
306 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 5 , NO. 2. MARCH 1994

Memory Neuron Networks for Identification
and Control of Dynamical Systems

P. S. Sastry, Member, IEEE, G. Santharam, and K. P. Unnikrishnan

Abstract- This paper discusses Memory Neuron Networks as
models for identification and adaptive control of nonlinear dy-
namical systems. These are a class of recurrent networks obtained
by adding trainable temporal elements to feed-forward networks
that makes the output history-sensitive. By virtue of this capa-
bility, these networks can identify dynamical systems without
having to be explicitly fed with past inputs and outputs. Thus,
they can identify systems whose order is unknown or systems
with unknown delay. It is argued that for satisfactory modeling of
dynamical systems, neural networks should be endowed with such
internal memory. The paper presents a preliminary analysis of
the learning algorithm, providing theoretical justification for the
identification method. Methods for adaptive control of nonlinear
systems using these networks are presented. Through extensive
simulations, these models are shown to be effective both for
identification and model reference adaptive control of nonlinear
systems.

I. INTRODUCTION

HERE HAS BEEN considerable interest in the past few T years in exploring the applications of artificial neural
networks (ANNs) for identification and adaptive control of
dynamical systems [l l , [2], [3] , [4], [5] . In this paper we
present a class of recurrent neural networks called Memory
Neuron Networks [6] as general models for identification and
control of nonlinear dynamical systems. These networks are
obtained by adding some trainable temporal elements to feed-
forward networks. The main attraction of these networks is that
they have trainable intemal memory and hence can directly
model dynamical systems.

Identification of a system requires picking one of a class of
functions (or models) so as to approximate the input-output
behavior of the system in the “best” possible manner. In
many situations, such as identification of dynamical systems,
recognition of temporal pattems, etc., the output of the phys-
ical system to be modeled is a function of past inputs and
outputs as well. In all such cases, the identification problem is
complicated because the model being used (e.g., ANN) should
have some internal memory. The output of a feed-forward
ANN is a function of its current inputs only and hence it
can model only memoryless transformations. In spite of this
limitation, almost all attempts at using ANNs for identification

Manuscript received February I , 1993, revised August 12, 1993. This
work was supported in part by the United States Agency for International
Development (USAID) and Dept. Science and Technology, Govt. of India.

P. S. Sastry and G. Santharam are with the Department of Electrical
Engineering, Indian Institute of Science, Bangalore, 56001 2, India.

K. P. Unnikrishnan is with the Computer Science Department, General
Motors Research Laboratories, Warren, MI 48090-9055. USA, and the AI
Laboratory, University of Michigan, Ann Arbor, MI 4R 109.

IEEE Log Number 9214801.

and control rely on feed-forward nets [21, [31, 141, [51, [71, [SI.
This is achieved by using the so called tapped delay line [9].
If the order of the system (or an upper bound on the order) is
known, all the necessary past inputs and outputs of the system
being modeled can be fed as explicit inputs to the network.
Then the network can leam the memoryless transformation
that captures the dependence of the output of the system on
the specified past inputs and outputs. While, in principle, we
can always feed a “sufficient” number of past values to the
network, in practice, all reported applications assume that the
exact order is known. Both from aesthetics and practicality,
leaming memoryless transformations in this manner may not
lead to versatile dynamical models (see the discussion in [9]
and Section V of this paper).

Recently, Narendra and Parthasarathy [3], [4] have shown
that a rich class of models can be constructed by using ANNs
and linear filters in cascade and/or feedback configurations.
The ANN corresponds to the nonlinear part and the linear
filter gives dynamics to the model. They have also worked
out a method (called dynamic back propagation) to back-
propagate errors through a linear dynamical system. Using
simulations they showed that these models can identify some
complicated nonlinear dynamical systems. While this is one
elegant way to introduce dynamics into the model, it has a few
drawbacks. One needs a fairly good knowledge of the structure
of the system to decide what combination of memoryless
transformations and linear filters is a good class of models
to choose.

Now the natural question is: can one include dynamics
directly into the network structure so that we can learn
nonlinear dynamic systems without assuming much knowledge
of the systems. For this, what we need are networks with some
“internal memory” and learning algorithms for such recurrent
networks. Due to the proven ability of feed-forward networks
to model nonlinear systems (when explicitly fed with the
necessary past history), it seems logical to explore recurrent
networks that the closely related to multilayer feed-forward
networks. Feed-forward networks with some memory in the
form of extemal delay lines have been used successfully for
recognition of speech signals [101.

In this paper we describe a recurrent network model with
internal memory called the Memory Neuron Network (MNN)
[6], [l I] . Here each unit of neuron has, associated with it,
a memory neuron whose single scalar output summarizes the
history of past activations of that unit. These memory neurons,
or more precisely the weights of connection into them, rep-
resent trainable dynamical elements of the model. Since the

1045-9227/94$04.00 0 1994 IEEE

SASTRY et al.: MEMORY NEURAL NETWORKS FOR IDENTIFICATION AND CONTROL OF DYNAMICAL SYSTEMS

connections between a unit and its memory neuron involve
feedback loops, the overall network is now a recurrent one.

Here we show, through extensive simulations, that this
level of internal memory and trainable temporal elements are
sufficient for identifying nonlinear dynamical systems. Our
networks are fairly small and the learning algorithm (which
is an approximation to gradient descent) is robust.

Thus far we have been talking only about identification of
dynamical systems. One of the main reasons for identification
is that the identified model can be used in deriving a controller
for the system. Due to lack of a general theory, there are at
present few classes of nonlinear models for which controllers
can be designed using analytical techniques. This is one
of the reasons for an increasing interest in using ANN for
adaptive control. One of the approaches is to use ANN for
identifying the nonlinear systems and then derive controller
networks based on this. However, the virtual inscrutability of
a ANN means we have obtained what should be termed as a
nonparametric identifier [12]. Hence one needs to exploit a lot
of knowledge regarding the system to construct such indirect
controllers [3]. There are also a few general methods suggested
for designing direct adaptive controllers based on Neural
Networks. The main problem to be addressed is how does one
get sufficient information to train the controller network [2].
We show that MNN can be used for model reference adaptive
control. We make use of a continually updated forward model
of the plant as a channel of back propagation to train the
controller net (a technique variously called differentiating the
model [2] or forward and inverse modeling [131). We illustrate
the tracking abilities of the controller (when the reference input
changes) and also the online adaptation possible with these
models (when the characteristics of the plant change during
operation).

The primary aim of this paper is to illustrate the utility of
recurrent network models for identification and control. We
do not discuss many details about other possible strategies
for training the controller. However this strategy of back-
propagating through a plant model is a fairly general purpose
method [14]. We point out that this technique as used now
with feed-forward ANN can lead to wrong results, specially
when the current output of the plant depends on more than
one of the past inputs. We explain one method of overcoming
this problem.

The rest of this paper is organized as follows. Section I1
presents the architecture of a Memory Neuron Network along
with the learning algorithm. In Section I11 we discuss the
problem of identification. We present a number of examples to
illustrate the capabilities of the network. We also discuss the
asymptotic properties of the learning algorithm and provide a
theoretical justification for the identification method. Section
IV discusses the problem of model reference adaptive control
using these networks and presents simulation results. In Sec-
tion V we summarize the salient features of our approach and
conclude the paper in Section VI.

11. MEMORY NEURON NETWORKS
In this section we describe the structure of the network that

we use and the associated learning algorithm. The network we

.___..............

