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Abstract

We develop algorithms for histogramming, histogram modification, Hough transform, and
image shrinking and expanding on an OTIS-Mesh optoelectronic computer. Our algorithm for
the Hough transform is based upon a mesh algorithm for the Hough transform which is also
developed in this paper. This new mesh algorithm improves upon the mesh Hough transform
algorithms of [4] and [14].
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1 Introduction

It is well known that optical interconnect has superior power, speed, and crosstalk properties
compared to electronic interconnect when the interconnect distance is more then a few millimeters
[5, 18]. With this knowledge in mind, Marsden et al. [26], Hendrick et al. [9], and Zane et al. [44]
have proposed an architecture in which the processors are partitioned into groups. Within each
group electronic interconnect is used to connect the processors. Optical interconnect is used to
connect processors in different groups.

The optical transpose interconnection system ( OTIS ) was proposed by Marsden et al. [26],
where processor ¢ of group j is connected to processor j of group % via an optical connection.
Krishnamoorthy et al. [19] have shown that when the number of groups equals the number of
processors within a group, the bandwidth and power efficiency are maximized, and system area
and volume minimized. As a result, an N? processor OTIS computer is partitioned into N groups
of N processors each for our study. Figure 1 shows a 16 processor OTIS architecture. The processor
indices are of the form (G, P) where G is the group index and P the processor index within the
group.
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Figure 1: Example of OTIS connections with 16 processors

The OTIS-Mesh optoelectronic computer is a class of OTIS computers in which the electronic
interconnect within each group follows the mesh paradigm [44, 35]. A 16 processor OTIS-Mesh
computer is shown in Figure 2. The large boxes enclose groups of processors which are denoted by
small boxes. The pair of numbers g, p inside a small box represents the group ( g ) and processor (
p ) indexes. Groups are numbered in row-major fashion, as they are laid out as a two-dimensional
array. The pair (i,7) above a group denotes the row ( 7 ) and column ( j ) in which a group lies.
Electronic links are indicated by arrows inside a group, while optical links are shown by arrows
among groups. We shall refer to moves utilizing optical links as OTIS moves.

Zane et al. [44] have shown that the OTIS-Mesh computer can simulate a VN x+v/N x+v/Nx+v/N
four-dimensional mesh computer. Sahni and Wang [35] have developed algorithms for data routing
algorithms. Wang and Sahni have studied algorithms for basic operations [41] such as prefix sum,
consecutive sum, concentrate, sort, and they have also developed algorithms for various matrix
multiplication operations [42].

In this paper, we focus on four problems from the image processing area. These problems are
histogramming ( Section 2 ), histogram modification ( Section 3 ), image shrinking and expanding
( Section 4 ), and Hough transform ( Section 5 ).

As noted in [35], there are two plausible ways to map an N x N image onto an N? processor

OTIS-Mesh - group row mapping ( GRM ), and group submesh mapping ( GSM ). In GRM, the
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Figure 2: Example of OTIS-Mesh with 16 processors

N processors in each group are ordered in snake-like row-major fashion. Likewise, the group layout
is also in snake-like row-major fashion. Row ¢ of a two-dimensional image is mapped onto the
processors in group ¢ of the OTIS-Mesh. Figure 3(a) shows the GRM mapping of a 4 x 4 image
onto a 16 processor OTIS-Mesh. The pair ¢, j in each processor square is the row and column index
of the array entry.

In GSM, each group of the OTIS-Mesh denotes a subarray of size /N x v/N of the N x N image.
The four-dimensional index (gz, gy, Pz, Py) denotes processor (pg,py) of group (gz,gy). Figure 3(b)
shows the GSM mapping of a 4 X 4 image onto a 16 processor OTIS-Mesh.

Our histogramming and histogram modification algorithms are insensitive to how the image is
mapped onto the OTIS-Mesh. Therefore, these algorithms are developed without regard to the
mapping used. The algorithms for Hough transform and image shrinking and expanding depend
on the particular mapping used. In Sections 4 and 5, we develop algorithms for both the GRM and
GSM mappings.
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Figure 3: Mapping a 4 X 4 image onto a 16 processor OTIS-Mesh: (a) GRM; (b) GSM

2 Histogramming

2.1 Background

The input to the histogramming problem is an N x N digitized image I with I(i,7) being the
gray level of pixel (4,7), 0 < 4,5 < N. The gray levels are integers in the range [0, B); that is,
0 <1I(i,j) < B,0 < 14,57 < N. The histogram of the image is a vector H such that H[b] is the
number of pixels with gray value b, 0 < b < B.

Parallel algorithms to compute the histogram of an image have been developed for many parallel
architectures. For example, Siegel et al.[36] have developed a histogramming algorithm for a p
processor PASM multicomputer, p < N2, and Yasrebi et al.[43] have done this for the TRAC
multicomputer. Grinberg et al.[7] have developed an algorithm to compute the histogram on an
N2 processor cellular machine called the 3-D machine; Tanimoto [38] has developed an O(B+log N)
algorithm for a pyramid computer with an N x N base; Bestul and Davis [1] have developed an
O(VB + log(N/B)) algorithm for an N2 processor SIMD hypercube; and Jenq and Sahni [15] and
Jang et al.[12] have developed algorithms for various reconfigurable mesh models.

The histogramming algorithms of Jang et al.[12] and Jenq and Sahni [15] partition B into the
ranges 0 < B < +/N, VN < B < N and B > N and solve for each range separately. Further, where

appropriate, they consider the cases O(1) memory per processor and O(B) memory per processor.



We shall follow this strategy here also.

