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the Identification of Nonlinear Dynamic 
Systems Using Recurrent Neural Models 
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Abstract-In this paper, back propagation is reinvestigated for 
an efficient evaluation of the gradient in arbitrary interconnec- 
tions of recurrent subsystems. It is shown that the error has to 
be back-propagated through the adjoint model of the system 
and that the gradient can only be obtained after a delay. A 
faster version, accelerated back propagation, that eliminates this 
delay, is also developed. Various schemes including the sensitivity 
method are studied to update the weights of the network using 
these gradients. Motivated by the Lyapunov approach and the 
adjoint model, the predictive back propagation and its variant, 
targeted back propagation, are proposed. A further refinement, 
predictive back propagation with filtering is then developed, 
where the states of the model are also updated. The convergence 
of this scheme is assured. It is shown that it is sufficient to back 
propagate as many time steps as the order of the system for 
convergence. As a preamble, convergence of on-line batch and 
sample-wise updates in feedforward models is analyzed using the 
Lyapunov approach. 

I. INTRODUCTION 
EURAL networks have recently emerged as a successful N tool in the fields of pattem classification [I]  and control 

of dynamic systems [2]-[8]. This is due to the computational 
efficiency of the back propagation algorithm [lo], [ 1 11, and 
the versatility of the three layer feedforward neural network in 
approximating an arbitrary static nonlinearity [ 121, [ 131. In this 
paper, we further exploit these features for the identification of 
nonlinear dynamic systems using neural networks. Algorithms 
proposed in this paper are for time invariant systems but can be 
directly applied to the identification of plants that are slowly 
time varying. 

Identification of a system has two distinct steps; 1) choosing 
a proper model and 2) adjusting the parameters of the model 
so as to minimize a certain fit criterion. In the first part 
of this paper, we deal with the issue of choosing a neural 
network model for identification purposes. Since dynamic 
systems are described by differential or difference equations, 
in contrast to static systems that are described by algebraic 
equations, it is important to understand how general nonlinear 
dynamic systems can be modeled using neural networks that 
are versatile static maps. The choice of the model depends 
on whether all the states of the system or only the outputs 
are measured. If all the state variables are available, then a 
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multilayer perceptron is sufficient to model a dynamic system. 
Even if only the outputs are available for measurement, it is 
possible under certain assumptions, to predict the output from 
delayed inputs and outputs using a multilayer perceptron [3], 
[4]. But for modeling a general nonlinear system, we illustrate 
through an example that feedforward models are inadequate 
and hence propose dynamic recurrent neural models for this 
purpose. 

As for the second step of identification, i.e., parameter 
update, we use the gradient method for optimization. This 
procedure has two parts; 1) the gradient evaluation and 2) 
the update law. Though the gradient for static systems can 
be obtained using the standard back propagation algorithm, it 
fails in the presence of feedback. In such cases, the sensitivity 
method [9], [14], [15] and “back propagation through time” 
[2], [ 5 ]  have been proposed for evaluating the gradient. The 
major drawback of the sensitivity method is that it is compu- 
tationally intensive. Though the computational efficiency can 
be improved in linear time invariant dynamic systems as in 
[16], an extension of that result to nonlinear systems is not 
possible. Also, back propagation through time as available in 
literature, is not applicable to all types of interconnections 
of dynamic elements. So in this paper, we reinvestigate back 
propagation in the context of identification of dynamic systems 
and establish that the gradient for any dynamic system or for 
any interconnection of dynamic subsystems can be obtained 
by back propagating the error through the adjoint model [17]. 
Also, under the assumption of local observability, we show 
that, it is sufficient for the sake of convergence of parameter 
update laws, to back propagate as many time steps as the 
order of the system. As we go back in time with the adjoint, 
a delay is associated with the calculation of the gradient. This 
is avoided by accelerating the back propagation in a scheme 
termed “accelerated back propagation.” This accelerated vari- 
ant is adopted as the standard for back propagation in our 
work. 

In recurrent models, though the gradient of the present cost 
with respect to a past parameter can be obtained using the 
adjoint, updating a past parameter in an online scheme is 
not possible. A few update schemes that reflect the various 
levels of approximation that can be made in this context 
are considered, the sensitivity method being one of them. 
Motivated by the Lyapunov approach and the adjoint model, 
a predictive scheme, predictive back propagation is proposed. 
A variant, targeted back propagation, which avoids explicit 
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prediction, is also presented. A further refinement, predictive 
back propagation with filtering, is developed, in which the 
states of the system are also updated. Updating the states 
allows convergence to be established for a general nonlinear 
system. As a preamble, the problem of model matching in 
static systems is considered and the convergence to local and 
global minima with batch and sample-by-sample updates is 
analysed using the Lyapunov approach. The analysis shows 
that, convergence to the global minimum (if the initial con- 
ditions are in its vicinity) or to a small enough ball around a 
local minimum can be guaranteed with sample-wise updates. 

Section I1 introduces different neural network models for the 
identification of nonlinear dynamical systems. In Section 111, 
a discussion on computing the gradient in recurrent models 
is undertaken. The main algorithm for back propagation in 
dynamic systems through the adjoint and its accelerated variant 
are developed in Section IV. Having obtained the gradient, the 
convergence of gradient descent update laws in feedforward 
and feedback models is analyzed in Sections V and VI respec- 
tively. Simulation results presented in Section VI1 illustrate the 
applicability of various methods in the context of identification 
and control of dynamic systems. 

11. MODELS FOR IDENTIFICATION OF 
NONLINEAR DYNAMIC SYSTEMS 

A.  The State-Output Model 

It is well known in system theory that the state-output 
model, which relates the past and the present states, can 
represent a fairly large class of nonlinear dynamic systems. 
The state-output model is given by, 

.z(k) = f(z,(k - l), u(k - 1)) and y ( k )  = g(:c , (k ) ,u(k) )  

where u ( k ) :  input, ~ ( k ) :  state of the model, y(k): output of 
the model, l cp(k) :  state of the plant, y,(k): output of the plant, 
and k :  discretized time. The nonlinear functions f ( )  and y() 
are static and hence can be approximated using feedforward 
neural networks [12], [13]. 

If all the states of the plant are measured in addition to 
its outputs, then the problem of leaming f ( )  and y() are 
decoupled. The plant states, z p ( k ) ,  can be made the targeted 
outputs of the f ( )  network and the plant output, y p ( k ) ,  for the 
g ( )  network. Any supervised leaming algorithm such as back 
propagation [lo] can be used for learning. 

(1) 

B .  The Nonlinear- ARMA Models (NARMA) 

Though the state-output model is quite general, all the 
plant states are not usually available for measurement. In such 
cases, an extension of the Auto Regressive Moving Average 
(ARMA) model, the Nonlinear ARMA model, which predicts 
the present output as a nonlinear function of the past inputs 
and outputs is proposed [3] [4] (Fig. 2) .  

y(k)  = f (g , (k  - I), yp(k - 2 ) .  . ' ' , :c/,(k - 71). 

u(k) ,u(X:-  1) ;... fL(k -?n ) .Wf (k ) )  ( 2 )  

Fig. 1 .  The state-utput model 

Fig. 2. NARMA-quation error model 

z z z  

Fig. 3. NARMA--output error model. 

This model is referred to as the prediction or series-parallel or 
equation error model or the model with teacher forcing [15]. 
Even though the overall system is dynamic, the nonlinear map 
f() in (2) is static and hence can be modeled by a multilayer 
perceptron. Also, since the targeted output y,(k) is available, 
standard back propagation [lo] can be used for learning. 

The representation capability of NARMA models is only 
a subset of the state-output models. This is due to the fact 
that a NARMA model doesn't store any state information and 
relies on the delayed values of the inputs and the outputs to 
reconstruct the states. If such a reconstruction is not possible, 
then the NARMA model will not be capable of representing 
the given system. More precisely, NARMA models work 
only when the mapping g of (1) is invertible with respect 
to the states z ( k ) .  If g is not invertible, then there is an 
ambiguity in reconstructing the states from the outputs. As an 
example consider the state-output model and its input-output 
representation given by: 

z ( k )  = a z ( k  - 1) + bu(k - 1) and y(k) = x 2 ( k )  (3) 

(4) 

Since ,/- is non-unique, no NARMA model can be 
used to represent (3). 