307

0 Network-neuron

Fig. 1. Architecture of a Memory Neuron Network. Network neurons are
shown as big open circles and memory neurons are shown as small shaded
circles. Every network neuron, except those in the output layer, has one
corresponding memory neuron. A network with ?n hidden layer nodes and
JZ memory neurons per node in the output layer is referred to as a m : n
network. The expanded box shows the actual connections between a network
neuron and a memory neuron. Memory neurons in the output layer feed onto
their parent network neuron.

use is similar to the one described in [6]. The learning algo-
rithm is also a slight modification of the one in [6] in order to
make it conform better to a specific approximation of gradient
descent for recurrent networks. It may be pointed out here that
it is possible to use other incremental learning algorithms, e.g.,
ALOPEX [15], RTRL [16], with this network. We have kept
the squared error criterion and the back propagation algorithm
as this will clearly bring out the advantages of adding temporal
elements to standard feed-forward networks.

A . Network Structure

The architecture of a Memory Neuron Network (MNN) is
shown in Fig. 1. The structure is the same as a feed-forward
ANN except for the memory neurons (shown by small filled
circles in Fig. 1) attached to each unit in the network (shown
by large open circles in Fig. 1). To distinguish these two types
of units, we use the terms network neuron and memory neuron.
As can be seen from Fig. 1, at each level of the network except
the output level, each of the network neurons has exactly one
memory neuron connected to it. The memory neuron takes
its input from the corresponding network neuron and it also
has a self feedback as shown in the inset in Fig. 1.' This
leads to accumulation of past data of the network neuron in
the memory neuron. All the network neurons and the memory
neurons of each level send their outputs to the network neurons
of the next level. In the output layer, each network neuron can
have a cascade of memory neurons and each of them send
their output to that network neuron in the output layer.' Fig. 1
shows a network with two input nodes, one output node and
a single hidden layer.

'In Fig. 1, we show this connection between a network neuron and a
memory neuron in only one expanded box. Otherwise we represent this
connection by a single arrow from the network neuron to the memory neuron.
In the rest of the paper we follow this convention to keep the figures simple
though the actual connection is as shown in the expanded box in Fig. 1.

*The introduction of the memory neurons at the output layer is a modifi-
cation to the structure in 161.

308 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 5, NO. 2. MARCH 1994

B. Dynamics of the Network For the units in the output layer, the net input is given by:

.

.

.

.

.

.

.

.

.

.

We use the following notation to describe the functioning NL--1 N L - ~
of the network. x;(k) = w:-l(k)s:-yk) + f;-l(k)Zf-l(k)

L is the number of layers of the network with layer 1 as i = O z=1
the input layer and layer L as the output layer.
Ne is the number of network neurons in layer e.
z g (k) is the net input to the jth network neuron of layer
L at time k.
s $ (k) is the output of the jth network neuron of layer e
at time k .
v : (k) is the output of the memory neuron of the jth
network neuron in layer e at time k , 1 5 e < L.
~ ! ~ (k) is the weight of the connection from ith network
neuron of layer e to jth network neuron of layer !! + 1
at time k .
f ,e,(k) is the weight of the connection from the memory
neuron corresponding to the ith network neuron of layer
L to the jth network neuron of layer e + 1 at time k .
a j (k) is the weight of the connection from jth network
neuron in layer L to its corresponding memory neuron at
time k , l 5 e < L.
a k (k) is the weight of the connection from the (j - l)th
memory neuron to the jth memory neuron of the ith
network neuron in the output layer at time I C 3 .
v & (k) is the output of the jth memory neuron of the ith
network neuron in the output layer at time k .
,8$.(k) is the weight of the connection from the jth
memory neuron of the ith network neuron to the zth
network neuron in the output layer at time k.
M j is the number of memory neurons associated with the
j th network neuron of the output layer.
Q (.) is the activation function of the network neurons.
- \ ,

We shall refer to a:, afi and 06 as memory coefficients.
The net input to the jth network neuron of layer e. 1 5 e <

L, at time k is given by
Nc- I Ne-1

zp€) = w:;yk)s:-yk) + f y (k) z l - l (k) (1)
a=O 1 = l

In the above equation we assume that sg = 1 for all f?

and thus w : ~ is the bias for the jth network neuron in layer
L + 1. This zeroth neuron at each level is only for notational
convenience in dealing with the bias term and hence it will
have no memory neuron. Thus U$ does not exist and hence the
summation index starts from 1 in the second sum in (1). The
output of a network neuron is given by:

sg(k) = g(z;(k)), I 5 e 5 L. (2)

We make use of two different activation functions given by

where g1 is used for all the hidden nodes and g2 is used for
the output nodes. Here e l , c2, kl and ka are parameters of the
activation function.

"nly the input layer contains more than one memory neuron for each
network neuron.

M .

(4)

The output of all the memory neurons except for those in

(5)

the output layer, are derived by

,,e@) = a,e(k)s:(k - 1) + (1 - U,e(k))*((k - 1)

For memory neurons in the output layer,

v,L,(k) = ~:(k)&l(k - 1) + (1 - a,L,(k))*l,LJ(k - 1) (6)

where, by notation, we have w$ = sk. To ensure stability
of the network dynamics, we impose the conditions: 0 5

With the above description of the network dynamics, it is
easy to see the relationship between feed-forward networks
and Memory Neuron Networks. Here the network neurons
connected through weights, constitute the feed forward
part. Each of the memory neurons stores a combination of all
the previous activations of the network neuron. The output of
the memory neuron is obtained by passing the output of the
network neuron through a first order filter. By keeping the
memory coefficients between zero and one, we are ensuring
the stability of this filter. These outputs are easily calculated
locally, by remembenng the values for one time step, using (5)
and (6). Since the outputs of memory neurons contribute to the
net input of the network neurons at the next level, the internal
memory of the network plays a significant role in determining
the output of the network at any time. The memory neurons
at the output nodes allow for direct dependence of the current
output of the network on its past outputs.

Though the network is a recurrent one, the manner of
computing the output is very similar to that of a feed-forward
net and we do not wait for the network to settle down to a
stable state, etc. However, the output of the net at any given
time is influenced by all the past inputs to the network [see
(5) and (6)]. The degree of this influence will be determined
by the magnitude of the memory coefficients (see 161 for a
discussion of this point).

..&,Q:.P:J 51.

C. Learning Algorithm

In this section we describe the learning algorithm to be used
for the Memory Neuron Network. As explained earlier, at each
instant, we supply an input and calculate the output of the net
using (1)-(6). Then we get a teaching signal and use that to
calculate the error at the output layer and update all weights
in the network. We use the usual squared error given by

N L

e (k) = C (s : . (k) - Y.!i(k)Y (7)
j=1

where, yj(k) is the teaching signal for the jth output node
at time k .

SASTRY et al.: MEMORY NEURAL NETWORKS FOR IDENTIFICATION AND CONTROL OF DYNAMICAL SYSTEMS 309

We will be using a back propagation type algonthm. Thus,
all we need are the derivatives of the error, e (k) , with respect
to the weights in the network. Due to the presence of memory
neurons, it is not easy to find exact partial derivatives through
back propagation only at a single time step. Our strategy
had been to stick to an approximation whereby we unfold
the network in time by exactly one time step and then
back-propagate the error. This means we can update all the
weights at time k without needing anymore storage of the
past activations of the nodes than is needed to implement (5)
and (6).

Under this strategy, the final equations for updating the
weights are given below. (These can be derived easily using
the chain rule).

wfJ(k + 1) = wfJ(k) - qe;+’(k)s:(k), 15 e < L (8)

when 7 is the step-size and

e,L(k) = (s,L(k) - YJ(k)>g’(.,L(k)>

e:(k) = g’(~;(k)) e:+l(k)w:p(k), 1 I e < L (9)
Nt+l

p=l

The above is the standard back propagation of error without
considering the memory neurons. g’(.) is the derivative of the
activation function of the network neuron and we need to use
the appropriate function depending on the layer number (cf.
(3)).

The updating of f is same as that of w except that we use
the output of the corresponding memory neuron rather than
the network neuron.

f J (k + 1) = ffJ(k) - qe;+l(k)u:(k) , (10)

The various memory coefficient are updated as given below.

