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Symbolic Model Checking
for Self-Stabilizing Algorithms

Tatsuhiro Tsuchiya, Member, IEEE, Shin'ichi Nagano, Member, IEEE,

Rohayu Bt Paidi, Member, IEEE, and Tohru Kikuno, Member, IEEE

AbstractÐA distributed system is said to be self-stabilizing if it converges to safe states regardless of its initial state. In this paper we

present our results of using symbolic model checking to verify distributed algorithms against the self-stabilizing property. In general, the

most difficult problem with model checking is state explosion; it is especially serious in verifying the self-stabilizing property, since it

requires the examination of all possible initial states. So far applying model checking to self-stabilizing algorithms has not been

successful due to the problem of state explosion. In order to overcome this difficulty, we propose to use symbolic model checking for

this purpose. Symbolic model checking is a verification method which uses Ordered Binary Decision Diagrams (OBDDs) to compactly

represent state spaces. Unlike other model checking techniques, this method has the advantage that most of its computations do not

depend on the initial states. We show how to verify the correctness of algorithms by means of SMV, a well-known symbolic model

checker. By applying the proposed approach to several algorithms in the literature, we demonstrate empirically that the state spaces of

self-stabilizing algorithms can be represented by OBDDs very efficiently. Through these case studies, we also demonstrate the

usefulness of the proposed approach in detecting errors.

Index TermsÐSelf-stabilization, automatic verification, symbolic model checking, distributed algorithms.

æ

1 INTRODUCTION

ADISTRIBUTED system is said to be self-stabilizing if it
satisfies the following two properties: 1) Convergen-

ceÐthe system reaches a safe state regardless of its initial
state, and 2) closureÐonce the system reaches a safe state, it
continues to be within the set of safe states. The idea of self-
stabilization was first introduced to computer science by
Dijkstra [5]. This idea, which originally had a very narrow
scope of application, has attracted much research interest in
recent years (cf. [22]). In general, a self-stabilizing system
has two useful properties: 1) It need not be initialized, and
2) it can recover from transient faults that may change its
state. These properties are very useful in distributed
environments where no centralized control exists.

In this paper, we discuss automatic verification of self-

stabilizing algorithms. Automatic verification is relatively

unexplored in the field of self-stabilizing algorithms, due to

its awkwardness.
There are two distinct traditions in automatic verifica-

tion. One is mechanical theorem proving, and the other is model

checking. The first approach has been discussed by several

researchers in the context of self-stabilizing algorithms.

In [19], Prasetya verified a self-stabilizing minimum-cost

routing algorithm using the HOL proof checking system [9].

In [20], Qadeer and Shankar applied PVS [17] to prove the

correctness of Dijkstra's self-stabilizing ring algorithm [5].

Recently, Kulkarni et al. [15] also proved the correctness of

the Dijkstra's algorithm using PVS in a different fashion.

Generally, mechanical theorem proving is a highly power-

ful and flexible approach. For example, it can be used for

reasoning about infinite state systems. Unfortunately, this

approach can involve generating and proving many

lemmas to verify the correctness of systems. Although this

process can be automated to some extent by means of proof

checking systems, proofs must still be constructed mainly

by hand. Consequently, mechanical theorem proving can be

performed only by experts who have considerable experi-

ence in logical reasoning.
The second approach to automatic verification, the

model checking, is the process of exploring a finite state

space to determine whether or not a given property holds.

This is often the easiest way to verify distributed algo-

rithms; however, it is more limited. This leads to dis-

advantages, such as only being able to apply it to finite state

systems, and it is impractical when the state space is very

large, even though it is finite. The latter problem, which

often occurs when the system being verified has many

components, is usually referred to as the state explosion

problem.
At the same time, model checking has two remarkable

advantages; first, it is fully automatic and its application

does not require the user to have mathematical knowledge

such as theorem proving. Second, when the design fails to

satisfy a desired property, the process of model checking

produces a counterexample that demonstrates a behavior

which invalidates the property. Therefore, the use of model

checking can be useful for algorithm designers who need to
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validate distributed algorithms, especially in early stages of
development.

However, since the state explosion problem is especially
serious in verifying a self-stabilizing algorithm, applying
model checking to them has not been successful so far (note
that since any state can be the initial state, the set of the
reachable states is exactly the same as the Cartesian product
of sets of states of all components). As far as we know, the
only work that reports the results of using model checking
for verifying self-stabilization is the one by Shukla et al.
[23]. For two distributed algorithms, they verified whether
the system converges to safe states from a given initial state,
using a software tool called SPIN [12]. Nevertheless, their
method cannot be directly used for verifying whether this
property holds for all possible initial states. This problem
can be alleviated by minor modifications that allow any
state to be an initial state. As shown later, however, these
modifications render the method infeasible even for small
systems.

To overcome the problem of applying model checking to
self-stabilizing algorithms, we propose to use CTL symbolic
model checking (symbolic model checking, for short). This
method controls the state explosion problem by using
Boolean functions to implicitly represent the state space.
Since Boolean functions can be often represented by Ordered
Binary Decision Diagrams (OBDDs) very compactly, the
symbolic model checking method can reduce the memory
and time required for analysis. By manipulating the
Boolean functions, the method can determine whether a
system meets a given property that is specified using CTL
[3], a branching time temporal logic.