2.2 Algorithm for 0 < B < VN

In this case, the histogram is left in row 0 of the group (0,0) mesh. Using our four-dimensional
indexing scheme, processor (0,0,0,4) will have H[i], 0 < i < B, following the histogram computa-
tion. Our strategy is (a) compute the histogram for each row of each v/N x v/N mesh, (b) use the
row histograms to obtain the histogram for each group, and (¢) combine the group histograms into

a single histogram. More formally, our algorithm for the case 0 < B < /N is:

Step 1: Processor (g4, gy, Pz, Py) determines the number of pixels on its row of the group (g, gy)

mesh, 0 < p, < B.

Step 2: Processor (g, gy,0,py) adds up the values, along its column, that were computed in Step

1,0<p, <B.
Step 3: Perform an OTIS move on the values computed in Step 2.

Step 4: Processor (0,gy,0,0) sums up all the values received in Step 3 by processors in group

(O,Qy), 0< gy < B.

Step 5: Perform an OTIS move on the results computed in Step 4.

Step 1 is accomplished by shifting the image values first leftward and then rightward within
rows of the meshes. When an image value passes through processor (g, gy, Pz, Py), this processor
increments its counter if the image value equals p,. VN —1 leftward and B — 1 rightward shifts, for
a total of VN + B — 2 electronic moves are needed. Step 2 is done by shifting the counts upwards
along columns to row 0 of the group. This step takes /N — 1 electronic moves. In Step 4 we add
all values in a v/ N x /N mesh. This takes 2(\/N — 1) electronic moves. Therefore, histogramming
can be done with 4(v/N — 1) + B — 1 electronic and 2 OTIS moves.

Theorem 1 OQur histogramming algorithm for 0 < B < /N is optimal

Proof We need to show that every OTIS-Mesh histogramming algorithm must make 4(v/ N — 1)+
B — 1 electronic and 2 OTIS moves when 0 < B < VN. To see this, consider an image in which
I1(0,0) = B—1and I(N —1,N —1) = 0. Since 1(0,0) is mapped to processor (0,0,0,0) of the OTIS-
Mesh and since H[B — 1] is left in processor (0,0,0, B — 1), it is necessary for the histogramming



algorithm to move in formation from (0,0,0,0) to (0,0,0, B — 1), requiring at least B — 1 electronic
moves that increase the row index ( note that OTIS moves can only transpose indices, not change
their value ). Further, since I(N—1, N—1) is mapped to processor (vVN—1,v/N—1,v/N—1,v/N—1)
and HJ0] is left in (0,0,0,0), it is necessary to make at least vN — 1 electronic moves to decrease
each of the four indices g;, gy, Pz, and py, a total of 4(\/N — 1) electronic moves. Since moves that
increase an index cannot be overlapped with those that decrease an index in the SIMD model, at
least 4(v/N — 1) 4+ B — 1 electronic moves are necessary.

For the 2 OTIS moves, we see that information from all processors in group (VN —1,vV/N —1) (
say ) must get to group 0. Assume that group (vN —1,v/N —1) has at least 2 gray values. To get
information out of a group, an OTIS move must be made. A single OTIS move, however, moves
data from different processors of a group into processors of different groups. Therefore, at least 2
OTIS moves are necessary to move different data from 2 or more different processors into a single

other group. O

2.3 Algorithms for VN < B< N

We first present an algorithm that uses O(1) memory per processor. Next, we present an optimal al-
gorithm that uses O(v/B) memory per processor. Our O(1) memory per processor algorithm leaves
the histogram in the processors of group 0, one histogram value per processor. More specifically,

processor (0,0, pz,py) contains H [pzvVN + py]- The algorithm is given below.

Step 1: Processor (py,p,) of each group computes H[p,V'N + p,] for the subimage in its group.
This is done by sorting the gray values in a group using the integer sort algorithm of [20].

During the sort, equal gray values are combined into a single gray value.
Step 2: Perform an OTIS move on the H values computed in Step 1.

Step 3: Processor (0,0) of each group sums the H values in its group that were received in Step

2. That is, processor (g, gy, 0,0) computes H[g,V'N + g,] for the entire image.

Step 4: Processor (0,0) of each group performs an OTIS move on the sum computed in Step 3.

Following this move, processor (0,0, py, py) has H[p; VN + py].

Step 1 takes 4V/N + 0(\/N ) electronic moves; Steps 2 and 4 take 1 OTIS move each; and Step
3 takes 2(v/N — 1) electronic moves. The total number of moves is 6v/N + o(v/N) electronic moves
and 2 OTIS moves.



Theorem 2 Every histogramming algorithm for the case VN < B < N must make at least 5(\/N—
1)+ [(B—1)/v/N| -1 electronic and 2 OTIS moves to compute the histogram configuration obtained
by the O(1) memory algorithm. When the output configuration has the histogram in a VB x VB
submesh of group (0,0), at least 4v/'N + 2v/B — 6 electronic and 2 OTIS moves are needed.

Proof Consider the image in which the gray value of the pixel in processor (vV/N —1,v/N—1,v/N —
1,v/N — 1) is 0 and the pixels in group (vVN — 1,v/N — 1) have at least 2 different gray values.
Using the reasoning in Theorem 1, we see that at least 4(v/N — 1) electronic and 2 OTIS moves
are needed to get the histogram information from the group (v/N — 1,v/N — 1) processors to the
target processors in group (0,0).