1 I e < L

de due
a;@ + 1) = a ; (k) - 7 ? - (k) L (k) , av; aag

15 e < L (11)

where

It may be noted that we are using two step-size parameters
in the above equations-7’ for the memory coefficients and 7
for the remaining weights. To ensure stability of the network,
we project the memory coefficients back to the interval (0, l) ,
if after the above updating they are outside the interval.

111. MNN FOR IDENTIFICATION OF DYNAMICAL SYSTEMS

In this section we discuss the applications of Memory
Neuron Networks for identification of nonlinear dynamical
systems. We shall describe results of computer simulations
of MNN identifying a variety of nonlinear plants.

For simplicity, we explain these ideas using a single input
single output (SISO) plant. Denote by U (k) and y p (k) the input
and output of a SISO plant. Now consider a Memory Neuron
Network with a single input node (i.e., one network neuron in
the input layer), a single output node and some hidden nodes.
Let the input node be fed u(k) at time k , and let the output
of the network at time k be I jp(k) . We will use y p (k) as the
teaching signal at time k. Now we have,

Here F is the nonlinear transformation represented by the
network. As explained in the previous section, y p (k) depends
on the previous inputs due to the memory neurons at input
and hidden layers, and it depends on its own previous outputs
due to the cascade of memory neurons at the output layer. The
model represented by (18) is known as parallel identification
model [3]. Thus, if we feed the current input to the plant as
the sole input to the network and decide to use the output
of the plant as the teaching signal, then MNN is a parallel
identification model. This is in sharp contrast to the case of
feed-forward net based techniques where one has to decide 1)
how many previous inputs of the plant should be fed at the
input of network and 2) how many past outputs of the network
should be fed back to get a parallel identification model.

We get what is known as a series-parallel model for identi-
fication [3], if we let the current output of the model depend
on the actual past outputs of the plant. In our case, we get a
series-parallel model (for an SISO plant) by having a network
with two input nodes to which we feed ~ (k) and y p (k - 1).
This identification system is shown in Fig. 2. The single output
of the net will be i j p (k) . Now writing the output of this two
input network as a function of all past inputs etc., simlar to
(18) for the single input net, we get

It is easy to see that y p will depend on the past inputs and
outputs of the plant (and also the current input). The output
of the network will also depend on its own past values. This
dependence be eliminated by removing memory neurons
from the output layer. We stress once again that to get the
series-parallel model, we do not need to know the order of
the system. The network will automatically leam the relative
weightage to be given to various past values and this weighted
history is available through the memory neurons.

The series-parallel model is often found to be more useful
for generating stable adaptive laws and we will be using it in
this paper. To identify a m-input, p-output plant we will use a
network with m,+p inputs and p outputs. This will be the case
irrespective of the order of the system. We shall use the actual
outputs of the plant at each instant as the teaching signals.

310 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 5 , NO. 2, MARCH 1994

.__,
Fig, 2. Series parallel identification model with the Memory Neuron Net-
work, The current input into the plant and the most recent output of the plant
are fed into the network. The error e(k) is used for learning the network
parameters.

A . Analysis of the Identification Algorithm

Before we describe simulation results with our model in the
next subsection, it is appropriate to ask: what can we say about
the convergence etc. of this identification scheme.

We feel there are two aspects to this question. First, we
can ask whether the approximations made in deriving the
algorithm in Section 11-C are valid and whether we can expect
the algorithm to do a proper gradient following, etc. At present,
all we can say is that the approximation obtained by unfolding
the network in time by only one step seems to be satisfactory
(see the results in Section 111-B). More analysis is needed to
know for what class of plants this approximation may not be
satisfactory.

The second and more important aspect of the question of
convergence concems the basic technique of identification
using gradient methods and Neural Network models. All
such methods calculate the gradient of the instantaneous error
e (k) (i.e., error between plant and network outputs at time
IC) and use that to update the weights. But what is the
justification for following the gradient of instantaneous error?
Or, more importantly, in what way does e (k) reflect the error
in the identification process? We would like to stress that this
question is different from the one of batch vs incremental
leaming in pattem recognition problems because the plant that
generates the teaching signals is dynamic; hence, the error
at a given time is a function of the history and may not
really say anything about the performance of the model on
the input-output pair at that instant.

To justify the identification method, we need to show that
following the gradient of instantaneous error will result in
the algorithm minimizing some meaningful measure of error.
In this section, we show that an algorithm that follows the
gradient of instantaneous error will indeed result in minimizing
the expected value of the error between plant and network
if the training input given to the plant is independent and
identically distributed (iid) sequence, and the unknown plant is
bounded-input bounded-output (BIBO) stable and controllable.

This, however, does not completely prove the correctness
of the identification method. Suppose we use an iid input
sequence drawn uniformly from [-1, I] to train the network.
Then, we can prove, as stated above, that the algorithm

minimizes expected value of error between plant and network
for this random input. But what can we say about the network
representing the plant accurately for other signals? This is the
problem of whether we are giving “sufficiently rich” input
during training so that the leaming procedure will converge to
a network that is closer to plant than any other network. We
will not be addressing this question here.

Let Z (k) be the vector denoting the set of all parameters in
the network at instant I C , which are updated by the algorithm.
This consists of all the weights and the memory coefficients.
The leaming algorithm described in Section 11-C can be
written as below:

In (20), the function G(.,.) represents the gradient of the
instantaneous error. We will write it symbolically as

It should be noted that this derivative of instantaneous error
is a function of all the weights and memory coefficients
and the various signals in the network and is evaluated
at (Z(IC), $(IC)). Consider this function G with (Z (k) held
constant at, say, z . If the input signal u(k) is a stationary signal
and if the other signals (output of the plant and the outputs
of various network and memory neurons) are also stationary,
then it makes sense to ask what is the expected value of
this instantaneous error where expectation is with respect to
the stationary distributions of all the signals involved. This
is a good measure of the correctness of the weight values
represented by z and hence we want the algorithm to follow
the gradient of such an averaged error (note that the averaged
error is now a function of the network weights alone). This is
what we are going to prove now. The method we use is from
[17, Section 5.41 and the reader should consult [171 for details
regarding the constructions given below.

The equations (20) and (22) do not fully represent the
learning algorithm given in Section 11-C because we need
to project all the memory coefficients into an interval, say,
[0.01, 0.991 to ensure stability of the network. To include such
constraints, let g ; (Z) , 1 5 i 5 m, be functions such that

L = (2 : g; (Z) 5 0, 1 5 2 5 m)

represents the set of feasible values for the weights. We will
call gi constraints. We will say that the constraint gi is active at
Z E L if g i (z) = 0. Now we can write our leaming algorithm
as

SASTRY et al.: MEMORY NEURAL NETWORKS FOR IDENTIFICATION AND CONTROL OF DYNAMICAL SYSTEMS 311

where r~(y) is any closest point in L to y. Define the cone
C(Z) by

where A(z) denotes the set of active constraints at any z that
is on the boundary of the constraint set. For points z in the
interior of L, C (z) is empty (by definition).

Define the continuous time interpolation of the { Z (k) ,
Ic 2 O} process as below:

Z”(t) = Z (k) for t E [qk, v(Ic + 1))

Assume that the unknown plant is BIBO stable and con-
trollable. Also assume that the input sequence u(L) is iid
with some distribution having a compact support. (The input
process is hence, trivially, a stationary process). We derive
an ordinary differential equation (ODE) associated with the
learning algorithm using the following result based on weak
convergence analysis [171.

Under the given assumptions on the input u (k)
and the unknown plant, as 9 + 0 , the interpolatedprocess Z‘’(t)
converges weakly to the unique solution z (t) of the projected
ODE,

Theorem I

i = G (z) + g(zj (2 5)

where g (z) takes values in a cone -C(z) and G (z) is the
expectation of G (z , $) with respect to the invariant distribution oj
theprocess { $ (k) , Ic 2 0). (Here i denotes the derivative w.r.t. t).

Proofi The proof of this theorem, which consists of
verifying a set of conditions needed to apply a theorem from
[17], is given in appendix.

