
Impact of Workload and System Parameters
on Next Generation

Cluster Scheduling Mechanisms
Yanyong Zhang, Member, IEEE, Anand Sivasubramaniam, Member, IEEE,

JoseÂ Moreira, Member, IEEE, and Hubertus Franke, Member, IEEE

AbstractÐScheduling of processes onto processors of a parallel machine has always been an important and challenging area of

research. The issue becomes even more crucial and difficult as we gradually progress to the use of off-the-shelf workstations,

operating systems, and high bandwidth networks to build cost-effective clusters for demanding applications. Clusters are gaining

acceptance not just in scientific applications that need supercomputing power, but also in domains such as databases, web service,

and multimedia which place diverse Quality-of-Service (QoS) demands on the underlying system. Further, these applications have

diverse characteristics in terms of their computation, communication, and I/O requirements, making conventional parallel scheduling

solutions, such as space sharing or gang scheduling, unattractive. At the same time, leaving it to the native operating system of each

node to make decisions independently can lead to ineffective use of system resources whenever there is communication. Instead, an

emerging class of dynamic coscheduling mechanisms that attempt to take remedial actions to guide the system toward coscheduled

execution without requiring explicit synchronization offers a lot of promise for cluster scheduling. Using a detailed simulator, this paper

evaluates the pros and cons of different dynamic coscheduling alternatives while comparing their advantages over traditional gang

scheduling (and not performing any coordinated scheduling at all). The impact of dynamic job arrivals, job characteristics, and different

system parameters on these alternatives is evaluated in terms of several performance criteria. In addition, heuristics to enhance one of

the alternatives even further are identified, classified, and evaluated. It is shown that these heuristics can significantly outperform the

other alternatives over a spectrum of workload and system parameters and is thus a much better option for clusters than conventional

gang scheduling.

Index TermsÐParallel scheduling, gang scheduling, dynamic coscheduling, clusters, simulation.

æ

1 INTRODUCTION

SCHEDULING of processes onto processors of a parallel
machine has always been an important and challen-

ging area of research. Its importance stems from the
impact of the scheduling discipline on the throughput
and response times of the system. The research is
challenging because of the numerous factors involved in
implementing a scheduler. Some of these influencing
factors are the parallel workload, presence of any
sequential and/or interactive jobs, native operating
system, node hardware, network interface, network, and
communication software. The recent shift toward the
adoption of off-the-shelf clusters/networks of worksta-
tions (called COWs/NOWs) for cost-effective parallel
computing makes the design of an efficient scheduler
even more crucial and challenging. Clusters are gaining
acceptance not just in scientific applications that need
supercomputing power, but also in domains such as

databases, web service, and multimedia, which place
diverse Quality-of-Service (QoS) demands on the under-
lying system (not just higher throughput and/or lower
response times). Further, these applications have diverse
characteristics in terms of the computation, communica-
tion, and I/O operations which can raise complications
when multiprogramming the system. Traditional solutions
that have been used in conventional parallel systems are
not adequately tuned to handle the diverse workloads and
performance criteria required by cluster environments.
This paper investigates the design space of scheduling
strategies for clusters by extensively evaluating nine
different alternatives to understand their pros and cons
and compares them with a conventional solution (gang
scheduling).

With the growing popularity of clusters, there have been

several academic and commercial endeavors to develop

networks, network interfaces, and messaging layers to

provide efficient communication support for these systems.

However, there is the more important and complex

problem of managing and coordinating the resources across

the nodes of a cluster. Optimizing communication alone

may not necessarily translate to improved performance

since a poor scheduling strategy could nullify any savings.

For instance, a currently scheduled process on one node

would experience a long wait for a message from a process

not currently scheduled on another node, regardless of the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 9, SEPTEMBER 2001 967

. Y. Zhang and A. Sivasubramaniam are with the Deptartment of Computer
Science and Engineering, Pennsylvania State University, University Park,
PA 16802. E-mail: {yyzhang, anand}@cse. psu.edu.

. J. Moreira and H. Franke are with the IBM T.J. Watson Research Center,
PO Box 218, Yorktown Heights, NY 10598.
E-mail: {jmoreira, frankeh}@us.ibm.com.

Manuscript received 28 June 2000; revised 28 Feb. 2001; accepted 1 Mar.
2001.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number 112355.

1045-9219/01/$10.00 ß 2001 IEEE

low network latency. Scheduling and communication issues
are thus closely intertwined and should be studied together.
An efficient scheduling solution should understand the
communication and I/O characteristics of the processes and
coordinate the different activities across the nodes of a
cluster without adding significant overheads.

Scheduling is usually done in two steps. The first step,
spatial scheduling, consists of assigning processes to nodes.
(A node can have one or more processors and runs a single
operating system image.) The second step, temporal
scheduling, consists of time multiplexing the various
processes assigned to a node for execution by the processors
of that node. There is a considerable body of literature
regarding spatial scheduling [8] and we do not delve into
this problem in this paper nor do we examine the issue of
migrating processes during execution for better load
balance. Without loss of generality, for this paper, we
assume one processor (CPU) per node and an incoming job
specifies how many CPUs it needs and executes one task
(process) on each of the allocated CPUs.

The second scheduling step, temporal scheduling, is
perhaps more important for a cluster. Just as common off-
the-shelf (COTS) hardware has driven the popularity of
clusters, it is rather tempting to leave it to the native (COTS)
operating system scheduler to take care of managing the
processes assigned to its node. However, the lack of global
knowledge at each node can result in lower CPU utilization
and higher communication or context switching overheads.
As a result, there have traditionally been two approaches to
address this problem. The first is space sharing [17], [36],
which is a straightforward extension of batching to parallel
systems. Multiple jobs can execute concurrently at different
nodes, but each node is exclusively allocated to one process
of a job which then runs to completion. Space sharing is
simple to implement and is efficient from the viewpoint of
reducing context switching costs as well as not having to
hold the working sets of multiple applications in memory.
However, space sharing in isolation can result in poor
utilization (nodes can be free even though there are jobs
waiting). Also, the lack of multiprogramming can hurt
when a process performs a lot of I/O. The second approach
is a hybrid scheme, called (exact) coscheduling or gang
scheduling [22], [10], [9], [35], [11], [39], that combines time
sharing with space sharing to remedy some of these
problems. The processes of a job are scheduled on their
respective nodes at the same time for a given time quantum,
the expiration of which results in a synchronization
between the nodes (using logical or physical clocks) to
decide on the next job to run. This scheme usually requires
long time quanta to offset high context switching and
synchronization costs. Longer time quanta make the system
less responsive for interactive and I/O intensive jobs
(database services, graphics and visualization applications,
etc.). In addition, strict gang scheduling also keeps the CPU
idle while a process is performing I/O or waiting for a
message within its allotted time quantum [11].

Recently, there has been interest in developing strategies
that approximate coscheduling behavior without requiring
explicit synchronization between the nodes (that still
combine space and time sharing). We refer to this broad

class of strategies that approximate coscheduled execution
as dynamic coscheduling mechanisms. The enabling technolo-
gies that have made this approach possible are the ability of
the network interface card (NIC) and messaging layers to
provide protected multi-user access to the network in
conjunction with user-level messaging. Specifically, several
user-processes at a node could concurrently send a message
and an incoming message is directly transferred by the NIC
to the corresponding destination process at that node (even
if that process is not currently scheduled). It is thus not
necessary to perform network context switching when the
processes are switched out on their respective CPUs, as was
necessary [35], [13] until recently. Dynamic coscheduling
strategies try to hypothesize what is scheduled at remote
nodes using local events (messaging actions/events in
particular) to guide the native operating system scheduler
toward coscheduled execution whenever needed. These
strategies offer the promise of coscheduling, without the
related overheads and scalability/reliability problems.

Prior to our work [20], [21], [32], there were only two
suggestions [1], [31], [5] on how local messaging actions can
be used to implement dynamic coscheduling. Both these
mechanisms incur interrupts which can hurt performance
under some situations. We have proposed two alternates,
called Periodic Boost and Spin Yield, and have experimen-
tally shown Periodic Boost to outperform the rest using an
experimental cluster of eight Sun Ultra Enterprise servers
running MPI applications [20], [21]. While our earlier study
is a preliminary foray into this area, a comprehensive
exercise exploring the pros and cons of these different
alternatives is needed to answer several open and crucial
questions:

. How do the different dynamic coscheduling alter-
natives compare when one considers dynamic job
arrivals with different job sizes (number of CPUs)
and execution times? Our earlier exercise considered
only a few (constant) predetermined number of jobs,
each demanding a constant number of CPUs and
taking the same execution time. How does the
arrival rate (load) of the jobs affect the average
response times and throughput of the system?

. What is the impact of job characteristics on the
performance of the system for the different schedul-
ing alternatives? Specifically, how do the schemes
compare as one varies the relative fraction of the
computation (requiring CPU and memory resources
only), communication, and I/O performed by a job?
What is the impact of a multiprogrammed workload
consisting of different job mixes? As mentioned
earlier, clusters are intended to take on the demands
of diverse applications, each with its own computa-
tion, communication, and I/O characteristics (for
instance, a database application may be I/O inten-
sive while a scientific application may be CPU or
communication intensive), and should still meet the
QoS requirements of each application. In addition,
how does the work imbalance and skewness
between the tasks (executing on different CPUs)
affect the performance of each alternative?

968 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 9, SEPTEMBER 2001

. How do the system parameters, such as the multi-
programming level at each node, number of CPUs,
and the operating system costs for context switching
and interrupt processing, affect the relative perfor-
mance of the schemes?

