 f0; 1g, 0 � i � kÿ 1, b 2 f0; 1; � � � ; rÿ 1g;

2. A node with address akÿ1; � � � ; a0; b
� �

has k cube

neighbors with addresses akÿ1; � � � ; �a0; b
� �

, . . . ,

[akÿ1; � � � ; �af�i;k�; � � � ; a0; b], 1 � i � k. It has two ring

nodes with addresses: akÿ1; � � � ; a0; f�b� 1; r�� �
and

akÿ1; � � � ; a0; f�bÿ 1; r�� �
.

In terms of the given k and N , the parameters r and j can

be determined as follows. Then j expansions are conducted

to obtain the desired network RCR(k; r; j).

Let N 0 be the desirable number of nodes in the network,

and N the number of nodes in the generated RCR network.

We may select a desired value of r, which in turn

determines the value of j, such that N is closest to N 0

according to the following equation:

r �
N 0

2k�j
� �
N 0

2k�j
� �(

N > N 0

N � N 0: �2:1�

Fig. 1 depicts a generation seed GS(2; 2). Fig. 2 shows an

RCR(2; 2; 1) obtained by one expansion from generation

seed GS(2; 2), and Fig. 3 shows an RCR(2; 2; 2) obtained

from one more expansion from RCR(2; 2; 1). At each

expansion, the number of nodes is doubled and some new

cube links must be added. At the same time, in order to

keep the constant node degree, some cube links must be

removed. For example, the node [000; 0] and node [010; 0] in

RCR(2; 2; 1) are mapped, respectively, to node [0000; 0] and

node [0010; 0] in RCR(2; 2; 2). The cube link ([000; 0], [010; 0])

in the RCR(2; 2; 1) is removed when it is expended to
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Fig. 1. Generation seed GS(2, 2) for RCR.

Fig. 2. RCR(2; 2; 1) after one expansion from GS(2; 2).



RCR(2; 2; 2), so that node [0000; 0] and node [0010; 0] in the

RCR(2; 2; 2) remain constant degree three when two new

cube links are added to these two nodes during the

expansion, as shown in Fig. 3. The algorithm for construct-

ing an RCR is described in Fig. 4. It is important to note that,

for the general cases, the actual number of nodes N in an

RCR network may be different from the desired network

size N 0. For example, to build a network with 20,000 nodes

(N 0 � 20; 000), the size of the closest RCR network is 20,480,

as will be explained in Section 3.

In the construction algorithm given in Fig. 4, for a node v,

the address of the node, dv � �amamÿ1 � � � a0; b� � �A; b� (ai is

a binary bit, 0 � i � m), then o1�dv� � �1amamÿ1 � � � a0; b� and

o0�dv� � �0amamÿ1 � � � a0; b� are the addresses of the next

expansion of node v. In terms of the address, the expansion

is done by concatenating a 0-bit or a 1-bit before the

address. First, the GS is taken as the left graph GL and its

nodes are duplicated as the right graph GR. The node set of

a new graph G is the union of the node sets of the two

graphs GL and GR. However, in the new graph G, the cube

links at each node are rearranged. For example, in Fig. 2, a

node v of GS with address �akÿ1 � � � a0; b� in the new graph

has a new set of cube neighbors connected to the node v

only by cube links. These neighbors have the addresses

�akÿ1 � � � af�1�b�x;1�k� � � � a0; b�, where 1 � x � k and i refers to

the current index of expansion number.

3 TOPOLOGICAL PROPERTIES OF RCRS

In this section, we examine the major topological properties
of the proposed RCR networks, such as an RCR size,
degree, bisection width, diameter, size matching property,
plane property, symmetry, and so forth.

3.1 General Topological Properties

An RCR(k; r; j) network is modeled as a graph G � G�V ;E�,
where a vertex in V �G� corresponds to a node in the RCR

network, and an edge in E�G� corresponds to a link in the

RCR network.