Next, suppose that the pixel in processor (0,0,0,0) has gray value v such that v mod vN =
VN —1and |v/VN| = |(B—1)/VN| —1. Tt takes | (B —1)/v/N| —1++/N —1 electronic moves
to get information from (0,0,0,0) to (0,0, | (B —1)/v/N] —1,v/N — 1) and these electronic moves
cannot be overlapped with those used to move information from (\/ﬁ —1,vV/N—-1,V/N—-1,v/N— 1)
to (0,0,0,0). Therefore, at least 5(v/N — 1) + | (B — 1)/v/N| — 1 electronic and 2 OTIS moves are
needed to obtain the output configuration obtained by the O(1) memory algorithm.

For the VB x v/B submesh output configuration, suppose that the gray value in processor
(0,0,0,0) is B — 1. Therefore, information needs to flow from (0,0,0,0) to (0,0,vB — 1,v/B — 1),
requiring 2(v/B — 1) electronic moves that cannot be overlapped with the electronic moves made
when moving information from (v N — 1,v/N —1,/N —1,4/N — 1) to (0,0,0,0). Thus a total of
4v/N + 2v/B — 6 electronic and 2 OTIS moves are necessary. O

An optimal histogramming algorithm for the v/B x v/B submesh output configuration is possible
when O(v/B) memory per processor is available. The algorithm given below adapts the method
used in [15], and assumes that B is a perfect square and that VB divides V/'N.

Step 1: Tile each VN x /N mesh by VB x /B tiles.

Step 2: Processor i on each row of each VB x VB tile computes an array A0 : VB — 1] of values
such that A[j] equals the number of pixels in that row of the tile whose gray value is jv/B +1,
0<i<+VB.

Step 3: Processors in the same column of each tile perform a consecutive sum operation; processor
i of a tile column sums the A[i] values of the processors on its column. Following this step,

processor (i,7) of a tile has the number of pixels in its tile whose gray value is iVB+3j.



Step 4: Perform a window sum operation on the results of Step 3 using a window size v B x v/B.
This operation does not span group boundaries. The result of the window sum operation
is in the top left VB x VB window /tile of each group. Following this operation, processor
(92, 9y, 4, j) has the number of pixels in group (g, g,) whose gray value is ivB + j.

Step 5: Do an OTIS move on the values computed in Step 4.
Step 6: Processor (g, gy,0,0) sums all the values received by its group.

Step 7: Do an OTIS move on the values computed by (g, gy, 0,0) in Step 6.

For the time complexity, we see that Steps 2 and 3 take 2(v/B — 1) electronic moves each; Step
4 takes 2(\/N — \/E) electronic moves; Steps 5 and 7 take 1 OTIS move each; and Step 6 takes
2(V/'N —1) electronic moves. The total number of moves is 4v/N + 2v/B — 6 electronic and 2 OTIS

moves.
2.4 Algorithm for B > N

This case can be done with 22v/N + O(N?/8) electronic and O(N3/8) OTIS moves by modifying
the sort algorithm of [41] so that during the sort, pixels with the same gray value are combined

into a single pixel.

3 Histogram Modification

Histogram modification is the process of changing the gray values of an image based on a mapping
function f; f(i) gives the new gray value for pixels whose original gray value is i, 0 < i < B. In
histogram flattening or equalization [31], the function f is computed by first computing the prefix
sums S[i] = ;':0 H[j], 0 < i < B of the histogram. Next, f(i) is obtained using one of the

following equations
f(i) = [Sl]/B], 0 <i < B,

or

where S[—1] = 0.
In the OTIS implementation of histogram flattening, we explicitly consider only the case B = N.

Other values of B may be handled similarly. The prefix sums may be computed from the histogram



( which is in group 0 ) using 3(v/N — 1) electronic moves [41]. To compute f using the first equation,
no additional moves are needed. When the second definition is used, additional electronic moves
are needed to shift the prefix sums by 1 processor.

Following the computation of f, the gray values of all pixels must be updated according to f.
When we are limited to O(1) memory per processor, this updating of pixel values may be done
by first performing a window broadcast of the f values to all groups. This broadcast can then be
followed by a random access read ( RAR ) in which each processor obtains the needed f value from
within its group. The window broadcast takes 2(v/N — 1) electronic moves and the RAR takes
23v/N + o(V/N) electronic moves [41]. Thus, the updating phase takes 25v/N + o(v/N) electronic
and 2 OTIS moves.

When O(vN) ( = O(vB) ) memory per processor is available, the updating of group values
may be done by first doing a window broadcast of the f values as was done in the O(1) memory case.
Next, each processor accumulates the f values in the /N processors that are in its column. This
accumulation is done in an array C. For a processor in column j of its group, C[i] = f(ivVN+7), 0 <
i,j < v/N. This accumulation step takes 2(v/N — 1) electronic moves. Following the construction
of the C' arrays, each processor sends a token to the processor on its row that has the f value it
needs. When the token reaches the target processor, the f value is written into the token, and
the token returned to the originating processor. This token send/receive step can be broken into
two phases — one in which tokens are sent to and received from processors to the left of the source
processors and another in which the target processors are to the right. Each of these phases takes
2(V/'N —1) electronic moves. Thus, the O(v/N) memory algorithm takes 8(v/N — 1) electronic and
2 OTIS moves to update the gray values following the computation of f.