. Within the purview of the flexibility offered by the
Periodic Boost mechanism that we have proposed,
what coscheduling heuristics can we employ and
how do these heuristics fare?

Investigation of these issues requires an extensive frame-
work to model and evaluate the different scheduling
alternatives. We have developed this framework with a
detailed simulator that uses a multilevel feedback queue
model (based on the Sun Solaris scheduler) as a core and
builds the different scheduling alternatives around it. The
choice of a simulation-based study stems from the need to
vary different system parameters (some of which are
difficult or even impossible to tweak on an actual system)
in a controlled/nonintrusive manner. The simulator is
driven by an abstraction of a real workload [11] that has
been drawn from an actual supercomputing environment
(Lawrence Livermore National Lab). Eight different
dynamic coscheduling strategies are evaluated using this
infrastructure and compared with exact coscheduling (as
well as with not performing any coordinated scheduling at
all) to draw revealing insights. To our knowledge, there has
not been any prior work exploring this extensive design
space using a spectrum of performance metrics (response
time, wait time, utilization, and fairness) and dynamic
workloads. In addition, this paper identifies several new
heuristics that can be used in conjunction with the Periodic
Boost mechanism. Some of these heuristics can significantly
outperform the other alternatives in terms of response time,
utilization, and fairness and are better equipped to handle
the responsiveness demands of emerging applications.

The rest of this paper is organized as follows: The next
section presents a short summary of User-level Networking,
following which the different scheduling alternatives are
discussed in Section 3. Section 4 gives details on the
simulator itself, together with the simulation parameters
and performance metrics under consideration. The perfor-
mance results are presented in Section 5. Finally, Section 6
summarizes the observations and outlines directions for
future research.

2 USER-LEVEL NETWORKING (ULN)

In the following discussion, we give a quick overview of
user-level messaging since it is important for understanding
the dynamic coscheduling strategies.

Traditional communication mechanisms have necessi-
tated going via the operating system kernel to ensure
protection. Recent network interface cards (NIC), such as
Myrinet, provide sufficient capabilities/intelligence where-
by they are able to monitor regions of memory for messages
to become available and directly stream them out onto the
network without being explicitly told to do so by the
operating system. Similarly, an incoming message is
examined by the NIC and directly transferred to the
corresponding application receive buffers in memory (even

if that process is not currently scheduled on the host CPU).
From an application's point of view, sending translates to
appending a message to a queue in memory and receiving
translates to (waiting and) dequeuing a message from
memory. To avoid interrupt processing costs, the waiting is
usually implemented as polling (busy-wait). Experimental
implementations of variations of this mechanism on
different hardware platforms have demonstrated end-to-
end (application-to-application) latencies of 10-20 micro-
seconds for short messages while most traditional kernel-
based mechanisms are an order of magnitude more
expensive. User-level messaging is achieved without
compromising protection since each process can only access
its own send/receive buffers (referred to as an endpoint).
Thus, virtual memory automatically provides protected
access to the network. Several ULNs [37], [38], [23], [2]
based on variations of this paradigm have been developed.

User-level messaging, though preferable for lowering the
communication overhead, actually complicates the issue
from the scheduling viewpoint. A kernel-based blocking
receive call would be treated as an I/O operation with the
operating system putting the process to sleep. This may
avoid idle cycles (which could be given to some other
process at that node) spent polling for message arrival in a
user-based mechanism. Efficient scheduling support in the
context of user-level messaging thus presents interesting
challenges.

3 SCHEDULING STRATEGIES

We present the gang coscheduling model, followed by the
native operating system scheduler at each node that is
modeled as the core around which the dynamic coschedul-
ing mechanisms are structured. Finally, the details of the
different coscheduling heuristics are presented. All the
models have been designed and developed based on our
implementation [20], [21] of these mechanisms on an actual
Sun Solaris cluster connected by Myrinet.

3.1 Coscheduling or Gang Scheduling (GS)

Gang Scheduling ensures that the processes/tasks of a job
are scheduled on their respective nodes at the same time.
This usually requires some means of explicit or implicit
synchronization to make a coordinated scheduling decision
at the end of each time quantum. The CM-5 [35], Meiko
CS-2 (gang mode) [3], Intel Paragon (gang mode) [14],
AP/Linux [34], and the GangLL [11] on the IBM SP-2 at
LLNL are examples of systems that use this approach.

The simulation model is based on the implementation of
the GangLL scheduler [19], [11] on the Blue Pacific machine
at Lawrence Livermore National Lab. The model uses an
Ousterhout [22] matrix with the columns representing the
CPUs and rows representing the time quanta (as many rows
as the multiprogramming level). In an actual system, the
multiprogramming level (MPL) will be set based on the
available resources (such as memory, swap space, etc.) that
can handle a certain number of jobs concurrently without
significantly degrading performance. A job is allocated the
required number of cells in a single row if available. Else, it
is made to wait in an arrival queue (served in FCFS order)
until there are enough free cells in a row. During each time

ZHANG ET AL.: IMPACT OF WORKLOAD AND SYSTEM PARAMETERS ON NEXT GENERATION CLUSTER SCHEDULING MECHANISMS 969

quantum, a CPU executes the assigned job for that row in

the matrix and does not move to the next row until the next

quantum (regardless of whether the process is waiting for a

message, or performing I/O, or even finishes before the

quantum ends). At the end of the quantum, a context switch

cost is incurred. This not only includes the traditional costs,

but also the cost for synchronizing between the nodes before

it schedules the job for the next quantum (GangLL [11]

actually uses physical clocks with large time quanta instead

of explicit synchronization). Message receives are

implemented as busy-waits (spinning), though some of

this time could get hidden if the process is context

switched out (quantum expires).

3.2 Local Scheduling

We refer to the system which does not make any

coordinated scheduling decisions across the nodes as local

scheduling. The native operating system is left to schedule

the processes at each node. As in gang scheduling, each

node can again handle a maximum of MPL processes at any

time with the difference that an arriving job does not have

to wait until free slots are found in a single row. Rather, a

job can be scheduled to the corresponding CPUs that are

not already operating at their full MPL capacity (can be a

different row position for each column if one is to look at

this problem as filling the Ousterhout matrix). If the job

cannot find that many CPUs, it waits in an arrival queue

(served in FCFS order) until it does. A brief description of

the native scheduler (multilevel feedback queue) at each

node, which closely resembles the Solaris scheduler,

follows.
There are 60 priority levels (0 to 59 with a higher number

denoting a higher priority) with a queue of runnable

processes at each level. The process at the head of the

highest priority queue is executed first. Higher priority

levels get smaller time slices than lower priority levels that

range from 20 ms for level 59 to 200 ms for level 0. At the

end of the quantum, the currently executing process is

degraded to the end of the queue of the next lower priority

level. Process priority is boosted (to the head of the level 59

queue) when they return to the runnable state from the

blocked state (completion of I/O, signal on a semaphore

etc.) This design strives to strike a balance between

compute and I/O bound jobs with I/O bound jobs

typically executing at higher priority levels to initiate

the I/O operation as early as possible. The scheduler,

which runs every millisecond, ensures that lower priority

processes are preempted if a higher priority process

becomes runnable (the preemption may thus not take

place immediately after priority changes). For fairness, the

priorities of all processes are raised to level 59 every

second.
The ULN messaging actions explained above are used as

is in local; send is simply an append to a queue in memory

and receive is busy waiting (spinning) in user-space for

message arrival (consuming CPU cycles). This scheme has

been considered as a baseline to show the need for a better

scheduling strategy.

3.3 Dynamic Coscheduling Strategies/Heuristics

As mentioned earlier, these strategies rely on messaging
actions to guide the system toward coscheduled execution
and there is no coordinated effort explicitly taken to achieve
this goal. Logically, there are two components in the
interaction between a scheduler and the communication
mechanism. The first is related to how the process waits
for a message. This can involve: 1) just spinning (busy
wait), 2) blocking after spinning for a while, or 3) yielding
to some other process after spinning for a while. The second
component is related to what happens when a message
arrives and is transferred to application-level buffers. Here
again, there are three possibilities: 1) Do no explicit
rescheduling, 2) interrupt the host and take remedial steps
to explicitly schedule the receiver process, and 3) periodi-
cally examine message queues and take steps as in 2. These
two components can be combined to give a 3� 3 design
space of dynamic coscheduling strategies, as shown in
Table 1 (a description of these strategies follows).

In the following discussion, we limit our explanations in
order to familiarize the reader with these strategies and to
explain how they are simulated, rather than give a detailed
discussion of their implementation on an actual operating
system. For a detailed description of the implementation of
these different strategies on a Sun Solaris cluster connected
by Myrinet, the reader is referred to our earlier work [20].
The simulation models and parameters are based on our
earlier experimental exercises. All these strategies use the
same scheme described above in local to assign the
processes (tasks) of an arriving job to the different CPUs.

3.3.1 Spin Block (SB)

Versions of this mechanism have been considered by others
in the context of implicit coscheduling [7], [1], [27] and
demand-based coscheduling [31]. In this scheme, a process
spins on a message receive for a fixed amount of time before
blocking itself. The fixed time for which it spins, henceforth
referred to as spin time, is carefully chosen to optimize
performance. The rationale here is that if the message
arrives in a reasonable amount of time (spin time), the
sender process is also currently scheduled and the receiver
should hold on to the CPU to increase the likelihood of
executing in the near future when the sender process is also
executing. Otherwise, it should block so that CPU cycles are
not wasted.