Compared to other model checking approaches, the
symbolic model checking method has several features that
are appropriate for verifying self-stabilizing algorithms.
First, since most of the computations required by the
method do not depend on reachability of states, the
property that any state can be the initial state never
becomes an obstacle to verification. Second, the self-
stabilizing property can be expressed by a simple CTL
formula. Third, as will be empirically shown later, the state
spaces of self-stabilizing systems can be represented very
compactly by using OBDDs. Besides, a symbolic model
checking tool called SMV (Symbolic Model Verifier) [16] is
widely available.

In this paper, we investigate how we can verify
algorithms against the self-stabilizing property by using
SMV. To illustrate the feasibility of our approach, we
describe the results of applying it to several algorithms
proposed in the literature. During the verification process,
we found an error in one of these algorithms [26].

The remainder of this paper is organized as follows: In
the next section, we describe the concept of self-stabilizing
algorithms; in Section 3, we briefly explain symbolic model
checking and the symbolic model checker SMV. In Section 4,
we present how to verify distributed algorithms against the
self-stabilizing property by using SMV. By applying the
approach to several algorithms, we demonstrate its applic-
ability in Section 5. For comparative purposes, we show the
results of using SPIN, a model checker based on explicit
state enumeration, for validation of a self-stabilizing

algorithm in Section 6; and we conclude our paper with a
brief summary in Section 7.

2 SELF-STABILIZING ALGORITHMS

2.1 Models and Definitions

We consider a distributed system that consists of
n processes, p0; p1; p2; � � � ; pnÿ1. For convenience, the sub-
scripts on pi are assumed to be modulo n. The topology of
the system is modeled by an undirected graph of which
each vertex corresponds to a process. Process pi can
communicate with another process, pj, if pi and pj are
adjacent to each other on the graph.

We consider two models of communication: In the state-
reading model, each process can directly read the internal
state of its neighboring processes; in the link-register model,
processes can communicate with each other only by using
separate registers. In the latter model, there are two
registers Rij and Rji for each adjacent pair of processes pi
and pj. Process pj can read the state of Rij but not the state
of pi itself, and only pi can change the state of Rij. We call
Rij and Rji the output register and the input register of pi for
pj, respectively. Thus, Rij is the input register of pj for pi.
The number of registers is denoted by l.

We assume that the number of the states of each
component (process or register) of the system is finite and
we define the global state of the system as the vector of the
states of all components. Therefore, the set of all global
states, denoted by G, is given as follows:

. the state-reading model G � Q0 �Q1 � � � � �Qnÿ1,
and

. the link-register model

G � Q0 �Q1 � � � � �Qnÿ1 �O0 �O1 � � � � �Olÿ1;

where Qi�0 � i � nÿ 1� and Oi�0 � i � lÿ 1� denote the set
of states of pi and the set of states of the �i� 1�th register,
respectively.

A distributed algorithm specifies a transition relation for
each process pi. Based on the transition relation, pi reads the
states of its neighboring processes or its input registers,
calculates the next local state, and updates, if needed, its
output registers in each step of execution. A distributed
algorithm thus specifies the behavior of the system, and in
this paper, we limit our discussion to deterministic
algorithms.

Concerning selection of processes to run, two types of
daemons are considered: the central daemon (c-daemon) and
the distributed daemon (d-daemon). If the c-daemon is
assumed, then only one process is selected to run at a time,
while an arbitrary set of processes is selected to run under
the d-daemon. For either type of daemon, we assume it to
be fair, that is, we assume that each process is selected
infinitely often. We use g!U g0 by express the fact that
processes in U�� fp0; p1; � � � ; pnÿ1g� are selected at g 2 G and
yield g0 2 G by their parallel execution. (If U is not important
or is clear, we may omit it.) An infinite sequence of global
states g0g1g2 � � � is called a computation iff for every i�� 0�
there is Ui�� fp0; p1; � � � ; pnÿ1g� such that gi!Ui gi�1. A
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computation is said to be fair if it is produced by a fair
daemon.

Self-stabilization is defined as follows: Let L be the set of
the legitimate (or safe) states in which the system performs
correct execution. A distributed system is said to be self-
stabilizing if it satisfies the following two properties:

1. ConvergenceÐfor any global state g0 2 G and any
fair computation g0g1g2 � � � starting with g0, there is
an integer k�� 0� such that gk 2 L, and

2. ClosureÐfor any global state g 2 L, g! g0 implies
g0 2 L.

An algorithm can be defined as self-stabilizing in a
corresponding manner, thus, a self-stabilizing algorithm
specifies a self-stabilizing system.

2.2 Illustrative Example

Here we take Dijkstra's K-state mutual exclusion algorithm
as an illustrative example [5]. Consider a distributed system
that consists of n processes connected in the form of a ring,
as shown in Fig. 1a. We assume the state-reading model and
the existence of the c-daemon, and we define a privilege of a
process as its ability to change its current state. This ability
is based on a Boolean predicate that consists of its current
state and the state of one of its neighboring processes.

We then define the legitimate states as those in which the
following two properties hold: 1) exactly one process has a
privilege, and 2) every process will eventually have a
privilege. These properties correspond to a form of mutual
exclusion, because the privileged process can be regarded
as the only process that is allowed in its critical section.