To understand the theorem, consider the ODE given by
(25) at a point in the interior of L. That is simply a gradient
following ODE where the gradient is that of the “averaged”
value of the instantaneous error as explained above (assuming
of course that the interchange of derivative and integration
are permitted). Thus, if the learning parameter v is small then
the algorithm has the same asymptotic behavior as a gradient
following algorithm that uses the proper averaged error rather
than instantaneous error. For such an averaging effect to
take place, it is easy to see that the input sequence should
be stationary. In addition, we needed BIBO stability and
controllability of the plant to ensure that all the other signals
in the network are stationary and thus to ensure the existence
of invariant measure as needed for the above theorem. At
the boundary points of L , g (z) plays a role in ODE (25) as
needed to keep the memory coefficients bounded. One way to
understand this is to realize that we want to solve a constrained
optimization problem of minimizing the averaged error while
keeping memory coefficients between 0 and 1. Hence, we want
to reach a Kuhn-Tucker point which is not necessarily a zero
of the gradient of error. The strategy of this analysis is very
similar to that of the standard back propagation algorithm [18].
This technique of analysis making use of weak convergence
results is a powerful tool to understand the asymptotic behavior
of adaptive algorithms. We refer the reader to [191 for a better
appreciation of the technique.

TABLE I
IDENTIFICATION WITH MNN

Example Size* Error? Figure Number

Example 3.1 6: 1 0.0752 3
Example 3.1 3:O 0.0668 3
Example 3.2 6: 1 0.064 1 4

Example 3.3 6: 1 0.0186 X a) (~ ~ 1)

Example 3.2 3:O 0.0345 None

Example 3.3 6: 1 0.0327 5(b) (Y~z)
*Size is to the size of the network.
?Error is the mean square error between the plant and reference outputs
over 1000 time-steps of the test signal. The actual outputs are shown in
corresponding figures.

As discussed earlier, this only justifies the procedure of
following the gradient of the instantaneous error. For proving
full correctness of the identification method we need to prop-
erly characterize what constitutes “rich input” for nonlinear
systems so that the identified model is valid for all signals.

B . Simulations

In this section we will present a few examples of nonlinear
plants identified by Memory Neuron Networks. We use a series
parallel model for identification. The structure is shown in Fig.
2 for SISO plants. (We use similar structure for MIMO plants.)

We use networks with only one hidden layer. Hence we use
the notation m, : n to denote a network that has m hidden
network neurons and has n memory neurons per node in
the output layer. The number of input and output nodes are
determined by the nature of the plant. For SISO plants we will
have two inputs (u(Ic) and y p (k - 1)) and one output (& (k)) .
The number of inputs to our identification model does not
depend on the order of the plant.

Example Problems: The examples discussed below are
from [3], [4]. The main reasons for this are that they provide
fairly complex nonlinear systems and that all of them are
known to be stable in the BIBO sense. We also feel that
for better understanding of neural networks for control, the
various techniques should be tried on the same set of plants.
We have tested our identification method on many plants
(see [20]), including all the examples given in [3], [4]. We
have got good results and the identification algorithm is found
to be quite robust. Here we present results for only three
examples. The first plant is with geometric nonlinearity. The
next example shows the ability of MNN to identify a complex
nonlinear system made up of a linear dynamical system and
nonlinear memoryless transformation combined [4]. However,
unlike the method in [4], our identification algorithm has
no knowledge of the structure of the plant or of any of its
subsystems. We use the same network and training sequence
to identify these plants also. These two are SISO plants. The
last example is an MIMO system. Table I summarizes the
results of the three examples presented here. (Note: We refer
the readers to the technical report [20] for more details on the
simulations performed).

Network Parameters: As discussed earlier, the memory
neurons in the output layer do not play any significant role
here. We have used either one or zero memory neurons. We

312 IEEE TRANSACrIONS ON NEURAL NETWORKS, VOL. 5 , NO. 2, MARCH 1994

present results for one large and one small network for all
the plants below, the two networks being 6:l and 3:O. We
keep the same learning rate for all problems with 17 = 0.2 and
7' = 0.1. Also, we have used the same activation functions
in all problems-gl for hidden nodes and g2 for output nodes
with c l = c2 = 1 and kl = k2 = 1 (cf. (3) in Section 11-B).
Hence, we introduce an attenuation constant in the plant's
output so that the teaching signal for the network is always
in [-1,1]. This does not affect the identification process but
makes for convenience and uniformity.

As is easy to see, the intention here is to explore the
generality of the network structure. Thus, any problem-specific
tuning would be in terms of the number of learning iterations.

Training the network: We use 62 000 or 77 000 time steps
for training the network with the longer training sequence for
more complex plants. We train the network for 2000 iterations
on zero input; then for two thirds of the remaining training
time, the input is iid sequence uniform over [-2, 21 and for
the rest of the training time, the input is a single sinusoid
given by sin(ak/45). For all the plants we have considered,
this training appears to be sufficient.

After the training, we compare the output of the network
with that of the plant on a test signal for 1000 time steps.
Our test signal consists of mixtures of sinusoids and constant
inputs. (See (27) below).

Example 3. I : This example clearly indicates the ability of
the memory neuron network to learn a plant of unknown order.
Here the current output of the plant depends on three previous
outputs and two previous inputs as given below.

where

Though the function f has five arguments, we feed to the
network, only u(k + 1) and y p (k) for it to output Cp(k + 1).
Through the process of learning, the network has evolved the
right values for the memory coefficient to be able to reproduce
the behavior of (26). For the test phase, we used the following
input

u (k) = s i n (~ k / 2 5) , k < 250
= 1.0, 250 5 k < 500
= -1.0,500 5 k < 750

= 0.3sin(xk/25) + 0.1 s i n (~ k / 3 2)
+ 0.6s in(~k/ lO) , 750 5 k < 1000 (27)

Fig. 3 shows the output of the plant and the two network
models (6:l and 3:O) for the test input given by (27).

It should be noted here that if we use a feed-forward network
for learning this plant then we need to have five input nodes
to feed the appropriate past values of yp and U .

Example 3.2: The plant is given by

l r I

I 3:OnehvOlk --.--

0 0

0 4

0 2

t o
0 2

0 4

0 6

0 8

I
0 200 400 600 800 1000

time

Fig. 3. Output of the plant and model network for Example 3.1. Output of
a 6:1 network and a 3:O network are shown in the figure.

is a

1

0 8

0 6

0 4

0 2

0

0 2

-0 4

-0 6

I
0 200 400 600 800 1 000

lime

Fig. 4. Output of the plant and model network (6:l) for Example 3.2,

where

z + 0.3 W (z) =
z2 - 0.82 + 0.15

4v3 h(w) = -
1 + 4v2

Here the plant is specified through the combinations of
linear filters and nonlinear memoryless transformations. In the
above equations, W (z) is the transfer function of a linear
discrete time system. There is a little abuse of notation in
the specification of z p (k) above and it is to be understood
in the usual sense of interpreting z as a time shift operator.
Here z - 'h (u(k)) will represent h(u(k - 1)). Fig. 4 shows the
results using the test sequence (27) for the 6:l network.

Example 3.3 Our final example is an MIMO plant with two
inputs and two outputs. Thus we will use a network with four
network neurons in the input layer and two network neurons
in the output layer. For this example our network structure is
6: 1. The plant is specified by

SASTRY et al.: MEMORY NEURAL NETWORKS FOR IDENTIFICATION AND CON

1
nelwork -

08

06

0 4

02

$ 0

0 2

0 4

06

08

I
0 200 400 600 800 1000

time

(a)
1 , I

0.8 1
I

0.2 I\
-0.4 -o.2 1 ‘
-0.8 i

- 1

1 1 I
O 2w 400 600 800 1000

time

(b)

Fig. 5. Output of the MIMO plant and model network for Example 3.3; (a)
shows the first output of a 6:l network and (b) shows the second output of
the same network.