Property 1. In an RCR(k; r; j), we have the following properties:

P1.1. The number of nodes, N , is r� 2k�j.
P1.2. All of the nodes in the RCR(k; r; j) have the same

degree, and the degree d of the network is k� 2 for r > 2, and

k� rÿ 1 for 1 � r � 2.
P1.3. The number of edges of the network, E, is given as

follows:

E �

r� 2k�j � �1� k
2�

r� 2k�j � �12� k
2�

r� 2k�j � k
2

8>>><>>>:
r > 2

r � 2

r � 1:

P1.4. The bisection width of the network, B, is

Num�k; r; j� � 2k�jÿ1 or Num�k; r; j�=r�N , where N is

the number of nodes of the network, and Num�k; r; j� is

defined as follows: For any integers x and y, 0 � x � rÿ 1

and 1 � y � k, Num�k; r; j� denotes the number of the x

values satisfying f�j� x� y; j� k� � 1.

Proof. The topological properties P1.1, P1.2, and P1.3 follow

directly from the GS architecture and the recursive

construction algorithm of RCRs in Fig. 4. Therefore, it is

only necessary to give the proof of P1.4. Given a node

with address [amÿ1 � � � a0; b], m � k� j, all its k cube

neighbor addresses are different only in one bit position,

�af�j�b�i;j�k�; 1 � i � k. For a given RCR(k; r; j) network,

the inverse bit position of a node is determined only by

the value b; b 2 f0; 1; . . . ; rÿ 1g. According to P1.1, for a

value of b, there exist 2k�j nodes with the same inverse

bit-wise position. An RCR(k; r; j) network can be divided

into two RCR(k; r; jÿ 1) networks. The link contributing

to the bisection bandwidth of the RCR(k; r; j) network

should have one endpoint of the link on one

RCR(k; r; jÿ 1) network and the other endpoint on the

other RCR(k; r; jÿ 1) network. According to the con-

struction algorithm, the two nodes of such a link must

have the same value b in their addresses. All 2k�j nodes

with such value b in their addresses can be divided into

two groups, one in each of the lower order networks

(RCR�k; r; jÿ 1�). Therefore, the value b determines the

number of links crossing the two RCR(k; r; jÿ 1) net-

works. According to the construction algorithm of RCR,

the two nodes of the link that contribute to the bisection

bandwidth differ in the highest bit position of the first

parts in their addresses. That is, the possible value of b

should satisfy f�j� b� y; j� k� � 1. tu
The following corollary can be derived directly from

Property 1.

Corollary 1. For an RCR(k; r; j) network, the bisection

bandwidth B is 2k�jÿ1B2k�jÿ1 � j� �rÿ 1�=�j� k�b c.
It is straightforward to verify the following property.
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Property 2. The following topologies are special forms of RCRs:

P2.1. Ring networks are RCR(0; r; j) for any r and j.
P2.2. An n-dimensional hypercube is RCR(2; 1; j).

In Table 1, we compare the node degree, diameter, and

bisection width of RCRs with some popular topologies such

as n-cube, n-dimensional cube-connected cycles (CCC), and

CORs. It shows that RCRs have constant degree and

relatively short diameter. It also shows that RCRs have

larger bisection width than the other topologies except

hypercube, but hypercube does not have constant degree.
The actual size N of a network with a given topology

may be different from an arbitrary size N 0 of the desired

network. The ratio N=N 0 is called the match ratio. When the

match ratio is closer to one, we say that it has better size

matching. The sizes for an n-cube, n-dimensional CCC, and

COR, and RCRs are 2n, n2n, r2kr, and r2k�j, respectively.

Compared with the other three topologies, apparently, the

RCRs can better match a given size by selecting proper

parameters, r, k, and j. For example, for N 0 � 20; 000, the

size of an n-cube is 16,384 for n � 14 �N=N 0 � 0:82� and

32,768 for n � 15 �N=N 0 � 1:64�. By selecting proper r, k,

and j, an RCR with size 18,422 �N=N 0 � 0:92� or 20,480

�N=N 0 � 1:02� can be constructed. It is easy to check that

RCRs also have a better match ratio than that of CCC or

COR in this example.

3.2 Plane Property

RCRs also possess a special plane property such that an
RCR(k; r; j) can be taken as the combination of two different
types of planes, cube-plane and ring-plane, to be defined
below. This property can be used to develop efficient
routing algorithms.