The representation capability can be improved by inter- 
connecting NARMA models. However, since only the model 
outputs are available for auto-regression at the subsystem level, 
the following NARMA model has to be used in interconnected 
systems: (Fig. 3) 

Y(k) = f ( Y ( k  - 11, Y(k - 21,. . . > Y(k - n), u(k), 
u ( k  - l), . ' ' , u ( k  - m), Wf(k)) ( 5 )  

This model, which uses the model output for autoregression 
instead of the plant output, is referred to as the estimation or 
parallel or output error model. It is crucial to note that, the map 
f in ( 5 )  depends on the past values of its own output y(k),  
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Fig. 4. The recurrent state model. 

rendering the network non-feedforward. Hence, standard back 
propagation cannot be used for learning (5). 

C. Recurrent State Model 

We note that the problem of recurrence has to be explicitly 
tackled when a general nonlinear system is to be learned. So 
the recui~ent version of the state-output model is proposed 
where multilayer perceptrons are used with feedback as shown 
in Fig. 4. This can represent any arbitrary nonlinear dynamic 
system, but learning with generalized delta rule (back propaga- 
tion) [ 101 is ruled out due to recursion. Explicitly showing the 
parametrization of the nonlinearities f and y in terms of their 
respective neural network weights W f  and W,, the recurrent 
state model can be written as: 

In this section, we pointed out that if only the output informa- 
tion is available then the dynamics and nonlinearities cannot 
always be decoupled as in the NARMA-equation error models. 
Hence, this forces us to use recurrence in our models. In the 
rest of the paper, problems encountered in updating parameters 
in dynamic systems and adaptation amidst recurrence are dis- 
cussed. Since these issues are generic to any interconnections 
of dynamic systems, the algorithms developed are directly 
extendable to adaptive control of nonlinear systems. This topic 
will be pursued elsewhere. 

111. CALCULATION OF GRADIENT IN RECURRENT MODELS 

If the model is purely feedforward (e.g., state-output and 
NARMA-equation error models), then the gradient can be 
obtained by standard back propagation. However, if feedback 
or recurrence is present in the model (e.g., Recurrent State 
and NARMA-output error models), it is necessary to calculate 
the “gradient amidst dynamics” for adaptation. In other words, 
due to the present output depending upon the past output of 
the network, the present error depends not only on the present 
parameter set but also on the past parameter values. So these 
dependencies have to be considered in the calculation of the 
gradient. 

One method to calculate the “gradient amidst dynamics” is 
the sensitivity method [9] [14]. This method is also termed 
“on-line recurrent back propagation” [ 151 and the “dynamic 
back propagation” [9]. However, we stick to the terminology 
of “sensitivity method,” since this can be considered to be 
“forward propagation” [2] as it calculates the gradient forward 
in signal flow and time. Assuming that W f  and W, do not vary 
with time, (6) can be differentiated to obtain the derivative 
amidst dynamics with respect to representative components 
‘WS and i l lg  of f ( . )  and y(.) respectively. We use ‘7, J to 

denote the gradient of the scalar J with respect to a vector x 
and 3, f to denote the Jacobian. The gradient is considered 
as a column vector of dimension dim(z) x 1 and the Jacobian 
has the dimension dim(f) x dim(z). Let us use f ( k )  to denote 
the network whose output is z ( k ) .  

(7) 
d z ( k )  d z ( k  - 1) a f ( k )  

dw f - = % ( k - l ) f ( k )  
awf 

+- 

From (7), we see that the “derivative amid dynamics” is the 
output of another recurrent network. This auxiliary network, 
called the sensitivity network, is similar to the original network 
(Fig. 4), the differences being 1) the network is a linearized 
version of the original, 2) the inputs of the system u ( k )  do 
not enter this network, and 3 )  the partial derivative of the map 
f (  .) is injected as its input. Linearization can be achieved by 
replacing the sigmoid units by linear gain blocks, the gain 
being equal to the gradient of the sigmoid in the original 
network. This method requires as many sensitivity networks as 
there are parameters in the map f (  .) making it computationally 
intensive. This is a major drawback of the sensitivity method. 
Also, the gradient is obtained under the assumption that the 
weights remain constant over time. Since we adapt the weights, 
this assumption is not valid and hence neither the proper 
gradient is obtained nor can the convergence be assured. 

In the sensitivity method the derivatives are calculated 
in the same direction as the signal flows and hence the 
necessity for one sensitivity model for each partial derivative. 
On the contrary, back propagation implements the chain rule 
of differentiation by the derivative of the error flowing in 
a direction opposite to that of the signal flow. Working 
backwards allows updating of all parameters of the network 
in a single run making it computationally efficient. 

If the recurrent model (6) is unfolded in time, it is possible to 
calculate the gradient by back propagating the error in the time 
axis also [IO], [ I  11. Due to the fact that in the recurrent model 
(6), the present state, z ( k ) ,  is a function of only the immediate 
past state, z ( k  - I), the network unfolded in time is layered 
(cascade interconnection of f ( )  blocks). This is referred to 
as “back propagation through time” algorithm [2], [5] .  The 
network unfolded in time for “N” time steps is given by. 

y(k) = g [ f ( f ( f ( .  . . f ( J ( k  - N ) .  74k - N ) )  . . . ) .  
u ( k  - 2 ) , ) U ( k  - l))] (9) 

However, in models such as the NARMA-output error model, 
where the present output y(k)  is a function of not just one but 
a number of its past values, unfolding and back propagation 
are not straightforward. 

Iv. BACK PROPAGATION IN DYNAMIC SYSTEMS 

To obtain the proper gradient amidst dynamics for arbitrary 
interconnections of dynamic subsystems, back propagation is 
reinvestigated leading to the following result. Though the mo- 
tivation for our approach is its applicability to more complex 
model structures, the result is stated for the recurrent model as 
it is a more versatile representation than the NARMA-output 
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error model. However, the proof is constructed by viewing the 
f ( . )  map in (6) as a special case of the f ( . )  map of (5) so as 
to emphasize a wider applicability of the approach. 

Consider a dynamic system represented by the 
recurrent state model ( 6 )  with input: u ( k )  E Rp,  states: :r:(k) E 
R“, model and plant output: y(k) .  y , ( k )  E R‘. Let the in- 
stantaneous scalar cost be .I(IC) = $e(k)rc(k) with c ( k )  = 
! / ( A : )  - y f , ( k ) .  if the error is back-propagated through the adjoint 
model. whose initial conditions are set to zero with the adjoint 
input = (,( k )  at time instant “ k ”  and zero elsewhere, i.e., 

Theorem I :  

X(0)  = s;.(A),9(IC) e ( k ) , X ( i )  = s f ; , - , , f ( k  - 2 + 1)X(i - l), 
i =  1 , 2 , . . . , &  (IO) 

then, the partial derivative of the instantaneous cost with respect 
to a representative component ’wws qf  f (.) with time tag ( k :  - 
d ) ,  41 E { 1, ... A : } .  *, is the product of, I )  the input 
enterin<? the M,eight “ u i ,  ” in the original network at time ( I C  - &) 
and 2 )  the input entering the wvight “w, ’’ after q5 retrograde 
time itnits in the adjoint netwvrk. IJI other words. the gradient 
VLI . , , , - , , , . ~ (~ )  and V I % . ~ ( A ~ J ( ~ )  can be obtained using 

V \ l ’ f ( A ’ - @ ) J ( k )  = ‘{l,(A-~),f(k - 4) A($) (11) 

VL,JAlJ(k) = ‘:;gi,,g(k:) e ( k )  (12) 

where ST(A-c*9-,lf(k - &) and 9fi . f (A-G2).f(k - &) are theJaco- 
bians obtainable jrom the map f (.) at the time instant ( I C  - a), 
and itf;,.,g(k) and 3~~.,cr,g(IC)fr-om the map g(.) at time instant 
“k.” U 

We precede the proof of this theorem by some discussion 
and remarks. 

Discussion on Theorem I :  To calculate the gradient amidst 
dynamics from the observed Jacobian, the adjoint model 
is seen to be useful. The adjoint of a dynamic system is 
constructed using the following rules [18]: I )  Reverse all 
signal flow, redefining nodes as summing junctions and vice 
versa. This converts inputs to outputs and vice versa. 2) 
Replace ‘‘t” in the arguments of all time varying coefficients 
by ( t f  - t ) ,  where “tf” is the terminal time and “t” the forward 
time. Here “ t f ”  is the time of observation, “k:.” 3) If nonlinear 
blocks are present, they have to be successively linearized. 
Linearization in our case is achieved by using the derivative 
of the nonlinearity. 