TROL OF DYNAMICAL SYSTEMS 313

the output of a neural network controller) so that the output
of the plant follows that of the reference model.

In indirect control, one identifies the plant using some
identification model and then uses the parameters of the
learned model to derive the controller network. The method of
indirect control relies on the ability to derive the control law
given the identified model, for a class of systems (often using
the so called certainty equivalence control). The main difficulty
with using neural networks for indirect control is the fact that
these are nonparametric identifiers [12] and hence there is no
simple relationship between the learned weights of the network
and the parameters of the plant (even if we had known the form
of the nonlinear transformation of the plant. This method is
discussed in detail by Narendra and Parthasarathy [3], [4] and
MNN can be used for indirect control in a similar way (See
example 4.2 in [20]).

In direct adaptive control, the parameters of the controller
are directly adjusted based on the error between output of the
plant and that of the reference model. The main difficulty here
is that of credit assignment in training the controller network.
We cannot supply a proper error signal to the controller net
because the unknown plant lies between the controller and the
available error signal.

Various strategies have been tried to overcome this problem.
The simplest solution will be if we have a “knowledgeable
controller” (e.g., a human or other costly control device) which
already knows how to control the plant. However, this is not
often practical.

There are at least two general purpose techniques to tackle
the problem of training the controller net [2], [13]. Both of
them make use of an identification model. However, instead
of using the parameters in the identified model to directly
derive the controller net, these techniques obtain some signal
using the identification model which is then used to train
the controller net. We use one of the methods here. Fig. 6
shows the block diagram of the method we discuss here,
which is called differentiating the model or.forward and inverse

Fig. 5(a) and Fig. 5(b) show the output of the plant and modeling [21, [ij]. Here we keep a forward model of the
network for the test signal given by (27). As is easy to see, the plant (network to
identification is good for the MIMO plant also. Table I gives black-ProPagate the error at the plant output up to the plant

all these examples. to the plant input and this back-propagated error is used for
training the controller net (N 2 in Fig. 6). For the technique

in Fig. 6, which is used as a

the actual error between the plant and the network outputs for input and this back-propagate the error at the plant Output

Iv . ADAPTIVE CONTROL OF
DYNAMICAL SYSTEMS USING MNN

In contrast to linear systems, for which there now exists
considerable theory regarding adaptive control [21], very little
is known conceming adaptive control of plants govemed
by nonlinear equations. Thus, like in many other areas, ap-
plications of neural networks for control is largely driven
by empirical studies [2]. In this section, we discuss model
reference adaptive control using memory neuron networks. We
assume that the plant is stable in the BIB0 sense and that there
is sufficient knowledge about the plant to specify the goal of
control in terms of a reference model.

Given a plant, a reference model and a reference input, the
problem is to determine the input to the plant (which will be

to work properly, the forward model of the plant should be
accurate at all times. So, at each time step we will update the
weights of the plant model based on the error (e l in Fig. 6)
between the output of the plant and that of the network N1.
Then we calculate the error (e , in Fig. 6) between the output
of the plant and that of the reference model, which is then
back-propagated through NI to supply the error signal for the
controller network.

A . Training the Controller Network

As explained above, we use the method of differentiating
the model which is a general purpose control scheme for ANN
based methods. The overall structure of the controller is as
shown in Fig. 6. However there is one serious difficulty in

314 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 5, NO. 2, MARCH 1994

Reference 7 4 Model 1- Reference
Model

I =I

Fig. 6. Model reference adaptive control with neural networks: Diflerentiar-
ing the plant model. The error e1 is used for online adaptation of plant model
N1 and the error eo is used for online adaptation of the controller N 2 . eo is
generated by back-propagating the error e, through N1, up to its input.

Rcfcrrn +

back-propagating the error e, through N1 for training the
controller network when the plant involves significant delay.
Since this has not been pointed out in literature, we explain
the problem and suggest a solution.

Consider Fig. 7, which shows an adaptive controller for
an SISO plant using feed-forward nets. The figure shows
explicitly the delayed inputs that are fed to the network. Let us
say we know that the plant output can depend on u(IC - l), and
U(k - 2), and hence these are fed to the net N1 by delays from
the single output of N2. (We will forget about other inputs,
such as past outputs of the plant, to N1 for now because they
are not important to this discussion). For training N 2 , we need
to fine the error at the output node of N 2 which is directly
connected to input node 1 of N1. So, it seems all we need do is
to back-propagate the error, e,, through N1 to reach node 1 in
its input layer. But suppose that the plant output depends only
on u(k - 2). Then N1, which has three inputs, would have
learned a function that is independent of input 1. Hence if the
identification was good, then the back-propagated error will
always be zero! Thus, in general if the plant output depends
on many previous inputs (or if the plant has some unknown
pure delay) then there will be a problem regarding this back
propagation of error through N1 to train N2. We think the
correct procedure would be to use the idea of dynamic back
propagation [4] to propagate the error through the delay line
(which is just a linear filter with transfer function z - l) . In
practice this would mean we have to back-propagate the error
e, up to all input nodes of N1, then add appropriately delayed
versions of these errors to get the error at the output node
of N2. Hence, even if we are using feed-forward nets with
incremental learning algorithms, we need to store past values
of errors etc. at nodes to implement this back propagation

In the case of Memory neuron networks, since there are
no extemal delay lines this problem will not occur. However
if we use the approximation of unfolding in time by exactly
one step, as discussed in Section 11-C, then we will get into
similar problems. Consider the network shown in Fig. 6 with
both NI and N2 being Memory Neuron Networks of the
general structure shown in Fig. 1. If we use the algorithm
as given in Section 11-C when we back-propagate error e, to
calculate the controller error, we would be back-propagating
only through the weights w;j’s and not through the memory

- N2

Fig. 7.
delay (see text).

Problems with training the controller net when the plant involves

neurons (see Section 11-C). Hence, once again we would get
wrong value of error if the plant output depended only on some
past values of input. In case of MNN, the problem is only
due to the approximation used in Section 11-C in calculating
the gradient. Here we can take care of it by back-propagating
error through the memory neurons also. That is, when the plant
model network is used as a channel for back propagation, we
unfold the recurrent network by more than one time step. This
results in a better approximation of the gradient than the one
given by (9).

Let e t denote the error at the single output node of network
N1 (the equations given below are extended in an obvious
manner of multiple outputs). Let ef denote the error at the j th
network neuron at level C. Let e; be the error at the j th input
node of N1 and hence for j = 1 (say) it will be the eo that is
needed for updating N2. The errors are calculated as below.
(Recall from Section 11-C that z$ is the net input to neuron j at
level I and gi, gk are the derivatives of the activation functions
of the hidden and output nodes).

p = l

N ,

l I C < L ,

p=l

It is easy to see that (31) is still only an approximation
to the actual gradient. Otherwise we have to include terms
f&(l - a:)a$ etc. in the error back propagation equations.
However, the above approximation seems to work well in
practice. As a matter of fact, if we use (9) for calculating
e:, 1 > 0 and use (31) only for calculating eo, we still get
good performance with the adaptive controller. In (3 1) we have
deliberately left out dependence on IC of the weights because
for calculating this error we are assuming that the plant model
is fixed. In practice, though the weights in N1 do get updated,
the amount of change during the online adaptation would be
very small.

B. Simulations

In this section we describe the results obtained using MNN
as controllers for some nonlinear plants. The general structure
is shown in Fig. 8. The figure is for SISO plants and hence
both networks have two inputs and one output. At time step

SASTRY et al.: MEMORY NEURAL NETWORKS FOR IDENTIFICATION AND CONTROL OF DYNAMICAL SYSTEMS

08

-

315

ref.model -
plant ~-~~ -

-1 Reference Model 1-1

06

........

rsl.model -
plant ---- - -

't
(+ +

Fig. 8. Model reference adaptive control with Memory Neuron Networks.
Adaptation is same as in Fig. 6. Here only one previous output of the plant
is fed into networks ,Xr1 and *V2.

k , r (k) is the reference input, u (k) is the input to the plant
(which is the output of the controller net), y p (k) and yp(k)
are the output of the plant and the model net N1, and y m (k)
is the output of the reference model.