The complexity of the O(v/N) memory updating algorithm can be reduced to 6(v'N — 1)
electronic and 2 OTIS moves if the histogram computation phase saves, in processors 0 and v N —1
of each row of a group, the gray values of all /N pixels in that row. This can be done without
increasing the number of moves taken by the histogramming algorithm. When processors 0 and
VN — 1 of each row know the gray values of all pixels in their row, the pixel values can be updated
using the C' arrays in 2(v/N — 1) electronic moves rather than in 4(v/N — 1) electronic moves.
In the new method, processor 0 of each row initiates token ¢ /5, . /7 o, ---, t1 in that order.
Token t; contains the gray value of the pixel in processor i of the row. The tokens move rightward,
one processor at a time. When a processor receives a token, it checks the token’s gray value and

appends the updated value for that gray value in case this updated value is stored in the processor’s



C array. The rightward token moves are made for exactly vV N — 1 steps. Following this, processor
VN —1 of each row initiates tokens 2o, i1, ..., {,77_, that move leftward for exactly V' N —1 steps.
At the end of these moves, each processor should have received a pair (3, f(i)) where i is the original

gray value in the processor.

4 Shrinking and Expanding

4.1 Background
Let I be an N x N image and let By,;1[i, j] represent the pixel block:
{[u,v]|0 < u,v < N,max{|u —il|,|v — j|} < ¢}

The ¢-step expansion, E?, and the g-step shrinking, S, of I are given by the equations [33]:

E1[i, j] = max{I[u,v]|[u,v] € Bag41[i,jl}, 0 <4, 5 <N
Sq[iaj] = min{[[uav]”u’v] € B2q+1[iaj]}a 0 S iaj <N

Rosenfeld [33] has developed an O(k) algorithm to compute E?"~1 and $2°~! at coarsely resam-
pled points using a pyramid computer with an N x N base. Jenq and Sahni [16] develop an O(,/q)
time algorithm to compute E? and S? exactly on an N x N base pyramid. Ranka and Sahni [32]
have developed an O(log N) time algorithm to compute E9 and S? exactly using an N? processor
hypercube computer. Jenq and Sahni have developed an O(1) time RMESH algorithm to compute
E? and S? for binary images [13].

Since image expansion and shrinking are computationally equivalent, we discuss only image
expansion explicitly. Following Ranka and Sahni [32], we compute EY using the decomposition

given below.

E9i, 5] = max{top?i,j], bottomi[i,j]}, where
top?[i,j] = max{RIu,j]|0 <i—u<gq}, and
bottom?[i,j] = max{Ru,j]|0 <u—1i<q}.
RYi,j] = max{lefti[i,j],right?[i,j]}, where
leftii,j] = max{I[i,v]|0 <j—v<gq}, and
right?li,j] = max{I[i,v]|0 <v—j < g}

10



The algorithm to use to compute right? depends on whether the image is mapped onto the

OTIS computer using the GRM or the GSM mapping.
4.2 GRM Mapping

In the GRM mapping, each row of the image is mapped onto an OTIS group in snake-like order.
A simple way to compute right? is to shift the gray values leftward by ¢ units along the snake.
A left shift by 1 takes 1 electronic left move, 1 electronic right move, and 1 electronic up move.
Therefore, right? can be computed using a total of 3¢ electronic moves. We can overlap the left and
right electronic moves required to compute left? and right? so that the total number of moves in
each of the four mesh directions is g. That is, we can compute left? and right? using 4q electronic
moves. To compute top? and bottom?, we first do an OTIS move so that each column of R? is in a
single group in snake-like order; then we run the left? and right? algorithm; and finally do another
OTIS move to get the E? values back in the proper locations. Thus £E? can be computed using 8¢
electronic and 2 OTIS moves. When ¢ > 1.25v/N, this simple strategy can be improved upon as
below.

When ¢ > 1.25v/N, right? of a column 0 processor on an even indexed row ( within a group
) depends on the v/N — 1 values to its right and on the same row, all values on the following
q; = [(q=VN+1)/VN| = [(¢+1)/vVN]| -1 rows, and g, = ¢— VN +1—¢;V/N = (¢+1) mod VN
values in the row g7 + 1 rows away ( Figure 4(a) and (b) ). Likewise, right? of a column v'N — 1
processor on an odd indexed row depends on the v/N — 1 values to its left and on the same row, all
values on the following ¢y rows, and ¢, values in the row gy + 1 rows away ( Figure 4(c) and (d) ).

Also, right? of a column 4 processor on an even indexed row, i # 0, depends on the VN —i — 1
values to its right and on the same row, all values in the following ¢; rows, and an additional
gm + % values ( Figure 5(a) and (b) ). Similarly, for a column ¢ processor on an odd indexed row,
i # VN — 1, right? depends on the i values to its left and on the same row, all values in the
following gy rows, and an additional g, + % values ( Figure 5(c) and (d) ).

When ¢, = 0 or 1, the additional g, + 4 values lie on a single row for all 7 € [0, VN — 1]. When

gm = 0 or 1, we use the following steps to compute right?.

Step 1: Column 0 processors compute the maximum gray value in their row.

Step 2: Column 0 processors shift the maximum computed in Step 1 up column 0 for g; steps.

Each column 0 processor computes the max of the gy values it receives.

11
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Step 3: Each processor shifts its image value up by ¢y + 1 rows. Following this step, each row has

the additional v N values it needs from a row ¢y + 1 rows away.

Step 4: right? may now be computed by circulating the original image values in a row, the addi-

tional values from a row gy + 1 away, and the max value of the intermediate ¢; rows.