Remark I :  From the construction of the adjoint system 
described above, it is clear that the network through which 
back propagation is performed in static systems [lo] is the 
adjoint of the forward system, the gradient being calculated 
at 4 = 0. 

Remark 2: Among various models that can be proposed for 
nonlinear system identification and control, the neural network 
models proposed here have an edge over others due to the fact 
that the adjoint of the nonlinearity can be constructed with no 
additional computational burden. 

Remark 3: Though similar adjoints are popular in the opti- 
mal control and missile guidance literature [ 181, [ 191, they only 
deal with the sensitivity of the cost or the output with respect 
to signals in the system. In such cases, the sensitivities are 
dependent only on the backward run. In the above theorem we 
extend this concept to deal with sensitivities of the cost with 
respect to the parameters of the system also. The point that has 

Fig. 5. Adjoint of the recurrent state model. 

Adjoint off(.) 

Fig. 6. Adjoint of the NARMA-utput error model. 

to be noted is that sensitivities with respect to the parameters 
do depend on the forward run also. Though sensitivities 
with respect to parameter variations using adjoints have been 
addressed to in circuit theory literature 1201, the parameters are 
considered time invariant. In the present development such an 
assumption is not required. 

Remurk 4: Note that by back propagating the error through 
the adjoint network, we apportion the error among weights 
spread over time. This is achieved by unfolding the network 
in time as in “back propagation through time.” However, the 
adjoint approach gives a systematic methodology of unfolding 
any given configuration in time and back propagating the error 
through it. 

Remark 5: In comparison with the sensitivity method, 
which decimates the time tag of the weight, back propagation 
through the adjoint retains it. Also, the adjoint method does 
not assume the weights to remain constant, and is thus better 
suited in an adaptive context like ours. The adjoint method 
uses only one model to calculate the derivatives with respect 
to all the adjustable parameters of the map, which is a striking 
improvement over the sensitivity method. 

Remark 6 :  As mentioned earlier, though Theorem 1 is only 
stated for the recurrent state model, the concept of adjoints is 
applicable to any kind of interconnection of subsystems. For 
an interconnected system, the adjoint of the configuration is 
first formed (by reversing signal flow between the subsystems 
and exchanging the nodes and summing junctions) and every 
subsystem is then replaced by its adjoint. Adjoints of the 
recurrent state and the NARMA-output error models are shown 
in Figs. 5 and 6. Note that if a NARMA+quation error 
model is a part of the interconnected system, the error is back 
propagated through the moving-average part only, where as 
for the output error model, back propagation has to be done 
through the auto-regressive part also. 

We first look into a more general result as far as the recurrent 
part of a dynamic system is concerned by considering the 
output to be dependent on a number of its past values as in 

Consider a dynamic system represented by the 
NARMA-output error model (5 )  with input: ,u(k) E RI’, model 
output and plant output: y(k) ~ TJ,, ( A : )  E RI. Let tlir instantaneous 
scalar cost be J ( k )  = ~ e ( k ) “ c , ( k )  “ith e ( k )  = ? / ( A : )  - y , , ( k ) .  /f 
the rrror is back-propagated through thr acljoitit model, with the 

(5).  
Lemma I :  
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adjoint input = e ( k )  at time instant “k” and zero elsewhere, i.e., 

N O )  = e ( k ) ,  A($) = 9F(k--0jf(k - i )  A ( i )  (13) 
0-1 

L=O 

then, the gradient VWf(kpd)  J ( k ) ,  can be obtained using 

VWf(k&-O)J(k)  = STv,(k-mjf(k - 4)X(4) (14) 

obtainable from f (.). 0 
where iZr(,-Ojf(k - i )  and 9L.,(k--0)f(k - 4) are the Jacobians 

We precede the proof of this lemma by some preliminary 
results. 

Proposition I : For the dynamic system ( 5 )  the gradient of the 
instantaneous cost J ( k )  with respect to W,(k - 4), the weights 
o f f ( . )  with time tag ( k  - 4) ,4 E (0, 1 ,2 ,  . . ,k},  V ~ ~ ( k - d ) J ( k ) ,  

is given by, 

Vn.,(k-QjJ(k)  = % V f ( k - $ , j f @  - 4 P ; ( k - + ) Y ( V  e ( k )  (15) 

where the Jacobian 9 r ( k - o ) y ( k )  is obtained by the recursive 
relation, 

0-1 

3;(AbO)Y(k) = q ( k - + ) f ( k  - 2 )  q ( k - z ) Y ( J v  (16) 
Z=O 

wphere 3 T ( k - + j f ( k - i )  and 9;zf(k-d)f(k-4) are theJacobians 

Proof: Equation (15) follows from the chain rule of 
obtainable from f (.). 0 

differentiation by noting that, 
- 1  %~++f@ - 4) = % ~ f ( k - + ) Y ( k  - 4 )  and 

Vy(lC)J(k) = e ( k ) ,  (17) 

Equation ( 16) follows from the concept of total partial deriva- 
tives, where the effect of a change in y(k - 4) on y(k) through 
all y ( k  - i ) ,  i = 0 ,1 ,2 ,  . . , (4 - l), are summed, the direct 
effect of y ( k - 4 )  on y ( k - i )  being given by 3 F ( k - + ) f ( k - z ) .  
0 

With initial conditions set to zero in the ad- 
joint model, and with the input = e ( k )  at time instant “k” and 
zero elsenvhere, the input to the adjoint of map f ( . )  a fer  4 
retrograde time units in the adjoint run; i.e., X(4),  is given by 

Proof: Since the initial conditions are zeros, first part of 
(13) is apparent. Since the Jacobian is linearized version of 
the f(.) map, the output of the adjoint of f( .)  at a position 
separated by “j” delays from the adjoint input, (Fig. 6) at 

From the construction of the adjoint (Fig. 6), it is evident that 
this signal will take another “j” retrograde time steps to reach 
the input of the adjoint. So at a given retrograde time ‘‘4,” the 
signals at the input of the adjoint, will be such that i + j = 4. 
The second part of (13) is a summation over all such signals. 0 

The vector A(+) is equal to the product 
0 

Proposition 2: 

the recursive relation (13). 0 

retrograde time ‘5,’’ is of the form 3;(k-i-j) f ( k  - i )  X(i).  

Proposition 3: 

Proof by Induction: The proposition holds for 4 = 0, 

:\y, 
Jy,k-+)P(k) 4k). 

q ( k ) Y ( w k )  = e ( k )  = W O )  

i\.T sy(k- i )y(k)e(k)  = A ( i ) ,  i = 9 , 1 , . . - , 4 -  1 

(18) 

Assume the proposition to hold for all z 5 4 - 1. i.e., 

(19) 

E! Then from (13) and (16), the proposition holds for 4. 

Proof of Lemma I :  Applying Proposition 3 in (15) we get 
(14). Hence the gradient can be obtained by back propagating 

0 
Proof of Theorem I :  For the proof of the theorem, 

X(4)  through the map f() linearized at k - 4. 