In the K-state algorithm, the state of each process is in
f0; 1; 2; � � � ; K ÿ 1g, where K is an integer larger than or
equal to n. For any process pi, we use the symbols S and L
to denote its state and the state of its neighbor piÿ1,
respectively, and process p0 is treated differently from all
other processes. The K-state algorithm is described below.

. process p0

if �L � S�fS :� �S � 1�modK; g
. process pi�i � 1; 2; � � � ; nÿ 1�

if �L 6� S�fS :� L; g.
Fig. 1b shows part of a computation of the system with

three processes and K � 4. Although every process has a
privilege initially, after two steps the system reaches a state
where only one process is privileged. Thereafter, there is

exactly one privileged process in the system and each
process has privilege infinitely often. The computation
shown in Fig. 1b is only an example, since the running
processes are selected arbitrarily by the daemon assumed.
Nevertheless, one can prove that by using this algorithm the
system converges such legitimate states regardless of the
initial state and computation [6].

3 SYMBOLIC MODEL CHECKING

Model checking is the process of exploring a finite state
space to determine whether or not a given property holds.
The major problem of model checking is that the state
spaces arising from practical problems are often extremely
large, generally making exhaustive exploration not feasible.

A promising approach to this problem is the use of

symbolic representations of the state space. In CTL symbolic

model checking (symbolic model checking for short), Boolean

functions represented by Ordered Binary Decision Dia-

grams (OBDDs) are used to represent the state space,

instead of explicit adjacency-lists. This can reduce drama-

tically the memory and time required because OBDDs

represent many frequently occurring Boolean functions

very compactly.
Consider a set of Boolean vectors B � ftrue; falsegc. Then

any subset of B can be represented by a Boolean function

(say B) with c Boolean variables such that the vector xx 2 B
is in the subset if and only if B�xx� is true. Since B �
ftrue; falsegc has 2c elements, 2c states can thus be handled

by using c Boolean variables. The transition relation is also

represented by a Boolean function F with 2c variables such

that there is a transition from xx to yy if and only if F �xx; yy� is

true (xx; yy 2 B). Since the Boolean function F can be defined

without any information on reachability, it can be con-

structed regardless of the initial states.
The correctness property to be verified is specified in

CTL (Computational Tree Logic) [3]. CTL is a branching-
time temporal logic, extending propositional logic with
temporal operators that express how propositions change
their truth values over time. Here we only use three
temporal operators: AG, AF, and AX. The formula AG p
holds in state s if p holds in all states along all computation
paths (i.e., sequences of states) starting from s, while the
formula AF p holds in state s if p holds in some state
along all computation paths starting from s. The formula
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AX p holds in state s if p holds in all the states that can be
reached from s in exactly one step.1 An atomic proposition
is a CTL formula. If f1 and f2 are CTL formulae, then so are
:f1, f1 ^ f2, AF f1, AG f1, and AX f1.

In the process of symbolic model checking, a given

CTL formula is evaluated with respect to all the initial states
as follows: First, the set of all states where the given
property holds is computed from the transition relation
function F . This is done by fixed-point iterative techniques
which manipulate Boolean functions encoded as OBDDs.

(See [2], [16] for details.) Finally, whether the set obtained
contains all initial states is determined. If it contains all the
initial states, then the system meets the correctness
property.

Only the final phase of the model checking process is

thus related to the initial states, and most of the computa-
tions required do not depend on the state space reachable
from the initial states. Consequently, this characteristic can
be a drawback of the symbolic model checking, since the
states that are never reached must be explored. However, in

the case of self-stabilizing systems, this property never
becomes a factor that worsens the verification performance,
because all states are necessarily reachable.

4 VERIFYING SELF-STABILIZATION USING SMV

4.1 SMV

SMV (Symbolic Model Verifier) [16] is a software tool for

symbolic model checking; it is publicly available and has
been especially successful in verifying hardware systems. In
this section, we describe how we can use SMV to verify self-
stabilizing algorithms.

In SMV, a system (or an algorithm) to be verified is
described in a special language called the SMV language. We

refer to a system description written in the SMV language
as an SMV program. An SMV program is divided into one or
more modules, each of which specifies a finite state
machine. Each module contains variable declarations to
determine its state space and descriptions of the initial state

and transition relation of the machine.
Variable declarations are preceded by the keyword VAR.

The type associated with a variable can be Boolean or an
enumerated type. The transition relation is described by a
collection of parallel assignments to the next version of the

variables. Assignments of initial values and next values to
the variables are preceded by the keyword ASSIGN. Initial
states are assigned by specifying the initial values of the
variables using the expression init(x), where x is a
variable. The expression next(x) is used to refer to the

variable x in the next state.
For example, consider a finite state machine that has

three states, say s1, s2, and s3, and suppose that s1 is the
initial state and that the state nondeterministically changes
at every move. This machine is represented in the SMV
language as follows:

MODULE p

VAR state : {s1, s2, s3}

ASSIGN init(state) := s1;

next(state) := {s1, s2, s3};

For the details of the syntax and semantics of the SMV
language, the readers are referred to [16].

4.2 Describing Algorithms in the SMV Language

Here we explain how to represent a distributed algorithm in
the SMV language and how to verify it against the self-
stabilizing property using SMV. For this purpose, we take
the K-state algorithm as an example, assuming that the
c-daemon exists. (The d-daemon will be discussed in the
next subsection.) Fig. 2 shows the SMV program that
represents the K-state algorithm where n � 3 and K � 4.

