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Abstract—In this paper we will extend the transconductance-
mode (T-mode) approach [1] to implement analog continuous-
time neural network hardware systems to include on-chip
Hebbian learning and on-chip analog weight storage capability.
The demonstration vehicle used is a 5+5 neurons bidirectional
associative memory (BAM) prototype fabricated in a standard
2-pm double-metal double-polysilicon CMOS process (through
and thanks to MOSIS). Mismatches and nonidealities in learning
neural hardware are supposed not to be critical if on-chip
learning is available, because they will be implicitly compensated.
However, mismatches in the learning circuits themselves cannot
always be compensated. This mismatch is specially important
if the learning circuits use transistors operating in weak
inversion. In this paper we will estimate the expected mismatch
between learning circuits in the BAM network prototype
and evaluate its effect on the learning performance, using
theoretical computations and Monte Carlo Hspice simulations.
Afterwards we will verify these theoretical predictions with the
experimentally measured results on the test vehicle prototype.

I. INTRODUCTION

N artificial neural network is usually characterized by,

first a basic topology that defines how the neurons are
interconnected and how they transmit information from one
to another, and second a learning rule that defines how the
strengths of the inter-neuron connections (called “synapses”)
change with time as different external stimuli are provided.
Engineering researchers have proposed and studied many
artificial neural networks [2]~[13], which are ultimately de-
fined by differential or difference equations [14]. The way
these artificial neural networks are implemented in practice is
usually by software simulations on a conventional computer of
the equations that define their behavior. Although this might
be enough to validate the mathematical model, this approach
is obviously not sufficient to obtain all the benefits inherent
in highly parallel processing systems, and therefore some type
of special purpose hardware technique needs to be devised to
fully exploit the potentials of neural processing.

Many researchers are proposing digital type VLSI imple-
mentations [15]—[21] of neural networks, probably due to the
enormous experience and success of this field achieved during
the last decades in building all types of computing machines.
The main advantages of digital circuit design techniques are
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high precision, ease of information storage, ease of sequencing
and multiplexing, ease of interfacing, ease of design, and high
reliability. However, there is a big drawback for this technique,
which is excessive area consumption. Another disadvantage,
however less critical, of digital circuit techniques concerns
the processing delays characteristic of complex operations like
multiplications, extensively used in neural network processing.
This together with the fact that in neural networks high
precision is not needed and that sequencing or multiplexing
is not absolutely necessary if silicon area could be drastically
reduced, has made some VLSI researchers with experience
in analog design to propose some interesting alternatives for
neural network hardware realizations [21]-[38]. However,
there are still some issues that have not been clearly solved so
far and still need more effort investments. One of them is the
absence of an efficient and reliable analog storage mechanism,
which has made many researchers to rely on off-chip digital
memory storage with periodic refresh of on-chip capacitively
stored analog weight voltages [21], [31], [36]-[39]. Another
feature that seldom has been tackled by people building analog
neural network VLSI (except, for example, [24]) is the on-
chip learning capability. Lately some relatively large analog
(or mixed analog/digital) learning neural network processing
systems have been reported, but they perform learning through
off-line conventional computing host machines [36]—[39].

The work we present in this paper can be considered as a
further step in analog neural network hardware research, in
the sense that it describes a modest size neural processing
test prototype that performs on-chip learning and has an on-
chip analog weight storage scheme able to keep the learned
weights as long as power supply is available [40]. The chip we
present, which corresponds to an adaptive bidirectional asso-
ciative memory (BAM) [9], [10], is designed using an already
proposed analog circuit design technique for continuous-time
general neural networks, and that has been proven to be able
to implement Hopfield, BAM, Winner-Take-All, simplified
ART1, and optimization networks [1]. Here we will extend
this technique to include an on-chip Hebbian learning rule, as
well as an on-chip analog weight refreshing scheme.

Besides the area efficiency, high speed rates, on-chip learn-
ing, and on-chip weight storage capability, there is another
characteristic that a neural network hardware implementation
technique should have if it is intended for a vast variety
of arbitrary size applications, namely the modular capability.
This is an issue that already has been under consideration by
several researchers [19], [24], [31], [37]-[39]. The approach
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we present in this paper is modular, and it is in such a way that
it does not need any interfacing circuitry in order to assemble
larger systems [1].