(15)-(16) of Proposition 1 has to be changed to, 

b f ( k - d ) J ( k )  = %-f(k-,$)f(k - 4) 
x q ( k - + ) 4 k P : ( k ) g ( k )  4 k )  (20) 

i = 1 , 2 , .  . . , 4 .  S:(,)z(k) = I 

c-T Jz(k-p(k)  = S:(,-,)f@ - i + 1)S:(lC-,+1)+), 

(21) 

Consequently, Proposition 2 will include (10) instead of (13) 
and in Proposition 3, X(4) = 9 ~ ( , - + ~ z ( k )  3:(k)g(k)e(k) .  
Equation (11) of the theorem can be obtained along the 
same lines noting that the state of the recurrent model, z ( k ) ,  
depends only on the immediate past state, x(k - l), and 

is no dynamics in g(.). 
Accelerated Back Propagation: We will show later on that 

it is necessary to go back a finite number of steps, “N,” 
through the adjoint for calculating the gradient necessary for 
adaptation. From Theorem 1 it is clear that this gradient can 
be obtained only after a delay of “ N ”  adjoint time units. 
However, since back propagation is only through a model 
of the system, the basic time unit for the adjoint can be 
much smaller than that of the plant. In other words, back 
propagation can be performed through a time scaled model 
so as to obtain the gradient without any delay. Then, the 
computational complexity will depend on “ N ”  and not on the 
number of weights. In comparison with the sensitivity method, 
which does parallel computations, the computations performed 
here are serial. In the rest of our discussions, this accelerated 
variant will be used for back propagation wherever needed. 

c-T s , ( k ) g ( k )  = 9:(,)y(k). Equation (12) is obvious as there 

v. PARAMETER UPDATE PROCESS IN FEEDFORWARD MODELS 

Before we attack the problem of parameter update in re- 
current models, let us first consider the update of parameters 
in models with no feedback such as the state-output and 
NARMA-equation error models. In these systems, the gradient 
can be obtained using the standard back propagation. Using 
this gradient, the parameters can be updated either off-line 
or on-line. For convergence to a local minimum in an off- 
line update scheme, it is sufficient to show that, away from 
the minimum, the cost function is reduced in every iteration. 
Hence updating along the negative gradient is sufficient for 
global convergence. However, if the update is on-line, the 
cost function, (which in our case is the integral squared error) 
depends on the input applied raising an important question. 
If the parameter is so chosen that cost incurred with this 
particular input is reduced, will the cost incurred with other 
inputs also be uniformly better? For this, if we are in a position 
to associate a Lyapunov function independent of the inputs 
with the dynamics of the weights, then convergence can be 
assured. As we are interested in on-line update schemes, we 
address the choice of such Lyapunov functions in this section. 

The Lyapunov function to be chosen is for the dynamics 
of the weights and hence should be independent of the states 
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and inputs of the system. If the weights are updated along 
the negative gradient of the instantaneous cost, W ( k  + 1) = 
W ( k )  - p V w ( k ) J ( k ) ,  then the change in Lyapunov function 
AV(k) will be given by, 

(22) 

Note that AV(k) K -VL(,)J(k)Vw(,lV(k) need not, in 
general, be sign definite. However, if the output is linear in 
parameters and V (  k )  is the Euclidean norm of the parameter 
error, AV(k)  5 0. Such a sign definiteness does not come 
through if the output and the error are nonlinear in parameters. 
Then a parameter update law should resemble W ( k  + 1) = 
W ( k )  - p V w p ) V ( k ) .  However, if we define V ( k )  as the 
Euclidean norm of the parameter error, then the gradient 
cannot be evaluated. So, taking the motivation from off-line 
approaches, we integrate the squared error with respect to 
the inputs and states over the complete range of interest to 
get a candidate Lyapunov function. In other words, this can 
be viewed analogous to an off-line scheme where the costs 
with respect to all possible inputs are considered. The weight 
dynamics is separated out from the dynamics of the states 
by integrating the squared error over the entire state space of 
interest. 

Consider the weight dynamics, W g ( k  + 1) = w , ( k )  - 
pVW,(,.J(k) along with the output maps of the state-output 
model y(k)  = g ( z , ( k ) , u ( k ) , W , ( k ) ) ,  and that of the plant 
yP(k) = g(z,(k);U(k),  W,*), where J ( k )  = & d k ) - ~ , ( k ) ) ~ .  
A candidate for the Lyapunov function is obtained by integrat- 
ing the error criterion with respect to the state z p ( k )  and the 
input ,u(k) over the set of interest N weighting it by a suitable 
distribution D(z,, U ) :  

AV(k) = - ( P  + O(p))VT, ( , )J (k)V, (k )V(k)  

V ( k )  = - J’ Ilg(z,, U ,  W 9 ( k ) )  
2 ( Z * , U € N )  

- g ( z p , u ,  w,*)112~(~,, u ) d z p d u  (23) 

Now three issues need to be addressed: 1)  Can the gradient of 
V ( k )  with respect to W, be calculated from a finite data set? 2 )  
If so, which update law will assure negative definiteness of the 
A V ( k )  ? 3) At every instant the gradient for only one sample 
can be evaluated. Is it meaningful to use this for update? 

Answering these questions in the general framework of 
functional approximation with process noise is a formidable 
task. So we limit ourselves to the problem of matching 
two functions, where we assume that the plant generates its 
data using a similar network whose weights are unknown. 
To answer the first question, let us extend the concept of 
informative data sets [21], which is similar to “persistently 
existing inputs” and “general enough inputs.” Given a model 
g( .) parameterized by W,, and the set of interest N, then a set 
2 c N is said to be informative with respect to the model g( .) 
over the set N, if an optimum over 2 is an optimum over N. 

Proposition 4 :  If the number ofparameters W,  is finite then 
0 

Proof: In the problem of matching the outputs of two 
functions, the global minimum over the entire state-input set of 
interest N occurs when the weights of the networks generating 
them match. Once the weights match, the output of the two 

afinite informative data set exists. 

networks match for any subset of N. In other words, the global 
minimizer of the Lyapunov function obtained by integrating 
the error criterion over N is also a global minimizer if the 
integration is performed over any subset of N. The statement 
of the proposition is the converse of this statement. For the 
converse to be true, it should be possible to uniquely define 
the global minimum with the given subset. The number of 
independent conditions necessary to uniquely define a point 
in a finite dimensional space equals the cardinality of the 
parameter space. Since each input-output data is a condition 
on the optimal set of parameters, the global minimum can 
be uniquely defined by as many input points as there are 
parameters. Hence a finite informative data set exists. 0 

Remark 7: Though we have shown the existence of a finite 
data set, we need a consistent algorithm to take us to the 
global minimum. But, only convergence to a local minimum 
can be addressed when a gradient descent algorithm is used. 
But if we assume that the initial condition is in the vicinity 
of or in the attraction region of the global minimum, and if 
back propagation is used for optimization, then with a finite 
informative data set as above, global minimum with respect to 
that set will be reached, which by Proposition 4 is the desired 
global minimum. 

Having shown the existence of a finite informative data set 
at least in the vicinity of the global minimum, whose length 
is M (say), let us assume that every data set of length M 
is informative. Then the integration over the set N can be 
replaced by summation of the squared error over M terms. 
The distribution, D(s, ,u)  E D ( z ) ,  does not appear explicitly 
in the summation as it is imbedded in the sequence of states 
and inputs over the interval [k - A4 + 1: k ] .  Let us also assume 
that the informative sets are so chosen that the Lyapunov 
function is independent of the input set over which summation 
is performed. 

1 
V ( k )  = - Ilg(:c,(k - i ) ! U ( k  - 2 ) :  W g ( k ) )  

i=o 
M - 1 

- g(z,(k - i ) ; U ( k  - i ) ,  W,*)llZ = c J ( k  - i )  
i=O 

(24) 

Proposition 5: If 1) every input data set of length M is 
informative with respect to the model g( .) over the set of interest 
N, 2 )  the second partials of V are bounded and 3) the update is 
done once in h.1 time steps using: 

wg(k. + 1) - W,(k - M + 1) = -/Lviig(k-I1f+I)V(k) 

2 1 - 1  

= -/‘ VM9(L&-1I+I) .J(k - 2 )  

(25) 
,=o 

then there exists a p > 0 such that the batch update cwwerges to 
a minimum. 0 

Proof: Since every data set of length M is informative, 
(24) can be chosen as a candidate Lyapunov function for the 
parameter update process. Since the weights have not changed 
during [k  - M + 1, k ] ,  V ( k )  = V ( k  - M + 1). Using the 



mean value theorem for V(Wg(k + 1))  in the neighborhood 
of Wg(k) ,  

Since the second derivative is bounded, p can be so chosen that 
the second term is nonnegative. Then the Lyapunov function 
is non-increasing in successive batches and hence the batch 

Having proved the convergence of a batch processing type 
of update, now we tum to the third question viz., whether 
updating every time instant also converges. If update is done 
every instant, sample by sample, the update law W g ( k  + 1) = 
Wg(k)  - p V ~ , ( k ) J ( k )  can be rewritten as: 

update converges. 0 

Here V ~ , ( k - ~ ) J ( k - - z )  is being used instead of VWg(k--M+l) 
J ( k  - i) of the batch update law. If we expand the gradient in 
the neighborhood of Wg ( k  - M+ l), noting that the difference, 
(W,(k - i) - Wg(k - M + I)) is proportional to p, we get: 

As VWg(k--M+l)V(k), the sum of all sample gradients is 
bounded, the term p(k  - z), which consists of partial sums 
of sample gradients is bounded. So, if p is so chosen that 
Vwg(k-Mtl)V(k) always dominates the summation of p(k - 
i), then convergence is ensured. But as the weights approach 
an optimum, the summed gradient, V W , ( ~ - M + ~ ) V ( ~ )  tends 
to zero while the sample gradients need not do so. In one 
sense the sample gradients may contradict each other in such 
a way that the mean gradient goes to zero. So convergence 
to a local optimum cannot be assured with constant step size. 
However if the initial conditions are in the attraction region 
of the global minimum, convergence to the global minimum 
can be assured with a sample-by-sample update. 

