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Memory Neuron Networks for Identification 
and Control of Dynamical Systems 

P. S. Sastry, Member, IEEE, G. Santharam, and K. P. Unnikrishnan 

Abstract- This paper discusses Memory Neuron Networks as 
models for identification and adaptive control of nonlinear dy- 
namical systems. These are a class of recurrent networks obtained 
by adding trainable temporal elements to feed-forward networks 
that makes the output history-sensitive. By virtue of this capa- 
bility, these networks can identify dynamical systems without 
having to be explicitly fed with past inputs and outputs. Thus, 
they can identify systems whose order is unknown or systems 
with unknown delay. It is argued that for satisfactory modeling of 
dynamical systems, neural networks should be endowed with such 
internal memory. The paper presents a preliminary analysis of 
the learning algorithm, providing theoretical justification for the 
identification method. Methods for adaptive control of nonlinear 
systems using these networks are presented. Through extensive 
simulations, these models are shown to be effective both for 
identification and model reference adaptive control of nonlinear 
systems. 

I. INTRODUCTION 

HERE HAS BEEN considerable interest in the past few T years in exploring the applications of artificial neural 
networks (ANNs) for identification and adaptive control of 
dynamical systems [ l l ,  [2], [ 3 ] ,  [4], [5] .  In this paper we 
present a class of recurrent neural networks called Memory 
Neuron Networks [6] as general models for identification and 
control of nonlinear dynamical systems. These networks are 
obtained by adding some trainable temporal elements to feed- 
forward networks. The main attraction of these networks is that 
they have trainable intemal memory and hence can directly 
model dynamical systems. 

Identification of a system requires picking one of a class of 
functions (or models) so as to approximate the input-output 
behavior of the system in the “best” possible manner. In 
many situations, such as identification of dynamical systems, 
recognition of temporal pattems, etc., the output of the phys- 
ical system to be modeled is a function of past inputs and 
outputs as well. In all such cases, the identification problem is 
complicated because the model being used (e.g., ANN) should 
have some internal memory. The output of a feed-forward 
ANN is a function of its current inputs only and hence it 
can model only memoryless transformations. In spite of this 
limitation, almost all attempts at using ANNs for identification 
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and control rely on feed-forward nets [21, [31, 141, [51, [71, [SI. 
This is achieved by using the so called tapped delay line [9]. 
If the order of the system (or an upper bound on the order) is 
known, all the necessary past inputs and outputs of the system 
being modeled can be fed as explicit inputs to the network. 
Then the network can leam the memoryless transformation 
that captures the dependence of the output of the system on 
the specified past inputs and outputs. While, in principle, we 
can always feed a “sufficient” number of past values to the 
network, in practice, all reported applications assume that the 
exact order is known. Both from aesthetics and practicality, 
leaming memoryless transformations in this manner may not 
lead to versatile dynamical models (see the discussion in [9] 
and Section V of this paper). 

Recently, Narendra and Parthasarathy [3], [4] have shown 
that a rich class of models can be constructed by using ANNs 
and linear filters in cascade and/or feedback configurations. 
The ANN corresponds to the nonlinear part and the linear 
filter gives dynamics to the model. They have also worked 
out a method (called dynamic back propagation) to back- 
propagate errors through a linear dynamical system. Using 
simulations they showed that these models can identify some 
complicated nonlinear dynamical systems. While this is one 
elegant way to introduce dynamics into the model, it has a few 
drawbacks. One needs a fairly good knowledge of the structure 
of the system to decide what combination of memoryless 
transformations and linear filters is a good class of models 
to choose. 

Now the natural question is: can one include dynamics 
directly into the network structure so that we can learn 
nonlinear dynamic systems without assuming much knowledge 
of the systems. For this, what we need are networks with some 
“internal memory” and learning algorithms for such recurrent 
networks. Due to the proven ability of feed-forward networks 
to model nonlinear systems (when explicitly fed with the 
necessary past history), it seems logical to explore recurrent 
networks that the closely related to multilayer feed-forward 
networks. Feed-forward networks with some memory in the 
form of extemal delay lines have been used successfully for 
recognition of speech signals [ 101. 