4.2.1 Interaction between Processes

The interaction between processes is specified in the main

module. The SMV language allows modular hierarchical
descriptions and definition of reusable components. The
main module defines the interaction of other modules at a
lower level, each of which represents the behavior of a
process.

The main module in Fig. 2 declares three processes, p0;
p1, and p2. The behavior of p0 and that of pi�i � 1; 2� are
specified by modules type_p and type_q, respectively.
The main module also specifies that each process pi�i �
0; 1; 2� can refer to the value of a variable state of another
process piÿ1. This corresponds to the fact that the processes
are connected in the form of a ring. (As described later,
network topologies other than rings can be specified in a
similar way.)

In the main module in this program, the three processes
are associated with the keyword process. In SMV, such
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instances of modules are not allowed to run simultaneously.
That is, at every step, at most one of them is nondetermi-
nistically selected and allowed to update its own state. The
SMV program in Fig. 2 thus represents the existence of the
c-daemon, which arbitrarily selects one process at a time for
running.

4.2.2 Processes

As stated above, the behavior of each process is expressed
by a module in the SMV program. The next local state of the
process is determined depending on its current local state
and the local states of its adjacent processes or registers in
the network.

In modules type_p and type_q in Fig. 2, variable
state denotes the state of the corresponding process pi,
while L aliases variable state of its left neighbor piÿ1, that
is, it denotes the state of the left neighbor.

The keyword DEFINE is used to associate a symbol with
a commonly used expression. In type_p and type_q, it is
used to assign expressions (state = L) and !(state = L)

to symbol priv, respectively. Therefore, priv takes the
truth value iff the corresponding process has a privilege.
(! represents negation.)

The value of next(state), i.e., the next state of the
process changes depending on the values of state and L as
follows. The value of a case expression is determined by
the first expression on the right hand side of a ª:º such that
the condition on the left hand side is true. Thus, for process
p0, if priv is true, then the result of the expression is
(state + 1) mod 4; otherwise, it is state, which means
the value of state does not change. (1 and 0 represent the
truth value and the false value, respectively.)

The keyword FAIRNESS and a CTL formula force SMV
to verify only computation paths where the CTL formula
becomes true infinitely often. Each process has a special
variable running which is true iff that process is currently
being executed. Thus, by adding the declaration

FAIRNESS running

to each process, we can limit computation paths to be
verified to those in which running of every process has the
truth value infinitely often. In other words, we thus force
every process to be selected to run infinitely often. Clearly
this models a fair daemon.

4.2.3 Initial States

In order to determine whether or not the system is self-
stabilizing, it is necessary to examine all possible initial
states. SMV allows multiple initial states, and we can easily
specify that the initial state can be any state.

For example, the state of a process is an integer ranging
from 0 to K ÿ 1 in the K-state algorithm. We can specify that
its initial value can take any value within the domain as
follows (K � 4).

init(state) := {0, 1, 2, 3};

The above expression means that the possible initial values
of state are 0, 1, 2, and 3. By specifying the initial values of
all variables in this way, we can represent the fact that the
system can take any initial state.

4.2.4 The Self-Stabilizing Property

As stated above, a self-stabilizing algorithm is defined as
one that meets the convergence and closure properties.
Now suppose that the predicate that identifies the
legitimate states is expressed by CTL formula legitimate.
Then,

. the convergence property holds iff CTL formula AF
legitimate holds in every global state, and

. the closure property holds iff CTL formula
legitimate! AX legitimate holds in every global
state.

As a result, the self-stabilizing property is expressed by
CTL formula AF legitimate ^ (legitimate! AX legitimate).
(Note that the CTL formula is evaluated with respect to all
initial states, i.e., all global states.)

Sometimes it is clear that the closure property holds from
the definition of the legitimate states. In that case, we need
to consider the convergence property only. In Section 5, we
will discuss such cases.

In an SMV program, the property to be checked is
preceded by the keyword SPEC, as follows. (& and | stand
for logical and and logical or, respectively.)

SPEC AF legitimate & (legitimate

-> AX legitimate)

In the K-state algorithm, a global state is legitimate iff
1) there is exactly one privileged process in that state, and
2) every process will be eventually privileged in any
computation starting with that state. Let privi represent
the fact that process pi has a privilege. Each of the two
conditions can be written in CTL as_

0�i�nÿ1

�privi ^
^
j 6�i

0�j�nÿ1

:privj�

and ^
0�i�nÿ1

AF privi;

respectively. In Fig. 2, the above two CTL formulae are
denoted by symbols condition1 and condition2,
respectively. Hence, legitimate can be written as condi-

tion1 & condition2.

4.3 Dealing with the Distributed Daemon

When the d-daemon is assumed, describing algorithms in
the SMV language is slightly more complicated than the
case of the c-daemon. Fig. 3 shows the SMV program for the
K-state algorithm under the d-daemon.

To allow multiple processes to run at the same time,
keyword process is not used in Fig. 3. In SMV, a module
that is not associated with keyword process is always
running. In other words, all processes are selected to run at
any given time. Obviously, this is not adequate for
representing the d-daemon.