If  1) every input data set of length M is 
informative with respect to the model g( .) over the set of interest 
N, 2) the second partials of V are bounded (iiiJ the initial 
conditions are in the attraction region of the global minimum and 
(iv) the update is done every time step using: 

Proposition 6:  
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W g ( k  + 1) = Wg(k)  - PVI/V,(k)J(k) (31) .... ~~ .~~~ . . ~ ~ ~ ~ ~ ~ ~ c 7  I ~~~ 

then there exists a p > 0 such that the sample-by-sample update 
converges to the global minimum. U 

Proofi In the case of matching two functions, by con- 
struction V w , ( k - ~ + l ) J ( k  - i) tends to zero for all ‘%’’ 
in the vicinity of the global minimum. For if the summa- 
tion of these gradients, V W , ( ~ - - M + ~ ) V ( ~ )  vanishes without 
every sample gradient vanishing, it means that it has not 
matched the function for some input, and hence is not a 
global minimum contradicting our assumption. So the gradient 
VW, ( k - - ~ + ~ ) V ( k )  vanishes iff V~+J, ( k - ~ + ~ ) J ( k - z )  vanishes 
for all “i.” This means that IIp(k-i)ll for all ‘5’’ goes to zero iff 
llVwg(k--M+l)V(k)II goes to zero. So there exists a constant a 
such that, summation of lip(& i)ll I a l lVw, (k - -~+~)V(k) I ( .  
Since the initial conditions are in the attraction region of the 
global minimum, p < & leads to the second term of (30) 
dominating the third, and the update performed every time 

U 
Now we analyze through this proposition how the asymp- 

totic solution will behave if the initial conditions are in the 
vicinity of a local minimum. 

Proposition 7: Let ,I3 be the upper bound of the sum 
E::,’ Ilp(k - i)ll and y for that of llV2CvgVII. f f l )  the learning 
parameter p > 0 is small enough to avoid the effect of the 
second partials of V and 2 )  the update is done every time step 
using (31), then the norm of the gradient is confined to a ball 

0 
Proof: Given p, consider a ball around the optimum, 

where (JVw,VJJ 5 Pp, and the last term of (30) dominates. 
Outside this ball the Lyapunov function will be non-increasing 
and hence it will enter this ball. Having entered, the negative 
definiteness of the time derivative is lost and hence the norm of 
the gradient may increase. To calculate how much the increase 
can be, we apply the mean value theorem considering the effect 
of only the last term in (30) as it is the only perturbing term. 

step converges to the global minimum. 

llVW,(k-.bf)V(~)Il I DP + YP,Li2. 

So the gradient will always be confined to a ball where 
IIVwg(k-~l)V(k)l1 5 /3p + yPp2. The size of this ball can 

U 
The convergence of f(.) maps in the state-output model 

(1) follows the same arguments. We conclude this section by 
noting that in the vicinity of the global minimum sample-by- 
sample update converges to the global minimum, while in the 
vicinity of a local minimum convergence to a small-enough 
ball around it can be assured. 

be made arbitrarily small by choosing a proper p. 

VI. PARAMETER UPDATE PROCESS IN RECURRENT MODELS 
So far we have been dealing with systems in which there is 

no feedback. The leaming problem then was an unconstrained 
optimization problem. But, if feedback is present in the system 
then the leaming Droblem is one of constrained ootimization. 
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the constraints originating from the dynamics of the system. 
Further, the past parameters can also affect the present output. 
So the gradients with respect to past and present parameter 
sets have to be obtained using the adjoint model described 
in Section IV. Updating the present parameter set using these 
gradients in an on-line scheme is discussed here. In particular, 
the recurrent map f (  .) of (6) will be considered (The leaming 
of the g(.) map of (6) is identical to the problem discussed 
in the last section). In this section we will discuss through 
different schemes the various levels of approximation that 
can arise in this problem. We will initially assume that the 
Lyapunov function introduced in the last section (24) is the 
cost function to be minimized. Also, in Proposition 6 we saw 
that the samplewise update and batch update are equivalent if 
the initial conditions are in the vicinity of the global minimum. 
We will assume the initial conditions to be so and discuss the 
convergence to the global minimum with constant step size 
and samplewise update resembling (31). 

Scheme I 4 i r e c t  Adaptation: The first approximation is 
to assume that the effect of any past parameter set on the 
present error is negligible. So it is sufficient to adapt only the 
present parameter set. 

With this approximation, which is equivalent to ignoring 
the dynamics, the algorithm boils down to standard back 
propagation. This is computationally inexpensive and works 
when the dynamics are insignificant. 

Scheme 2-Sensitivity Method (Forward Implementation): 
The next approximation is to assume that the parameters 
remain constant as in the sensitivity calculation. We use 
V~v~(k+)J(k) ,b '  #J E [ 0 , k ] ,  to adapt the weights W f ( k -  4).  
Since we are looking for a constant parameter set that would 
minimize J ( k ) ,  we resort to averaging that gives: 

k 

Wf(k + 1) = Wf(k) - P VtV+$b)J(k), P > 0 (34) 
$b=O 

This update involves a summation that increases in length 
with time. In the forward implementation this summation 
is automatically taken care of. However, in the backward 
implementation, the length of adjoint run keeps increasing with 
time making the backward implementation impractical. Note 
that the update is not a batch update but a samplewise update. 

Scheme 34ens i t i v i t y  Method (Backward Implementation): 
Here we will modify Scheme 2 so that it is implementable in 
the backward sense. For this, we run the adjoint only for a 
finite period of time. For the sensitivity method to converge, 
a necessary condition is that the series 

Under this necessary condition, the effect of truncation of the 
summation gk+' is studied in the following proposition. 

Proposition 8: r f  (35)  holds, then 3 a finite N such that, the 
finite horizon update, 

N-1 

W,(k + 1) = W,(k )  - /I V W f ( k - @ ) J ( k )  (36) 
$ C O  

can be used instead of the infinite horizon update (34) for the 
purpose of optimization. 0 

Proof: For optimization, it is not necessary to follow the 
negative gradient, -gk+l, but is sufficient to choose a descent 
direction [22], -dk+ ' (N)  such that, g(k+l)Td(k+l)(N) > 0. 
Consider the sequence g(k+')Td(k+l)(N), where 

N - 1  

(37) 
$b=O 

Since g"' is a convergent series, either the last term or the 
sum of last few terms tend to zero as #J i k and k i 00. Also 
as k + CO and N i co,g(k+l)Td(k+f)(N) -+ gmTgm > 

0 
With this proposition we prove that it is sufficient to go back 

a finite number of steps ( N )  through the adjoint making the 
backward implementation of the sensitivity method feasible. 
Note that the truncation in this context is not a further 
approximation over Scheme 2. On the contrary, the assumption 
that the parameters remain constant over a finite period can 
actually be met when batch processing is performed as shown 
below: 

0 ,3  a finite N such that, g ( k + ' ) T d ( k + ' ) ( N )  > 0. 

N-1 

$=O 

The major drawback in implementing this update is that it 
uses only $th of the information available as we disregard 
J ( k  - i ) ,  i = 1 ,2 , .  . . N - 1. On the contrary, if sample 
by sample update is done as in (36), then we are adapting 
a parameter that has a totally different time tag. 