In this paper we describe a recurrent network model with 
internal memory called the Memory Neuron Network (MNN) 
[6], [ l  I] .  Here each unit of neuron has, associated with it, 
a memory neuron whose single scalar output summarizes the 
history of past activations of that unit. These memory neurons, 
or more precisely the weights of connection into them, rep- 
resent trainable dynamical elements of the model. Since the 
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connections between a unit and its memory neuron involve 
feedback loops, the overall network is now a recurrent one. 

Here we show, through extensive simulations, that this 
level of internal memory and trainable temporal elements are 
sufficient for identifying nonlinear dynamical systems. Our 
networks are fairly small and the learning algorithm (which 
is an approximation to gradient descent) is robust. 

Thus far we have been talking only about identification of 
dynamical systems. One of the main reasons for identification 
is that the identified model can be used in deriving a controller 
for the system. Due to lack of a general theory, there are at 
present few classes of nonlinear models for which controllers 
can be designed using analytical techniques. This is one 
of the reasons for an increasing interest in using ANN for 
adaptive control. One of the approaches is to use ANN for 
identifying the nonlinear systems and then derive controller 
networks based on this. However, the virtual inscrutability of 
a ANN means we have obtained what should be termed as a 
nonparametric identifier [12]. Hence one needs to exploit a lot 
of knowledge regarding the system to construct such indirect 
controllers [3]. There are also a few general methods suggested 
for designing direct adaptive controllers based on Neural 
Networks. The main problem to be addressed is how does one 
get sufficient information to train the controller network [2]. 
We show that MNN can be used for model reference adaptive 
control. We make use of a continually updated forward model 
of the plant as a channel of back propagation to train the 
controller net (a technique variously called differentiating the 
model [2] or forward and inverse modeling [ 131). We illustrate 
the tracking abilities of the controller (when the reference input 
changes) and also the online adaptation possible with these 
models (when the characteristics of the plant change during 
operation). 

The primary aim of this paper is to illustrate the utility of 
recurrent network models for identification and control. We 
do not discuss many details about other possible strategies 
for training the controller. However this strategy of back- 
propagating through a plant model is a fairly general purpose 
method [14]. We point out that this technique as used now 
with feed-forward ANN can lead to wrong results, specially 
when the current output of the plant depends on more than 
one of the past inputs. We explain one method of overcoming 
this problem. 

The rest of this paper is organized as follows. Section I1 
presents the architecture of a Memory Neuron Network along 
with the learning algorithm. In Section I11 we discuss the 
problem of identification. We present a number of examples to 
illustrate the capabilities of the network. We also discuss the 
asymptotic properties of the learning algorithm and provide a 
theoretical justification for the identification method. Section 
IV discusses the problem of model reference adaptive control 
using these networks and presents simulation results. In Sec- 
tion V we summarize the salient features of our approach and 
conclude the paper in Section VI. 

11. MEMORY NEURON NETWORKS 
In this section we describe the structure of the network that 

we use and the associated learning algorithm. The network we 
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0 Network-neuron 

Fig. 1. Architecture of a Memory Neuron Network. Network neurons are 
shown as big open circles and memory neurons are shown as small shaded 
circles. Every network neuron, except those in the output layer, has one 
corresponding memory neuron. A network with ?n hidden layer nodes and 
JZ memory neurons per node in the output layer is referred to as a m : n 
network. The expanded box shows the actual connections between a network 
neuron and a memory neuron. Memory neurons in the output layer feed onto 
their parent network neuron. 

use is similar to the one described in [6]. The learning algo- 
rithm is also a slight modification of the one in [6] in order to 
make it conform better to a specific approximation of gradient 
descent for recurrent networks. It may be pointed out here that 
it is possible to use other incremental learning algorithms, e.g., 
ALOPEX [15], RTRL [16], with this network. We have kept 
the squared error criterion and the back propagation algorithm 
as this will clearly bring out the advantages of adding temporal 
elements to standard feed-forward networks. 