Step 1 takes VN — 1 leftward moves, Step 2 takes gy upward moves, and Step 3 takes gy + 1
upward moves. For Step 4, we note that in some rows, the original row values are to be shifted left
while in others, these are to be shifted right. Rows which require a left shift of same row values,
require a right shift of the row gy + 1 away values, and rows that require a right shift of same
row values, require a left shift of row ¢; + 1 away values. So, the same row and row q; + 1 away
values can be circulated through the processors that need these values using 2(v/N — 1) electronic
moves. The rightward circulation of the max value of the intermediate rows can be done with one
additional move by pipelining it with the rightward moves for that row. The total number of moves
for the computation of right? is 3(VN — 1) + 2¢; + 2 = 3V/N + 2¢g; — 1 electronic and 0 OTIS.
The computation of left? requires only 2(v/N — 1) + 2qf + 2 electronic moves because the row
max values need not be recomputed. Thus the left? and right? values may be computed using a
total of 5(v/N — 1) + 4q; + 4 electronic moves. top? and bottom? can be computed similarly using
5(VN — 1) + 4q; + 4 electronic and 2 OTIS moves. Thus the total number of moves to compute
E9is 10(v/N — 1) + 8¢ + 8 electronic and 2 OTIS moves.

When ¢, > 1, the additional values needed to compute right? lie on two rows — one is gy + 1
away and the other is ¢y + 2 away. The number of gray values needed from a row gy + 2 away is
gm — 1. These g, — 1 values can reach the row that needs them if Step 3 of the ¢, < 1 algorithm
shifts upwards for ¢y + 2 steps, rather than gy + 1. So, only one additional upward move is needed.
The row g7 + 2 values can be circulated in Step 4 by pipelining their movement along with that of
the row gy + 1 values. This increases the leftward and rightward moves by g, — 1 each. The total
move count for right? increases by 2q,, — 1 over that for the case ¢,, < 1. The new count for E?

becomes 10(v/N — 1) + 8¢ + 8¢y, + 4 electronic and 2 OTIS moves.

4.3 GSM Mapping

The strategy to compute E? when a GSM mapping is used is similar to that used for a GRM
mapping. Notice that in a GSM mapping, a row of the image is distributed over v N groups with
V' N row elements per group ( Figure 6 ).
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Figure 6: Data required in GSM mapping

We consider three cases: (a) ¢ < VN, (b) ¢f = [(¢— VN +1)/VN] = [(g+1)/VN| -1#0
and ¢, = (g+1) mod VN =0, and (c) ¢; > 0 and g,, # 0. The case g; = 0 and g,,, < 1 is included
in (a).

When g < VN, the gray values needed to compute right? for processor (g, gy, Pz, py) are in
(92> 9ys Pz, *) and (gz, gy + 1, pg, *). The Steps to compute right? are:

Step 1: Perform the following sequence of moves on the gray values:

(gmagy + ]-7pa:7py) i> (pwapyagxagy + 1)
i) (pccapyag:cagy)

(0]
— (92> 9y PasDy)

This moves gray values from (gz, gy + 1,0z, Py) t0 (92, 9y, Pz, Py)- Now. each row in a group

has all the gray values needed to compute right? for all processors in the group row.
Step 2: Shift original gray values leftwards within a group row by ¢ units.

Step 3: Shift gray values received in Step 1 rightwards by v/N — 1 units.

Steps 2 and 3 cause all data needed by a processor to go through the processor, enabling the
processor to compute its right? value. The total number of moves needed for the case ¢ < VN is
V'N + q electronic and 2 OTIS moves. The moves needed to compute E? become 4v/N + 4q.

When ¢gf # 0 and ¢, = 0, the right? value of (g4, gy, Ps,py) is the max of I(gs, gy, Pz, Py),
the value to the right of (gs, gy, Pz, Py) and in the same row and group, the max of the values in
(92> 9y + 4, Pz, %), 1 < i < g, and some of the values (gz,9y + g5 + 1, Pz, %) ( but not (g, gy + g5 +
1,pz,V/N — 1) ). The steps to use are:
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Step 1: Processor (gz, gy, Px,0) determines the max of the gray values in (gz, gy, Ps, *)-
Step 2: Processor (gg, gy, Pz, Py) sends its gray value to (gz, gy, Pz, Py +1), 0 <py < VN — 1.

Step 3: Perform the following move sequence on the max values computed in Step 1:

(gzagyapzaﬂ) i> (pza()agzagy)
i) (p:va()agz‘agy - 1)
i> (pmaoagzagy - 2)
i) (panagwagy _qf)
i) (gwagy - qfapwao)

During the electronic moves, each processor computes the max of the ¢y max values that pass

through it.

Step 4: Perform the following move sequence on the shifted values of Step 2. Note that p, # 0.

(9> Gys PzsPy) — (P Py, Gz Gy)

— (pmapyagl‘,gy - 1)

— (pzapyagmagy - Qf - ]-)

— (gwagy _qfapl‘apy)

This moves the additional values that processors in group (g, gy) need from group (gz, gy +

gr +1).

Step 5: Shift the max of the max’ in (gz, gy, Py, 0) ( received in Step 3 ) and the additional values
received in Step 4 by (9z, gy, Pz, Py), Py 7 0, rightwards V/N — 1 times within a group row.

Step 6: Shift original values leftward v/N — 1 times within a group row.
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a1

I[P, *]

Figure 7: Data required in GSM mapping when ¢y = 0 and g, # 0

Steps 5 and 6 cause all data needed by a processor to go through it and enable the processor to
compute right?. Step 1 requires v/ N — 1 electronic moves, Step 3 requires 2 OTIS and g electronic
moves, Step 4 requires 2 OTIS and ¢y + 1 electronic moves, and Steps 5 and 6 each require VN -1
electronic moves. Note, however, that all moves of Step 3 can be overlapped with moves of Step 4.
Moreover, Step 6 can be combined with Step 1. Therefore right? can be computed using 2v/N + a5
electronic and 2 OTIS moves.