The simulation model sets the spin time for a message to
be slightly higher than the expected end-to-end latency (in
the absence of any contention for network or node
resources) of the message it is waiting for. If the
corresponding message arrives within this period, the
mechanism works the same way as the earlier scheduling

970 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 9, SEPTEMBER 2001

TABLE 1
Design Space of Dynamic Coscheduling Strategies

schemes (busy-wait). Else, the process makes a system call
to block using a semaphore operation. On subsequent
message arrival, the NIC firmware (having been told that
the process has blocked) raises an interrupt, which is
serviced by the kernel to unblock the process. As mentioned
earlier, the process gets a priority boost (to the head of the
queue of the highest priority level) on wakeup. Costs for
blocking/unblocking a process, context switches resulting
from these operations, and interrupt processing are
modeled in the simulation.

3.3.2 Spin Yield (SY)

In SB, the process blocks after spinning. This has two
consequences. First, an interrupt is required to wake the
process on message arrival (which is an overhead). Second,
the block action only relinquishes the CPU and there is no
hint given to the underlying scheduler as to what should be
scheduled next. In our earlier work [20], we have proposed
Spin Yield (SY) as an alternative to address these problems.
In this strategy, after spinning for the required spin time,
the process does not block. Instead, it lowers its priority,
boosts the priority of another process (based on the pending
messages of the other processes at that workstation), and
continues spinning. This avoids an interrupt (since the
process keeps spinning, albeit at a lower priority) and gives
hints to the scheduler as to what should be scheduled next.

In the simulation, the time spent spinning before
yielding is again set similarly to the SB mechanism. On
yielding, the process priority is dropped to a level that is
one below the lowest priority of a process at that node and
the priority of another process with a pending (uncon-
sumed) message is boosted to the head of level 59 (the
details of the algorithm that is used to select the candidate
for boosting are described later in the context of the PB
mechanism). The application resumes spinning upon
returning from the yield mechanism (system call) and the
scheduler is likely to preempt this process at the next
millisecond boundary. System call costs, together with the
overheads for manipulating the priority queues, are
accounted for in the yield call.

3.3.3 Demand-Based Coscheduling (DCS)

Demand-based coscheduling [31] uses an incoming
message to schedule the process for which it is intended
and preempts the current process if the intended receiver is
not currently scheduled. The underlying rationale is that
the receipt of a message denotes the higher likelihood of the
sender process of that job being scheduled at the remote
workstation at that time.

Our DCS model is similar to the one discussed in [31].
Every one millisecond, the NIC finds out which process is
currently being scheduled on its host CPU. The NIC uses
this information to raise an interrupt (if the receiver process
is not currently scheduled) on message arrival after
transferring it to the corresponding endpoint. The interrupt
service routine simply raises the priority of this receiver
process to the head of the queue for level 59 so that it can
possibly get scheduled at the next scheduler invocation
(millisecond boundary). The application sends and receives
(implemented as busy-waits) remain the same as in Local.
The model again ensures that the costs for interrupts and
queue manipulations are included based on experimental
results.

3.3.4 Periodic Boost (PB)

We have proposed this as another interruptless alternative
to addressing the inefficiencies arising from scheduling
skews between processes. Instead of immediately inter-
rupting the host CPU on message arrival as in DCS, the NIC
functionality remains the same as in the baseline ULN
receive mechanism. A kernel activity (thread) becomes
active every one millisecond (the resolution of the scheduler
activation), checks message queues, and boosts the priority
of a process based on some heuristic. Whenever the
scheduler becomes active (at the next millisecond bound-
ary), it would preempt the current process and schedule the
boosted process.

There are several heuristics that one could use within the
PB mechanism to decide on who or when to boost and, in
this paper, we propose, classify, and evaluate 10 new heuristics.
For most of the experiments, the heuristic that is used
(called Heuristic A) can be briefly explained as follows
(further details are in Section 5.9): The PB mechanism goes
about examining message queues in a round-robin fashion,
starting with the current process, and stops at the first
process performing a receive with the message that it is
receiving present in the endpoint buffers (message has
arrived but has not yet been consumed by the receive call).
This process is then boosted to the head of the level 59
queue. If there is no such process, then, again going about it
in a round-robin fashion, the mechanism tries to find a
process which is not within a receive call (this can be
incorporated easily into the existing ULN mechanism by
simply setting a flag in the endpoint when the application
enters a receive call and resetting it when it exits from the
call). It then boosts this process if there is one. Else, the PB
mechanism does nothing. This algorithm is used in finding
a candidate for boosting in the SY mechanism as well.

The rationale behind this heuristic and a comparison
with seven other variations is given later in Section 5.9. The
simulation models the details of the PB mechanism,
incorporating the costs associated with polling the end-
points to find pending message information and the
subsequent costs of manipulating priority queues.

3.3.5 Combinations (DCS-SB, PB-SB, DCS-SY, PB-SY)

One could combine the choices for the two messaging
actions, as was shown in Table 1, to derive integrated
approaches that get the best (or worst) of both choices. As a
result, there is nothing preventing us from considering the
four alternativesÐDemand-based coscheduling with Spin-
Block (DCS-SB), Periodic Boost with Spin-Block (PB-SB),
Demand-based coscheduling with Spin-Yield (DCS-SY),
and Periodic Boost with Spin Yield (PB-SY)Ðas well.

4 EXPERIMENTAL PLATFORM

Before we present performance results, we give details on
the simulation platform, the workload used to drive the
simulator, the parameters that are varied in this exercise,
and the performance metrics of interest.

4.1 Simulator

We use a discrete-event simulator that has been built using
the process-based CSIM package. The simulator has the

ZHANG ET AL.: IMPACT OF WORKLOAD AND SYSTEM PARAMETERS ON NEXT GENERATION CLUSTER SCHEDULING MECHANISMS 971

following modules for each node in the system: network
interface, operating system scheduler, and the application
process. In addition, there is a network module that
connects the different nodes. Since the focus of this paper
is more on the scheduling mechanisms, we use a simple
linear model for the network that is parameterized by the
message size and do not consider network contention
(though the contention at the network interface is modeled).
The network interface module examines incoming messages
from the network and deposits them into the corresponding
endpoint. Similarly, it waits for outgoing messages and
delivers them into the network module. Costs for these
operations have been drawn from microbenchmarks run on
our experimental platform discussed in our earlier work
[20], [21], [33]. The core scheduler at each node uses a
multilevel feedback queue that has been discussed in
Section 3.2. The scheduler becomes active every one
millisecond at each node (similar to the Solaris scheduler).
At this time, it checks if the quantum has expired for the
currently scheduled process and, if so, it preempts and
reschedules another. Even if the quantum has not expired,
the scheduler consults the feedback queues to check if there
is a ready process with a priority higher than the currently
scheduled one for possible preemption. There are two other
components to the scheduler that correspond to interrupts
and the periodic boost mechanism, respectively. The
interrupt mechanism is used in SB, DCS, PB-SB, DCS-SB,
and DCS-SY and becomes active immediately after the
network interface module raises an interrupt. After
accounting for interrupt processing costs, the scheduling
queues may need to be manipulated in this mechanism. The
periodic boost mechanism is used in PB, PB-SB, and PB-SY
and becomes active every one millisecond to check the
endpoints for messages and manipulate the scheduling
queues as described in the previous section. Costs for the
queue manipulations have again been drawn from our
experimental studies. (See Fig. 1.)

Our simulator hides all the details of the scheduling
models from the application process. The application
interface allows the flexibility of specifying the computation
time, communication events (sends or receives with
message sizes and destinations), and I/O overheads. The
development of the simulator has itself been a significant
effort, but we do not delve further into the implementation
details.

4.2 Workloads

We are interested in using realistic workloads to drive the
performance evaluation. Toward this, we are interested in

capturing the dynamic behavior of the environment (i.e.,
dynamic job arrivals), different job execution times and job
sizes (number of CPUs), and the characteristics of each job
(computation, communication, and I/O fractions) as well.

To capture the dynamic behavior of the environment,
our experiments use a workload that is drawn from a
characterization of a real supercomputing environment at
Lawrence Livermore National Lab. Job arrival, execution
time, and size (number of CPUsÐhenceforth referred to as
tasks) information of this environment have been traced
and characterized to fit a mathematical model (Hyper-
Erlang distribution of common order). The reader is
referred to [11] for details on this work and the use of the
model in different evaluation exercises [40]. However, due
to the immense simulation details involved in this exercise
(unlike in any of the previous studies), requiring the
modeling of scheduling queues at granularities smaller
than even a millisecond, it is not feasible to simulate very
large systems. As a compromise, we have limited ourselves
to clusters of up to 32 nodes and select jobs from the
characterized model that fall within this limit.

As can be expected, the characteristics of each job in the
system can further have an impact on the performance
results. In particular, the time spent in the computation
(only the CPU is required), communication, I/O activities,
and the frequency of these operations can interact with the
scheduling strategies in different ways. It is easy to draw
false conclusions if one does not consider all these different
artifacts in the performance evaluation. In reality, a job can
be intensive in any one of the three componentsÐcomputa-
tion (CPU), communication, or I/OÐor can have different
proportions of these components. To consider these
different situations, we identify six different job types with
different proportions of these components. Our evaluations
use eight different workloads, termed WL1 to WL8, with the
first six using jobs of the corresponding class in isolation, as
shown in Table 2. In the seventh workload (WL7), a job has
an equal probability of falling in any of the six job types so
that we consider the effect of a mixed load on the system.
The last workload (WL8) considers an equal mix of the
three job classes that are each intensive in one of the three
components (CPU, I/O, and communication).