A .  Network Structure 

The architecture of a Memory Neuron Network (MNN) is 
shown in Fig. 1. The structure is the same as a feed-forward 
ANN except for the memory neurons (shown by small filled 
circles in Fig. 1) attached to each unit in the network (shown 
by large open circles in Fig. 1). To distinguish these two types 
of units, we use the terms network neuron and memory neuron. 
As can be seen from Fig. 1, at each level of the network except 
the output level, each of the network neurons has exactly one 
memory neuron connected to it. The memory neuron takes 
its input from the corresponding network neuron and it also 
has a self feedback as shown in the inset in Fig. 1.' This 
leads to accumulation of past data of the network neuron in 
the memory neuron. All the network neurons and the memory 
neurons of each level send their outputs to the network neurons 
of the next level. In the output layer, each network neuron can 
have a cascade of memory neurons and each of them send 
their output to that network neuron in the output layer.' Fig. 1 
shows a network with two input nodes, one output node and 
a single hidden layer. 

'In Fig. 1,  we show this connection between a network neuron and a 
memory neuron in only one expanded box. Otherwise we represent this 
connection by a single arrow from the network neuron to the memory neuron. 
In the rest of the paper we follow this convention to keep the figures simple 
though the actual connection is as shown in the expanded box in Fig. 1. 

*The introduction of the memory neurons at the output layer is a modifi- 
cation to the structure in 161. 
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B.  Dynamics of the Network For the units in the output layer, the net input is given by: 
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We use the following notation to describe the functioning NL--1 N L - ~  
of the network. x;(k) = w:-l(k)s:-yk) + f;-l(k)Zf-l(k) 

L is the number of layers of the network with layer 1 as i = O  z=1 
the input layer and layer L as the output layer. 
Ne is the number of network neurons in layer e. 
z g ( k )  is the net input to the jth network neuron of layer 
L at time k.  
s $ ( k )  is the output of the jth network neuron of layer e 
at time k .  
v : (k )  is the output of the memory neuron of the jth 
network neuron in layer e at time k ,  1 5 e < L. 
~ ! ~ ( k )  is the weight of the connection from ith network 
neuron of layer e to jth network neuron of layer !! + 1 
at time k .  
f ,e,(k) is the weight of the connection from the memory 
neuron corresponding to the ith network neuron of layer 
L to the jth network neuron of layer e + 1 at time k .  
a j ( k )  is the weight of the connection from jth network 
neuron in layer L to its corresponding memory neuron at 
time k , l  5 e < L. 
a k ( k )  is the weight of the connection from the ( j  - l)th 
memory neuron to the jth memory neuron of the ith 
network neuron in the output layer at time I C 3 .  
v & ( k )  is the output of the jth memory neuron of the ith 
network neuron in the output layer at time k .  
,8$.(k) is the weight of the connection from the jth 
memory neuron of the ith network neuron to the zth  
network neuron in the output layer at time k.  
M j  is the number of memory neurons associated with the 
j th network neuron of the output layer. 
Q ( . )  is the activation function of the network neurons. 
- \ ,  

We shall refer to a:, afi and 06 as memory coefficients. 
The net input to the jth network neuron of layer e. 1 5 e < 

L, at time k is given by 
Nc- I Ne-1 

zp€)  = w:;yk)s:-yk) + f y ( k ) z l - l ( k )  (1) 
a=O 1 = l  

In the above equation we assume that sg = 1 for all f? 

and thus w : ~  is the bias for the jth network neuron in layer 
L + 1. This zeroth neuron at each level is only for notational 
convenience in dealing with the bias term and hence it will 
have no memory neuron. Thus U$ does not exist and hence the 
summation index starts from 1 in the second sum in (1). The 
output of a network neuron is given by: 

sg(k)  = g(z;(k)), I 5 e 5 L. ( 2 )  

We make use of two different activation functions given by 

where g1 is used for all the hidden nodes and g2 is used for 
the output nodes. Here e l ,  c2, kl and ka are parameters of the 
activation function. 

