
Separating the Vertices of N-Cubes by Hyperplanesand its Application to Arti�cial Neural NetworksbyR. ShonkwilerSchool of MathematicsGeorgia Institute of TechnologyAtlanta, GA. 30332e-mail: shenk@math.gatech.eduAbstractWe obtain a new su�cient condition that a region be classi�able by a 2-layerfeed-forward net using threshold activation functions. Brie
y, it is either a convexpolytope, or that minus the removal of convex polytope from its interior, or thatminus a convex polytope from its interior, or ... recursively. We refer to thesesets as convex recursive deletion regions. Our proof of implementability exploitsthe equivalence of this problem with that of characterizing two set partitions ofthe vertices of a hypercube which are separable by a hyperplane for which we alsoobtain a new result.x1 IntroductionBy an (n-input) neuron N we mean a device capable �rst of forming the weighted sum � =�xiwi of its inputs, x1; : : : ; xn, with weights w1; w2; : : : ; wn, and second of thresholdingthe resultant sum with a given value � to produce an output: y = 0 if � < � or y = 1if � � �. Mathematically such a neuron evaluates the function y = s�(x �w) where s�(�)is the step function (or hard limiter) with threshold �, and � = x � w is the dot productbetween the input vector x = (x1; : : : ; xn)t and weight vector w = (w1; : : : ; wn)t.With each n-input neuron there is associated a unique oriented hyperplane Hw;� ofn-dimensional Euclidean space Rn given byHw;� = fx : x �w = �gwhose positive side is in the directionw and whose distance from the origin is d = j�j=kwk.Hw;� decomposes Rn into two half-spaces, H1w;� = fx : x �w � 0g and H0w;� = fx : x �w <1



0g, and is the boundary of both. The hyperplane itself belongs fully to the positive halfspace. The output of the neuron is 1 for an input x if and only if x 2 H1w;�. Since thesolutions x to the inequality x �w � � are invariant under its multiplication by a positiveconstant, distinct neurons (their weights and thresholds di�ering by a positive multiple)may be associated with the same half-space. But in fact this may be used to advantageby allowing scaling of the weights or threshold as necessary to meet implementation re-quirements. An arti�cial Neural Network consisting of a single such neuron is known as aPerceptron, [2], [5].By an (m-neuron) layer Ln of n-input neurons we mean a listN1; : : : ;Nm ofm neuronsde�ned over the same set of n inputs. Let neuron Nj have threshold �j and weight vectorwj = (w1j ; : : : ; wnj )t, j = 1; : : : ;m, that is wij is the weight connecting the ith input to thejth neuron. Let W be the n�m matrix whose m columns are the n-vectors wj . Then them-dimensional vector of weighted sums �� is given by the matrix product��t = xtWand the m-dimensional vector output of the layer is given byy = S�(xtW ) = (s�1 (xtw1); : : : ; s�m(xtwm))t:(The last member de�nes S�(�).) Each component yj of y is either 0 or 1 depending on theoutput of the jth neuron and so the possible outputs are the vertices of the m-dimensionalunit cube Qm, Qm = f(y1; : : : ; ym) : yj 2 f0; 1g; 1 � j �mg:For a layer of n-input neurons, de�ne the function q : Rn ! Qm byq(x) = S�(xtW ):2



Since them-cube has exactly 2m vertices, many inputs x will have the same q value. Givena vertex y 2 Qm, the yth atom or cell ay � Rn is the inverse imageay = fx 2 Rn : q(x) = yg:Each such atom is the intersection of half-spaces,ay = m\j=1H�jwj ;�j ;where �j = 1, if yj = 1, and �j = 0, if yj = 0. Therefore each atom is a convex polytopeor the empty set. The set of all (non-empty) atoms fay : y 2 Qmg forms a partition ofRn into mutually exclusive, exhaustive convex polytopes. Atoms may be empty, bounded,unbounded, open, closed, or contain only part of their boundary. In general there must nec-essarily be empty atoms. Fig. 1 illustrates these concepts for a 2-input 3-neuron example.
Network 3-Cube RepresentationInput Space�g. 1Now let the output y of the layer L1n be taken as the input to a second layer L2m consistingof a single m-input neuron O with weight matrix (vector) U and threshold �. We will referto such a two layer feed forward net as a Two-layer Perceptron. As above, O correspondsto an m-dimensional hyperplane KU;� which exists along with the hypercube Qm. The3