When computing left?, Step 1 can be omitted as the max values have already been computed
and Step 2 is not required either. However, Step 6 contributes v/N — 1 electronic moves now.
So left? can be computed with an additional 2v/N + qr — 1 electronic and 2 OTIS moves. top?
and bottom? can be computed similarly. The total number of moves needed to compute E? is
8v/N + 4q; — 2 electronic and 8 OTIS moves.

The final case to consider is when ¢y > 0 and ¢, # 0. If ¢y = 0, we may assume g, > 1 because
the case gy = 0 and gy < 1 is covered by the case ¢ < V/N. Now we need to shift values from two
adjacent groups ( Figure 7 ); V/N from the group on the right and g,, — 1 from the group two to

the right. This shifting can be done using the move sequence

(gx,gy,pm,py) pmapyagmagy)

(

(P2 Pys 9z Gy — 1)
(Pes Dys 9z, Gy — 2)
(

lol =l

gz, [gy - 1793/ - 2]apzapy)

In the last OTIS move, two values from each processor are moved. These are the two values
that pass through the processor during the two electronic moves stated above. To compute right?,
we must now shift the original gray values leftward within each group v N — 1 times, shift the

values from the right adjacent group leftward ¢,, — 1 times, and shift the values from the group
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two away rightward v/ N — 1 times. The computation of right? takes 2 OTIS and 2v/N + ¢, — 1
electronic moves. left?, top?, and bottom? may be similarly computed. The total number of moves
to compute EY is therefore 8v/N + 4¢,, — 4 electronic and 8 OTIS.

If g > 0, we must also compute the max of the values in the intermediate gy groups as was

done for case (b). This adds 4q; electronic and 0 OTIS move to the computation of E9.

5 Hough Transform

5.1 Background

The Hough transform is used to detect straight lines or edges in an image. The p angle Hough

transform [32] of an N x N image I is a two-dimensional array H such that

H[T,j] = |{(.’L‘,y)|’f‘ = I_.’L'COSOJ' +ySiIl0jJ, 9] = %(.7 + 1) and I[.’L',y] = 1}|

Here j has the values 0, 1, ..., p—1. These values of j correspond to the p angles 6; = %(j +1).
Since 6; is in the range (0, 7] and since 0 < z,y < N, i is in the range [—v/2N,/2N].

Parallel algorithms to compute the Hough transform have been developed for several architec-
tures. Chaung and Li [2] and Li et al.[23] do this for systolic arrays; Rosenfeld et al.[34], Kannan
and Chaung [17], Cypher et al.[4], Guerra and Hambrusch [8], and Silberberg [37] consider mesh
computers; Fisher and Highnam [6] use a scan line array; Ibrahim et al.[10] uses a SIMD tree; Li
et al.[21, 22], Maresca et al.[25], use a polymorphic torus; Ranka and Sahni [32] use hypercube
computers; Choudhary and Ponnusamy [3] and Thazhuthaveetil and Shah [39] use shared-memory
multiprocessors; Jenq and Sahni [14] and Olariu et al.[29] use reconfigurable meshes; and Pavel
and Akl [30] use optical arrays. Illingworth and Kittler [11] provide a survey of work related to the

Hough transform.

5.2 An Improved Algorithm For N x N Meshes

Our development here is based on the work of Jenq and Sahni [14], which itself is closely related to
the work reported in several of the other references cited above. The computation of H is generally
broken into four phases; each phase computes H for a certain range of ;. The four ranges are
(a) 0 < 0; < w/4, (b) /4 < 8; <72, (c) 72 < 0; < 3r/4, and (d) 37/4 < §; < w. Since the
computation of H in each of these §; ranges is similar, the computation is explicitly described for

only one of the four ranges. As in [14], we explicitly consider only the case 7/2 < §; < 37 /4.
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Figure 8: Coordinate system used in Hough Transform

Jenq and Sahni [14] have shown how to compute H|r,j] for » > 0 and j such that 7/2 < §; <
37 /4 on a two-dimensional mesh computer by starting tokens on two boundaries of the mesh and
successfully moving these tokens towards the remaining two boundaries. These tokens accumulate
the H|r,j| values. When we use the normal convention of locating the original of the coordinate
system at the bottom-left corner of the and so at the bottom-left corner of the N x N mesh ( see
Figure 8 ), tokens originate at the left and bottom boundaries of the image/mesh and move up and
right till they reach either the top or right boundary. For 7/2 < 6; < 37/4, the rules governing token

movement are derived from the following facts. Here 0 is the angle and r(z,y) = |z cos @+ ysinf|.
(a) If r(z,y) = r(z,y + k) for some k > 0, then k = 1.

(b) If r(z,y) =r(r+1,¢), thenc=yorc=y + 1.

(¢) Ifr(z,y) =r(z,y+1)=r(z+1,c), thenc=y + 1.

(d) Ifr(z,y) #r(z,y+1) for z >z, then r(z,y) # r(z,w) for w > y.

Using these facts, we arrive at the following algorithm to compute H][r,j] for a single angle

0=0,.

Step 1: [ Create Tokens on Left and Bottom Boundaries | Processor (0,y) creates the token
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(sinw, cosv,r,n) = (sinf, cos0,7(0,y), I[0,y]) provided r(0,y) # r(0,y — 1). Processor (z,0)
creates the token (sin@,cos@,r(z,0), I[z,0]) provided r(z,0) # r(z — 1,0).

Step 2: [ Move Tokens Up | Let (sinv,cosv,r,n) be the token ( if any ) in processor (z,y). If
r =r(z,y+1) or v # r(x + 1,y), move the token to (z,y + 1). If (z,y) receives a token

(sinv,cosv,r’,n') in this step, it increments n' by I[z,y] provided r’ = r(z,y).