We consider four different communication patterns (that
are typical of several parallel applications) between the
tasks of a job that are shown in Fig. 2b. The considered
patterns include Nearest Neighbor (NN) (process i commu-
nicates with iÿ 1 and i� 1, which is exhibited by
applications such as Successive Over-Relaxation), all-to-all
(AA) (process i sends a message to all other processes and
waits for a message from everyone else, which is typical in
many scientific computations, such as matrix transposes,
multidimensional FFTs, etc.), tree (going up and coming
down, similar to the tree-based barrier discussed in [18],
which is a typical structure used for global reductions), and
linear (process i sends a message to i� 1 and waits for a
message from iÿ 1, which is a common structure in
pipelined/systolic executions). All these patterns use a
constant message size of 4,096 bytes.

Once the relative proportions and corresponding times
in the three components (computation, communication, and

972 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 9, SEPTEMBER 2001

Fig. 1. Structure of the simulator.

I/O) are derived for a given job, its tasks iteratively (as
shown in Fig. 2a) go through a sequence of compute, I/O,
sends/receives as per the communication pattern (Fig. 2b).
By fixing the raw 1-way latency of a 4,096 byte message
(from an experimental platform), the cost of communication
per iteration in the ideal case (when everything is balanced)
is known. Based on this and the relative proportion of the
other two components (compute and I/O), which is
determined by the job type, the computation, and I/O
times per iteration, can be calculated. Together with the
total job execution time (given by the characterized model),
these individual times determine the number of iterations
that a job goes through.

It is also important to note that the work imbalance/
skewness between the tasks (and the resulting mismatch of
the sends and receives) can have a significant impact on
results. As a result, the skewness (s), which is expressed as a
percentage of the computation and I/O fractions of the
tasks, is another parameter that is varied in the experiments.
Formally, the CPU and I/O components of each iteration of
a task that were calculated earlier are each multiplied by a
factor �1� unif�ÿs=2; s=2��, where unif�x; y� generates a
random number between x and y using a uniform
distribution. If s is set to 0, then all tasks spend the same
computation and I/O times in each iteration and, thus,
arrive at the communication events at the same time. In this

case, the execution time for this job will match the one

picked for it from the characterized model [11] on a

dedicated (nonmultiprogrammed) system. A larger skew-

ness implies that tasks will arrive at the communication

events at different times and the overall execution time per

iteration will depend on who comes last to the send/receive

calls. This also implies that the execution time is likely to get

larger compared to that derived from the characterized

model (each iteration can get elongated) with a larger s. The

effectiveness of the scheduling mechanisms can be evalu-

ated by how well they are able to hide the increase in

execution times.

4.3 Parameters

Several parameters and costs can be varied in the simulator,

and some of these (and the values that are used) are given

in Table 3. Many of the times given in this table have been

obtained from microbenchmarks on actual operating

systems and Myrinet clusters with a ULN connecting the

machines [20], [33].

4.4 Metrics

This exercise considers several metrics that are important

from both the system and user's perspective:

ZHANG ET AL.: IMPACT OF WORKLOAD AND SYSTEM PARAMETERS ON NEXT GENERATION CLUSTER SCHEDULING MECHANISMS 973

Fig. 2. Job structure. (a) Application model. (b) Communication pattern.

TABLE 2
Workloads

. Response Time: This is the time difference between
when a job completes and when it arrives in the
system averaged over all jobs.

. Wait Time: This is the average time spent by a job
waiting in the arrival queue before it is scheduled.

. Execution Time: This is the difference between
Response and Wait times.

. Slowdown: This is the ratio of the execution time to the
time taken on a system dedicated solely to this job. It
is an indication of the slowdown that a job
experiences when it executes in multiprogrammed
fashion compared to running in isolation after it is
allocated to the CPUs.

. Utilization: This is the percentage of time that the
system actually spends in useful work.

. Fairness: The fairness to different job types (CPU,
communication, or I/O intensive) is evaluated by
comparing the slowdown of the individual job
classes and its coefficient of variation (standard
deviation divided by the mean) in a mixed work-
load. A smaller variation indicates a more fair
scheme.

. Performance Profile: This is expressed as a graph
showing the percentage of time that a CPU spends
on the average in different components (compute,
spinning/busy-wait, context switches, idling, and
other overheads such as interrupt costs). Such a
graph is useful to better understand the performance
results and also to identify bottlenecks in the
execution.

5 PERFORMANCE RESULTS

5.1 Impact of Load

As the load increases, the system is likely to be more heavily

utilized. Consequently, jobs are likely to experience longer

wait and response times. The workload characterization

effort presented in prior research [11] provides a way of

cranking the induced load by modulating the job arrival

rates and execution times. The resulting effect on the

response time of the system is plotted against the system

utilization in Fig. 3 for the mixed workload (WL7). It should

be noted that utilization is calculated only using the useful
work (computation time), as was mentioned earlier.

Local, SY, DCS, and DCS-SY, which all use spin-
based receives, saturate even before the utilization
reaches 50 percent and are thus not seen in Fig. 3. We
find that GS can go only as high as 57 percent before
saturation. The remaining schemesÐDCS-SB, PB-SY, PB-SB,
SB, and PBÐperform significantly better than GS. Of these,
PB, PB-SB, and SB perform the best, with the utilization
reaching as high as 77 percent before saturation. In the
rest of this section, we set the interarrival time of jobs
to be 674.14 seconds with a mean execution time
(including computation, I/O, and communication times)
of 2:2250� 103 seconds.

5.2 Impact of the Nature of Workload

Next, we examine the impact of the computation, commu-
nication, and I/O components of the workload on the
performance of the different schemes. WL4, WL5, WL2,
and WL3 are CPU intensive, communication intensive,
I/O intensive, and evenly balanced (among the three
components) workloads, respectively. The response times
of the 10 scheduling alternatives for these four workloads
are presented in Fig. 4. The response time is further broken
down into the wait time in the arrival queue and the
execution time. It should be noted that some of the bars
which hit the upper boundary of the y-axis have been
truncated (and the execution portion of these bars is not
visible).

For the CPU intensive workload (WL4), Local and SY are
simply not acceptable (this is true for the other workloads
as well). Both DCS and DCS-SY have higher response times
than the rest, mainly because of the longer wait in the
arrival queue. GS has the next highest response time for
this workload. For a high computation proportion, even
an s � 20% skewness can make a difference in causing a
load imbalance between the tasks, leading to inefficiencies
in GS. There is not a significant difference between the
response times of the other five schemes for this work-
load. When the computation is high, the inefficiencies due
to inexact coscheduling are not really felt (since receives
are infrequent) and any skewness is well, hidden by the
scheduling mechanism.

974 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 9, SEPTEMBER 2001

Fig. 3. Impact of load on response time (NN, WL7, p � 32, MPL � 5,

s � 20%).

TABLE 3
Simulation Parameters and Values in Experiments

Unless explicitly mentioned, the default (underlined) values are used.

On the other hand, when one examines the communica-
tion intensive workload (WL5), the differences are more
pronounced. DCS and DCS-SY become much worse here.
The performance of GS, SB, PB-SB, and PB-SY is compar-
able, with PB giving the best performance. When the
communication component becomes high, there is a
stronger need for coscheduling. Further, the skewness
between the executing tasks of an application gets lower
with a lower compute fraction, making the inefficiencies of
GS less important.

In the I/O intensive (WL2) or mixed workload (WL3),
the occurrence of I/O activities within a time quantum
keeps the CPU idle for the remainder of the quantum in GS.
When the I/O portion is more intensive (WL2), the impact
of noncoscheduled execution is not felt. As a result, there is
not a significant difference between SB, DCS-SB, PB, PB-SB,
and PB-SY. Finally, the evenly balanced workload (WL3)
reiterates the observations made for the communication
intensive workload, though to a lesser degree, while
showing that GS is not as good as SB/PB/PB-SB/PB-SY
because of the presence of I/O activities.

As in the previous section, we find that the PB, SB, PB-
SY, and PB-SB schemes are uniformly good for all the
workloads. Of these, PB is clearly the best for the
communication intensive workload. DCS-SB falls in the
next category. GS is reasonable as long as the execution
does not lead to work imbalances. It should be noted that, in
all four workloads, several of the dynamic coscheduling
mechanisms have a shorter wait time component compared
to GS. This is because allocating CPUs to a job in GS
requires those CPUs to be available during the same time
quantum (i.e., the same row of the Ousterhout matrix) while
the others do not pose any such restrictions.

5.3 Impact of Multiprogramming Level (MPL)

As one increases the multiprogramming level, a larger
number of jobs can be simultaneously accommodated in the

system, which works in favor of lowering wait times. A

larger MPL also allows the system to find alternate work

(that is useful) to do when processes block (or yield).

However, larger MPLs also imply a larger number of

context switches during execution, which stretches execu-

tion times. In addition, a larger MPL also decreases the

likelihood of the tasks being coscheduled in the dynamic

coscheduling mechanisms. Thus, it is interesting to study

the impact of MPL to understand these factors and their

interplay. Table 4 shows the change in response times

normalized (with respect to MPL � 2) for WL2 with

MPL � 5 and WL4 and WL5 with MPL � 5 and 16. Fig. 5

shows the performance profile graphs for the correspond-

ing experiments, which can be used to observe the change

in percentage of time spent in different activities when one

increases the MPL level.
In Local, the overheads with a larger MPL dominate over

other factors resulting in larger response times when we go

ZHANG ET AL.: IMPACT OF WORKLOAD AND SYSTEM PARAMETERS ON NEXT GENERATION CLUSTER SCHEDULING MECHANISMS 975

TABLE 4
Impact of MPL: Normalized Change in Response Time

with Respect to MPL � 2 (NN, p � 32, s � 20%)

Fig. 4. Impact of the nature of workload on response time (NN, p � 32, MPL � 5, s � 20%). (a) WL4. (b) WL5. (c) WL2. (d) WL3.

from MPL level 2 to 5 for all three workloads. We can glean

this behavior from the performance profile graphs as well.