Definition 1. A cube plane (CP) is a subgraph of an
RCR(k; r; j) such that the CP is connected and all links of
the CP are cube links. In a CP, node [A; b] and node [A0; b0] are
connected by a cube link if and only if jA�A0j � 1 and
b � b0.

Definition 2. A ring plane (RP) is a subgraph of an
RCR(k; r; j) such that the RP is connected and all links of
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the RP are ring links. An RP consists of r nodes [A; 0], [A; 1],
. . . , [A; rÿ 1], where A is certain binary number.

For example, the RCR(2; 2; 2) has 16 RPs and eight CPs,
as shown in Fig. 5. Fig. 5 also illustrates the connection
relations among CPs through RPs. For instance, a CP
denoted by [- -00; 0] is comprised of the four nodes,
[0000; 0], [1000; 0], [0100; 0], and [1100; 0]. The CP, [- -00; 0],
joins the CP, [11- -; 1] by the two nodes [1100; 0] and
[1100; 1]. ª�1º between the two CPs denotes increase in b
from the CP [- -00; 0] to the CP [11- -; 1]. The connections
among the eight CPs of an RCR(2; 2; 2) are shown. Each CP
is referred to as a super node. Therefore, we can construct a
new graph in which a link between two super nodes exists
if and only if two nodes, respectively, from the super nodes
are located in the same ring. The constructed graph is also a
contraction with 4-partition in graph theory [17]. Such a
contraction in graph theory can give rise to an efficient
broadcast algorithm, described in detail in Section 4.

Property 3. For an RCR(k; r; j), let G � G(V ;E) denote the
corresponding undirected graph of the network. The graph G
consists of C2

k � 2k�jÿ2 CPs with four nodes. All CPs are
connected by RPs.

Proof. According to the neighboring definition of an
RCR(k; r; j), the ring neighbor relations of each node
with the other nodes remain in the whole expansion
construction of the RCR because each node with
the address �ak�jÿ1 . . . a0; b� should have two ring
neighbors with the addresses �ak�jÿ1 . . . a0; f�b� 1; r��
and �ak�jÿ1 . . . a0; f�bÿ 1; r�� that are independent of
the parameter j. Therefore, each node must be located
in the same ring plane. In other words, in the whole

construction process, all the RPs in the RCR remain
unchanged. The ring neighborhood relations between
nodes are reserved in the expansions.

On the one hand, the cube relations of one node
with other nodes may often change after each expansion
according to the construction algorithm. Now, consider-
ing the intermediate derived network RCR(k; r; q�,
where 1 � q � j, let p0 with the address �aq�kÿ1 . . . a0; b�
be an arbitrary node in the network RCR(k; r; q). We
try to find a ring in a CP starting with node p0.
According to the construction algorithm, the k cube
neighbors of p0 should be

�aq�kÿ1 . . . �af�q�b;q�k� . . . a0; b�; . . . ;

�aq�kÿ1 . . . �af�q�b�i;q�k� . . . a0; b�; . . . ;

�aq�kÿ1 . . . �af�q�b�kÿ1;q�k� . . . a0; b�:
We repeat the same procedure for each next node until
no new node can be found. Then, we find a cycle from
the node p0 to the same node p0. The cycle forms a CP
with length four. On the other hand, any two neighbor-
ing nodes should have only one bit different in the first
parts of their addresses. Each node should simulta-
neously be located on the C2

k CPs. The number of CPs is
C2
k � r� 2k�jÿ2. Thus, we can conclude that all CPs are

connected by RPs. tu
3.3 RCR as a Cayley Graph

A network is symmetric if the network topology is the same
looking from any node in the network. A symmetric
interconnection network may simplify the design of the
routers and interfaces, and thus reduce the cost of the
networks. Cayley graphs have been proved to be symmetric
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graphs [13]. We show that RCRs are Cayley graphs, and
therefore they are symmetric. The following definitions are
directly from [13].