In the next section we will describe the architecture and
topology of the BAM system prototype and give the circuit
descriptions of the different building blocks in the chip. In
Section III we will consider some aspects related to circuit
mismatch that will affect the learning efficiency of the system,
and in Section IV we will provide experimental results of the
prototype fabricated in a standard 2-pm double-metal double-
poly CMOS process (MOSIS).

II. SYSTEM ARCHITECTURE AND CIRCUIT DESCRIPTION

The continuous-time description' of most of the neural
network algorithms available in the literature have a short-term
memory (STM) described by the following set of nonlinear
first-order differential equations,

N
Ci; = —az; + ijif(wj) + I,
i=1

i=1,...N (1)

where z; is the activity of neuron ¢, w;; is the weight of the
synaptic interconnection that goes from neuron j to neuron
1, I; is the external input to neuron 3, o, and C are positive
constants, and f(-) is a nonlinear, monotonically increasing
function with a maximum and a minimum saturation values
(also called “sigmoidal” function). f(z;) represents the output
of neuron j.

A. General T-mode Circuit Implementation

Elsewhere [1] we have shown that the description of
(1) is functionally equivalent to the following mathematical
description:

N
Oy = —g(y) + Y wjiy; + I,
=1

i=1,...N (2

where now y; is the activity and output of neuron i, and the
nonlinear function g(-) is defined by

9(y) = afy). ?3)

The descriptions of (1) and (2) are totally equivalent in the
quasi-stationary case (£; & 0,%; =~ 0). In[1] we showed that if
the dynamics of the system described by (2) are a perturbation
of the one described by (1), and if the weight matrix is
invertible, then the same equivalent initial condition for both
descriptions would yield the same equivalent final steady state.

Fig. 1 shows a T-mode circuit implementation for the
mathematical model of (2). The synaptic elements are built
using the simple transconductance multipliers of Fig. 2, the
external current sources I; with the circuit implementation
shown in Fig. 3, and the nonlinear resistor g(-) represents the
parallel association of the output resistances of all the synaptic
multipliers in Fig. 1 with the circuit depicted in Fig. 4.

! Grossberg provides a method [14] to map a discrete-time description of
a neural system into a continuous-time one, and vice-versa. Therefore, the

neural network algorithms reported with discrete-time dynamics can also be
represented by (1).
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B. BAM Architecture and T-Mode Realization

A bidirectional associative memory (BAM) is a two layer
network in which all neurons in a layer are connected to all
the neurons in the other layer through bidirectional synaptic
connections. Its continuous-time version, already studied by
Kosko [9]-[10], is described by the following set of nonlinear
first order differential equations:

M
Cia; = —aa;+ Y wf(bj)+ L, i=1,...N

j=1

N
Cbj = —abj+ Y wif(a:)+J;,  j=1,...M (4)
i=1
where a; denotes the activity of the ith neuron in the first
layer, b; that of the jth neuron in the second layer, I; and
Jj are the corresponding external inputs, f(-) is a sigmoidal
function, o and C are positive constants and wy; is the weight



LINARES-BARRANCO ef al.: CMOS ADAPTIVE BAM WITH ON-CHIP LEARNING AND REFRESHING 447

©of the bidirectional synapse connecting ncuron ¢ in the first
layer with neuron j in the second layer.

Using now the T-mode circuit design technique, the system
of (4) results in the network depicted in Fig. 5. Note that this
topology can be partitioned into several chips, so that modular
capability is achieved with the penalty of increasing the node
capacitances at each neuron. Fig. 6 illustrates the modularity
issue, where it can be seen that no additional interfacing
circuitry among chips is needed [1], [40].

C. Learning Circuitry for the T-mode BAM Network

The advantages of including an on-chip learning circuitry
are listed as follows,

¢ Learning will be performed in situ, hence compensating
for nonidealities present in the physical hardware of
which the short term memory (STM) is made.

* No host computer is needed to perform the learning task
off-line, hence speeding it up and simplifying the interface
to the neural system in a practical real world application.