"nly the input layer contains more than one memory neuron for each 
network neuron. 

M .  

(4) 

The output of all the memory neurons except for those in 

(5) 

the output layer, are derived by 

,,e@) = a,e(k)s:(k - 1) + (1 - U,e(k))*((k - 1) 

For memory neurons in the output layer, 

v,L,(k) = ~:(k)&l(k  - 1) + (1 - a,L,(k))*l,LJ(k - 1) (6) 

where, by notation, we have w$ = sk. To ensure stability 
of the network dynamics, we impose the conditions: 0 5 

With the above description of the network dynamics, it is 
easy to see the relationship between feed-forward networks 
and Memory Neuron Networks. Here the network neurons 
connected through weights, constitute the feed forward 
part. Each of the memory neurons stores a combination of all 
the previous activations of the network neuron. The output of 
the memory neuron is obtained by passing the output of the 
network neuron through a first order filter. By keeping the 
memory coefficients between zero and one, we are ensuring 
the stability of this filter. These outputs are easily calculated 
locally, by remembenng the values for one time step, using ( 5 )  
and (6). Since the outputs of memory neurons contribute to the 
net input of the network neurons at the next level, the internal 
memory of the network plays a significant role in determining 
the output of the network at any time. The memory neurons 
at the output nodes allow for direct dependence of the current 
output of the network on its past outputs. 

Though the network is a recurrent one, the manner of 
computing the output is very similar to that of a feed-forward 
net and we do not wait for the network to settle down to a 
stable state, etc. However, the output of the net at any given 
time is influenced by all the past inputs to the network [see 
(5) and (6)]. The degree of this influence will be determined 
by the magnitude of the memory coefficients (see 161 for a 
discussion of this point). 

..&,Q:.P:J 51.  

C. Learning Algorithm 

In this section we describe the learning algorithm to be used 
for the Memory Neuron Network. As explained earlier, at each 
instant, we supply an input and calculate the output of the net 
using (1)-(6). Then we get a teaching signal and use that to 
calculate the error at the output layer and update all weights 
in the network. We use the usual squared error given by 

N L 

e ( k )  = C ( s : . ( k )  - Y.!i(k)Y (7) 
j=1 

where, yj(k) is the teaching signal for the jth output node 
at time k .  
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We will be using a back propagation type algonthm. Thus, 
all we need are the derivatives of the error, e ( k ) ,  with respect 
to the weights in the network. Due to the presence of memory 
neurons, it is not easy to find exact partial derivatives through 
back propagation only at a single time step. Our strategy 
had been to stick to an approximation whereby we unfold 
the network in time by exactly one time step and then 
back-propagate the error. This means we can update all the 
weights at time k without needing anymore storage of the 
past activations of the nodes than is needed to implement (5) 
and (6). 

Under this strategy, the final equations for updating the 
weights are given below. (These can be derived easily using 
the chain rule). 

wfJ(k + 1) = wfJ(k )  - qe;+’(k)s:(k), 15 e < L (8) 

when 7 is the step-size and 

e,L(k) = (s,L(k) - YJ(k)>g’(.,L(k)> 

e:(k)  = g’(~;(k)) e:+l(k)w:p(k), 1 I e < L (9) 
Nt+l 

p=l 

The above is the standard back propagation of error without 
considering the memory neurons. g’( .) is the derivative of the 
activation function of the network neuron and we need to use 
the appropriate function depending on the layer number (cf. 
(3)). 

The updating of f is same as that of w except that we use 
the output of the corresponding memory neuron rather than 
the network neuron. 

f J ( k  + 1) = ffJ(k) - qe;+l(k)u:(k) ,  (10) 

The various memory coefficient are updated as given below. 