two may intersect. In the event that they do, the vertices of the cube are partitioned intotwo disjoint sets, F = K1U;� \Qm; and G = K0U;� \ Qm:In turn, the set of vertices F correspond to a set of atomic convex regions of input space;let F = [y2F ay � Rn:We say the region F is implemented by the two layer net L1n and L2m because the outputof neuron O is 1 if and only if x 2 F ; see �g. 2. (Note in general only 7 regions result fromthe intersection of 3 lines in the plane while there are 8 vertices of the 3-cube. Vertex Ein the �gure is a \don't care" as it corresponds to no actual region.)
�g. 2Alternatively such a region F may be referred to as a region classi�able by a Two-layer Perceptron. The Two-layer Perceptron classi�cation problem is that of �nding acharacterization of those regions of n-dimensional space which can be implemented by atwo layer neural net. As we've seen, such a collection F of convex polytopes arising fromthe decomposition of the input space Rn by hyperplanes will be two-layer classi�able if andonly if their corresponding set of vertices in net-space can be separated by a hyperplanefrom the vertices corresponding to the complementary region to F .The complete solution to the Two-layer Perceptron classi�cation problem is notknown. However it is known that a region which is the arbitrary union of convex polytopescan be classi�ed by three layer net, [2], and as a result there has been less interest in the4



two layer problem. Nevertheless there continues to be work done on the two layer problem[3],[7],[8], culminating in a body of known su�cient conditions.In this paper we give new su�cient conditions on a region in order that it be 2-layerimplementable. These conditions subsume all those known to us. The test is easy to applyto two dimensional regions given graphically and many interesting regions are decided bythe conditions; see �g. 3. We obtain this result as an application of a new su�cientcondition for the hypercube separation problem (Main Lemma x3).
(a) Decided (b) Decided (c) Not DecidedRegions implementable by a 2-layer net, some decided by the Main Theorem.�g. 3x2 CoRD Regions.Let C1; C2; : : : ; Cp be a nest of convex polytopesC1 � C2 � : : : � Cp: (2:1)We assume p is even, otherwise put Cp+1 = ;. By a convex recursive deletion, or CoRD,region we mean a set S of the formS = (C1 \ C 02) [ (C3 \ C 04) [ : : : [ (Cp�1 \ C 0p): (2:2)5



where C 0 denotes the complement of the region C. We allow the possibility that C1 = Rn.Some examples of CoRD regions inR2 are illustrated in �g. 3a,b above. The representationis not unique as seen by the example illustrated in �g. 4. Nevertheless our arguments followfrom the CoRD representation and so the results apply to any region capable of at leastone such representation.
(C1 \ C 02) [ C3 = C1 \K 0�g. 4Theorem. The class of CoRD regions is closed under complementation and closed underintersection with convex polytopes.Proof. Let S be as in (2.1) and (2.2) and consider the complementS0 = [(C1 \ C 02)[ : : : [ (Cp�1 \ C 0p)]0 =(C 01 [ C2) \ (C 03 [ C4) \ : : : \ (C 0p�1 [ Cp) (2:3)In general suppose for sets A, B, C, and D that A0 � C 0 and B � D, then(A0 [B) \ (C 0 [D) = (A0 \ (C 0 [D)) [ (B \ (C 0 [D))= A0 [ (B \ C 0) [D: (2:4)The latter is a reassociation of the �rst member. Since C 01 � C 03 and C2 � C4, the �rsttwo terms of the right member of (2.3) becomes[C 01 [ (C2 \ C 03) [ C4] \ (C 05 [ C6) \ : : : \ (C 0p�1 [ Cp): (2:5)6



Now taking A0 = C 01 [ (C2 \C 03), B = C4, C = C5, D = C6, it is easy to see that A0 � C 0and B � D so that the reassociation can continue; (2.5) becomes[C 01 [ (C2 \ C 03) [ (C4 \ C 05) [ C6] \ : : : \ (C 0p�1 [ Cp):Continuing inductively we obtain(C 01 [ C2) \ (C 03 [ C4)\ : : : \ (C 0p�1 [ Cp)= C 01 [ (C2 \ C 03) [ (C4 \ C 05) [ : : : [ Cp= (Rn \ C 01) [ (C2 \ C 03) [ : : : [ (Cp \ ;0)which is in the form of a CoRD region. Next let S be a CoRD region as above and C aconvex polytope. ThenC \ S = [(C1 \ C) \ C 02] [ : : : [ [(Cn�1 \ C) \ C 0n]:Since Ci \ C is also a convex polytope, it follow that C \ S is a CoRD region. Thiscompletes the proof.De�nition. Let C denote the intersection of all classes P of subsets of input space, Rn,containing the convex polytopes and closed under complementation and intersections withconvex polytopes.From what we've done so far it follows that the class of CoRD regions contains C.Actually the two are the same.Theorem. The class of CoRD regions is identical with C.Proof. It remains to show that the CoRD regions are contained in C. We do this byshowing that any class P containing the convex polytopes and closed as required, containsall CoRD regions. So let S be a CoRD regionS = (C1 \ C 02) [ : : : (Cp�1 \ C 0p):7