Scheme 4-Predictive Back Propagation: In a recurrent 
network the present weight W f ( k )  affects the future cost 
J ( k  + i )  for all i 2 0. So for analyzing how an error caused 
by the present set of weights evolves due to dynamics of the 
system, it is desirable to choose the criterion function that 
looks into the entire time scale up to infinity. However, since 
the state space of the system is finite, it is not necessary to 
analyse till infinity, a finite window of length "N" say being 
sufficient. Also for the sake of implementation it is required 
that the analysis interval be finite. Hence the gradient that 
has to be used is 

N-1 

which can be obtained only at time instant ( k  + N ) .  However, 
this gradient cannot be used to update the then weight, 
W f ( k  + N ) .  To resolve the problem of using derivatives with 
respect to past parameters to correct the present ones, we 
resort to prediction in this scheme. In the feedforward case, 
the Lyapunov function was chosen so that a weight gets tested 
over the entire input set of interest. In the presence of feedback, 
the criterion function is so chosen that it not only evaluates the 
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weights over the entire input space but also over the evolution 
of those inputs over the time axis. For this, we look ahead 
in time using an N step prediction at every time instant and 
obtain the effect of the present parameters on the future costs. 
Let J i ( k )  be the N step prediction cost defined by 

1 N-l 

- g ( z p ( k  + N - 4), u ( k  + N - 4))112 

J; = - Ilg(z(k + N - 4), u(k + N + 4)) 
$=O 

(39) 

under the constraint 

x (k+N-+)  = f(z(k+N-4-1),’1L(k+N-4---1), WAk)) 
(40) 

Since the dynamics act as constraints, Lagrange multipliers 
are introduced to get 

1 N - 1  

J,(k) = 1 $7(z(k + N - 4)) - g(z,(k + N - 4))112 
$=O 

- XT(4)[x(k + N - 4) - f ( k  + N - 411 (41) 

Differentiating (41) with respect to z( k + N - 4) and equating 
it to zero leads to the adjoint equation: 

A(4) = 3 : ( k + N - $ ) f ( k  + - 4 -k 1)A(4 - l )  

+ 9 z ( k + N - + ) g ( k  + - 4) 
[g(.(k + N - 4)) - g(zCp(k + N - 4111 

(42) 
V W f ( k ) J P ( k )  = % f ( k , f ( w ( N >  (43) 

As was seen earlier, to obtain the “gradient amidst dynamics,” 
Vwf(k,Jp(k), we first go ahead in time N steps by prediction 
and then go back in time through the adjoint of the system. In 
Theorem I ,  back propagation of a criterion that is of the form 
a[y(k) - y p ( k ) ] 2  was discussed, where the adjoint input was 
zero b’4 # 0. However, if the cost is a sum of squared errors, 
as in (39), then the adjoint input at retrograde time “@’ will 
be as in the second term of (42). 

Choice o f N :  In the following proposition, we show that 
the size of the prediction window “N” should be at least the 
order of the system “n” and predicting over a larger interval 
is superfluous. 

Proposition 9: If the system is locally observable at all 
operating points then it is sufficient to back propagate as many 

0 
Proof: The gradient Vrvf(k) J .  ( k )  gives the decoupled 

effect of the weights at time “k,” W f ( k ) ,  on J p ( k ) ,  regardless 
of the weights used at other time instants during prediction, 
W f ( k  + i) for i = 1 , 2 , . . - , N  - 1. So let us assume that 
W f ( k  + 1) = W; for i = 1 , 2 , . . - , N  - 1. Then, given 
x ( k  - 1) = z p ( k  - l), the cost function J,(k) is just the 
cost associated with the time evolution of the error in the 
state (z(k:) - z p ( k ) )  = e, (say), which is induced by the 
mismatch in weights at time instant “k.” Considering the 
system linearized around an operating point and assuming 
that the operating point does not change, the cost and the 

time steps as the order of the system. 

22 1 

sensitivities can be calculated as follows. For the simplicity of 
notation, let S x ( k ) f ( k )  = A and S,(,)g(k) = C. 

. N-l 

+=0 

If we assume that the system is observable, then the observ- 
ability matrix 0, is full rank and so is 0~ for any N 2 n. 
Hence @$ON is positive definite. The observability matrix 
and the sensitivity are given by, 

Ideally, we would like to evaluate the weights over the 
entire time axis. In such a case we would have calculated 
A, = O~O,e,. But since we go only for a finite length of 
time, we have X(N) as in (48). These two adjoint outputs are 
related by, X(N) = (O$@,)(O~O,)-lX,. However, both 
(050,) and (02@,)-’ are positive definite for N _> n. 
So if -A, is a descent direction, so is -X(N).  This means 
that it is sufficient to back propagate as many time steps as 
are required to make ON full rank, which is the order of the 

0 
Remark8: From the above proposition we see that as a 

dynamic system cannot be assessed with a single sample, we 
need to wait for a certain minimum number of time units equal 
to the order of the system. Also we see that a longer delay 
does not yield any further information. This waiting time is 
circumvented in the present scheme by the use of prediction. 

In the context of adaptation in dynamic systems, we see that 
there are two issues that have to be addressed. The first issue is 
the error caused by the mismatch of weights. In Proposition 9, 
we considered the propagation of the state error arising due to 
the mismatch in the weights, in order to judge how a change in 
the present weights will affect the long term cost. The second 
issue is how we can control (keep within certain bounds) the 
propagation of the state error. In the present scheme and the 
next we will assume that the propagation of the state error 
is somehow kept under control. In the last scheme (Scheme 
&Predictive Back Propagation with Filtering), we propose 
a methodology to keep the propagation of the error under 
control. 

Now assuming that every data set of length M is infor- 
mative, in this case even over the time axis, we define the 
Lyapunov function: 

system from the observability assumption. 

M-I 

P(k) = J,”(k - i) 
i = O  

(49) 
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Proposition 10: I f l )  the system is observable, 2 )  every input 
data set of length M is informative with respect to the model f (.) 
over the set of interest N, 3)  If the initial states of the plant and 
the model match at the beginning of every batch of length M ,  4 )  
the second partials of 9 are bounded and 5 )  the update is done 
once in M time steps using: 

W f ( k  + 1) - W f ( k  - M + 1) 
M-1 

- _  - P V W f ( k - - M + l ) w  = -P V W f ( ” M + l ) J P ( k  - 2) 

A*($)  = S:(k--I+N--I)f(k - + N - 4 + 1)A*(4 - 1) 

V W J , ( k - M + l ) J p ( k  - 2) = S T W f ( k - M + l ) f ( l “  - W ( N )  

Z=O 

(50) 

+ S : ( k - - r + N - 4 ) 9 (  k - i + N - 4) 
x [g ( z (k  - i + N - 4)) - g(zP(k - i + N - 4))] (51) 

(52)  

converges to a minimum. 0 
then there exists a p > 0 such that the batch update process 

Proof: The batch cost Q ( k )  arises due to 1) mismatch in 
initial conditions and 2) mismatch in weights. By the assump- 
tion on the initial conditions, the batch cost depends only on 
the mismatch of weights. From Proposition 9, the finite horizon 
gradient evaluated over N steps, Vwf(k-~+l)\Tr(k), is a 
descent direction. Under the assumption of informative sets, 
the proof follows from Proposition 5, where the convergence 
of a batch update along a descent direction is proved. 0 

Proposition I I :  If I )  the system is observable, 2 )  every input 
data set of length M is informative with respect to the model f (.) 
over the set of interest N, 3)  the states of the plant and model 
somehow match every sample, 4 )  the second partials of 9 are 
bounded and 5)  the update is done every time step using: 

Wf(k + 1) = Wf(k) - P V W f ( k )  J P ( k )  (53) 

where V W f ( k ) J p ( k )  is calculated as in (42)-(43), then, there 
exists a p > 0 such that the sample by sample update process 
either converges to the global minimum or to a close enough 

0 
0 

Remark 9: The key problem in using prediction is that 
the future values are not available to us for correction. To 
overcome this we place our model “N” steps behind in time, 
i.e., at ( k  - N ) ,  and predict from (k - N + 1) to “k.” In a 
samplewise update this should be carried out every sampling 
instant with the new weights. In other words, the adaptation 
will not be in real time but behind it by “N” time units. 
This is only an implementation aspect and does not affect 
convergence. 