Step 3: [ Move Tokens Right | All tokens move right from (z,y) to (z + 1,y). If (z,y) receives a

token (sinv, cosv,r’,n') in this step, it increments n’ by I[z,y] provided r' = r(z,y).
Step 4: Repeat Steps 2 and 3 until all tokens reach the top or right boundary.
Theorem 3 The four step procedure given above is correct.

Proof To establish the correctness of this procedure, we must show that every token (sinv, cosv,r,n)
visits all processors (z,%) for which r(z,y) = . Note that when 7/2 < 8 < 37 /4, —1/v/2 < cosf <
0, 1/v/2 < sinf < 1, and sinf + cos§ > 0. Consider the configuration following Step 1. If token
(sinv,cosv,r,n) is in (0,y) then all (z, z) for which r(z,z) = r satisfy £ > 0 and z > y. Further,
if the token is in (z,0), then all (z,y) for which r(z,y) = r satisfy z > z and y > 0. Therefore,
all unreached processors with the same r value can be reached by making upward and rightward
moves along. For any token (sinwv,cosv,r,n) in processor (x,y), let property P be: all unreached
processors (u,v) with r(u,v) = r have v > z and v > y ( i.e., these processors can be reached by
making upward and rightward moves alone ). We have already shown that P holds following Step
1. We shall show that this property holds following each execution of Steps 2 and 3. Therefore the
algorithm is correct. To establish the result, we will also need to show that at the start of Step
2 r(z,y) = r ( so, we need not check r' = r(z,y) in Step 3 ). The first time Step 2 is initiated,
r(x,y) = r and so this condition holds. Call this condition ). Assume, for the induction hypothesis,
that P and @ hold at the start of each execution of Step 2.

Consider a token that moves up in Step 2. Suppose that r = r(z,y). If r = r(z,y+1) also, then
r=r(z,y) =r(z,y+1). From fact (c) it follows that r # r(z + 1,y). From this and cos @ < 0, it
follows that r > r(z + 1,y) > r(z + j,y), j > 2. Therefore following the upward move of the token,
property P still holds for the token. From fact (a), r = r(z,y) = r(z,y+1), and sinf > 0, it follows
that r < r(z,y+7), j > 2. Therefore, following the rightward move of this token in Step 3, property
P again holds. Following the Step 3 move of the token, the token is in processor (z + 1,y + 1) and
r(z+1,y+1) = [(z+1) cos O+ (y+1)sinf] = |z cosO+ysinf+cosf+sinf| > |z cosf+ysinf| =r
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( because cos @+sinf > 0 ). This, together with the knowledge that r = r(z,y+1) > r(z+1,y+1),
implies that r(z + 1,y + 1) = r. So condition @ holds after Step 3.

Next, suppose that r = r(z,y), 7 # r(z,y + 1), and r # r(z + 1,y). Again, the token moves
to (z,y + 1) in Step 2. Since —1/v/2 < cos@® < 0, r(z+ 1,y) = r —1 > r(z + j,y), j > 2.
Therefore moving the token up to (z,y + 1) preserves property P. P is also preserved following
the rightward move made in Step 3 because r(z,y + j) > r(z,y + 1) =7+ 1, j > 2. Further, since
1/v2 <sinf < 1,r(z,y+1) =r+1. Since r(z+1,y+1) € {r(z,y+1),r(z,y+1)—1} = {r+1,r}
as well as in {r(z + 1,y),r(z + 1,y) + 1} = {r — 1,7}, r(z + 1,y + 1) = r. Therefore @ also holds
following Step 3.

If a token does not move up in Step 2, then r = r(z,y) = r(z + 1,y) at the start and end of
Step 2. Following Step 3, the token has moved to (z + 1,y) and so condition @ holds. Also since
r#r(z,y+1) and sin@ > 1/v/2, r < r(z,y +1) < r(z,y + j), j > 2. Therefore the right move of
Step 3 preserves property P also. O

Theorem 3 establishes the correctness of our N X N mesh single angle Hough transform algorithm
by showing that each token goes through every processor with the same r value as that of the token.
For the complexity analysis, we first observe that there can never be more than one token in any
processor. To see this, observe that when the algorithm completes in Step 1, no processor has more
than 1 token. If two tokens ¢; and to end up in the same processor following Step 2, then £; must
be in (z,y) and t9 in (z,y + 1) prior to the upward move of Step 2. Further, in Step 2, ¢; must
move to (z,y + 1) and ¢y must remain in (z,y + 1). From condition @ of Theorem 3, we know
that the r value r1 of token ¢; must be r(z,y) and ro = r(x,y + 1). Since all tokens in the same
column must originate in the same column ( because tokens move right at the same rate ), r1 # ro (
alternatively, since all tokens have different r values, r; # ry ). Therefore, ro = r(z,y+1) =7 + 1.
For t; to move up and t; to remain in (z,y + 1), we must have r(x + 1,y) = 1 — 1 ( this causes t;
to move up ), 7(z + 1,y + 1) = r1 + 1 ( this causes t2 to not move up ). However, r(z + 1,y) and
r(z + 1,y + 1) can differ by at most 1. Therefore, this condition is not possible and so two tokens
cannot be in the same processor following Step 2. Since all tokens move right in Step 3, two tokens
cannot be in the same processor after Step 3 unless they are in the same processor before Step 3.
Therefore, it is not possible for two tokens to ever be in the same processor.