1 I e < L 

de due 
a;@ + 1) = a ; ( k )  - 7 ? - ( k ) L ( k ) ,  av; aag 

15 e < L (11) 

where 

It may be noted that we are using two step-size parameters 
in the above equations-7’ for the memory coefficients and 7 
for the remaining weights. To ensure stability of the network, 
we project the memory coefficients back to the interval (0, l) ,  
if after the above updating they are outside the interval. 

111. MNN FOR IDENTIFICATION OF DYNAMICAL SYSTEMS 

In this section we discuss the applications of Memory 
Neuron Networks for identification of nonlinear dynamical 
systems. We shall describe results of computer simulations 
of MNN identifying a variety of nonlinear plants. 

For simplicity, we explain these ideas using a single input 
single output (SISO) plant. Denote by U (  k )  and y p  ( k )  the input 
and output of a SISO plant. Now consider a Memory Neuron 
Network with a single input node (i.e., one network neuron in 
the input layer), a single output node and some hidden nodes. 
Let the input node be fed u(k) at time k ,  and let the output 
of the network at time k be I jp(k) .  We will use y p ( k )  as the 
teaching signal at time k.  Now we have, 

Here F is the nonlinear transformation represented by the 
network. As explained in the previous section, y p ( k )  depends 
on the previous inputs due to the memory neurons at input 
and hidden layers, and it depends on its own previous outputs 
due to the cascade of memory neurons at the output layer. The 
model represented by (18) is known as parallel identification 
model [3]. Thus, if we feed the current input to the plant as 
the sole input to the network and decide to use the output 
of the plant as the teaching signal, then MNN is a parallel 
identification model. This is in sharp contrast to the case of 
feed-forward net based techniques where one has to decide 1) 
how many previous inputs of the plant should be fed at the 
input of network and 2) how many past outputs of the network 
should be fed back to get a parallel identification model. 

We get what is known as a series-parallel model for identi- 
fication [3], if we let the current output of the model depend 
on the actual past outputs of the plant. In our case, we get a 
series-parallel model (for an SISO plant) by having a network 
with two input nodes to which we feed ~ ( k )  and y p ( k  - 1). 
This identification system is shown in Fig. 2. The single output 
of the net will be i j p ( k ) .  Now writing the output of this two 
input network as a function of all past inputs etc., simlar to 
(18) for the single input net, we get 

It is easy to see that y p  will depend on the past inputs and 
outputs of the plant (and also the current input). The output 
of the network will also depend on its own past values. This 
dependence be eliminated by removing memory neurons 
from the output layer. We stress once again that to get the 
series-parallel model, we do not need to know the order of 
the system. The network will automatically leam the relative 
weightage to be given to various past values and this weighted 
history is available through the memory neurons. 

The series-parallel model is often found to be more useful 
for generating stable adaptive laws and we will be using it in 
this paper. To identify a m-input, p-output plant we will use a 
network with m,+p inputs and p outputs. This will be the case 
irrespective of the order of the system. We shall use the actual 
outputs of the plant at each instant as the teaching signals. 
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.____________________________________________, 
Fig, 2. Series parallel identification model with the Memory Neuron Net- 
work, The current input into the plant and the most recent output of the plant 
are fed into the network. The error e( k )  is used for learning the network 
parameters. 

A .  Analysis of the Identification Algorithm 

Before we describe simulation results with our model in the 
next subsection, it is appropriate to ask: what can we say about 
the convergence etc. of this identification scheme. 

We feel there are two aspects to this question. First, we 
can ask whether the approximations made in deriving the 
algorithm in Section 11-C are valid and whether we can expect 
the algorithm to do a proper gradient following, etc. At present, 
all we can say is that the approximation obtained by unfolding 
the network in time by only one step seems to be satisfactory 
(see the results in Section 111-B). More analysis is needed to 
know for what class of plants this approximation may not be 
satisfactory. 