Different learning rules (also called long term memories
(LTM)) can be used for an adaptive BAM [10], the sim-
plest one being the one originally used by Kosko when
he introduced the “adaptive BAM” [9], which is called the
“Hebbian learning rule”. Inclusion of the Hebbian learning
rule into the network of Fig. 5 is done by implementing, for
each bidirectional synapse, the following nonlinear first order
differential equation:

Cypj; = —Pwj; + kab; {Z]; 11,7.. .. ]]\\74 ®)
where C,,, 8, and k are positive parameters. Note that in
the T-mode circuit implementation of Fig. 5 each bidirectional
synapse has locally available the output voltages, a; and b;,
of the two neurons it interconnects. This makes very simple
the circuit realization of the Hebbian learning rule for each
synapse, as is depicted in Fig. 7. Multiplier M3 has the same
circuit than multipliers M1 and M2 (see Fig. 2), except that
the tail bias current is two orders of magnitude less in order
to decrease the time constant of the LTM. Therefore, M3 will
have to be biased with all its transistors operating in their
weak inversion region of operation. The load resistance 3 is
implemented with the same M3 multiplier circuit, connected
as a transconductance amplifier with negative feedback, hence
emulating a positive resistance, and partially compensating its
nonlinear transfer characteristics with those of multiplier M3.

Learning is performed by sequentially applying the set of
training pairs of patterns at the inputs I; and J; of the BAM
system. These pairs of patterns will have to be presented at
a rate such that the voltage variations at the output of all M3
multipliers (i.e., w;;) are sufficiently smooth. This rate will
depend on the time constants associated to the learning rule
(LTM) and the one of the STM. After a few cycles of input
patterns presentation a steady state will be reached for each
synaptic weight w;;. At this point learning can be considered
to be complete and the capacitors C,, of each synapse can be
isolated from their learning circuits (multiplier M3 and resistor
£3), and used to store the learned weight voltage w;; that biases
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Fig. 6. [Illustration of modular capability of T-mode circuit BAM

implementation.

multipliers M1 and M2 of the STM. However, due to leakage
currents present in the switches, the weight voltages would
vanish in a few seconds if no kind of weight refreshing scheme
is provided.

D. Weight Refreshing Scheme

The weight refreshing scheme used in our learning BAM is
based on an A/D conversion followed by a D/A conversion
of the weight value [41]. Periodically, each weight voltage
is read and transformed through an A/D followed by a D/A
conversion to a discretized version which is written back to the
storage capacitor C,,. This way the weight voltages are kept
within a finite interval. The synaptic weights in the chip are
refreshed sequentially. The corresponding weight refreshing
circuit is shown in Fig. 8. The A/D and D/A pair needs to be
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Fig. 8. (a) Refreshing circuit diagram. (b) Weight time waveform.

implemented only once per chip. For the modest size prototype
we will present in Section IV no high resolution is needed
for the weight values [9]. In our case, a discretization of the
weight range into seven steps is more than sufficient. This will
enable us, for this particular case, to simplify the circuitry of
the A/D and D/A converters pair and use the one shown in
Fig. 9. The circuit used for each D-flip-flop in Fig. 8(a), which
is driven by two non-overlapping clock phases, is depicted in
Fig. 10. The D-flip-flops of all the synapses are connected
sequentially, so that a large D-flip-flop chain is formed inside
the chip. Of this chain only one D-flip-flop at a time has an
active output, so that only one synapse of the chip is selected
at a time, and is connected either to the input or to the output
of the A/D-D/A converter pair.

The weight storage capacitor C,,, is connected to the learning
circuitry of Fig. 7 during the learning phase, or to the re-
freshing circuit of Fig. 8 during the performing phase. Control
signal ¢, (see Fig. 8) makes capacitor C,, to be connected to
one or the other circuitry. Extra care needs to be taken, so that
when ¢, is switched from the learning mode to the refreshing
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Fig. 9. (a) A/D-D/A converters pair circuit. (b) Transfer characteristics.

Fig. 10. Circuit diagram of D-flip-flop.

mode no synapse is selected at this moment, and the arbitrary
voltage value present at the output of the D/A converter is not
loaded into one of the synaptic weight storage capacitors.

Capacitor leakage rate values, l,., are typically below
40 mV/s (for a C,, = 2 pF capacitor with connections to
p* and n* diffusions). If Aw is the weight voltage precision
required for a specific application and AT is the-refreshing
period for each synapse, then it must be

Aw

(d

AT < ©®
Since all synapse weights have to be refreshed during the
period AT, then the following condition has to be satisfied
as well:

AT > N,7 )

where N; is the total number of chip synapses and 7 is the
time employed to refresh a single synapse weight voltage.