It is easy to see that Cp�1\C 0p 2 P. By closure under complementation, (Cp�1\C 0p)0 2 P,therefore Cp�2 \ (Cp�1 \ C 0p)0 2 P. Again by complementation, C 0p�2 [ (Cp�1 \ C 0p) 2 P.Next Cp�3 is a convex polytope and contains (Cp�1 \ C 0p), thereforeCp�3 \ [C 0p�2 [ (Cp�1 \ C 0p)] = (Cp�3 \ C 0p�2) [ (Cp�1 \ C 0p) 2 P:Continue by induction obtaining S 2 P.Remark It is shown in [4] that the sets of C are 2-layer implementable by directly con-structing an implementing network.. In the next section we show that the class of CoRDregions is 2-layer implementable by considering their representing hypercubes.x3 Cubes Corresponding to CoRD RegionsBy the jth (m�1 dimensional) face Rij , i = 0; 1 of the cube Qm we mean the set of verticesof Qm whose jth component is i, j = 1; : : : ;m. The opposite face is Ri0j where i0 = 1 ifi = 0 and i0 = 0 if i = 1.More generally, by the facet Ri1:::irj1:::jr we mean the vertices (b1; b2; : : : ; bm) of Qm suchthat bjk = ik, k = 1; : : : ; r. Evidently Ri1:::irj1:::jr is itself an m� r dimensional cube.De�nition. Let A and B be two sets of vertices of a cube Qm. We say these verticescan be separated if there exits an oriented hyperplane K in m-dimensional space such thatA � K1 and B � K0.Main Lemma. Let A and B be separable sets of vertices of an m � 1 face Rij of an mcube Qm. If C is any subset of the opposite face Ri0j , then A [ C and B are separablesubsets of Qm.Proof. Let co(A) and co(B) denote the convex hulls of the sets A and B respectively.Then co(A); co(B) � Rij and co(A) \ co(B) = ;8



because the sets A and B can be separated. Let co(A[C) denote the convex hull of A[C.Then co(A [ C) \ Rij = co(A) and therefore co(B) \ co(A [ C) = ;. It follows by theHahn-Banach Theorem, [1,p47], that A [ C and B can be separated.Remark In particular, if either A or B is empty, then the result holds (trivially if B isempty).Main Theorem. Let S be a CoRD region of input space, then S is two layer imple-mentable.Proof. Let S be a CoRD region, (2.1), (2.2), where i0 = 0 andCk = ik\j=ik�1+1H�jj ; k = 1; 2; : : : ; p;and Qm the corresponding hypercube of m = ip dimensional space. Let F be the set ofvertices corresponding to S as above, i.e.F = fy 2 Qm : q(y) � S; q(y) 6= ;gand let G = fy 2 Qm : q(y) � S0; q(y) 6= ;gLet E be the set of vertices of Qm corresponding to no convex polytope of input space. Weshow that F and G are separable by induction on the sequence of hyperplanes. There aretwo cases, for odd k, Ck is an included polytope in that (Ck \ C 0k+1) � S. For an even k,Ck is an excluded region in that (Ck�1 \C 0k) � S. We may start without loss of generalitywith the including case, i.e. with C1 6= Rn.Now C1 � H�11 and S � C1, therefore, if �1 = 1 say, then y1 = 1 for all verticesy 2 F , i.e. F � R11. Hence each vertex of the opposite face, R01, is either in G or in E. Itfollows by force of the lemma that if the setsF1 = F \ R11 (= F ) and G1 = G \R119