To select an arbitrary set of processes to run, we use
an additional variable run in each module. This variable
takes a value of either 0 or 1, and the value is randomly
selected at any given time. Using the case expressions, we
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allow each process to actually run only when the value of

run is 1.
We verified the K-state algorithm assuming 3 � n � 8

and K � n� 1. Except for the case of n � 8 and the

d-daemon, the verification was completed within a fairly

admissible amount of time and the verification result

showed that the self-stabilizing property holds. Table 1

shows the performance of the model checking procedure

for this example in terms of the verification time, the

maximum number of OBDD nodes used at any given time,

and the number of nodes of the OBDD that represents the

transition relation. (All measurements were performed on a

Sun SS20 workstation with 160Mbyte memory. An NA in

the table indicates that data was not collected since the

verification was not completed within 10 hours.) The table

also contains the number of the global states of the system

(i.e., jGj). For the K-state algorithm, it is given by Kn, since
each process has K states.

In this table, one can see that when the number of
processes is large, the size of the OBDD that represents the
transition relation is extremely smaller than the size of
global states. It can also be seen that the time and OBDD
nodes used under the assumption of the d-daemon are
much larger than the case of the c-daemon. This is because
additional variables are used to model the d-daemon, thus
leading to a larger state space to be explored.

5 CASE STUDIES

5.1 Example 1: Mutual Exclusion in Special
Networks

The proposed approach can also handle network topologies
other than rings. Here we take Ghosh's mutual exclusion
algorithm as an example [7]. This algorithm works in the
special networks as shown in Fig. 4 (m � 2) and needs only
two states, 0 and 1, per process. We let si denote the state of
process i. The algorithm is presented below. The symbol b
represents a binary value.

. process p0

if ��s0; s1� � �:b; b��fs0 :� b; g
. process p2iÿ1�i � 1; 2; 3; � � � ;mÿ 1�

if ��s2iÿ2; s2iÿ1; s2i; s2i�1� � �b; b; b;:b��fs2iÿ1 :� :b; g
. process p2i�i � 1; 2; 3; � � � ;mÿ 1�

if ��s2iÿ2; s2iÿ1; s2i; s2i�1� � �b; b;:b; b��fs2i :� b; g
. process p2mÿ1

if ��s2mÿ1; s2mÿ2� � �b; b��fs2mÿ1 :� :b; g.
Based on the verification approach presented in the

previous section, we wrote SMV programs that represent
the algorithm. Fig. 5 shows the SMV program for the
c-daemon. The main module specifies the network topol-
ogy with m � 3. (The DEFINE and SPEC parts in the main
module are omitted, since they are the same as the K-state
algorithm.)

We performed verification of this algorithm under both
the c-daemon and the d-daemon. Table 2 shows the
verification results and the performance of the model
checking procedure for this example in terms of the
verification time and the maximum number of OBDD
nodes used at any given time. The table also contains the
size of the OBDD that represents the transition relation and
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Fig. 3. SMV program for the K-state algorithm under the d-daemon

(n � 3;K � 4).

TABLE 1
Verification Results and Performance for the K-State Algorithm (K � n� 1)



the number of global states of the system. For this
algorithm, the number of the global states is given by 2n

since each process has only two states.
Unexpectedly, the time and the maximum size of OBDDs

used under the d-daemon were smaller than those values
used under the c-daemon, when the number of processes
exceeded 10. The reason is that in the case of the d-daemon,
the transition relation has a relatively compact OBDD
representation.

This phenomenon is consistent with the results of
comparing two plausible models of asynchronous circuits
[16]. These two models are called the interleaving model and
the simultaneous model. In the former model, only one state
component changes value in a given transition, while any or
all state variables may change state in the latter model. They
are thus analogous to the c-daemon and the d-daemon,
respectively. In [16], it is shown that OBDD-based techni-
ques tend to perform better on the simultaneous model,
especially when the number of variables is large. Since the
addition of variable run, which is unnecessary for the
c-daemon model, degrades the verification performance,
this phenomenon was observed only when the number of
processes was sufficiently large.

Unlike Ghosh's algorithm, other self-stabilizing algo-
rithms discussed elsewhere in the paper do not have such
similarities to hardware circuits, since variables in these
algorithms have a much larger domain than a Boolean
variable has. Actually, such a phenomenon was not
observed in the verification of these algorithms.

5.2 Example 2: Leader Election on Uniform Rings

Both of the two algorithms discussed before are used for
achieving mutual exclusion. In the rest of the section, we

show that the proposed approach can also be applied to

algorithms used to solve other problems.
In this section, we discuss the leader election problem on

rings, which is the problem of selecting one process as a

leader on a ring where no distinguished process initially

exists. Consider a ring that consists of n processes,

p0; p1; � � � ; pnÿ1, that are connected in this order; and assume

that the ring is uniform; that is, all the processes on the ring

have no identifiers and execute the same algorithm.

Subscripts are thus used only for explanation purposes,

and processes cannot make use of them.
In [13], Huang proposed a self-stabilizing leader election

algorithm that works on rings of primal size under the

c-daemon. In the algorithm, the state of each process is in

f0; 1; 2; � � � ; nÿ 1g. A process is considered to be a leader iff

the state is 0. For any process pi, we use the symbols S, L,
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Fig. 4. Network topology where Ghosh's mutual exclusion algorithm

works.