III. EFFECT OF SYNAPTIC MISMATCH ON
LEARNING PERFORMANCE

We have already mentioned that one of the most important
advantages of neural network systems with on-line learning
is that, as they learn, they compensate for imperfections of
nonidealities present in the STM. However, what about the
imperfections and nonidealities present in the LTM? If the
learning circuitry has defects, second order deviations, or even
is nonoperative for some synapses, who is going to take care of
this? At the time being, there is no supra-learning mechanism
that will teach the LTM to modify its learning rule. However,
the fact that the LTM is distributed all over the synaptic matrix
makes the whole system to be more tolerant to local deviations
in each synaptic learning circuitry. Nevertheless, there is a
limit on the deviation that a system can tolerate for each
synapse. As we will see, for a BAM system the maximum
tolerable weight value deviations depend on the size of the
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network, the number of patterns that have to be stored, and
the hamming distance between the stored patterns.

In the T-mode BAM implementation described in the pre-
vious section the main nonideal effect of the learning circuitry
that will affect the learning performance is the mismatch
between the learning circuits of the synapses. This results in
the dominant effect because the learning circuit components
(multiplier M3 and resistor 3 in Fig. 7) have to be operated
with their transistors biased in weak inversion. Mismatch
between MOS transistors is a function of their gate-to-source
bias voltage and becomes maximum when they perform in
their weak inversion region of operation [42].

Mismatch of a property P between two identical transistors
is a function of their gate area and the “distance” between
them [42]

A2
o’(AP) = —£ + S2D?

WI ®)

where W and L are the widths and lengths of both transistors,
D, the distance between them projected on a maximum devia-
tion gradient axis, and A, and S, are empirically determined
parameters. Pelgrom et al. [42] verified that for small size
transistors the distance dependent component of the deviation
is negligible with respect to the area component. Since in our
learning circuit all transistors have relatively small sizes we
will consider that S, ~ 0. The dominant transistor mismatch
sources in our case are the mismatches between the threshold
voltages Vr and the one between the mobility and gate oxide
products K’ = uC,, [43]. According to the data provided
by Pelgrom et al. [42] and Lakshmikumar et al. [43], and
taking into account the geometries of our NMOS and PMOS
transistors, the following deviations seem to be reasonable
to estimate the mismatch between transistors in the synaptic
learning circuit we are using:
« NMOS:

o(Vr) =10 mV
o(K') = 0.5 uA/V?

* PMOS:

U(VT) =15mV
o(K') =05 pA/VZ.

These deviations were used to perform a Monte Carlo Hspice
[44) simulation of multiplier M3 loaded with resistor 3 and
capacitor C,, (see Fig. 7) while connecting one of the mul-
tiplier inputs to its maximum value and the other one to a
variable duty cycle square wave signal. Depending on the duty
cycle of the square wave signal a certain steady state voltage
should be developed at capacitor C,,, which represents the
learned weight of a synapse. This learned weight will suffer a
deviation from synapse to synapse, due to the mismatch in the
transistors that constitute multipliers M3 and resistors 3. The
deviation of the final learned weight depends on the duty cycle
of the signal used. Fig. 11 shows the result of several Monte
Carlo Hspice simulations of the learning circuit for different
duty cycles. The deviation in the steady state weight voltage

G, (mV)
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Fig. 11. Weight deviations (o) as a function of nominal weight for the
learning circuit of Fig. 7, obtained from Monte Carlo Hspice simulations.

is represented as a function of the mean weight voltage for
each Monte Carlo simulation.

In order to estimate the weights deviation o, from the
nominal values a T-mode BAM network can tolerate and still
operate properly, we simulated numerically the mathematical
equations that define the operation of the system. These are
basically the equations given in (2) for the STM, and the ones
in (5) for the LTM, to which we have added the nonlinear
characteristics inherent in the multipliers:

M
Ca; = —g(ai)+ZUJSTM(U1ji»b]’)+Iia i=1,...N
=1
' N
Cb; = —g(b;) + Y wstm(wji, @)+ Jj,  j=1,..M
i=1
Cyij; = —Pwj; + wrrm(as, by) ®)

where the nonlinear functions are defined as follows:

400 ifz >V
g(z) = {az if —Vp<z<Vg (10)
-0 fz<Vp
w(y,z) = Ii(y, =) — I2(y, %) an
with
. I.
L(y) ifz> K(:
L(y,z) = § oK,/ 28 -2 if o </ B4 (12
—L.(y) ife < — J—I}(:)
( : I
I(y) ifz > %ﬁ’)
I(y,7) = W oRp [ — a2 ifja < (/B8 (13)
| —Tb(y) if o< —yf B
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and the functions I,(y) and I1(y) defined by

2
K. Iy 2
if [y < [ L2 o L) =% |V -% + 3]
= KP Ib(y):I_{E[ Idsz_ll; \/Lf
. Iss Ia(y):Iss
if y >\/Fp :>{Ib(y)=0

2
I, L(y)=0
- =
Kp {Ib(y) :Iss'

The values for the different parameters were

if y<— (14)

a=5x10""A/V

Vi, = 300 mV 15)

and for wstm(-) we had

K, =225x10"% A/V?

I, = 2.00 pA (16)

while for wrm(-) it was

K, =2.00x10"7 A/V?

I, = 50.0 nA a7

which approximately corresponds to the conditions present in
the experimental prototype we will see in the next section.?
Using this mathematical model to emulate the operation of
a BAM, the system was trained for different network sizes
and number of patterns. The learned weight values were then
subjected to normally distributed random weight perturbations
of different deviation () values, and the resulting weight
was discretized like it would be by the refreshing circuit. In
order to test if a perturbated set of weights is still acceptable
the following procedure was used: without providing any
external inputs, and for each pair of patterns stored, the system
was set to the initial condition that corresponds to one of the
stored pairs of patterns and let to settle. If all neuron outputs
remained in the same state, the perturbated set of weights
was considered to be acceptable, and a new set of weights
was computed with a larger o,. Fig. 12 shows this maximum
tolerable weight deviation (o,,) as a function of the number
of neurons in each layer (the two layers were supposed to
have the same number of neurons) and the number of pattérns
stored in the network, for a certain set of pairs of patterns.
Naturally, the curves in Fig. 12 are highly patterns dependent.
Actually, they would change dramatically as the hamming
distances between the patterns decreases. Nevertheless, Fig. 12
provides us with a flavor of how the maximum tolerable
weight deviations (o) change as the number of neurons
in the network or the number of stored patterns are altered.
In the next section we will consider a particular case of
BAM with a particular set of patterns, and we will compute,
using the mathematical model described in this section, the
maximum tolerable weight deviation (o,,) for that particular
2Note that, although multiplier M3 is biased in weak inversion we are using
the equations that describe its operation when it works in strong inversion.

However, with a proper selection of parameters K, and I, the difference
between both descriptions is small enough to render the same final result.
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Fig. 12. Maximum tolerable weight deviations (o) as a function of net-
work size and number of stored patterns, obtained from theoretical statistical
computations.

case, and also we will take into account the dependence of this
deviation with the nominal weight value, as shown in Fig. 11.
Afterwards we will contrast these theoretical expectations with
the experimental results observed in our test prototype.

IV. EXPERIMENTAL RESULTS

In a previous paper [1] we provided extensive experimental
demonstrations of the performance and potential of the STM
of programmable systems built using the T-mode approach.
In this paper we are going to concentrate on the LTM perfor-
mance, and therefore give experimental results that are more
related to the learning circuit aspects.

We have fabricated a BAM network with on-chip Heb-
bian synaptic learning and on-chip weight refreshing in a
2-pm double metal double polysilicon standard CMOS process
(MOSIS). The BAM network has five neurons per layer,
and the chip contains, therefore, 25 bidirectional synapses
with their corresponding learning and refreshing circuitry. The
A/D and D/A converters pair is implemented only once per
chip, and is shared sequentially by all the synapses on the
chip.

In order to test the performance of the learning circuit, a
circuit composed of multiplier M3, resistor 3, and capacitor
Cuw (see Fig. 7) was set up. The inputs to multiplier M3, a;,
and b;, were connected to external signal sources. Input b;
was set to its maximum value, and input a; was connected
to a variable duty-cycle square wave signal. After a transient
response, a steady state voltage value develops at capacitor
C., which is the learned weight value. Fig. 13 represents this
weight value as a function of the duty-cycle of signal a;. In
a practical situation, during a training stage, the sequence of
training patterns is presented iteratively at the external inputs
I; and J;. Therefore, all neuron outputs a; and b; will be time
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Fig. 13. Steady state weight value as a function of duty-cycle.

variant in general, but still the steady state weight value will
be a function of the product of the effective duty-cycles® of
the two inputs of multipliers M3.