Since tokens are always in different processors, the upward move of Step 2 can be done in one
time unit and the rightward move of Step 3 can be done in another time unit. Since tokens can

make at most N — 1 right moves before reaching the right boundary, at most N — 1 iterations
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of Steps 2 and 3 are needed. Therefore, the single angle Hough transform can be computed with
2(N — 1) moves. This represents an improvement over the algorithm of Jenq and Sahni [14] which
takes 3(N — 1) moves to compute the single angle Hough transform.

To compute the p angle transform, we modify the basic one angle algorithm so that the token
originating in (x,0) is created only when the tokens that originated in (0,y) reach column z; that
is, the (z,0) token is created after z rightward moves have been made in Step 3. With this change,
all tokens are always in the same column and correctness is not affected. Further, when tokens
reach the top or right boundary, they start moving down from the top boundary or left from the
right boundary. This avoids an accumulation of multiple tokens in the same boundary processor.

Since the modified algorithm uses only one column of the N x N mesh at any time ( excluding the
backward movement of tokens from the top and right boundaries ), we can pipeline the computation
for all p/4 angles in the range 7/2 < 6 < 37 /4. The total computation takes 3(N —1)+4(p/4—1) =
3N + p — 7 moves. The number of moves needed for all p angles is 12N + 4p — 28. A final sort step
is needed to create the array H in the desired format. This takes an additional (4 4+ €) N moves

[28].
5.3 GRM Mapping

We can simulate the single angle Hough transform algorithm of Section 5.2 as well as the modified
version of this algorithm on an N? processor OTIS-Mesh in which the image has been mapped using
the GRM mapping. Each execution of Step 2 can be done with 2 OTIS moves and 3 electronic
moves, and each execution of Step 3 takes 3 electronic moves. The total number of moves for the
single angle transform becomes 6(N — 1) electronic and 2(N — 1) OTIS moves. To compute the
transform for all p/4 angles in the range 7/2 < 6 < 37 /4 takes 7(N —1)+8(p/4—1) = TN +2p—15
electronic and 2(N — 1) 4+ 2(p/4 — 1) = 2N + p/2 — 4 OTIS moves, and to compute the transform
for all p angles takes 28N + 8p — 60 electronic and 8 N + 2p — 16 O'TIS moves, exclusive of the final

sort step.

5.4 GSM Mapping

When the GSM mapping is used, H[r, 5] is to be left in processor (|r/V/N|, |j/V/N],r mod v/N, j mod
VN )- Since —V2N < r < /2N, each processor gets at most 2 values. For each set of p/4 angles,
we compute H using the pipelined v/N x v/N mesh algorithm of Section 5.2 in each group of the
OTIS-Mesh. However, this pipelined algorithm is interrupted after the tokens for the kv/Nth an-
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gles, 1 <k < Lﬁj, reach the top and right boundaries of a group. When the pipelined algorithm

is interrupted, we combine partial H values from the entire OTIS-Mesh using these steps:

Step 1: Rearrange the tokens in each group for the /N angles just computed. The token for
H[r,j] is to be in processor (x,*,7 mod v/N,j mod v/N); here j is an angle index.

Step 2: Perform an OTIS move on the tokens that were rearranged in Step 1. Now, tokens that

contribute to H][r, j] are in (r mod v/N,j mod VN, *, ¥).

Step 3: Combine and rearrange the tokens in each group so that the token for H|r, j] is in processor

(r mod VN, j mod VN, |r/V'N], |j/VN]).

Step 4: Perform an OTIS move on the tokens. Now, the token for H[r, j] is in (|r/V/N|, | j/V/N],r mod
VN, j mod v/'N).

Steps 1 and 3 can each be done in 4v/N +0(v/N) electronic moves using the mesh integer sorting
algorithm of Krizanc [20]. So the total number of moves needed to combine the results for v N
angles is 8/N + o(v/N) electronic plus 2 OTIS. For all p angles, the number of moves to do the
combining becomes 8p + o(v/N) electronic and 2p/v/N OTIS. Adding in the time spent running
the pipelined algorithm of Section 5.2, we get a total count of 12v/N + 12p — 28 electronic moves
and 2p/v/N OTIS moves.

6 Conclusion

We have improved upon the N x N mesh Hough transform algorithms of [14] and [4]. We are able
to compute the p angle Hough transform using 8(N — 1) + 8(p/4 — 1) moves whereas the algorithm
of [14] takes 12(N — 1) 4+ 8(p/4 — 1) moves and that of [4] takes 48N + 20p + 4 moves ( exclusive of
the final sort step ). The p angle Hough transform algorithms takes 28 N + 8p — 60 electronic and
8N + 2p — 16 OTIS moves when the GRM mapping is used, and 12v/N + 4p — 28 electronic moves
when GSM mapping is used ( both exclusive of the sort/combine step ).

The histogramming algorithm we developed takes 4(v/N — 1) + B — 1 electronic and 2 OTIS
moves when 0 < B < /N, 22v/N 4+ O(N?/8) electronic and O(N3/8) OTIS moves when B > N,
and when VN < B < N, 6v/N + o(V/N) electronic moves and 2 OTIS moves for O(1) memory per
processor, and 4v/N + 2v/B — 6 electronic and 2 OTIS moves for O(\/E) memory per processor.
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For histogram modification, our algorithm for O(1) memory per processor case takes 28vV/N +
o(v/N) electronic and 2 OTIS moves, and that for the O(v/N) memory per processor case takes
9(v/N — 1) electronic and 2 OTTS moves.

Our algorithm for image shrinking and expanding takes 10(v/N — 1) + 8 + 8¢y, + 4 electronic
and 2 OTIS moves when the GRM mapping is used and 8VN + 4q5 + 4qpm, — 4 electronic and 8
OTIS moves when the GSM mapping is used.
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