Training of the controller proceeds as follows. We start with
off-line identijication phase where we train the network N1,
using the methods described in Section 111-A. Then we have
an off-line training phase for the controller where cascade of
N 2 and N1 are trained to mimic the reference model. Here
we update only the weights of N 2 using N1 as a channel
of back propagation It should be noted that the plant is not
involved in this training. For this off-line training, r (k) is taken
to be iid uniformly distributed over [-1; 11 and this training
is continued for about 10 000 to 20 000 time-steps. Then we
will connect the plant (as in Fig. 8) and train the controller
online. We get fairly good results even if we did not use the
off-line training, the controller is able to input fairly accurate
control inputs right from the beginning when connected with
the plant. Since, off-line training does not involve the plant,
this seems to be a better strategy. During online adaptation
of the controller, (refemng to Fig. 8), we use e l to update
N1, back-propagate e, through N1 to calculate error at output
of N2, denoted by eo, and use this error to update N2. We
use the algorithm as in Section 11-C to update N1 using e,
and N 2 using eo. However, as explained in Section IV-A, for
calculating the error, eo, we use (31).

We now describe several examples, where the scheme as
discussed above is utilized for adaptively controlling some
nonlinear plants. As in Section 111-B, most of these examples
are also from [3], [4]. In these examples, training of network
N1 proceeds in the same fashion as in Section 111-B. For
training network N 2 , we use a smaller learning rate. Typically
the parameters 77; 77' for N 2 are between 0.25 to 0.5 times the
values of corresponding parameters for N1 (which are 0.2
and 0.1 respectively). It is observed that, unlike the case of
identification described in Section 111-B, performance of the
controller network is sensitive to these parameter values.

Example 4.1: The plant is given by

0 4

0 2

3 0

02

0 4

I I
-0 6

-0.8 1
1 ' I

O 1000 1500 2000
lime

500

(b)

Fig. 9. Outputs of reference model and the plant in example 4.1. (a) shows
the output of the uncontrolled plant and (b) shows the output of the plant
with the controller.

The reference model is a second order linear system given by

ym(k + 1) = O.6ym(IC) + 0.2ym(k - 1) + O . l ~ (k)

As in Section 111-B, we have used some constant gains to
keep the output of the plant and reference model in [- 1, 11 for
all inputs that we encounter. For testing the adaptive controller,
we use the following reference input.

r (k) = sin(rk/25), k < 500
= 1.0, 500 5 k < 1000
= -1.0, 1000 5 k < 1500
= 0.3sin(rk/25) + 0.4sin(rk/32)

+ 0.3sin(rk/40), k 2 1500 (33)

Fig. 9(a) shows output of the reference model and the un-
controlled plant (where u (k) = r (k)) . We use the structure
in Fig. 8 for control. N1 is a 6:l network, off-line trained
as in Section 111-A. N2 is also a 6:l network. The activation
function for output node of N 2 has range [- 2 , 21 (i.e., c2 = 2
in (3)). This provides sufficient range at the input of the plant
for it to follow the reference model. As explained earlier, N 2
is off-line trained without the plant for 20 000 time steps using
iid input uniformly over [-1, 11. We then connect the plant
and keep r (k) = SiIl(Tk/45) for another 20 000 time steps.

316 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 5, NO. 2, MARCH 1994

We then test the online control using r (k) given by (33). The
output of the controlled plant and that of the reference model
are shown in Fig. 9(b). Comparing this with Fig. 9(a), it is
easy to see the control is quite effective.

We next investigate the ability of the controller to take care
of changes in the plant online We train our controller as earlier
and then start , r (k) given by (33) at time 0. Then at time 150,
we change the constant 2.5 in the plant equation to zero. At
time 800, we change the plant equation to

Fig. 10(a) shows the output of reference model and the
uncontrolled plant with the above online changes. Comparing
this with Fig. 9(a) gives an idea of the changes that need to
be compensated online by our controller. Fig. 10(b) shows
the output of the controlled plant and that of the reference
model. It is easy to see that, though the control goes wrong
when the plant changes, the controller is able to adapt itself
online to the changes. For this part, the learning rate parameter
of the network N 2 is doubled after 2000 steps of online
adaptation (which is before the test signal is input to the
system). Fig. 1O(c) shows the performance when there is no
online adaptation of the controller, that is the weights in the
network N2 are fixed after the initial training phase.

Example 4.2 The plant is given by

Here the output is a nonlinear function of the input that is not
invertible. The reference model is a first order linear system
given by

ym(k + 1) = 0.6ym(k) + 0.15r(k)

We use the same procedure as in Example 4.1 to train the
controller. Fig. 11 shows its performance when tested with
reference input given by (33). It may be noted here that the
output of the plant without the controller would be zero when
the reference input is +1 or -1.

1
“ d e l -

Plant ----
0.8 :---------!

0.6 I I J
0 4

02

0

02

0 4

-0 - 0 j O 8 loo0 1500 2wo

I”
500

. .
ref.model -

Plant ----

. l o ~ 500 1wo lime 1 MO

(b)

x)

re(.mcdel -
plam

I I :-------
I , , ,

V. DISCUSSION
In this paper we have suggested Memory Neuron Networks

as general models for identification and control of dynamical
systems. The main attraction of these networks is that they
have intemal memory and hence are themselves dynamical
systems. Most of the neural network models used for iden-
tification and control are feed-forward networks. Since feed-
forward nets can only represent memoryless transformations,
one needs to explicitly feed all the past inputs and outputs of
the plant to the network model through explicit delays. This
is not wholly satisfactory on two grounds.

First, we need to know the exact order of the system to be
able to feed the right set of inputs to the network model. This
limits the utility of these models and also may make them
inefficient due to large number of inputs needed. The second
problem is that using static networks to model dynamical

-I t
I I
0 lodo 1500 2oM)

time
so

(C)

Fig. 10. Output of reference model and plant with online changes for
Example 4.1. (see text). (a) shows the output of the uncontrolled plant, (b)
shows the output of the plant with a MNN controller that is adapted online,
and (c) shows the plant output when the controller is not adapted online.

systems is inherently unsatisfactory. (See also the discussion
in [9]).

In this sense, Memory Neuron Networks offer truly dy-
namical models. The memory neurons are sensitive to history
and the memory coefficient in the network are the parameters
that control what past values can affect the current output.
Moreover these memory coefficients are modified “online”

SASTRY et al.: MEMORY NEURAL NETWORKS FOR IDENTIFICATION AND CONTROL OF DYNAMICAL SYSTEMS 317

0.B
ref.model -

plant ---- -

1
-0.8 i

Fig. 1 1 . Outputs of reference model and the controlled plant in Example
4.2, for the reference input given by (33).

during the learning process [6]. The model is much simpler
compared to a general recurrent network which allows for
arbitrary feedback connections [16]. Here the network has a
“near-to-feed-forward” structure which is useful both for the
heuristic design of the network architecture and for having an
incremental learning algorithm that is fairly robust. Following
Back and Tsoi [22], we can consider Memory Neuron Net-
works to be a “locally” recurrent and “globally” feed-forward
architecture that can be considered as intermediate between
feed-forward and general recurrent networks.