For the circuits related to the refreshing operation, we first
measured the leakage rate at the storage capacitor Cy,. In
order to minimize the leakage rate complementary switches
were used to connect capacitor C,, to either the learning
or the refreshing circuit. This way, both PMOS and NMOS
transistors would be connected to the capacitor, and the
effective leakage current the capacitor sees is the difference
between the leakage currents at the p*+ and n*+ diffusions.
This leakage rate has a slight dependence with the voltage at
capacitor C',, = 2 pF, and the experimentally measured rates
have always been below 34 mV per second. In our prototype
weights were refreshed every 8 ms, which is much faster than
what is needed to keep the resolution we have. The resolution
is given by in how many steps the A/D-D/A converters
pair discretizes the weight values range. Fig. 14 shows the
measured voltage transfer function for the A/D-D/A pair. In
this case, the weight range has been divided into seven steps.
This would allow us to store up to six different patterns [9],
[10], [45] if the BAM network had this capacity. Empirical
BAM storage capacity experiments [45] reveal that in order
to successfully store six different patterns in a BAM, it would
need an approximate number of 40 neurons per layer. In our
prototype the BAM has 5 neurons per layer. The storage
capacity of such a network, if the patterns have a sufficiently
large hamming distance between them, could be of two or
three pairs of patterns. Therefore, the weight resolution we
have implemented is far beyond our needs.

In order to evaluate the learning performance of the com-
plete BAM system we trained it for different pairs of patterns.
First, let us consider the case of storing a single pattern pair,

*Note that a; and b; will not be square-wave signals.

Fig. 14. Measured transfer characteristics of A/D-D/A converters pair.
Horizontal and vertical scales are 200 mV /div.

for instance,*

@ = (+1,—1,41,-1,+1)
B o= (=1,41,-1,+1,-1) (18)
Whe&? represents the outputs of the neurons of the first layer,
and b the ones of the second layer. According to the Hebbian
learning rule, this should generate the following normalized

weight matrix.

-1 +1 -1 41 -1
+1 -1 41 -1 +1
-1 +1 -1 41 -1
+1 -1 +1 -1 +1
-1 +1 -1 +1 -1

v

-
1

19)

Fig. 15 shows the measured output of the D/A converter
during the refreshing operation, once the pair of (18) was
stored into the network. This figure represents the sequence
of the 25 weight values of the matrix (19). While this weight
matrix was being refreshed, we provided several input vectors
to either the inputs I; or J; or both. The network did converge
to either the pair of patterns in (18) or to its complementary,
depending on which of the two had a smaller hamming
distance to the external inputs. Fig. 16 shows how the signals
a; and b; converge to the pattern pair of (18) in one of the
cases. In order to guarantee that the system had reached a
stable local energy minimum, the external currents I; and J;
were made zero after the steady state was reached, and it was
verified that the system remained in the same state.

Fig. 17 shows the measured weight matrix for the case
pattern pair

@ = (+1,—1,+1,-1,+1)

T o= (41,41, -1, 41, +1) (20)

was used for training the BAM network. The corresponding
normalized weight matrix is

+1 -1 41 -1 +1
+1 -1 +1 -1 +1
W=|-1 +1 -1 +1 -1
+1 -1 41 -1 +1
+1 -1 41 -1 +1

3y

4These values are normalized with respect to the complete neuron output
voltage range, which was 1 V.
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Fig. 15. Experimentally measured sequence of refreshed weight values for
the pattern pair of (16).
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Fig. 16. Convergence to pattern of (16). Top traces correspond to neurons
a;, bottom traces to neurons b,.

The experimentally measured convergence to the pattern pair
of (20) is shown in Fig. 18.

We also trained the network to recall the following two
pairs of patterns.

Pattern A : { = (+1,-1,41,-1,+1)
b =(-1,+1,-1,+1,-1)
attern {b =(-1,-1,-1,-1,-1). @
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Fig. 17. Experimentally measured sequence of refreshed weight values for
the pattern pair of (18).
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Fig. 18. Convergence to pattern of (18). Top traces correspond to neurons
a;, bottom traces to neurons b;.