Fig. 5. An SMV program for Ghosh's mutual exclusion algorithm

(m � 3; n � 6).

TABLE 2
Verification Results and Performance for Ghosh's Mutual Exclusion Algorithm



and R to denote its state, the state of its left neighbor piÿ1,

and the state of its right neighbor pi�1, respectively. Let

x � g�L; S� and y � g�S;R�, where

g�a; b� � n a � b
�bÿ a� mod n otherwise:

�
Then the leader election algorithm is as follows:

. process pi�i � 0; 1; 2; � � � ; nÿ 1�
if (x � y and y � n) fS :� S � 1 mod n; g
if (x < y) fS :� S � 1 mod n; g:

We define a global state to be legitimate iff 1) in that

state, there is exactly one process (say pi) such that pi is a

leader and other nÿ 1 processes are not a leader, and 2) this

property will always hold at any state in every computation

starting with the state. A leader election algorithm is

considered self-stabilizing iff the system that runs the

algorithm reaches a legitimate state regardless of the initial

state. Note that the closure property is already taken into

consideration in the definition of the legitimate states.

Now let leaderi be the predicate that is true iff only pi is a

leader. By definition, the legitimate states are the states in

which AG leader0 _ AG leader1 _ � � � _ AG leadernÿ1 holds.

The self-stabilizing property can then be written in CTL as

AF (AG leader0 _ AG leader1 _ � � � _ AG leadernÿ1). Fig. 6

shows an SMV program that describes this algorithm when

n � 3.

Although the algorithm assumes the c-daemon and rings

of primal size, we verified the algorithm in the case of the

d-daemon and/or rings of composite size, in order to

demonstrate how SMV works when a given correctness

property does not hold. Table 3 shows the results of the

verification. (Note that Huang proved that no uniform,

deterministic self-stabilizing leader algorithm exists if n is

composite [13].) These results show that the algorithm does

not work under the d-daemon even if n is prime. When an

SMV program does not meet a given property to be

checked, SMV provides a computation path on which the

property does not hold. In the case of n � 3 and the

d-daemon, for example, SMV detected the following

computation, which never reaches a legitimate state.

�2; 2; 2� !fp1;p2;p3g�0; 0; 0� !fp1;p2;p3g�2; 2; 2� !fp1;p2;p3g�0; 0; 0� !fp1;p2;p3g � � �
3Table 3 also shows the performance of the model

checking procedure and the number of the global states,

which is nn since each process has n local states in this

algorithm.

5.3 Example 3: Ring Orientation

The next problem we consider is ring orientation, which is

the problem of orienting a ring in one direction where each

node has no sense of direction. We assume that each

process pi cannot tell which of its two adjacent processes is

piÿ1 or pi�1 and that the ring is uniform as in the previous

example.

During the execution of a ring orientation algorithm,

each process chooses one of its adjacent processes as the

forward process and the other as the backward process. We

denote the forward process of pi by Forw�pi�.
Let AP1 and AP2 denote the two processes adjacent to pi.

We assume that each process pi has a variable dir 2 fB;Fg
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Fig. 6. An SMV program for the leader election algorithm (n � 3).

TABLE 3
Verification Results and Performance for the Leader Election Algorithm



to represent its decision in such a way that Forw�pi� � AP1

iff dir � B and Forw�pi� � AP2 iff dir � F . Then we say

that a ring is oriented iff exactly one of the following two

conditions holds: (Condition 1) Forw�pi� � piÿ1 for all

i � 0; 1; � � � ; nÿ 1, or (Condition 2) Forw�pi� � pi�1 for all

i � 0; 1; � � � ; nÿ 1.

In [11], Hoepman proposed uniform self-stabilizing ring-

orientation algorithms for rings of odd size both for the

state-reading model and the link-register model. In this

paper, we take the algorithm for the state-reading model. In

the algorithm, each process has two Boolean variables, S

and T , in addition to dir. The following is such an algorithm

where S1 and T1 denote the values of S and T of AP1, and

similarly, S2 and T2 denote the values of S and T of AP2.

. process pi�i � 0; 1; 2; � � � ; nÿ 1�
if �S1 � S2�fS :� :S1; T :� 1; g
if �S1 � S � :S2 and :T1 � T � T2 � 1� fS :� :S;
T :� 0; dir :� F ; g

if �:S1 � S � S2 and T1 � T � :T2 � 1� fS :� :S;
T :� 0; dir :� B; g
if ((S1 � S � :S2 and T1 � T ) or (:S1 � S � S2

and T � T2)) fT :� :T ; g.
In the ring orientation problem, a global state is

legitimate iff 1) in that state the ring is oriented in one

direction, i.e., one of the above two conditions holds, and 2)

the ring will be oriented in the same direction at any state in

every computation starting with that state. A ring orienta-

tion algorithm is self-stabilizing iff it reaches a legitimate

state from any initial state.

Let Condition1 (Condition2) be true iff Condition 1

(Condition 2) holds. The legitimate states can then be

defined as those where AG Condition1 _ AG Condition2

holds. Hence, the self-stabilizing property is written in CTL

as AF (AG Condition1 _ AG Condition2).

Fig. 7 shows an SMV program that represents the ring

orientation algorithm when n � 3. As stated above, each
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Fig. 7. An SMV program for the ring orientation algorithm [11] (n � 3).