Moving from MPL level 2 to 5 results in lowering the

percentage of time spent in useful computation (increasing

the spin component in the spinning alternatives). In these

experiments again, we find that schemes incorporating PB

and SB in some form or the other are able to provide a more

scalable improvement in response times with increasing

MPLs compared to the rest. At lower MPLs, the SB

mechanisms are not able to keep the CPU fully occupied

(idle time in the performance profile). This is even more

significant for the I/O intensive and communication

intensive workloads, which block more frequently. When

the MPL is increased, while the context switch times do go

up, it is seen that the reduction in the idling is more than

adequate to compensate for the considered context switch

overheads. With the PB mechanism, we find that it is better

than SB at lower MPL levels (because it blocks less

frequently), particularly for the communication intensive

workload (WL5). SB really needs much higher MPL levels

before its performance becomes comparable to PB. From the

workload viewpoint, I/O and communication intensive

workloads have larger changes (and will better benefit)

with MPL compared to the CPU intensive workload.

It is to be noted that, after a point, one can expect
response times to eventually go up (even though this is
shown for only one of the schemes at MPL = 16 in Table 4)
due to the overheads dominating any potential benefits.

5.4 Impact of Skewness

Skewness (work imbalance) between the tasks of a job can
determine the amount of time that a receiver spins or blocks
for a message. Hence, it would be interesting to study how
the mismatch of the sends and receives affects the
performance of the scheduling mechanisms. Fig. 6 shows
the response times and corresponding performance profile
for the different schemes with two different skewness
values (20 percent and 150 percent) for the CPU intensive
workload.

Even if a job is running in isolation on a dedicated
system, increasing the skewness would increase its execu-
tion time (as per the explanation for skewness given in
Section 4.2). This effect is clearly seen for GS on the two
workloads where the execution time goes up from s � 20%
to 150% since GS does not have much scope for hiding the
impact of this skewness. On the other hand, the dynamic
coscheduling mechanisms can potentially better utilize the
CPUs than GS for larger skewness values. We can see that
most of these schemes are better able to hide the effect of the
skewness compared to GS; the spin time increase with a

976 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 9, SEPTEMBER 2001

Fig. 5. Impact of MPL: performance profile (NN, p � 32, MPL � 2 (left bar) and 5 (right bar), s � 20%). (a) WL2. (b) WL4. (c) WL5.

larger skewness for the spinning mechanisms and the idle

time increase for the blocking mechanisms are not as high

as the increase in spin times for GS (as seen in performance

profiles). Between the spinning and blocking mechanisms,

we find that the latter are better able to hide the effect of

skewness as can be expected. We have also tried a similar

experiment for the communication intensive workload and

we have found that the effect of skewness is less

pronounced for this workload. This is because skewness is

varied as a percentage rather than as an absolute value. As a

result, the skew is higher in the compute intensive work-

load than in the communication intensive workload. The

latter inherently synchronizes the tasks more often.

5.5 Impact of System Overheads

In the above discussions, the context switch and

interrupt processing costs were kept constant at 200

and 50 microseconds, respectively, for all schemes except

GS (where the context switch was set at two milliseconds to

account for the synchronization between the CPUs). These

parameters can also have an effect on the relative

performance of the schemes and Table 5 shows these effects

for SB, DCS, DCS-SB, PB, PB-SB, and GS. The response

times in Table 5 have been normalized with respect to the

first column. It should be noted that there are no interrupts

in the PB and GS mechanisms.

The context switch times in GS are determined not only
by the costs of swapping in/out processes at each node, but
also due to the explicit synchronization between the nodes.
As a result, context switch costs in GS are usually much
higher than for the schemes which do not require any
explicit synchronization. If we keep the ratio of the time
quantum to the context switch overhead the same (100:1),
we find that a smaller quantum helps this scheme. This is
because, with a smaller quantum, the amount of time in the
quantum that is wasted due to blocking (for I/O) or
spinning (for a message) becomes smaller. By the time the
process gets rescheduled, the operation may be complete,
thus allowing better overlap with useful computation. As is
to be expected, increasing the overhead percentage due to
context switches (i.e., column 3 compared to column 2),
extends the execution time (and thereby the response time)
of a job.

With the overheads dropping (column 2 compared to
column 1), the response times reduce for the different
coscheduling heuristics. We find the benefits more
significant for the blocking mechanisms compared to
those that employ spinning. Blocking executions typically
involve many more context switches (each block involves
a switch) and, thus, can benefit from the lower associated
costs. As interrupt costs go up with no changes to the
context switch costs (column 2 to 3), the response times
for the mechanisms which incur interrupts (DCS, DCS-SB,
SB, and PB-SB) increase. PB makes rescheduling decisions
at a much coarser granularity and, thus, is less likely to be
affected by system overheads.

5.6 Impact of Communication Pattern

Fig. 7a, Fig. 7b, Fig. 7c, and Fig. 7d show the response times
with the different schemes for the four communication
patterns that have been considered. Examining the tree
pattern, we find that the blocking schemes perform better
than the other alternatives while this is not necessarily the
case in the other patterns. With this pattern, sends and the
corresponding receives at the other end are more likely to
be mismatched (i.e., receive may happen much before the
send). This is similar to what we observed with a higher
skewness factor, making the blocking schemes perform
rather well. With the all-to-all pattern, coscheduling

ZHANG ET AL.: IMPACT OF WORKLOAD AND SYSTEM PARAMETERS ON NEXT GENERATION CLUSTER SCHEDULING MECHANISMS 977

TABLE 5
Impact of System Overheads on Response Time

(NN, WL5, p � 32, MPL � 5, s � 20%)

Fig. 6. Impact of skewness (NN, WL4, p � 32, MPL � 5, s � 20% (left bar) and 150% (right bar)). (a) Response time. (b) Performance profile.

becomes extremely important and one cannot tolerate any
mismatch of sends and receives. As a result, we find the
GS scheme performing the best. Linear and nearest-

neighbor show comparable behavior for the different
schemes and these patterns fall between the other two (tree
and all-to-all) in terms of how important it is to coschedule
the processes. Regardless of the communication pattern,

we find the PB mechanism uniformly giving good
performance.

5.7 Impact of System Size

It is interesting to find out what the improvement in
response time would be as we increase the number of CPUs
in the system (scalability issue). It is clear that the wait time

in the arrival queue would go down. However, increasing
system size (and keeping the same number of processes at
each node) lessens the likelihood of coscheduled execution

due to the higher possibility of conflicting decisions being

made across the nodes (stretching the execution time). The

relative changes in these two components will determine

the scalability of the system. To evaluate these issues,

we conduct experiments with two system sizes (16 and

32 CPUs) and use the same load (with each job demanding

at most 16 CPUs) on the two configurations. The resulting

response times are shown in Fig. 8, together with its

performance profile.
We observe that doubling the system size significantly

(more than halving) lowers the wait time (which is the

dominating factor of the response time) in the arrival queue.

This more than adequately compensates for the minor

increases in execution time (due to lower probability of

coscheduled execution). Though the results are not

explicitly shown here, it should be noted that these

978 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 9, SEPTEMBER 2001

Fig. 8. Impact of the number of CPUs (NN, WL5, p � 16(left bar) and 32 (right bar), MPL � 5, s � 20%). (a) Response time. (b)

Performance profile.

Fig. 7. Impact of the nature of the communication pattern on response time (p � 32, MPL � 5, WL5, s � 20%). (a) NN. (b) AA. (c) Linear. (d) Tree.

factors are accentuated with higher loads, where the wait
times are likely to be even higher.

The performance profile graph also sheds interesting
insights on scalability of the system. For the blocking
schemes (SB, DCS-SB, and PB-SB), we find that the idle time
component of the execution goes up. This is because the
same load is exercising a larger system, resulting in lower
load (tasks assigned or effective MPL) per node. Lower
effective MPLs imply a larger idle time for the blocking
mechanisms (since they run out of work) and a lower spin
component in the spinning mechanisms due to the higher
likelihood of coscheduled execution. In GS, the idle
component of the execution goes down with the system
size, which may appear somewhat counterintuitive. This is
because there is an optimization being performed wherein
tasks are replicated across time quanta whenever there are
idle slots as long as it does not affect the coscheduled
execution of other jobs [40]. Thus, a job could occur in more
than one row of the Ousterhout matrix provided it does not
require any migration across nodes. Since the overall
response times drop, this optimization contributes to
lowering the idleness component of the system.

Another exercise that would be useful to a system
administrator/designer toward configuring a given sys-
tem for maximum rewards is: Does it make sense to

partition a given cluster into smaller fragments and
specifically assign jobs to these fragments or would it be
better to treat it as one big machine? To investigate this
issue, we run two sets of experiments, first with a single
cluster of 32 nodes and second with two clusters of 16
nodes each, and exercise them with the same workload.
Although there has been prior work on better job
assignment schemes using their execution time [6], in this
study, we just assign each job to the partition with the least
load since we do not have execution times beforehand.

Fig. 9 compares the response times with these two
executions (right bar for 32-node cluster and left bar for the
partitioned system). We can observe that, in nearly all cases,
the savings in the wait time offset any stretching of the
execution time, suggesting that it is not a good idea to
partition the cluster. Similar results were observed for other
system sizes/configurations as well.