The corresponding normalized weight matrix is

-1 0 -1 +1 0©
) 0 -1 0 0 +1
W=|-1 0 -1 +1 0 (23)
0 -1 0 0 +1
-1 0 -1 +1 0©

The measured weight matrix for this case is given in Fig. 19.
After learning was accomplished and the system was switched
to the refreshing mode, the network did always converge to
either patterns A, B, or their complementaries, depending on
which of them had the smallest hamming distance to the ex-
ternal input pattern pair (I T ), where T = (I1, I, I3, Iy, I5)
and 7 = (J1, J2, J3, Jg, J5). As an illustration, Fig. 20 shows
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Fig. 20. Convergence to the pattern A of (20). Top traces correspond to
neurons a;, bottom traces to neurons bj.

the convergence to pattern A in one of those cases. When no
external input current was provided I = J = 0 the BAM
preferred to converge to pattern B, as is shown in Fig. 21. All
stored patterns are stable, in the sense that if the external input
currents are made zero (after the network converges to one of
the stored patterns or complementaries) the system remains at
the same pattern.

Note that 6 out of the 25 weights (see Fig. 19) suffer a
deviation from their normal value. This is a consequence
of the mismatch between the learning circuits of the differ-
ent synapses. However, the BAM network was still able to
successfully retrieve all stored patterns (and their complemen-
taries). According to the Monte Carlo simulation of Fig. 11 for

500mV
200mv -
fdiv M //
LA » . S
L5V
-396ns 200ns/div 1604 1 5
25V

200mV

AV U R

200ns/div

500mV

-396ns 1.604 u s

Fig. 21. Convergence to the pattern B of (20) when no external input
currents are provided. Top traces correspond to neurons a;, bottom traces
to neurons b;.

our synaptic learning circuit, the expected weight deviations
for the matrix (23) would be,

Wy | normalized = 0— 0y = 93 mV

Wy l normalized = +1 -0, < 25mV. (24)

Using the mathematical model of (9)-(16) for this particular
BAM network with the particular patterns of (22), and neglect-
ing 0, When wj; | normalized = *1, the maximum tolerable
oy for wjilnormalized = 0 was

Ow=0|max =130 mV. (25)

Therefore, this predicts that with our learning circuit we should
be able to store the two pairs of patterns of (22), and which
was verified experimentally as shown previously.

In order to compute now the maximum tolerable o, for
the case of storing three pairs of patterns, we used again the
mathematical model of (9)—(16) as described in Section IIL
The computed value, for a set with the maximum possible
hamming distances between patterns, was

Ow=0|max =20mV . (26)

This means that with our learning circuitry we should not be
able to store three pairs of patterns in our BAM network. We
tried to train the BAM prototype for that set of three pairs of
patterns. The network was then able to converge to all three of
tlLem _?nd their complementaries, provided the external inputs
(T, J )corresponded exactly to those patterns. However, if
once the steady state was reached and these currents were
made zero, the system moved to a slightly different state for
some of the patterns. Therefore, the local energy minimums did
not exactly correspond to the stored set of patterns. Hence, our
BAM network is not able to store three pairs of patterns, which
was predicted by our theoretical computations and Monte
Carlo simulations.
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V. CONCLUSIONS

We have designed, fabricated and tested a 5+5 neurons
BAM network prototype with on-chip Hebbian learning and
on-chip analog weight storage. The prototype was designed
using analog continuous-time circuit design techniques based
on the use of transconductance synaptic multipliers and non-
linear neural resistors, as well as capacitors (T-mode ap-
proach). Due to the fact that the learning circuitry of the
synapses uses transistors biased in their weak inversion region
of operation, the effects of mismatch between learning circuits
of different synapses were studied. It was verified that the
most important effect of this mismatch is on the learning
performance, so that the maximum theoretical storage capacity
of the network is degraded. The grade of storage degradation
was predicted theoretically through the use of a mathematical
model of the network and Monte Carlo Hspice simulations, and
then was experimentally verified with the fabricated prototype.

The work presented in this paper validates the use of the
T-mode approach to implement analog learning hardware
neural network systems and demonstrates the high potential
of this technique for the implementation of low cost, small
area, high speed neural hardware.
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