Definition 3. A group G consists of a set of elements and an
associative binary operator a � b. The operator has an identity
element i (for all a 2 G; a � i � i � a � a), exhibits the closure
property (for all a; b 2 G; a � b 2 G), and every element a in G
has an inverse aÿ1 2 G(a � aÿ1 � aÿ1 � a � i, for all a 2 G).

Definition 4. Let G be a finite group with associative operator �.
A Cayley set H is a subset of G such that the identity element
of G is not in H, and that if group element g 2 G is in H, so is
the inverse of g.

Definition 5. A Cayley graph (G;H) is a graph defined on a
finite group G and the associated Cayley set H whose nodes
are the elements of G and whose edges are the pairs g 2 G and
h 2 H. We say the graph (G;H) is the Cayley graph derived
from G and H.

Given a set of generators of a finite group with an
identity element such that it is closed under inverses, a
Cayley graph can be obtained by taking the elements of the
group as vertices and connecting by an edge every pair of
elements x and y if, and only if, y is obtained from x by
applying one of the group generators [14], [10].

Property 4. An RCR(k; r; j) is a Cayley graph and therefore is
symmetric.

Proof. First, we construct a finite group G and define an
associative operator � on it:

�A; b� � �X; y� � �A� Ck�j �X;�y�;
where �A; b� and �X; y� are the two elements of G. Let Qn

2

denote the set of all Boolean n-tuples under bitwise
addition modulo 2, and Qr denote the integer set
f0; 1; . . . ; rÿ 1g under addition modulo r. The two sets
Qn

2 and Qr are proven to be Cayley graphs [10]. Then,
we construct a finite group through ordered pairwise
Qn

2 �Qr, where n � k� j� 1. For the associate

operator �, bit-wise addition modulo 2 is used for the

first entry, and addition modulo r is used for the second

entry, where C is an Boolean matrix:

000 � � � � � � 01
100 � � � � � � 00
010 � � � � � � 00

� � �
000 � � � � � � 10

0BBB@
1CCCA:

Second, we construct a Cayley set H using the same

method in [10], which consists of nodes

�0 . . . 0; 1�; �0 . . . 0; rÿ 1�; �0 . . . 1; 0�;
�0 . . . 010; 1�; . . . ; �0 . . . 0|��{z��}

kÿ1

10 . . . ; 0�:

Note that the inverse element of each element of H also

belongs to H. Therefore, H is a Cayley set.

Finally, we can construct the RCR(k; r; j) in the

group G based on H and the associative operator. For

any node [A; b] of the RCR(k; r; j) and each element from

H, we derive one edge to each neighbor of [A; b] in the

RCR(k; r; j) as follows:

� ��A; b�; �0 � � � 0; 1� � �A; b�� � ��A; b�; �A; b� 1��
� ��A; b�; �0 � � � rÿ 1; 1� � �A; b�� � ��A; b�; �A; bÿ 1��
� ��A; b�; �0 � � � 1; 1� � �A; b�� � ��A; b�;
�ak�jÿ1 � � � �abj�1 � � � a0; b��

� ��A; b�; �0 � � � 10; 1� � �A; b�� � ��A; b�;
�ak�jÿ1 � � � �abj�2 � � � a0; b��

� ��A; b�; �0 � � � 1 0 � � � 0|��{z��}
k

; 1� � �A; b��

� ��A; b�; �ak�jÿ1 � � � �abj�k � � � a0; b��:
Therefore, RCR(k; r; j) is a Cayley graph. Then,

according to [13], we conclude that the RCR(k; r; j) is

symmetric. tu
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Property 5. The diameter D of an RCR(k; r; j) is less than or
equal to rÿ1

2

� �� k� jÿ 1.