5.8 Fairness

Until now, we have purely looked at performance issues for
the different scheduling mechanisms. Fairness to different
jobs is another important criteria from both the system
administrator and user perspectives. There are several ways
of analyzing the fairness of the system. In this paper, we
look at the fairness issue from the viewpoint of how much
the scheduler is biased/discriminatory based on the nature
of the job. If a scheduler is biased towards/against any
particular type of job, then it is likely to experience a lower/
higher slowdown. So, comparing the differences in slow-
down (or, rather, the coefficient of variation of slowdown)
to the different job classes in a mixed workload can be used
to argue the fairness of a scheduling strategy. To examine
the fairness for different job types, we run workload WL8
(with s � 0 to ensure that all job types have the same
average execution time on a dedicated system) on a 32-node
system and classify the jobs within this workload into those
that are CPU intensive, communication intensive, and I/O
intensive. Fig. 10 shows the average job slowdown (normal-
ized for each with respect to the job class with the least
slowdown) and its coefficient of variation over these three
job classes for Local, GS, SB, DCS, PB, PB-SB, and PB-SY.

As expected, GS is the most fair, with all three job
classes experiencing equal slowdowns (low coefficient of

ZHANG ET AL.: IMPACT OF WORKLOAD AND SYSTEM PARAMETERS ON NEXT GENERATION CLUSTER SCHEDULING MECHANISMS 979

Fig. 10. Fairness: slowdown of different job types (NN, WL8, p � 32, MPL � 5, s � 0%). (a) Slowdown. (b) Coefficient of variation of slowdown.

Fig. 9. Impact of partitioning on response time (NN, WL5, p � 16 (left

bar) and 32 (right bar), MPL � 5, s � 20%).

variation). At the other end of the spectrum is Local,
where I/O intensive jobs get boosted much more often
than the others (I/O completion is the only criterion for
boost in priority in the Solaris scheduler at each node). Of
the remaining schemes, the blocking schemes (SB and
PB-SB) are more fair than their spinning counterparts
(DCS, PB, and PB-SY). We will revisit the fairness issue
for the PB mechanism again in the next section after we
discuss the different heuristics that one can use for PB.

5.9 PB Heuristics

The PB mechanism is a powerful one, allowing us to
employ several heuristics to decide on who to boost before
the next scheduling decision. Until now, we have used only
one heuristic for this mechanism and it will be interesting to
explore alternatives for this choice (particularly if we can do
even better). When the PB mechanism is invoked, a ready/
executing process can be in one of four states:

S1. It is in the compute/send phase and there are no
pending (unconsumed) messages.

S2. It is in the compute/send phase and there is at least
one pending message.

S3. It is in the receive phase and the message for which
this receive is posted has arrived (and is not yet
consumed).

S4. It is in the receive phase and the message for which
it is waiting has not yet arrived.

Identifying these states can help us decide whether to boost
a process and to decide on a priority order if there are
choices. Of these four states, it intuitively makes the most
sense to give the highest priority to S3 and S2 since a
pending message implies that the receiver should soon be
scheduled as per the DCS heuristic. Another observation is
that a process in S4 should never get boosted since it will
waste CPU cycles spinning redundantly (so we can confine
ourselves to states S1, S2, and S3). Based on the relative
priority of these states, we identify the following heuristics:

A : S3! fS2; S1g;
B : S3! S2! S1;

C : fS3; S2; S1g;
D : fS3; S2g ! S1;

E : S2! S3! S1;

where ! denotes the priority ordering. For instance,
scheme A denotes that all processes are first checked to
see if any of them is in state S3 in round-robin order,
stopping (and boosting) at the first process in this state.
Only when none of them are in state S3 are the conditions
S2 and S1 evaluated for all of them (again in round-robin
order) to see if a process is in either of these two states (and,
if so, stopping and boosting that process). The other
schemes can be similarly described. In all the previous
performance results, heuristic A has been used.

Fig. 11 compares the response times of the five heuristics
for the WL4 (CPU intensive), WL8 (mixed), and WL5
(communication intensive) workloads. For WL4, we find
that heuristics B, D, and E outperform the other two. Even
though the workload is CPU intensive, it is still important to
boost processes with one or more pending messages (to
increase the likelihood of coscheduling). Of the five
heuristics, B, D, and E are likely to give more boosts to
such processes than the others. The likelihood of S3 being
the chosen condition for boosting a process is rather low in
this workload (being CPU intensive). In A and C, S1 has a
higher chance (than in B, D, and E) of being the condition
used for boosting (because of the priority order). This
intuition is also confirmed by the statistics from the
experiments, shown in Fig. 12a, which gives the number
of boosts given by the different heuristics based on the
condition causing the boosts.

We find a similar argument (Fig. 11b) holding for
the mixed workload (WL8) as well, where we find
that heuristics B, D, and E give more boosts to a job
with a pending message (states S2 or S3) than the
other two (Fig. 12b).

Moving to WL5, we find that heuristics C, D and E are
better than the first two which can be explained as follows.
For this workload, S3 is most likely to be the chosen
condition for boosting a process since it is very likely that
the current process is in the S4 state when the periodic boost
mechanism is invoked and the next immediate process in
round-robin order is chosen (which is likely to be in the S3
state). This intuition is borne out by the statistics shown in
Fig. 12c, where S3 gives the maximum number of boosts,
and in Fig. 13c, which shows the number of boosts given to
a process that is i positions away (on the x-axis) from the
currently scheduled process in round-robin order. In this
workload, it is more important to adhere to some order that
is common across the different CPUs to increase the

980 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 9, SEPTEMBER 2001

Fig. 11. PB heuristics (NN, p � 32, MPL � 5, s � 20%). (a) WL4. (b) WL8. (c) WL5.

likelihood of the processes belonging to the same job being
scheduled at the same time (since they are all likely to be in
the same state). Of the five heuristics, we find the latter
three have a higher likelihood of selecting the next process
in round-robin order and, thus, have a lower response time.

In essence, two factors are to be considered in the
performance of these heuristics. First is the condition
causing the boost and the second being the position (from
the current process in round-robin order) of the process that
is boosted. In WL4 and WL8, the first factor is more
important since the processes are likely to be in different
states while the latter factor is more important in WL5,
where all (or most) the other processes at a node are likely
to be in the same state (namely S3).

Overall, we find that heuristics D and E perform the best
across all three workloads. We have also tried heuristics
that are based on the number of pending messages and
time-stamp of message arrivals, but we have still found D
and E outperforming those as well.

We next examine the fairness of the different heuristics
using the same experiment mentioned in Section 5.8. As
before, Fig. 14 shows the normalized job slowdown and its
corresponding coefficient of variation, respectively, for
heuristics A through E. We find that B and D are much
more fair than the others, with their coefficient of variation
comparable to that of SB (Fig. 10). We noticed that D was
giving low response times as well, suggesting that we use
this heuristic for the PB mechanism.

ZHANG ET AL.: IMPACT OF WORKLOAD AND SYSTEM PARAMETERS ON NEXT GENERATION CLUSTER SCHEDULING MECHANISMS 981

Fig. 14. PB fairness: slowdown of different job types (NN, WL8, p � 32, MPL � 5, s � 0%). (a) Slowdown. (b) Coefficient of slowdown.

Fig. 12. Conditions causing boosts (NN, p � 32, MPL � 5, s � 20%). (a) WL4. (b) WL8. (c) WL5.

Fig. 13. Position of process being boosted (NN, p � 32, MPL � 5, s � 20%). (a) WL4. (b) WL8. (c) WL5.

The fairness issue suggests an even further improvement
to the five PB heuristics, where, instead of just checking the
condition (S1 through S4) for boosting, we also ensure that
the selected process does not get more than a fair share of
the CPU (else an alternate is chosen) [4]. So, we can revise
the five heuristics with this additional check and we refer to
these new mechanisms as PB-A0 through PB-E0, respec-
tively. For instance, PB-E0 can be explained as follows. First,
we find all processes that are in the S2 state. If there is at
least one such process, then we use the process with the
minimum ratio of the CPU time that it has been allocated to
the time since it entered the system (i.e., percentage of the
CPU that it has received since it started) as the target for
boosting. However, if no process is in the S2 state, then we
check for the S3 state and do likewise. Table 6 shows the
coefficient of variation of these five variations and it can be
seen that the first four of these are as fair as GS (compare to
Fig. 10). Further, the response times of the enhanced
mechanisms are plotted in Fig. 15 in relation with the plain
A through E heuristics to show that we are not losing out on
response times at the cost of fairness.

6 CONCLUDING REMARKS AND FUTURE WORK

Advances in user-level networking (ULN) allows us to
explore a new domain of dynamic coscheduling mechan-
isms that offer potential improvement over conventional
scheduling strategies (such as space sharing or gang
scheduling) for parallel machines. These mechanisms
become even more important for cluster environments where
applications with diverse characteristics and QoS require-
ments coexist. Until now, the understanding and knowledge
of the relative performance of dynamic coscheduling
mechanisms is rather limited [32], [20], [7], [1], [31]. While
our previous work [20] did a preliminary examination of
these dynamic coscheduling mechanisms, the study was
rather limited due to the workloads that were considered,
the experiments that were conducted, the inflexibility of the
underlying system in modulating parameters, and the
performance metrics that were evaluated. For the very first
time, this paper has presented a comprehensive evaluation
study of the different dynamic coscheduling alternatives
using realistic and dynamic workloads with varying job
sizes, execution times, and characteristics, in studying the
impact of different system and workload parameters on
numerous performance metrics. This exercise has required
the development of a comprehensive and flexible simulator,
which has itself been a substantial effort. Using this

simulator, we have been able to examine the suitability of
different scheduling mechanisms under varying conditions.