The second and more important aspect of the question of 
convergence concems the basic technique of identification 
using gradient methods and Neural Network models. All 
such methods calculate the gradient of the instantaneous error 
e ( k )  (i.e., error between plant and network outputs at time 
IC) and use that to update the weights. But what is the 
justification for following the gradient of instantaneous error? 
Or, more importantly, in what way does e ( k )  reflect the error 
in the identification process? We would like to stress that this 
question is different from the one of batch vs incremental 
leaming in pattem recognition problems because the plant that 
generates the teaching signals is dynamic; hence, the error 
at a given time is a function of the history and may not 
really say anything about the performance of the model on 
the input-output pair at that instant. 

To justify the identification method, we need to show that 
following the gradient of instantaneous error will result in 
the algorithm minimizing some meaningful measure of error. 
In this section, we show that an algorithm that follows the 
gradient of instantaneous error will indeed result in minimizing 
the expected value of the error between plant and network 
if the training input given to the plant is independent and 
identically distributed (iid) sequence, and the unknown plant is 
bounded-input bounded-output (BIBO) stable and controllable. 

This, however, does not completely prove the correctness 
of the identification method. Suppose we use an iid input 
sequence drawn uniformly from [-1, I ]  to train the network. 
Then, we can prove, as stated above, that the algorithm 

minimizes expected value of error between plant and network 
for this random input. But what can we say about the network 
representing the plant accurately for other signals? This is the 
problem of whether we are giving “sufficiently rich” input 
during training so that the leaming procedure will converge to 
a network that is closer to plant than any other network. We 
will not be addressing this question here. 

Let Z ( k )  be the vector denoting the set of all parameters in 
the network at instant I C ,  which are updated by the algorithm. 
This consists of all the weights and the memory coefficients. 
The leaming algorithm described in Section 11-C can be 
written as below: 

In (20), the function G(.,.) represents the gradient of the 
instantaneous error. We will write it symbolically as 

It should be noted that this derivative of instantaneous error 
is a function of all the weights and memory coefficients 
and the various signals in the network and is evaluated 
at (Z(IC), $(IC)). Consider this function G with ( Z ( k )  held 
constant at, say, z .  If the input signal u(k)  is a stationary signal 
and if the other signals (output of the plant and the outputs 
of various network and memory neurons) are also stationary, 
then it makes sense to ask what is the expected value of 
this instantaneous error where expectation is with respect to 
the stationary distributions of all the signals involved. This 
is a good measure of the correctness of the weight values 
represented by z and hence we want the algorithm to follow 
the gradient of such an averaged error (note that the averaged 
error is now a function of the network weights alone). This is 
what we are going to prove now. The method we use is from 
[ 17, Section 5.41 and the reader should consult [ 171 for details 
regarding the constructions given below. 

The equations (20) and (22) do not fully represent the 
learning algorithm given in Section 11-C because we need 
to project all the memory coefficients into an interval, say, 
[0.01, 0.991 to ensure stability of the network. To include such 
constraints, let g ; ( Z ) ,  1 5 i 5 m, be functions such that 

L = (2  : g; (Z)  5 0, 1 5 2 5 m)  

represents the set of feasible values for the weights. We will 
call gi constraints. We will say that the constraint gi is active at 
Z E L if g i ( z )  = 0. Now we can write our leaming algorithm 
as 
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where r~(y) is any closest point in L to y. Define the cone 
C(Z)  by 

where A(z)  denotes the set of active constraints at any z that 
is on the boundary of the constraint set. For points z in the 
interior of L,  C ( z )  is empty (by definition). 

Define the continuous time interpolation of the { Z ( k ) ,  
Ic 2 O} process as below: 

Z”( t )  = Z ( k )  for t E [qk, v(Ic + 1)) 

Assume that the unknown plant is BIBO stable and con- 
trollable. Also assume that the input sequence u(L) is iid 
with some distribution having a compact support. (The input 
process is hence, trivially, a stationary process). We derive 
an ordinary differential equation (ODE) associated with the 
learning algorithm using the following result based on weak 
convergence analysis [ 171. 