Scheme 5-Targeted Back Propagation: The major prob- 
lem in Scheme 4 is that it requires explicit prediction that is 
computationally expensive. This was done so that the time tag 
of the weight and the time tag of the gradient are matched. 
In this scheme we look into an altemative that avoids explicit 
prediction. The key idea is that in static maps, the gradient 
can be calculated independent of time, once the target inputs 
and outputs are available. In particular, if in the recurrent 
state model (6) ,  good estimates of the states are available, 
then the problem gets decoupled as in the case of state-output 
model ( I ) .  

neighborhood of a local minimum. 
Proof: Follows from Propositions 6, 7, and 10. 

So, instead of obtaining the gradient with respect to the past 
weights (the problem is that the weights have changed and we 
don’t know how to use these gradients), we use the adjoint to 
calculate the gradient with respect to the state z ( k  - N )  and 
correct it. Also note that in the predictive back propagation 
scheme, gradient calculation in (43) is just back propagating 
X(N) through a static map. Let z’(k - N )  be used to represent 
the corrected state. Then, 

z ’ ( k  - N )  = z ( k  - N )  - 9V,(k-&(lC - N )  
= z ( k  - N )  - QX(N),7) > 0. (54) 

In this scheme the state variables are considered as adjustable 
parameters that are updated to minimize the cost function Jp.  
By updating along the gradient, in an off-line scheme, the 
state converges to its desired value. Assuming that such a 
convergence is also possible in an on-line update like ours, 
the corrected states, z ’ ( k  - N )  and z’(k - N - 1) can be 
taken to be the true values of xp. Then we have an input-output 
relationship, [ z ’ ( k - N - l ) , u ( k - N - 1 ) ]  ---f z ’ ( k - N ) ,  which 
can be presented to the static map f (  .) for the calculation of 
the gradient. So we reapply z’( k - N - l), U (  k - N - 1) to the 
network at time “k” and use the error to correct the present 
map. The gradient obtained is: 

V W f ( k )  J t ( k )  = %&(k)f(k)(f(.’(k - N - 11, 
u(k - N - l),W,(k)) - z’(k - N ) ) ( 5 5 )  

Wf(k)) - .’(k - N)1I2 (56)  

1 
2 

Jt(k) = - I l f ( d ( k  - N - 1 ) , ~ ( k  - N - I), 

Note that, in the absence of changes in weights, if z ’ ( k  - 
N - 1) = z ( k  - N - l), then the error term is equal to 
vX(N) .  Hence the same gradient as in (42)-(43) is obtained. 
[Vw,(k,Jt(k) = Vwf(k) J p ( k ) ] .  However, with the previous 
state and weights updated the gradient is altered so as to 
account for the change in the weights. Though the gradient 
of Scheme 5 can be obtained as 9 ---f 0, it is seen that a non- 
zero 71 speeds up convergence. In comparison with the earlier 
scheme, this algorithm requires only an additional rerun of the 
static map instead of an N step prediction. 
Scheme &Predict ive  Back Propagation with Filtering: In 
the convergence analysis of the predictive scheme, it is not 
realistic to assume that the plant and the model states match 
at every sampling instant. Further, any mismatch in weights 
leads to a mismatch in the states. To take care of this spill-over 
from one sampling instant to another, the states should also be 
adapted. In the context of parameter adaptation, correction of 
the states is quite logical and improves the speed of adaptation. 
Consider a situation in which a state was pushed into error 
due to a wrong parameter. If we do not adapt the states, 
they will not retum to their true values even if the parameters 
converge to their correct values. The error in the states will 
then be attributed to the parameters leading to instability in 
the adaptation mechanism. 

In the targeted back propagation scheme a methodology 
for the correction of the states was discussed. In the present 
scheme we combine the last two schemes, by first correcting 
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the state and then using the corrected value for further pre- 
diction. Hence, this scheme requires prediction at every time 
instant. The convergence result with the parameter and state 
updates is stated in the following theorem. 

We first introduce the notation that will be used. Let a 
transformation T : A + 3, be defined by, 3 = E-lDE, 
where A = E-lDE, E the matrix of eigenvectors, D the 
diagonal matrix containing the eigenvalues and a a diagonal 
matrix defined by, 

Theorem 2: If 1)  the system is observable, 2 )  the second 
partials of Q are bounded, 3 )  every input data set of length M 
(say) is informative with respect to the model f (.) over the input- 
state set of interest N, 4 )  if the gradient is obtained using the 
adjoint equations (42)-(43), 5 )  the parameters are updated every 
time step using (53), and 6 )  the states updated using: 

E(k - N )  = ( 2  + 6) [Z</(k - N - 1)ZI’ 

< / ( k  - N )  = ( [ - 1 ( k  - N )  + q(o;F@Ar))-l (59) 
(60) d ( k  - N )  = ~ ( k  - N )  - ~ [ ’ ( k  - N ) X ( N )  

where [ ( k )  is an estimate of the covariance of the error in 
the states, r the upper bound that describes the influence of 
- the weight mismatch in the dynamics of the estimated norm, 
A = T(Sz(k-Nl  f(k - N ) ) ,  ON the observability matrix of 
the linearized transformed system at time instant ( k  - N )  and 
n = q11c11 ((@ZQ,v(I, 7)  the error is such that the linearization 
is valid, then, there exist constants q, p > 0 such that the sample- 
wise update converges either to the global minimum or to a close 

U 
Proof: If the states of the model and the plant do not 

match at every sampling instant, then J p ( k ) ,  and hence its 
batch sum consists of two components: that caused due to a 
mismatch in the parameters, 9,(k), and that caused due to an 
error in the initial state, 9 , ( k ) ,  i.e., q ( k )  = 9 , ( k )  + 9 , ( k ) ,  
where 9 , ( k )  has the summation form of e,(ONT@N)e, from 
(46). From Proposition 1 1  it can be seen that the error caused 
by the parameters, Q,(k), keeps decreasing in successive 
batches. The proof will be completed if we show that some 
function of the error in states e, also reduces in successive 

enough neighborhood of the local minimum. 

batches. In this proof we construct a function that decreases 
in every time step and hence the result is directly applicable 
to sample-wise updates. 

Let e, ( k  - N )  be the actual error in the states and [( k - N )  
the estimated covariance of it. A candidate Lyapunov function 
that can be associated with the dynamics of the error in the 
states [23] is: 

1 v,(~c) = ZezT(k - N)[-’(Ic - N)e,(k - N )  

v2(k  - N )  = (1 + ~ ) ! P i ( k  - N )  and v”(k - N )  
= Q L ( k  - N) (62) 

The error in the states depends upon the past corrected error 
and the error induced by the parameter errors. 

e,(k) = S * ( k ) f ( W ( k  - 1) + r q W ( k )  
5 3ea (k  - I) + r@,(k) (63) 

Let the covariance be updated by using the recursive equation 
(58). With the updates (58) and (63) (time update-update 
between sampling instants), we will show that the function V, 
is non-increasing; i.e., V,(k) 5 V , ( k  - 1). 

Equation (64) can be obtained by noting: 1 )  q, is mono- 
tonically non-increasing, i.e., *$(IC- N -  I)+ (I +&)Q;(k - 
N )  5 (2 + ~ ) * ; ( k  - N - l), 2) Ilz-h’ll 5 fillrll, and 3) 

perfect square. 
Though V,(k) 5 V,l(k - l), the covariance E(k - N )  may 

become unbounded with time. To avoid this, we correct the 
states along the gradient of the Lyapunov function and also 
update the covariance [ ( k  - N )  in such a way that V, keeps 
decreasing with the measurement update (correction process); 
i.e., V J k )  5 V,(k), and < is bounded. From (46) the state 
correction (60) can be written as, 

z ’ (k -N)  = z ( k - N ) - q  <‘(k-N)(@K@N)e,(k-N) (65) 

If the covariance be updated using (59) and v as in (62), the 
change in V, will be, 

(e;T[/-le; - 2 ~ , 2 ~ [ { - 1 z - ’ r  + q;rTx-T<’-lx-lr) is 

V,’(k) - Vz(k) 
1 
2 

= -(eLT(k - N)E’-’(~ - N)ea(k - N )  

VZ(k)  - V,l(k - 1) 
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1 rTr 
111 II - zQE(k - N I T ( &  - 71111’11 Il@T,@Nll) 5 o(66) 