Proof. According the definition of an RCR, the longest

shortest path in an RCR is from node [0:::0; 0] (node S) to

node 1 � � � 1; rÿ1
2

� �
(node D). The distance between the S

and D, dis�S;D�, is the diameter of the RCR. We first

construct a sequence of nodes, p0p1 . . . pmÿ1, such that

m � k� j; p0 � S, pmÿ1 � D, and pi � piÿ1 � 1. Let

pi � �Ai; bi�, 0 � i � mÿ 1, we can then construct a path

from pi to pi�1:

�Ai; bi�; �Ai; bi� 1�; . . . ; �Ai; bi� 1�; �Ai� 1; bi� 1�:
Note that b0 � 0 and bmÿ 1 � rÿ1

2

� �
. Therefore, we have

dis�S;D� �
Xmÿ2

i�0

dis�Pi; pi�1� �
Xmÿ2

i�0

�bi�1 ÿ bi � 1�
� bmÿ1 ÿ b0 �mÿ 1 � rÿ1

2

� �� k� jÿ 1: ut

According to the above analysis, k and r are often

determined with respect to various implementation re-

quirements. It is reasonable to assume that the two

parameters, k and r, are fixed. We then consider the effect

of the parameter j on network size N and diameter D.

According to Property 1 and Property 5, it is concluded that

D � logN ÿ log r� rÿ1
2

� �ÿ 1, shown in Table 1.

It is proven that an RCR(k; r; j) network is a regular

graph, in which every vertex has a fixed degree. A regular

graph of degree d can have fault tolerance at most dÿ 1

such that the graph remains connected when at most dÿ 1

fault nodes or links are incurred simultaneously. A regular

graph of degree d with fault tolerance dÿ 1 is said to be

optimally fault-tolerant [14]. The following property proves

that RCR networks are optimally fault tolerant.

Property 6. An RCR(k; r; j) is optimally fault tolerant.

Proof. First, we consider the fault tolerance of the GS(k; r).

According to definitions of the GS(k; r) in Section 2 and

Cube-of-Rings(COR) [10], it is derived that the GS(k; r) is

equal to the COR(k; r). COR networks have been proved

to be optimally fault tolerant. Therefore, the GS(k; r) is

also optimally fault-tolerant.

Second, we consider the expansion graph G based on

the GS(k; r). It is noted that GL or GR have changed after

the expansion, which are denoted by GE
L and GE

R in G,

respectively. Let V �Y � denote the node set of a graph Y .

According to the generation algorithm in Fig. 4, we

have V (GL) = V (GE
L ) and V (GR) = V (GE

R). Now, we

consider how to expand cube links in GL or GR to

construct GE
L and GE

R. With respect to symmetry of

RCRs, we only consider how a changed cube link (ai, aj)

in GL is mapped in the new graph G. After the

expansion, the cube link (ai, aj) is removed in GE
L , and

two new cube links from the two nodes ai and aj are

introduced in GE
L , denoted by (ai, aj) and (aj, aEj ),

respectively, aEi and aEj 2 V �GE
R). Note that there is a

cube link between aj, a
E
j in GR and it is removed in GE

R.

Also, aEi and aEj are in two rings in GE
R. There exist other

cube links connecting the two rings. We can construct a

path from ai to aj in G to replace the cube link (ai, aj).

Each changed cube link in GL and GR can be expanded

in the same way. Then, we can construct the GE
L and

GE
R after the expansion. The rings related to each

changed cube link in GL and GR are exclusive to other

changed cube links. That is, GE
L and GE

R remain optimally

fault-tolerant.

Comparing to GL, GE
L replaces a changed cube link

(ai, aj) in GL with some cube and ring links in the new

graph G while the two endpoints ai and aj are mapped

to aEi and aEj in GE
L , respectively. These cube and ring

links in the new graph G whose nodes are in GE
R (except

ai and aj) form a path connecting the two nodes aEi and

aEj . The aEi and aEj in the GE
L are reduced to the ai and aj

in the GL if the highest bit of the A in the address of each

of aEi and aEj is removed. Note that the path joining ai
and aj is disjointed with the paths containing certain

changed cube links in GL due to expansion. With respect

to symmetry, the new graph after each time of expansion

remains optimally fault-tolerant. tu
An n-star is also a Cayley graph [24]. It is an undirected