TABLE 4
Verification Results and Performance for the Ring-Orientation Algorithm [11]



process pi does not know which of its two adjacent

processes, AP1 and AP2, is piÿ1 and which is pi�1. This

fact means that it is necessary to consider two cases for each

process pi in verification, that is, the case where AP1 � piÿ1

and AP2 � pi�1 and the case where AP1 � pi�1 and

AP2 � piÿ1. Thus, we have to check a total of 2n cases to

verify the algorithm.

In order to handle the 2n cases at a time, we add a special

variable AP1_pc(AP1 pc) to each process in the SMV

program shown in Fig. 7. In the SMV program, the variable

takes a value of either -1 or 1. If AP1 pc for process pi has a

value of -1, then AP1 � piÿ1 and AP2 � pi�1; otherwise,

AP1 � pi�1 and AP2 � piÿ1. By allowing nondeterministic

choice of the initial value of AP1 pc, we can verify all the 2n

cases at one try. Note that Forw�pi� � piÿ1 holds iff dir �
B ^AP1 pc � ÿ1 or dir � F ^AP1 pc � 1. Let predicate

desi be true iff Forw�pi� � piÿ1 holds. Then Condition 1 can

be written as des0 ^ des1 ^ � � � ^ desnÿ1, while Condition 2 is

given by :des0 ^ :des1 ^ � � � ^ :desnÿ1.

Although the algorithm assumes the c-daemon and rings

with an odd number of processes, we verified the algorithm

in the case of the d-daemon and/or rings with an even

number of processes. Table 4 shows the results of

verification. Note that no uniform and deterministic self-

stabilizing ring orientation algorithm exists if n is even [14].

In [14], it is also proven that no uniform and deterministic

self-stabilizing ring orientation algorithm exists under the

d-daemon in the state-reading model. As shown in the

table, the verification results are consistent with this

impossibility result.

This table also shows the performance of the model

checking procedure for this example in terms of the

verification time and the maximum number of OBDD

nodes used at any given time. The table also contains the

size of the OBDD for the transition relation and the number

of the global states of the system, which is 8n since each

process has eight local states.

5.4 Example 4: Ring Orientation in the Link-Register
Model

The four algorithms discussed above assume the state-

reading model, in which processes can read the states of

other processes directly. Here we take an algorithm that

works in the link-register model. The algorithm, which is

proposed by Umemoto et al. in [26], is also for ring

orientation. This algorithm is designed to run on rings of

odd size under the d-daemon. (Note that no deterministic

ring orientation algorithm exists when n is even.) As

described before, communication is done by means of

registers in the link-register model. Since we assume that

the topology of the system is a ring, there are a total of 2n

registers (i.e., R0;1; R1;0; R1;2; R2;1; � � � ; Rnÿ1;0; R0;nÿ1).

Each process has two adjacent processes AP1 and AP2.

For each adjacent process AP1 (AP2), we denote its output

register by RO1 (RO2) and its input register by RI1 (RI2).

Fig. 8 shows the algorithm. As shown in the figure, this

algorithm works according to two sets of five rules. The

state of each component (process and register) is a tuple

�label; dir�, where label 2 f0; 1; Hg and dir 2 fF;Bg. Thus

each component has six states. Processes selected to run

read RI1 and RI2, change their own state, and update RO1

and RO2 atomically. In Fig. 8, instruction ªread�R; v�º reads

input register R and stores its contents in v, and

ªwrite�R; v�º writes the contents of local variable v to

output register R.

Fig. 9 shows an SMV program that describes the ring-

orientation algorithm under the d-daemon. In the SMV

program, module p specifies the behavior of each process pi

and its output registers Ri;iÿ1 and Ri;i�1. We use the same

technique as the previous example in order to model the

fact that for each process pi two distinct situations can

occur, that is, AP1 can be either piÿ1 or pi�1.

Table 5 shows the results of verifying this algorithm. The

results indicate that the algorithm does not work under the

d-daemon. By examining a counterexample that SMV

produced, we found that there is a fair computation that

never reaches the legitimate states. Fig. 10 shows part of one

such a computation. Here for every process pi, AP1 � pi�1

and AP2 � piÿ1 are assumed. In this part of the computa-

tion, g1 and g13 are the same global state, and there is no
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Fig. 8. The ring orientation algorithm [26].



process that is not selected to run. Thus, one can see that

g1 g2 � � � g12 g1 g2 � � � g12 g1 g2 � � � is a fair computation and

does not reach any legitimate state.

We investigated the cause of such livelock and found

that it may occur when Rule 2a and Rule 2b, which are the

only rules that can change the value of dir, are applied to

two neighboring processes at the same time. In [26], livelock

freedom is proved based on the fact that such a case never

occurs (Lemma 4). Therefore, the proof does not hold for the

original algorithm. For example, consider the transition

g2 ! g3 in Fig. 10. In this transition, p0 changes its direction

according to Rule 2a, while for p1, two rules are applied

consecutively. First, Rule 5a is applied, which means that

label � 0 and dir � F hold temporarily. Then Rule 2b is

applied and the state of p2 finally becomes �H;B�.
One way to prevent the occurrence of such a situation is

to ensure that no more than one rule is applied to each

process at a time, and this makes Lemma 4 in [26] hold.