As discussed in Section I, many initial efforts at controlling
dynamical systems using Neural Networks made use of feed-
forward networks with tapped delay lines [9] on the input
to capture dynamics. One way of improving this delay line
network model is to keep a fixed number of delays, but
adaptively modify the amount of delay. Day and Davenport
[23] recently suggested a continuous time temporal back
propagation algorithm with adaptive time delays. This model
requires a priori knowledge of the plant, to decide on the
number of delay links required in the network. Leighton and
Conrath [24] suggested the Auto-Regressive model neuron
(AR neuron) which consists of a nonlinear element in cascade
with a linear filter. This filter could be of some nth order
and the feedback connections through delays helps in storing
the necessary past information. Input to the nonlinear element
is just the current input. Back and Tsoi [22] have suggested
an architecture in which inputs to the nonlinear element are
obtained after passing thrpugh a FIR or IIR filter (referred as
FIR/IIR synapse). Memory Neuron Networks are similar to the
above architectures except @at 1) they use simple first order
filters (memory neurans) in cascade and 2) direct links are
provided from the output of the filters as well as the nonlinear
elements to the next lixyer neurons.

There are no analytical results, at present, regarding the
representational capability of any of these dynamical models.
Filter parameters are adjusted online in all of the above models.
As pointed out in [24], ensuring the stability of a general nth
order filter requires extfa non-trivial computations (e.g., Ruth-
Hurwitz criterion to test stability during each update), while it
is simple for a first order filter as used in MNN. We refer to

the recent review by Nerrand et al. [25] for a unified view of
such network architectures (both feed-forward and recurrent
models).

Gradient based leaming algorithms for recurrent networks
are not direct as in the case of feed-forward networks since
the output is affected by the current as well as past inputs. To
account for the effects of the past inputs, the weights can be
held constant over a fixed time interval in order to minimize
some integral squared error criterion [161. Required gradient
information is accumulated over this time interval and the
weights are updated at the end of the time interval. Many
“episodes” of such updates over fixed intervals are used for
adaptively leaming the weights and the length of this interval
depends on the application [161, [24].

For real-time application it will be convenient to minimize
only the instantaneous error rather than the integral error.
For sufficiently small step size, if the weight changes are
small, then the instantaneous updates can be considered as
a close approximation to the (above) method of updates
over fixed intervals. Such algorithms recursively use the
gradient values calculated at previous time steps to compute
the current weight change [16]. The past gradient values used
in these procedures are computed using the weight values
in the past. These recursive first-order gradient algorithms
can thus be considered equivalent to the algorithm which
performs back propagation through n,-time steps, added with
the corresponding momentum terms from the past n-time
steps. For the Memory Neuron Networks which uses first order
filters, Poddar and Unnikrishnan [6], [I l l have suggested a
similar gradient computation procedure.

For the purpose of this work, we have used only back-
propagating through one time step for updating the parameters
of MNN and recursive computation is not used. Though the
procedure is simplified, in all our simulations it performs
very well on various plants considered for identification and
control [20]. Further work is needed to decide what level
of approximation is appropriate for the problem of adaptive
control of dynamical systems.

Unlike in pattem classification problems where one can
cycle through the training data repeatedly, for identification
and adaptive control we need incremental leaming algorithms.
Thus at each time step we have to use the instantaneous
error at that time for updating the weights. Since the teaching
signal itself is the output of an unknown dynamical system,
an important question that needs to be answered is: what does
following the gradient of the instantaneous error lead to. We
have shown that if the unknown plant is BIB0 stable and
controllable, and the random test input is stationary with a
distribution that has compact support, then asymptotically we
will be minimizing a meaningful error measure.

However, this analysis of the identification algorithm is still
incomplete. We have shown that the algorithm will minimize
the expected value of the error (between the outputs of plant
and model network) where the expected value is with respect
to the stationary distribution of the test input. This does not
answer the question of whether the test signal chosen (in our
case iid with uniform distribution) is good enough for the
model network to mimic the plant for all signals. Further

318

theoretical analysis is needed to prove the correctness of
identification procedures using neural networks.

For the control scheme we have used a network model for
the forward dynamics of the plant as a channel for back-
propagating the error in the plant output to be able to update
the controller net. This technique has been used by many other
researchers [7], [8], [26]. However, there is one difficulty in
this back-propagation if the plant involves some delay. We
have discussed this problem and have suggested a solution
both for feed-forward controllers and for Memory Neuron
Networks. We have not presented any theoretical analysis
of the control algorithm. At present there are no known
theoretical results regarding convergence of neural network
algorithms for control of nonlinear systems. For the control
technique discussed in Section IV (see Fig. 8), the presence
of two networks and separate updating make the analysis
difficult. To get an appreciation of the difficulties involved,
consider the simple case of a constant reference input (i.e., a
regulation problem). Assuming correct identification, (i.e., the
model N1 is correct), the controller will leam to minimize
error e,. However, if the plant characteristic change during
the operation, we need to examine the combined dynamics
of N1 and N2 to be sure of the correctness of control. Once
again if we assume that changes in N1 occur much faster then
N2, then at any time the identification is complete before
the controller is significantly changed. Hence we need also
to be aware of the problem of stability. Assuming BIB0
stability of the plant, we can keep the plant output always
bounded by using a sufficiently small bounded output of the
controller through a proper sigmoid function. But this assumes
knowledge of the plant and it would also mean we cannot
control the plant for all possible reference inputs. Thus, even
in this simple case, much hand-waving is needed to justify the
neural network algorithms.

More work needs to be done, especially in analysis of neural
network models, before such networks are routinely used for
controlling nonlinear systems. We feel that endowing feed-
forward nets with dynamics is a small first step in coming
out with a tractable class of dynamical models with neural
networks. Hopefully the current interest in the field will lead
to work in that direction.

VI. CONCLUSION

In this paper we have discussed identification and control of
nonlinear dynamical systems using Memory Neuron Networks.
We are able to identify a variety of complex nonlinear systems
using the same. network structure. As can be seen from the
results of Section 111-B, this method is quite robust. We
have given some theoretical justification of our identification
procedure.

We have also presented simulations using these networks for
model reference adaptive control. We have used the technique
of differentiating the plant model for training the controller.
This method as currently used [2] , [131 has a serious shortcom-
ing. We have pointed this out and have suggested a solution.
We have shown the effectiveness of these controllers for both

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 5, NO. 2, MARCH 1994

tracking the reference input and for adapting to changes in
the plant.

APPENDIX

A . Proof of Theorem.

The proof essentially verifies the conditions for applying a
result due to Kushner (Theorem 5.5, [17]). We observe the
following with respect to the given algorithm and the neural
network model.

The process { Z (k) ; $(k-l), k > 0) is a Markov process.
This follows from the algorithm and the definition of the
vector $. Also note that the process { U (k) } is chosen to
be an iid process.
The function G(., .) is continuous in both the arguments
as can be seen from the algorithm. Hence the function is
bounded over any compact set.
The function G(., .) is independent of the step parameter
71 > 0 and the one step transition probability function
P($, 1, BIZ) for some bore1 set B on the appropriate
space is independent of the step size 7, for a fixed value
of the network parameters z.
The input { u (k) } is an iid process and hence it is trivially
stationary. Since the plant is assumed to be stable and
controllable the output of the plant {yp(k)} is stationary
[27]. Using the above observations, since the input to the
network is stationary, for a fixed set of parameters, z , of
the network the process { $ (I C) } is also stationary. Hence
there is unique invariant distribution M" for the process

Since the input process is chosen to be an iid process it is
trivially tight. The other input to the network y,(k) takes
values in a compact set since the plant is assumed to be
BIB0 stable. All the other signals in the network also
take values inside a compact set. In fact, the activation
function for the network units is the logistic function
f(x) = 1/(1 + exp(-x)), which is bounded, and the
memory coefficients (a) of the memory units take a value
strictly less than one and greater than zero, which makes
the memory units stable. Hence all the signals in the
network take values inside a compact set. It follows that
the set of all invariant distributions { M " } is tight.

{ 4 (k) } -

From the above observations it follows, using the result
(Theorem 5.5, [17]), that as 71 --f 0; the interpolated process
Z n (t) weakly converges to z (t) which satisfies the projected
ODE,

z = E(z) + y(z)

here g (z) takes values in a cone -C(z) for all boundary points
z . If z is an interior point then g (z) is zero.