There is clearly a great need for some coordinated
scheduling effort between the nodes to accommodate the
parallel jobs. This is evidenced by the poor performance of
Local, which leaves it to the individual operating systems
(on these nodes) to independently make their own
decisions. Regardless of the operating condition (unless
there is little or no communication at all), Local is not a
viable option.

We have also observed that the dynamic coscheduling
mechanisms are, in general, a better alternative to the
conventional solution, Gang Scheduling (GS), employed
today in many parallel machines [35], [3], [14], [34], [11]. In
the first place, GS requires slots to be available on the
required number of CPUs within the same time quantum
(row of the Ousterhout matrix), which is not necessary in
the dynamic coscheduling mechanisms. As a result, wait
times in the arrival queue are typically higher in GS.
Further, GS executions do not fare as well as the dynamic
coscheduling alternatives when:

1. The skewness between the tasks of a job is high (GS
is not able to hide the spin times as well as the
dynamic coscheduling mechanisms),

2. The jobs are I/O intensive (GS wastes the rest of the
time quantum),

3. The multiprogramming level is high (system over-
heads become more important), and

4. When the costs for explicitly synchronizing the
nodes between time quanta becomes high (perhaps,
for large systems).

The one advantage that GS has over its dynamic
coscheduling counterparts is that it is fair across different
job types. It should be noted that GS could be enhanced
further, as others [12], [41] have suggested, which may tip
the balance in favor of GS when the above factors are not
overwhelming.

Comparing the Spin Block (SB), Spin Yield (SY), and
Demand-based Coscheduling (DCS) approaches within the
dynamic coscheduling domain, we find that blocking (SB)
seems to be a better option most of the time. This is
particularly true for: 1) higher multiprogramming levels
(since the probability of finding alternate useful work on

982 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 9, SEPTEMBER 2001

Fig. 15. PB0: Response time (NN, WL8, p � 32, MPL � 5, s � 20%).

TABLE 6
PB0: Coefficient of Variation of Slowdown

(NN, WL8, p � 32, MPL � 5, s � 0%)

blocking is higher), 2) higher skewness (since they are less
sensitive to skews between tasks), and 3) communication
intensive workloads (since it better approaches coschedul-
ing). The reason for the last observation was also made in
[20], where it was mentioned that it is important to schedule
the receiver of a message as early as possible while
reducing spin times. DCS only addresses the first goal
and SY addresses only the second goal. SB, on the other
hand, gives the blocked process a priority boost on
message arrival to attempt achieving both goals.

Uniformly, we find PB outperforming SB (and the other
schemes). It is able to get the advantages of spinning (to
avoid interrupt processing costs) and is able to relinquish
the CPU whenever needed. While the performances of PB
and SB are comparable for CPU and I/O intensive work-
loads, PB is much better when workloads are communica-
tion intensive. In addition, PB is preferable over SB for:
1) smaller MPLs (SB becomes comparable to PB only
when the MPL is larger) and 2) higher system overheads
(as switching/interrupt costs increase, the advantage of
PB over SB is amplified since SB incurs more system
overheads). It is only when the skewness gets large that
SB has a slight edge and, in such cases, one could resort
to a combination (PB-SB) of these mechanisms.

In this paper, we have also opened a new topic for
further research that offers a lot of potential for improving
PB even further. We have been able to identify a set of
heuristics that can be used to decide on when and whom to
boost, developed a classification of these heuristics, and
presented results showing the performance potential of this
avenue of research. These heuristics take message arrival
and process state into consideration in picking a candidate
for a priority boost. Further, one could also augment these
heuristics with a fair share (of the CPU) mechanism without
compromising on the performance (response time) benefits.
The resulting heuristic (PB-D0) has significantly lower
response times than the other coscheduling alternatives
and is even more fair than GS.

While this paper is a comprehensive and novel exercise
in the evaluation of numerous parallel coscheduling
mechanisms using a unified framework, there are several
interesting directions for future research. It would be
interesting to theoretically model the scheduling mechan-
isms/heuristics so that we can understand how well they
perform (and how close they are to the optimal). Recently, a
related study [25] showed how buffering and latency
tolerance (separating the posting of a receive from the time
when the receiver should actually block) can be used to
minimize the impact of noncoscheduled execution. How-
ever, their study assumes that all the communication
latency can be hidden, in which case coscheduling is not
important. We propose exploring the possibility of exploit-
ing communication slackness (gap between posting of a
receive and the time the data is actually needed) within the
PB heuristics for even better performance. We have not
considered memory constraints in this work and incorpor-
ating such constraints to determine the multiprogramming
level and associated overheads on the dynamic coschedul-
ing strategies would also be very interesting [24], [15], [26].

This study has taken an important step in improving the
responsiveness of a high performance (parallel) computing
platform which has traditionally been optimized for
throughput (for scientific applications). This can make it
more suitable for the emerging use of clusters for web and
database services. We propose exploring this issue using
workloads from the emerging applications. Further, guar-
anteed (soft or hard) service [29], [30], [28], [16] is also
expected to become an important Quality-of-Service
demand from such an environment as clusters take on
the challenges of multimedia and real-time applications.
Extending the PB mechanism using well-known rate-
based and real-time scheduling techniques is part of our
ongoing and future work.

ACKNOWLEDGMENTS

This research has been supported in part by US National
Science Foundation grants CCR-9988164, CCR-9900701,
DMI-0075572, Career Award MIP-9701475, and equipment
grant EIA-9818327.

REFERENCES

[1] A.C. Arpaci-Dusseau, D.E. Culler, and A.M. Mainwaring,
ªScheduling with Implicit Information in Distributed Systems,º
Proc. ACM SIGMETRICS 1998 Conf. Measurement and Modeling of
Computer Systems, 1998.

[2] M. Banikazemi, V. Moorthy, D.K. Panda, L. Herger, and B. Abali,
ªEfficient Virtual Interface Architecture Support for the IBM SP
Switch-Connected NT Clusters,º Proc. Int'l Symp. Parallel and
Distributed Processing Systems, pp. 33-42, May 2000.

[3] E. Barton, J. Cownie, and M. McLaren, ªMessage Passing on the
Meiko CS-2,º Parallel Computing, vol. 20, no. 4, Apr. 1994.

[4] P. Brinch-Hansen, ªAn Analysis of Response Ratio Scheduling,º
Int'l Federation Information Processing Congress, vol. TA-3, pp. 150-
154, Aug. 1971.

[5] M. Buchanan and A. Chien, ªCoordinated Thread Scheduling for
Workstation Clusters under Windows NT,º Proc. USENIX
Windows NT Workshop, Aug. 1997.

[6] M. Crovella, M. Harchol-Balter, and C. Murta, ªTask Assignment
in a Distributed System: Improving Performance by Unbalancing
Load,º Proc. ACM Sigmetrics Conf. Measurement and Modeling of
Computer Systems, pp. 268-269, June 1998

[7] A.C. Dusseau, R.H. Arpaci, and D.E. Culler, ªEffective Distributed
Scheduling of Parallel Workloads,º Proc. ACM SIGMETRICS 1996
Conf. Measurement and Modeling of Computer Systems, pp. 25-36,
1996.

[8] D.G. Feitelson, ªA Survey of Scheduling in Multipro-
grammed Parallel Systems,º Technical Report Research
Report RC 19790(87657), IBM T.J. Watson Research Center,
Oct. 1994.

[9] D.G. Feitelson and L. Rudolph, ªCoscheduling Based on Run-
Time Identification of Activity Working Sets,º Technical Report
Research Report RC 18416(80519), IBM T.J. Watson Research
Center, Oct. 1992.

[10] D.G. Feitelson and L. Rudolph, ªGang Scheduling Performance
Benefits for Fine-Grained Synchronization,º J. Parallel and
Distributed Computing, vol. 16, no. 4, pp. 306-318, Dec. 1992.

[11] H. Franke, J. Jann, J.E. Moreira, P. Pattnaik, and M.A. Jette,
ªEvaluation of Parallel Job Scheduling for ASCI Blue-Pacific,º
Proc. Supercomputing, Nov. 1999.

[12] G. Ghare and S. Leutenegger, ªThe Effect of Correlating Quantum
Allocation and Job Size for Gang Scheduling,º Proc. Fifth Ann.
Workshop Job Scheduling Strategies for Parallel Processing, Apr.
1999.

[13] A. Hori, H. Tezuka, and Y. Ishikawa, ªGlobal State Detection
Using Network Preemption,º Proc. Int'l Parallel Processing Symp.
Workshop Job Scheduling Strategies for Parallel Processing, pp. 262-
276, Apr. 1997.

[14] Intel Corporation, Paragon User's Guide, 1993.

ZHANG ET AL.: IMPACT OF WORKLOAD AND SYSTEM PARAMETERS ON NEXT GENERATION CLUSTER SCHEDULING MECHANISMS 983

[15] N. Islam, A.L. Prodromidis, M.S. Squillante, L.L. Fong, and
A.S. Gopal, ªExtensible Resource Management for Cluster
Computing,º Proc. 17th Int'l Conf. Distributed Computing Systems,
pp. 561-568, 1997.

[16] H. Kaneko, J.A. Stankovic, S. Sen, and K. Ramamritham,
ªIntegrated Scheduling of Multimedia and Hard Real-Time
Tasks,º Proc. 17th IEEE Real-Time Systems Symp., June 1996.