Under the given assumptions on the input u ( k )  
and the unknown plant, as 9 + 0 ,  the interpolatedprocess Z‘’(t) 
converges weakly to the unique solution z ( t )  of the projected 
ODE, 

Theorem I 

i = G ( z )  + g(zj ( 2 5 )  

where g ( z )  takes values in a cone -C(z)  and G ( z )  is the 
expectation of G ( z ,  $) with respect to the invariant distribution oj 
theprocess { $ ( k ) ,  Ic 2 0). (Here i denotes the derivative w.r.t. t). 

Proofi The proof of this theorem, which consists of 
verifying a set of conditions needed to apply a theorem from 
[17], is given in appendix. 

To understand the theorem, consider the ODE given by 
(25) at a point in the interior of L. That is simply a gradient 
following ODE where the gradient is that of the “averaged” 
value of the instantaneous error as explained above (assuming 
of course that the interchange of derivative and integration 
are permitted). Thus, if the learning parameter v is small then 
the algorithm has the same asymptotic behavior as a gradient 
following algorithm that uses the proper averaged error rather 
than instantaneous error. For such an averaging effect to 
take place, it is easy to see that the input sequence should 
be stationary. In addition, we needed BIBO stability and 
controllability of the plant to ensure that all the other signals 
in the network are stationary and thus to ensure the existence 
of invariant measure as needed for the above theorem. At 
the boundary points of L , g ( z )  plays a role in ODE (25) as 
needed to keep the memory coefficients bounded. One way to 
understand this is to realize that we want to solve a constrained 
optimization problem of minimizing the averaged error while 
keeping memory coefficients between 0 and 1. Hence, we want 
to reach a Kuhn-Tucker point which is not necessarily a zero 
of the gradient of error. The strategy of this analysis is very 
similar to that of the standard back propagation algorithm [18]. 
This technique of analysis making use of weak convergence 
results is a powerful tool to understand the asymptotic behavior 
of adaptive algorithms. We refer the reader to [ 191 for a better 
appreciation of the technique. 

TABLE I 
IDENTIFICATION WITH MNN 

Example Size* Error? Figure Number 

Example 3.1 6: 1 0.0752 3 
Example 3.1 3:O 0.0668 3 
Example 3.2 6: 1 0.064 1 4 

Example 3.3 6: 1 0.0186 X a )  ( ~ ~ 1 )  

Example 3.2 3:O 0.0345 None 

Example 3.3 6: 1 0.0327 5(b) (Y~z) 
*Size is to the size of the network. 
?Error is the mean square error between the plant and reference outputs 
over 1000 time-steps of the test signal. The actual outputs are shown in 
corresponding figures. 

As discussed earlier, this only justifies the procedure of 
following the gradient of the instantaneous error. For proving 
full correctness of the identification method we need to prop- 
erly characterize what constitutes “rich input” for nonlinear 
systems so that the identified model is valid for all signals. 

B .  Simulations 

In this section we will present a few examples of nonlinear 
plants identified by Memory Neuron Networks. We use a series 
parallel model for identification. The structure is shown in Fig. 
2 for SISO plants. (We use similar structure for MIMO plants.) 

We use networks with only one hidden layer. Hence we use 
the notation m, : n to denote a network that has m hidden 
network neurons and has n memory neurons per node in 
the output layer. The number of input and output nodes are 
determined by the nature of the plant. For SISO plants we will 
have two inputs (u(Ic) and y p ( k  - 1)) and one output ( & ( k ) ) .  
The number of inputs to our identification model does not 
depend on the order of the plant. 