are separable in the m � 1 dimensional face R11, then F and G will be separable in Qm.Let Qm�1 be the m� 1 dimensional hypercube consisting of the face R11, i.e.f1g �Qm�1 = R11:Note that every vertex of Qm�1 corresponds to a convex polytope contained in H�11 .For induction assume the theorem is true provided it can be shown that in the m� jdimensional cube, Qm�j , 1 � j < m,f�1g � : : : � f�jg �Qm�j = R�1:::�j1;:::;j ;the vertices Fj = F \R�1:::�j1;:::;j and Gj = G \R�1:::�j1;:::;jcan be separated. The vertices of Qm�j correspond to convex polytopes of input spacelying within I = H�11 \ : : : \H�jj , i.e. if ym�j 2 Qm�j then q(�1; : : : ;�j;ym�j ) � I.Let the next hyperplane Hj+1 be an edge of Ck, i.e. ik�1 + 1 � j + 1 � ik. ThenI � Ck�1. There are two cases, k odd or even. Suppose the former, then Ck is an includingregion. Since Ck � H�j+1j+1 , it follows that every vertex y of Qm corresponding to a polytopeof S contained in I will in fact be contained in Ck and must have its (j + 1)st componentequal to �j+1. Such a vertex will belong to the 1-face of Qm�j whose �rst components arealso �j+1. Therefore the opposite face, ��0j+11 of Qm�j , consists of vertices correspondingeither to convex polytopes contained in Ck�1 but not in Ck and hence are G type vertices,or to no convex polytope of input space, i.e. E type vertices. Hence, by the lemma, if them� j � 1 dimensional cube Qm�j�1,f�jg �Qm�j�1 = ��j+11is separable, then so is Qm. Note that the vertices of Qm�j�1 correspond to convexpolytopes contained in I \H�j+1j+1 . Induction is complete in this case.10



Now suppose that k is even, then Ck is an excluding region. Since Ck � H�j+1j+1 , eachvertex of the 1-face ��0j+11 corresponds either to a convex polytope contained in Ck�1, anincluding region, but not in Ck or to no region of input space. Hence such a vertex iseither an F or an E vertex. Therefore again if the m� j � 1 dimensional cube Qm�j�1,f�jg �Qm�j�1 = ��j+11is separable, then so is Qm. Note that the vertices of Qm�j�1 correspond to convexpolytopes contained in I \H�j+1j+1 . Induction is complete in this case.Arriving by �nite induction to the last hyperplane Hip , note that the resulting cubeQm�ip = Q0 is a single point. If the �nal polytope Cp is including, then this vertex is anF type, otherwise it is a G type. Either way, by the Remark following the Main Lemmaabove, this 0 dimensional facet is separable and the proof is complete.We gather together some facts which emerged in the course of the above proof.Corollary A. Running through the indices in their natural order 1,2,: : :, the sequence offacets R�011 ; R�1�021;2 ; : : : ; R�1�2:::�ip�1�0ip1;2;:::;ip�1;ip ;have the properties: (assuming C1 6= Rn)(a) R�1:::�j�1�0j1;:::;j�1;j is of dimension m� j, and(b) all veritices of this facet are G's or E's if ik�1 < j � ik and k is odd and are F 's orE's if k is even.If C1 = Rn then the above holds with even and odd interchanged.This is illustrated in the cube diagram accompanying �g. 2 where S = H11 \H02 \H03and R01 consists of G's and an E, R1;11;2 consists of F 's, and R1;0;11;2;3 is an F .11



Corollary B. Let A andB be a two set partition of the vertices of anm-cube Qm. Supposethere exists a permutation � of the �rst m natural numbers and a choice ��j = 0 or 1, forj = 1; : : : ;m, so that for each subfacet Qm�j = R��1��2 :::��m�i�2:::�j of the chainQm � R��1�1 � R��1��2�1�2 � : : : � R��1��2 :::��m�1�2:::�meither Qm�j � A or Qm�j � B:Then A and B can be separated by a hyperplane.Proof. This follows by the construction in the proof of the Theorem.References[1] Balakrishnan, \Applied Functional Analysis," Springer-Verlag, New York(1976)[2] R. P. Lippmann. \An Introduction to Computing with Neural Nets,"IEEEASSP Magazine, 3(4), 4|22, (1987)[3] J. Makhoul, A. El-Jaroudi, R. Schwartz, \Formation of disconnected decisionregions with a single hidden layer," Proceedings of the International JointConference on Neural Networks I, 455|460, IEEE TAB Neural NetworkCommittee (1989)[4] R. McCurley, K. Miller, R. Shonkwiler, \Classi�cation Power of Multiple-layer Arti�cal Neural Networks," to appear in theProceedings of SPIE's 1990Technical Symposium on Optical Engineering and Photonics in AerospaceSensing: Program on Optical/Neural Image and Information Processing.(1990)[5] M. L. Minsky, S. A. Papert, \Perceptrons (Expanded Edition)," MIT Press,(1988) 12
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