Fig. 11 shows the corrected algorithm. (Only lines different

from Fig. 8 are shown.) For example, only Rule 4a can be
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Fig. 9. An SMV program for the ring orientation algorithm [26] (n � 3).



applied to p1 at g2 in the corrected algorithm. Using the

proposed approach, we verified that this algorithm works

correctly under the d-daemon when n � 3. Fig. 12 shows

the SMV program that represents the algorithm. (In this

figure, only next(label) and next(dir) are shown

since the remaining part is the same as in Fig. 9, except that

tmp_label and tmp_dir can be omitted.)

6 VERIFYING SELF-STABILIZATION USING SPIN

For comparison purposes, we present the results of using

another model checker, called SPIN [12], to verify a self-

stabilizing algorithm in this section. SPIN is a very fast

model checker based on explicit state enumeration, and like
SMV, it is widely available.

In addition to various techniques for efficient verifica-

tion, SPIN incorporates a different state reduction approach

than symbolic representation. This approach, called partial

order reduction, has been proven to be very successful in

verifying concurrent systems and communication protocols

[8], [12], [27]. It is based on the observation that the validity

of a given correctness property is often insensitive to the

order in which current and independently executed events

are interleaved. Given an initial state, these techniques

generate a reduced set of reachable states that is indis-

tinguishable for the given property, instead of generating

the whole reachable state space.

The input language for SPIN is called PROMELA; Fig. 13

shows a PROMELA program for the Dijkstra's K-state

mutual exclusion algorithm under the c-daemon. This

program is a modification of the one proposed in [23].

Since the original program only modeled the algorithm

under the condition that an initial state is given, we added

if statements to enforce each process to nondeterministically

change its state in the first move of the process. Also, an

initial state must be specified in a PROMELA program,

therefore this program sets the initial state of each process

to 0. Due to these modifications, however, the algorithm is

allowed to start with any global state. Unfortunately, the

modifications do not preserve the closure property. In the
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TABLE 5
Verification Results and Performance for the Ring-Orientation Algorithm [26]

Fig. 10. Livelock.

Fig. 11. The corrected algorithm.



rest of this section, therefore, we limit our discussion to

verification of the convergence property.
SPIN adopts Linear Time Logic (LTL) [18] to specify the

property to be verified. Since the CTL formula used for

representing the legitimate states of the K-state algorithm is

not expressible in LTL, to signify the convergence property

we use LTL formula AF legitimate, where

legitimate �
_

0�i�nÿ1

�privi ^
^
j 6�i

0�j�nÿ1

:privj� ^
^

0�i�nÿ1

F privi:

(For the formal definition of LTL, the readers are referred to,
for example, [4].)

We applied SPIN to the K-state algorithm with and

without enabling partial order reduction. Table 6 shows the

verification times of SPIN. An NA in the table indicates that

the verification was not completed due to memory shortage.

The results show that the use of SPIN is not feasible unless

the number of processes is small, and that it is more

vulnerable to the state explosion problem than symbolic

model checking. It can also be seen that for this example

partial order reduction did not work effectively and even

worsened the performance. By comparing the results with

those presented in Table 1, we conclude that the proposed

method is superior in terms of verification performance.

Nevertheless, we expect that SPIN can be more

useful than SMV for verification of self-stabilizing

communication protocols (e.g., [10], [24]), because typically

in such protocols, only two processes are involved, and

communications between processes are implemented by

message passing. In SPIN, such communication can easily

be modeled by using communication commands in

PROMELA. Although this topic is beyond the scope of

the paper, we consider it one of the possible directions of

future study.

7 CONCLUSIONS

In this paper, we proposed to use symbolic model checking

to verify distributed algorithms against the self-stabilizing

property. We presented an approach in which the SMV

system can be used for this purpose, and showed the

effectiveness of the proposed approach, by using it to verify

several algorithms. During the verification process, we

found an error in one of these algorithms. Due to the nature

of model checking, the proposed approach is applicable

only when the number of processes is modest. However, we

believe that this approach is useful for designing self-

stabilizing algorithms, since, as demonstrated in this paper,
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Fig. 12. An SMV program for the corrected algorithm.

Fig. 13. A PROMELA program for the K-state algorithm under the

c-daemon (n � 3;K � 4).



it can help designers to detect and correct errors in the

algorithms.
There are many directions for future work. For example,

applicability of model checking techniques other than

symbolic model checking need to be further examined; in

particular, the use of symmetry seems likely to be effective

for state reduction, because self-stabilizing systems appear-

ing in the literature frequently exhibit considerable sym-

metry (uniform systems [11], [13], [14], [26] are such typical

examples).
Although model checking has an advantage because it

can be performed automatically, there will always be

situations where theorem proving is required for complete

verification, since model checking can only be applied to

finite state systems. A new research direction in formal

verification attempts to combine model checking and

mechanical theorem proving (e.g., [21]). Application of this

new approach to self-stabilizing systems also deserves

further study.
Recently, some unique techniques have been proposed to

reason about self-stabilizing systems; for example, in [25],

control theory is applied for this purpose. In [1], the use of

string rewriting systems is suggested to model and verify

self-stabilizing rings. Extension of these approaches, in-

cluding their automation, is also an interesting research

topic.
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