ACKNOWLEDGMENT

The authors thank Hossein Javaherian for many helpful
discussions. The clarity of the paper has been improved by the
comments of Hossein Javaherian and James Elshoff. Harmon
Nine helped us in generating the figures and Lalitha had done

SASTRY et al.: MEMORY NEURAL NETWORKS FOR IDENTIFICATION AND CONTROL OF DYNAMICAL SYSTEMS 319

some early simulation of MNN for identification. Most of
this work was done while he first author (pss) was visiting
the University Of Michigan, Ann Arbor, Motors
Research Laboratories, Warren, MI.

[22] A. D. Back and A. C. Tsoi, “FIR and IIR synapses, a new neural network
architecture for time series modeling” Neural Computation, vol. 3, no.
3, pp. 375-385, 1991.

[23] S. P. Day and M. R. Davenport, “Continuous time temporal back
propagation with adaptable time delays,” IEEE Transactions on Neural

REFERENCES

W. T. Miller, R. S. Sutton, and P. J. Werbos, Neural Networks for
Control. Cambridge, MA: MIT Press, 1990.
A. G. Barto, “Connectionist learning for control: An overview,” in
Neural Networks for Control W. T. Miller, R. S. Sutton, and P. J.
Werbos, Eds. MIT Press, Cambridge, 1990.
K. S. Narendra and K. Parthasarathy, “Identification and control of dy-
namical systems using neural networks,” IEEE Transactions on Neural
Networks, vol. 1, no. 1, pp. 4-27, 1990.
K. S. Narendra and K. Parthasarathy, “Gradient methods for opti-
mization of dynamical systems containing neural networks,” IEEE
Transactions on Neural Networks. vol. 2, no. 2, pp. 252-262, 1991.
Y. Ichikawa and T. Sawa, “Neural network application for direct
feedback controllers,” IEEE Transactions on Neural Networks, vol. 3,
no. 2, pp. 224-231, 1992.
P. Poddar and K. P. Unnikrishnan, “Memory neuron networks: A
prolegomenon,” Tech. Rep. GMR-7493, General Motors Research Lab-
oratories, 199 I .
D. A. Hoskins, J. N. Hwang, and J. Vagners, “Iterative inversion
of neural networks and its application to adaptive control,” IEEE
Transactions on Neural Networks, vol. 3, no. 2, pp. 292-301, 1992.
Q. H. Wu, B. W. Hogg, and G. W. Irwin, “A neural network regulator
for turbogenerators,” IEEE Transactions on Neural Networks, vol. 3,
no. 1, pp. 95-100, 1992.
R. J. Williams, “Adaptive state representation and estimation using
recurrent connectionist networks” in Neural Networks for Control W.
T. Miller, R. S. Sutton, and P. J. Werbos, Eds. Cambridge, MA: MIT
Press, 1990.
K. P. Unnikrishnan, J. I. Hopfield, and D. W. Tank, “Connected-
digit speaker-dependent speech recognition system using a neural net-
work with time-delayed connections,” IEEE Transactions on Accoustics
Speech and Signal Processing, vol. 39, pp. 698-713, 1991.
P. Poddar and K. P. Unnikrishnan, “Efficient real-time prediction
and recognition of temporal patterns,” in IEEE Workshop on Neural
Networks for Signal Processing, Princeton, USA, October 199 1.
S. Geman, E. Bienenstock and R. Doursat, “Neural networks and the
biadvariance dilemma,” Neural Computation, vol. 4, pp. 1-58, 1992.
M. Kawato, “Computational schemes and neural network models for
formation and control of multijoint arm trajectory,” in Neural Networks
for Control W. T. Miller, R. S. Sutton, and P. J. Werbos eds. Cambridge,
MA: MIT Press, 1990.
M. 1. Jordan and D. E. Rumelhart, “Forward models: Supervised learning
with a distal teacher,” Cognitive Science, vol. 16, pp. 307-354, 1992.
K. P. Unnikrishnan and K. P. Venugopal, “Alopex: A correlation-based
learning algorithm for feedforward and recurrent neural networks,” in
Neural Computation, vol. 6, pp. 467488, 1994.
R. J. Williams and D. Zipser, “A learning algorithm for continually
running recurrent neural networks,” Neural Computation, vol. I , no. 2,
pp. 270-280, 1989.
H. J. Kushner, Approximation and Weak Convergence Methods for
Random Process, Cambridge, MA: MIT Press, 1984.
C.-M. Kuan and K. Homik, “Convergence of learning algorithms with
constant learning rates,” IEEE Transactions on Neural Networks, vol. 2,
pp. 484489, 1991.
A. Beneveniste, M. Metivier, and P. Priouret, Adaptive Algorithms and
Stochastic Approximations. New York: Springer Verlag, 1987.
P. S. Sastry, G. Santharam, and K. P. Unnikrishnan, “Memory neuron
networks for identification and control of dynamical systems,” Tech.
Rep. GMR-7916, General Motors Research Laboratories, 1993.
K. S. Narendra and A. M. Annaswamy, Stable Adaptive Systems.
Englewood Cliffs, NJ: Prentice-Hall, 1989.

Networks, vol. 4, pp. 348-354, 1993.
[24] R. R. Leighton and B. C. Conrath, “The autoregressive backpropagation

algorithm,” in Proceedings of the International Joint Conference on
Neural Networks, vol. 2, pp. 369-377, 1991.

[25] 0. Nerrand, P. Roussel-Ragot, L. Personnaz, G. Dreyfus, and S. Macros,
“Neural networks and nonlinear adaptive filtering: Unifying concepts
and new algorithms,” Neural Computation, vol. 5, pp. 165-199, 1993.

[26] D. Nguyen and B. Widrow, “The truck backer-upper: An example of
self-learning in neural networks,” in Neural Nehvorks for Control W.
T. Miller, R. S. Sutton, and P. J. Werbos, Eds. Cambridge, MA: MIT
Press, 1990.

[27] S. P. Meyn and P. E. Caines, “Asymptotic behavior of stochastic
systems possessing Markovian realisations,” SIAM Journal of Control
and Optimization, vol. 29, pp. 535-561, May 1991.

i,

P. S. Sastry, (S’82-M’85), received the B.Sc.
(Hons.) in Physics from the Indian Institute of
Technology, Kharagpur, in 1978, and the B.E.
degree in Electrical Communications Engineering
and the Ph.D. degree in Electrical Engineering
from the Indian Institute of Science, Bangalore, in
1981 and 1985, respectively. Currently, he is an
assistant professor in the Department of Electrical
Engineering at the Indian Institute of Science,
Bangalore. His research interests include learning
algorithms, neural networks, pattern recognition,
and artificial intelligence.

G. Santharam received the B.Sc. degree in Physics
from Madras University in 1984, and the M.E.
degree in Electrical Communications Engineering
from the Indian Institute of Science, Bangalore, in
1988. Currently, he is working toward the Ph.D.
degree in the department of Electrical Engineer-
ing at the Indian Institute of Science, Bangalore.
His research interests include learning algorithms,
neural networks, pattern recognition, and stochastic
systems.

K. P. Unnikrishnan, received the B.Sc. degree in
Physics from Calicut University, India, in 1979, the
MSc. degree in Physics from Cochin University,
India, in 1981, and the Ph.D. degree in Biophysics
from Syracuse University, Syracuse, NY, in 1987.

From 1987 to 1989 he was a post-doctoral Mem-
ber of Technical Staff at AT&T Bell Laboratories,
Murray Hill, NJ. He is currently a Senior Research
Scientist in the Computer Science Department at
the General Motors Research Laboratories, Warren,
MI, and an Adjunct Assistant Professor in Electrical

Engineering and Computer Science at the University of Michigan, Ann Arbor,
MI. His research interests concern neural computation in sensory systems,
neural mechanisms of learning and development, and neural architectures for
control.