graph consisting of n! nodes. Each node in an n-star graph

is assigned a unique label x0x1 . . .xnÿ1, which is a per±

mutation of n symbols f0; 1; . . . ; nÿ 1g. Each permutation is

connected to every other permutation that can be obtained

from it by interchanging the first symbol with any of the

other symbols. Obviously, the degree of the graph is nÿ 1

and the diameter is 3�nÿ1�
2

j k
. n-star graphs become an

increasingly attractive alternative to n-cube due to its

certain desirable topological features, such as vertex- and

edge-symmetries, fault tolerance, small diameter, high

bisection bandwidth, good embedding capability, and low

degree [23], [24]. The proposed RCRs also possess these

features. However, compared with n-star graphs, RCRs are

more suitable for the interconnection networks in scalable

computer systems. First, an RCR(2; r; j), r < 2, has a

constant degree of four, while an n-star graph has variable

degree nÿ 1. Second, the number of nodes of an RCR is

r � 2k�j, while the number nodes of an n-star is n!. It is easy

to see that an RCR may have much better match ratio by

selecting proper integer parameters r, k, and j. For example,

if we want to build a network with number of nodes

N � 20; 000, we may get an RCR with number of nodes

N � 18; 422 or 20,480, as shown earlier. However, an n-star

graph with n � 7 contains only 5,040 nodes (N � 5; 040)

but, when n � 8, it has 40,320 nodes �N � 40; 320�!
Obviously, the match ratio N=N 0 of RCRs is much better

(closer to 1) than that of n-star graphs. Also, more efficient
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collective communication operations such as broadcast on

RCRs can be developed by using the special plane property

of RCRs, as will be shown in the next section.

4 MESSAGE ROUTING IN RCR

Efficient routing algorithms are essential for any intercon-

nection networks. In this section, we present efficient

unicast and broadcast message routing algorithms for

RCR networks. We will assume that wormhole switching

technique is adopted in the RCR networks. Virtual channels

will be introduced to avoid the deadlock, as shown in

[15], [16].

4.1 Unicast Communication

The basic idea of the routing algorithm is similar to the

well-known e-cube routing algorithm for binary cubes [15].

It is proven that each node of an RCR(k; r; j) is on certain

CPs. In the case of k � 2, each node is located only on a

single CP. In one CP, the addresses [A; b]s of nodes show a

regular change of bit patterns such that the same k bit

positions in A of each node differ and the other bits remain

the same. An appropriate neighboring cube plane can be

chosen in the way similar to the e-cube routing. The exit

node of such a chosen CP is the node closest to the

destination. We call such a routing algorithm in Fig. 6 a

hop-plane routing algorithm. The hop-plane routing algo-

rithm can always find a shortest path from any source node

to any destination node in RCRs.
To prevent the occurrences of deadlock, two virtual

channels are set up on a physical link [15]. A node [A; b] is

assigned an integer number A� r� b. The nodes in the

network can then be ordered with the assigned numbers as

the keys. One of the two virtual channels, denoted by vc1, is

used when a message traverses a link in ascending order

from one node to another. The other virtual channel

denoted by vc2 is used when the message traverses a link

in descending order, regardless of cube links or ring links.

Let (a; c) or (�Aa; ba�; �Ac; bc�) denote a link. For a cube link,

Aa differs from Ac in one bit while ba � bc. For a ring link,

ba ÿ bcj j � 1 while Aa � Ac. It can be shown that the

message routing algorithm shown in Fig. 6 is deadlock-free.

Theorem 1. For an RCR(k; r; j), the message routing algorithm
in Fig. 6 can always find a shortest path from the source node
to the destination node, and it is deadlock-free.
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Proof. From the proof of Property 5, there is a shortest path

between any two nodes. It is easy to verify that the

routing algorithm can always find the shortest path in

terms of the definition of RCRs. According to the routing

algorithm in Fig. 6, two virtual channels denoted by vc1

and vc2 are incident to each physical link. With respect to

the order of the endpoints of a link, a message traverses

the link along different virtual channels. In case of

ascending order, the message travels along vc1. Other-

wise, the message trips along vc2. Assume that a

deadlock incurred among a sequence of messages.

According to deadlock conditions for adaptive routing

algorithms [15], [16], a cyclic dependence graph would

be constructed among these messages. Therefore, there

would exist certain messages in the sequence, which

traverses a vc1 (vc2) in descending order (ascending

order). This situation is not permitted in our algorithm.