[17] D. Lifka, ªThe ANL/IBM SP Scheduling System,º Proc. Int'l
Parallel Processing Symp. Workshop Job Scheduling Strategies for
Parallel Processing, pp. 295-303, Apr. 1995.

[18] J.M. Mellor-Crummey and M.L. Scott, ªAlgorithms for Scalable
Synchronization on Shared-Memory Multiprocessors,º ACM
Trans. Computer Systems, vol. 9, no. 1, pp. 21-65, Feb. 1991.

[19] J.E. Moreira, H. Franke, W. Chan, L.L. Fong, M.A. Jette, and
A. Yoo, ªGang-Scheduling System for ASCI Blue-Pacific,º Proc.
Seventh Int'l Conf. High-Performance Computing and Networking
(HPCN '99), pp. 831-840, Apr. 1999.

[20] S. Nagar, A. Banerjee, A. Sivasubramaniam, and C.R. Das, ªA
Closer Look at Coscheduling Approaches for a Network of
Workstations,º Proc. 11th Ann. ACM Symp. Parallel Algorithms and
Architectures, pp. 96-105, June 1999.

[21] S. Nagar, A. Banerjee, A. Sivasubramaniam, and C.R. Das,
ªAlternatives to Coscheduling a Network of Workstations,º
J. Parallel and Distributed Computing, vol. 59, no. 2, pp. 302-
327, Nov. 1999.

[22] J.K. Ousterhout, ªScheduling Techniques for Concurrent Systemsº
Proc. Third Int'l Conf. Distributed Computing Systems, pp. 22-30,
May 1982.

[23] S. Pakin, M. Lauria, and A. Chien, ªHigh Performance Messaging
on Workstations: Illinois Fast Messages (FM) for Myrinet,º Proc.
Supercomputing '95, Dec. 1995.

[24] V.G.J. Peris, M.S. Squillante, and V.K. Naik, ªAnalysis of the
Impact of Memory in Distributed Parallel Processing Systems,º
Proc. ACM SIGMETRICS Conf. Measurement and Modeling of
Computer Systems, pp. 5-18, May 1994.

[25] F. Petrini and W. Feng, ªBuffered Coscheduling: A New Method
for Multitasking Parallel Jobs on Distributed Systems,º Proc. Int'l
Parallel and Distributed Processing Symp., pp. 439-444, May 2000.

[26] F. Petrini and W. Feng, ªTime-Sharing Parallel Jobs in the
Presence of Multiple Resource Requirements,º Proc. Sixth Ann.
Workshop Job Scheduling Strategies for Parallel Processing, pp. 71-92,
May 2000.

[27] R. Poovendran, P. Keleher, and J.S. Baras, ªA Decision-Process
Analysis of Implicit Coscheduling,º Proc. Int'l Parallel and
Distributed Processing Symp., pp. 1115-120, May 2000.

[28] K. Ramamritham, C. Shen, O. Gonzalez, S. Sen, and S.B Shirgurkar,
ªUsing Windows NT for Real-Time Applications: Experimental
Observations and Recommendations,º Proc. Fourth IEEE Real-Time
Technology and Applications, June 1998.

[29] K. Ramamritham and J.A. Stankovic, ªScheduling Algorithms and
Operating Systems Support for Real-Time Systems,º Proc. IEEE,
pp. 55-67, Jan. 1994.

[30] C. Shen, O. Gonzalez, K. Ramamritham, and I. Mizunuma, ªUser
Level Scheduling of Communication for Real-Time Tasks,º Proc.
Fifth IEEE Real-Time Technology and Applications, June 1999.

[31] P.G. Sobalvarro, ªDemand-Based Coscheduling of Parallel Jobs on
Multiprogrammed Multiprocessors,º PhD thesis, Dept. of Elec-
trical Eng. and Computer Science, Massachusetts. Inst. of
Technology, Jan. 1997.

[32] M.S. Squillante, Y. Zhang, A. Sivasubramaniam, N. Gautam,
H. Franke, and J. Moreira, ªAnalytic Modeling and Analysis
of Dynamic Coscheduling for a Wide Spectrum of Parallel and
Distributed Environments,º Technical Report CSE-01-004,
Computer Science and Eng. Dept., Pennsylvania State Univ.,
Feb. 2001.

[33] R. Subrahmaniam, ªImplementing Coscheduling Heuristics for
Windows NT Clusters,º master's thesis, Dept. of Computer
Science and Eng., Pennsylvania State Univ., October 1999.

[34] K. Suzaki and D. Walsh, ªImplementing the Combination of Time
Sharing and Space Sharing on AP/Linux,º Proc. Int'l Parallel
Processing Symp. Workshop Job Scheduling Strategies for Parallel
Processing, pp. 83-97, Mar. 1998.

[35] Thinking Machines Corp., The Connection Machine CM-5 Technical
Summary, Oct. 1991.

[36] L.W. Tucker and G.G. Robertson, ªArchitecture and Applications
of the Connection Machine,º Computer, vol. 21, no. 8, pp. 26-38,
Aug. 1988.

[37] Specification for the Virtual Interface Architecture, http://www.
viarch.org. 2001.

[38] T. von Eicken, A. Basu, V. Buch, and W. Vogels, ªU-Net: A User-
Level Network Interface for Parallel and Distributed Computing,º
Proc. 15th ACM Symp. Operating System Principles, Dec. 1995.

[39] F. Wang, M. Papaefthymiou, and M. Squillante, ªPerformance
Evaluation of Gang Scheduling for Parallel and Distributed
Multiprogramming,º Proc. Int'l Parallel Processing Symp. Workshop
Job Scheduling Strategies for Parallel Processing, pp. 277-298, Apr.
1997.

[40] Y. Zhang, H. Franke, J. Moreira, and A. Sivasubramaniam,
ªImproving Parallel Job Scheduling by Combining Gang Schedul-
ing and Backfilling Techniques,º Proc. Int'l Parallel and Distributed
Proc. Symp., pp. 133-142, May 2000.

[41] B. Zhou, R. Brent, C. Johnson, and D. Walsh, ªJob Re-Packing for
Enhancing the Fine and Coarse Grain Parallel Processes,º Proc.
Fifth Ann. Workshop Job Scheduling Strategies for Parallel Processing,
Apr. 1999.

Yanyong Zhang received the BS degree in
computer science from the University of Science
and Technology of China in 1997. Since 1997,
she has been pursuing the PhD degree in
computer science and engineering at Pennsyl-
vania State University. She spent the summers
of 1999 and 2000 interning at the IBM T.J.
Watson Research Center. Her research inter-
ests are in operating systems and performance
evaluation with an emphasis on parallel sche-

duling and clusters. She is a recipient of a 2001 IBM Research
Fellowship and is a member of the IEEE and the ACM.

Anand Sivasubramaniam received the BTech
degree in computer science from the Indian
Institute of Technology, Madras, in 1989, and
the MS and PhD degrees in computer science
from the Georgia Institute of Technology in 1991
and 1995, respectively. He has been on the
faculty at The Pennsylvania State University
since Fall 1995, where he is currently an
associate professor. His research interests are
in computer architecture, operating systems,

performance evaluation, and applications for high performance compu-
ter systems. More recently, he has also been examining resource-
constrained computing issues. His research has been funded by the
US National Science Foundation through several grants (including
the CAREER award) and support from industries, including IBM and
Unisys Corp. He has published extensively in several leading
journals and conferences, and is currently serving as an associate
editor of the IEEE Transactions on Computers. He is a member of
the IEEE, IEEE Computer Society, and ACM.

984 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 12, NO. 9, SEPTEMBER 2001

JoseÂ Moreira received BS degrees in physics
and electrical engineering in 1987 and the MS
degree in electrical engineering in 1990, all from
the University of Sao Paulo, Brazil. He received
the PhD degree in electrical engineering from
the University of Illinois at Urbana-Champaign in
1995. He is a research staff member and
manager, Blue Gene System Software, at the
IBM Thomas J. Watson Research Center. Since
joining the IBM T.J. Watson Research Center in

1995, he has been involved in several high-performance computing
projects, including the Teraflop-scale ASCI Blue-Pacific and ASCI
White. He is the author of more than 30 publications on high-
performance computing. He participated in the development of a system
for dynamic reconfiguration of HPF and MPI applications on a parallel
computer (DRMS), the development of a gang-scheduling system for
large parallel supercomputers (GangLL), and the development of
compilers and libraries for high-performance technical computing in
Java. He is currently the spec lead for the Java Community Process
proposal to add multidimensional arrays. In the Blue Gene project, he is
co-leader of the efforts to develop system software for a Petaflop-scale
machine. He is a member of the IEEE.

Hubertus Franke received a summa cum laude
Diplom Informatik degree in 1987 from the
Technical University of Karlsruhe, Germany.
He received the MS and PhD degrees in
electrical engineering from Vanderbilt University,
in 1989 and 1992, respectively. In 1988, he was
the recipient of the computer science achieve-
ment award of the Computer Science Research
Center, Karlsruhe. Since 1993, he has been a
research staff member at the IBM T.J. Watson

Research Center, where he currently manages the Enterprise Linux
Group. Since joining IBM Research he has been involved in various
high-performance computing, operating systems, and computer archi-
tecture projects. He was the initial developer of the IBM SP2 MPI
communications software and gang scheduling system. He participated
in the K42 operating system, NUMA partitioning, memory compression
and Linux scalability projects. He is the coauthor of more than
50 publications in these fields and is a member of the IEEE.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

ZHANG ET AL.: IMPACT OF WORKLOAD AND SYSTEM PARAMETERS ON NEXT GENERATION CLUSTER SCHEDULING MECHANISMS 985

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