We see that V, is non-increasing during both estimation and 
correction; i.e., V , ( k )  5 V,(lc) 5 V;(IC-1). Also [ is bounded 
from above by ~ ( @ T , @ N ) - ~ .  Since (@:ON) is positive 
definite from the observability assumption and 71 > 0 , t  does 
not blow up to infinity. With the covariance appearing in the 
update equation, whenever the estimated covariance of the 
error is large then a large step is taken along the descent 
direction. This is necessary as our correction should at least 
compensate for the increase in error due to dynamics. By our 
bound on [, we find that 1’A < e,, which is acceptable in a 
quadratic programming problem like ours. So, if we redefine 
the Lyapunov function as 

(67) 

where 9 , ~  ( I C )  is the sum of V, ( I C )  over the batch, then the up- 
dates mentioned in the theorem decrease it monotonically and 
hence the batch update converges. Arguments for samplewise 

17 
Extended Kalmanfiltering: For the adaptation of states, we 

go back in time through the adjoint and correct a past state. 
From there an “N” step prediction is done to correct the 
present state. Due to the dynamics we go through a backward 
and a forward pass. This can be solved without going back 
and forth in time by using a Kalman filter [24]. Targeted back 
propagation is a scheme that performs parameter adaptation 
without prediction. Using the concept of Extended Kalman 
filtering the state adaptation can be performed without explicit 
prediction. These two concepts can be combined to yield 
a scheme “targeted back propagation with filtering,” which 
approximates the above scheme and is computationally less 
expensive. 

Remark 10: Note that if the system is stable, the system 
dynamics itself reduces the state error. In such cases, state 
update as in Theorem 2 is not very essential. 

Remark 11 : All the algorithms developed here are applica- 
ble to cases where the model is some arbitrary interconnection 
of subsystems (NARMA-autput error model). The steps that 
have to be used in learning such an interconnected system are: 
1) Construct the adjoint of the interconnecting loop replacing 
every subsystem by its corresponding adjoint to obtain the 
adjoint of the overall system. 2) Back propagate the error 
through the overall adjoint to calculate the gradient with 
respect to the weights and signals. 3) Using the gradient, the 
adaptation can be performed using any one of the schemes 
developed earlier. 

* ’ ( I C )  = *,(IC) + * , € ( I C )  

update follow from Propositions 6 and 7. 

Fig. 7. Response for a unit step input. 
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Fig. 8. Response for a 0.1 unit step input. 

We close this section by noting that the algorithms presented 
here are quite computationally intensive compared to those 
used for feedforward systems, which is inevitable if the 
dynamics are significant. 

VII. SIMULATION RESULTS 

Here we present a simple example to illustrate the ideas 
reported in this paper. The plant considered is a second order 
plant described by the state and output equations: 

Z l ( k )  = f ( Z l ( k  - I), Zz(k - 11, u ( k  - I ) ) ,  
y(k) = Q ( k )  = q(IC - 1) (68) 

?‘he nonlinear mapping f(.) with which the plant generates its 
output is chosen to be a three layer perceptron with 3 inputs, 
3 hidden nodes and one output. Bipolar sigmoid nonlinearity 
is used for activation in all units. Weights for the plant are 
arbitrarily chosen so that its dynamic behavior is interesting. 
For the choice of weights used in this simulation, the responses 
for step inputs of 0.1 unit and 1 unit are shown in Figs. 7 and 
8. It can be seen that the response for a 0.1 unit step enters 
a limit cycle while that for an unit step is well damped. Also 
note that the DC gain of the system is negative. 

For the model, a similar network is used. Also we assume 
that full state information is not available and hence the 
leaming situation is similar to that of the recurrent state model. 
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Fig. 9. Direct adaptation. 
N&e J 8io.h. 

Fig. 11 .  Sensitivity method-backward. 

U, I 

Fig. 10. Sensitivity method-forward. 

During adaptation the weights are kept bounded by using a 
hard saturation on the weights. The initial conditions of the 
model are chosen randomly and the input to the plant is a 
random signal of length 50 repeated over and again. The 
update is done in batches with the batch length “M” being 
50. The number of back propagation steps, “N,” is chosen to 
be the order of the system, which is 2. Since the number of 
weights in this network is 16, to uniquely define it amidst 
second order dynamics the batch size of 50 > 16(2 + 1) 
was chosen. For a proper comparison of various schemes, the 
plant, the initial conditions, the learning rate, and the input 
to the system are kept the same in all simulation trials. The 
comparison is made by studying the time behavior of the 
fitness criterion, which is a Lyapunov function over different 
batches. 

Since the dynamics is quite significant, the direct update 
scheme is incapable of decreasing the Lyapunov function as 
shown in Fig. 9. The Lyapunov function saturates at a high 
value due to the boundedness of the sigmoid nonlinearity. The 
sensitivity method implemented in the forward sense also does 
not converge under the conditions of the present simulation 
(Fig. 10). The weights start blowing up, only to be limited by 
their saturation limits. This may be due to the fact that once 
the summation for the sensitivity calculation starts increasing 
in length, the step size used is too large to assure a decrease 

NUL. 4 Bach .  

Fig. 12. Predictive back propagation. 

in cost. However, the backward implementation of sensitivity 
method converges. Though it is capable of eventually reducing 
the Lyapunov function, it does not do so monotonically (Fig. 
11). The extent of the increase of the Lyapunov function in 
the divergent phases keeps reducing with time. This can be 
attributed to the fact that, as the changes in weights keep 
reducing with time, the constancy of weights assumption 
required for the sensitivity method is met with increasing 
fidelity. Ultimately, its performance is comparable to that of 
other methods. 

For the other three schemes (Figs. 12, 13, and 14) monotonic 
decrease of the Lyapunov function is observed indicating 
that these schemes are globally convergent. Monotonic con- 
vergence in the predictive and targeted back propagation 
cases means that for this system the state error is reduced 
automatically and the spill-over across batches is not large 
enough to cause instability. Hence filtering is not very essential 
and this fact can be used to reduce the computational burden. 
However the convergence is faster with filtering and is the best 
among all schemes discussed. The convergence properties of 
the Targeted scheme lie in between those of the Predictive 
schemes with and without filtering, since the weight update of 
the Targeted scheme is accomplished only indirectly through 
filtering. 

As a second example, illustrative of how control problems 
can be attacked using the algorithms reported here, we consider 
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Fig. 14. Predictive back propagation with filtering. 
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Fig. 15. Direct adaptation. Fig. 18. Predictive back propagation. 

an unit feedback system around the same plant with an unity 
gain proportional controller. In the simulation we assume 
that the system configuration and the plant dynamics are 
known while the gain of the controller is unknown. The 
gain has to determined from the reference input and the 
plant output. The derivative of the cost function with respect 
to the controller gain is obtained by back propagating the 
error through the adjoint of the plant. The time evolution 
of the estimated gain in the various schemes are shown 

in Figs. 15 to 20. The direct adaptation leads to a limit 
cycle, while the forward implementation of the sensitivity 
method initially overshoots and converges very slowly. The 
convergence of the backward implementation of the sensitivity 
method is quite fast but is characterized by a large overshoot. 
Barring a few differences, the convergence characteristics of 
the Predictive and Targeted back propagation schemes are 
similar. With filtering, the convergence is faster with no 
overshoot. 
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Fig. 19. Targeted back propagation. 
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Fig. 20. Predictive back propagation with filtering. 

VIII. CONCLUSION 

In this paper, it was shown that for identification of general 
nonlinear dynamic systems the use of recurrent models is 
inevitable. In cases where the model is an interconnection of 
dynamic subsystems, it was illustrated that the adjoint model 
can be used to calculate the gradient. To update the weights 
of the network using the gradient various schemes were pro- 
posed with increasing levels of computational complexity. The 
convergence of predictive back propagation with filtering was 
established. As a preamble, convergence issues in feedforward 
models was analyzed using a Lyapunov approach. 

The update schemes presented here are directly extend- 
able to any interconnection of dynamic subsystems. So, the 
adaptive control problem can be solved using the algorithms 
reported here by casting it as a problem of identification with 
an interconnected model. Though the algorithms discussed 
here are computationally more expensive compared to their 
feedforward counterparts, they are competitive in comparison 
with the algorithms available in the current literature for 
recurrent models. An increase in computational complexity 
is naturally expected due to the dynamics and is inevitable if 
the dynamics encountered is significant. 
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