Therefore, the routing algorithm is deadlock-free. tu
4.2 Broadcast Communication

The embedding of a complete binary tree T �h� to an

RCR(k; r; j) will be used as a broadcast tree to implement a

broadcast in which the same message from a source is sent

to all other nodes in the RCR network. A similar idea has

been widely used in wormhole-routed 2D-mesh, torus, and

hypercubes [18], [20], [21], [9], [19]. We assume that an all-

port model is adopted in which each node can simulta-

neously send (and receive) as many messages as possible to

its neighbors in the network [22]. The message passing steps

introduced in [18] will be used to measure the temporal cost

of a broadcast operation in RCRs. In this subsection, we first

show how to embedding a binary tree T �h� into an

RCR(k; r; j). We then present a broadcast algorithm based

on such an embedding tree.
An embedding, F : V ! V 0, of a guest graph,

G0 � �V 0; E0�, into a host graph, G � �V ;E�, is a one-to-
one mapping of V 0 into V such that each vertex of G0

is mapped to a distinct vertex of G. Two parameters,
expansion-cost and dilation-cost, measure the embedding
capability of a network. The ration of the numbers of the
nodes in the host graph to that of the guest graph is defined
as the expansion-cost of the embedding. The maximum
distance in G between F �x� and F �y� for any two adjacent
nodes x and y of G0 is defined as the dilation-cost of
the embedding.

The basic idea of embedding a tree T �h� with height h

into an RCR(k; r; j) is based on the contraction embedding

[17]. The two basic concepts used in finding an embedding
of a T �h� into an RCR(k; r; j) are introduced as follows: The

objective of our embedding F is to obtain as small an

expansion-cost as possible with respect to the desired

dilation-cost. For an RCR(k; r; j), the T �h� with the max-
imum level h � �log2�r� 2k�j � 1�� can be embedded into an

RCR(k; r; j�. In this case, the expansion-cost of F can be as

low as one. We introduce an embedding F with the
maximum dilation-cost being three.

Definition 6. A contraction of degree w of G�V ;E� is a graph
G0�V 0; E0� obtained by a w-partition of G, then by replacing
(contracting) each vertex subset Vi by a single vertex v0i of V 0,
and by connecting pairs of vertices (v0i, v

0
j) in G0 by an edge if

and only if there is at least one link between any vertex in the
subset Vi, and any vertex in the subset Vj in G.

Definition 7. A bounded contraction of degree w from G to G0 is
a contraction of degree w in which the degree of each vertex
v0i 2 V 0 is not greater than the number of vertices in the subset
Vi of G which were contracted to form v0i.

A bounded 4-partition of T �h�, called PT �h�, is first

obtained. We partition a T �h� into as many distinct and

exclusive subsets as possible according to the combination
of depth and width priorities. In each row, we partition as

many nodes into subsets as possible (with two brother

nodes) according to the width priority. In this case, it is

possible that a subset only has a single node. Between rows,
from up to down, we combine the partitioned subsets on

neighboring rows into a greater subset with four nodes

according to depth priority. The rules are that, 1) all nodes
in such a subset have a direct parent-child relation; 2) as

many subsets of complete binary tree as possible exist.

Three kinds of the subsets with four nodes, as shown in
Fig. 7, can partition a T �h�. The objective of our partitioning

is to embed a subtree of a T �h� to a CP of an RCR(k; r; j). It is

obvious that a lot of nodes in an RCR(k; r; j) cannot be

included by all such subsets.
A node or a ring- or cube- plane not belonging to a

partitioning is called to be idle. In our partitioning, it is

possible that some CPs are idle while the partitioning

cannot continue because the current leaves are not directly
connected to these idle CPs. This phenomenon may incur

CP conflicts such that the two nodes in different CPs

SUN ET AL.: RECURSIVE CUBE OF RINGS: A NEW TOPOLOGY FOR INTERCONNECTION NETWORKS 283

Fig. 7. Three subsets with four nodes.



without any idle nodes wish the nodes in the same CP as

their direct child nodes. In this partitioning, we hope the

dilation-cost should be less than or equal to three. It is

obvious that all CPs with node size of four contain at least

one cycle. We may adopt a transitive strategy to solve the

problem such that two neighboring idle nodes in one CP are

selected and then translated to the conflicting CP along one

path. Note that each node of the CPs in the path may

change its direct parents or children in the RCR(k; r; j). The

partitioning of an RCR(k; r; j) has dilation-cost of less than

or equal to three. Fig. 8 illustrates the two conflicts. Fig. 9

shows the final 4-partition of the RCR(2; 2; 2) after the

transitive exchange.

Lemma 1. For an RCR(k; r; j) network, a T �h� with height h can
be embedded to the RCR, where h � log2�r� 2k�j � 1�� �

,
with the dilation-cost less than three and expansion-cost one.

Proof. According to the construction of the 4-partition of the

T �h� described above, we have h � log2�r� 2k�j � 1�� �
.

The T �h� can be embedded to the RCR(k; r; j) network.

Because the RCR(k; r; j) network is a connected graph,

we can transfer two idle nodes on a CP to a conflict by

a path. Along the path, we guarantee that the first two

occupied nodes (nonidle nodes) closest to the two idle

nodes are replaced by the two idle nodes in

the 4-partition, such that their maximum distance

remains less than three. The procedure is repeated.

Obviously, the dilation-cost cannot be greater than

three. The T �h) has 2h ÿ 1 nodes, and the RCR(k; r; j)

has r � 2k�j nodes. Considering the RCR(k; r; j) network

size, the difference between the numbers of nodes of the

T �h� and the RCR(k; r; j) is so small that it can be

neglected. Thus, the expansion-cost of the embedding

should be as low as one. tu
The broadcast algorithm for an RCR(k; r; j) is to construct

an embedded complete binary tree T �h�, and first broadcast

the message along T �h�. For those nodes not belonging to

T �h�, they must be in certain RPs. In this embedding, at

least one node in each RP must belong to T �h�. In the worst

case, an RP may have only one node in T �h�. The message

can then be sent from that node to the rest of nodes in the

RP, and apparently it takes r
2

� �
steps. The upper bound of

message passing steps of the algorithm is analyzed in

Theorem 2.

Theorem 2 Given an RCR(k; r; j) network, the upper bound of
the number of message passing steps in a broadcast operation is
k� j� log2 rd e � r

2

� �
.

Proof. According to Lemma 1, a complete binary tree T �h)

can be embedded to an RCR(k; r; j), where height

h � log2�r� 2k�j � 1�� �
, with dilation-cost less than

three and expansion-cost as low as one. The T �h� can
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be used as the major part of the a broadcast tree.

The needed number of message passing steps is

h � log2�r� 2k�j � 1�� �
, in which the same message

from a root is sent to all nodes in the T �h�, with h as

the depth of the tree. According to the above broadcast

algorithm description, the message can be sent to those

nodes not in T �h� from the nodes in T �h� using at most
r
2

� �
steps. Thus, the total steps for a broadcast operation

is the sum of the two parts, h and r
2

� �
. tu

5 CONCLUSION

We have proposed a class of new topologies for an

interconnection network, named recursive cube of rings,

which are recursively constructed by adding ring edges to a

cube. We have proven that RCRs possess many desirable

topological properties in building scalable parallel ma-

chines, such as fixed degree, small diameter, plane

property, wide bisection width, and symmetry. We have

also presented and analyzed a general deadlock-free

routing algorithm for RCRs, and developed an efficient

broadcast routing algorithm using a complete binary tree

embedded into an RCR with expansion-cost approximating

to one.
With respect to incremental scalability, the proposed

RCR networks may not reach the level of scalability of the

incrementally scalable incomplete star graphs proposed in

[25], in which the gap between consecutive sizes can be

fully deleted. However, comparing to the other existing

topologies such as n-star graph and hypercube, the RCR

networks obviously have better incremental scalability as

shown in Section 3. Our future work is to develop a new

topology based on the RCR networks that can achieve the

level of the incremental scalability of the incomplete graph

while preserving it to be Cayley graphs.
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