Example Problems: The examples discussed below are 
from [3], [4]. The main reasons for this are that they provide 
fairly complex nonlinear systems and that all of them are 
known to be stable in the BIBO sense. We also feel that 
for better understanding of neural networks for control, the 
various techniques should be tried on the same set of plants. 
We have tested our identification method on many plants 
(see [20]), including all the examples given in [3], [4]. We 
have got good results and the identification algorithm is found 
to be quite robust. Here we present results for only three 
examples. The first plant is with geometric nonlinearity. The 
next example shows the ability of MNN to identify a complex 
nonlinear system made up of a linear dynamical system and 
nonlinear memoryless transformation combined [4]. However, 
unlike the method in [4], our identification algorithm has 
no knowledge of the structure of the plant or of any of its 
subsystems. We use the same network and training sequence 
to identify these plants also. These two are SISO plants. The 
last example is an MIMO system. Table I summarizes the 
results of the three examples presented here. (Note: We refer 
the readers to the technical report [20] for more details on the 
simulations performed). 

Network Parameters: As discussed earlier, the memory 
neurons in the output layer do not play any significant role 
here. We have used either one or zero memory neurons. We 
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present results for one large and one small network for all 
the plants below, the two networks being 6:l and 3:O. We 
keep the same learning rate for all problems with 17 = 0.2 and 
7' = 0.1. Also, we have used the same activation functions 
in all problems-gl for hidden nodes and g2 for output nodes 
with c l  = c2 = 1 and kl = k2 = 1 (cf. ( 3 )  in Section 11-B). 
Hence, we introduce an attenuation constant in the plant's 
output so that the teaching signal for the network is always 
in [-1,1]. This does not affect the identification process but 
makes for convenience and uniformity. 

As is easy to see, the intention here is to explore the 
generality of the network structure. Thus, any problem-specific 
tuning would be in terms of the number of learning iterations. 

Training the network: We use 62 000 or 77 000 time steps 
for training the network with the longer training sequence for 
more complex plants. We train the network for 2000 iterations 
on zero input; then for two thirds of the remaining training 
time, the input is iid sequence uniform over [-2, 21 and for 
the rest of the training time, the input is a single sinusoid 
given by sin(ak/45). For all the plants we have considered, 
this training appears to be sufficient. 

After the training, we compare the output of the network 
with that of the plant on a test signal for 1000 time steps. 
Our test signal consists of mixtures of sinusoids and constant 
inputs. (See (27) below). 

Example 3. I : This example clearly indicates the ability of 
the memory neuron network to learn a plant of unknown order. 
Here the current output of the plant depends on three previous 
outputs and two previous inputs as given below. 

where 

Though the function f has five arguments, we feed to the 
network, only u(k  + 1) and y p ( k )  for it to output Cp(k  + 1). 
Through the process of learning, the network has evolved the 
right values for the memory coefficient to be able to reproduce 
the behavior of (26). For the test phase, we used the following 
input 

u ( k )  = s i n ( ~ k / 2 5 ) ,  k < 250 
= 1.0, 250 5 k < 500 
= -1.0,500 5 k < 750 

= 0.3sin(xk/25) + 0.1 s i n ( ~ k / 3 2 )  
+ 0.6s in(~k/ lO) ,  750 5 k < 1000 (27) 

Fig. 3 shows the output of the plant and the two network 
models (6:l and 3:O) for the test input given by (27). 

It should be noted here that if we use a feed-forward network 
for learning this plant then we need to have five input nodes 
to feed the appropriate past values of yp and U .  

Example 3.2: The plant is given by 

l r  I 

I 3:OnehvOlk --.-- 

0 0  

0 4  

0 2  

t o  
0 2  
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0 8  

I 
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Fig. 3. Output of the plant and model network for Example 3.1. Output of 
a 6:1 network and a 3:O network are shown in the figure. 
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Fig. 4. Output of the plant and model network (6:l) for Example 3.2, 

where 

z + 0.3 W ( z )  = 
z2 - 0.82 + 0.15 

4v3 h(w) = - 
1 + 4v2 

Here the plant is specified through the combinations of 
linear filters and nonlinear memoryless transformations. In the 
above equations, W ( z )  is the transfer function of a linear 
discrete time system. There is a little abuse of notation in 
the specification of z p ( k )  above and it is to be understood 
in the usual sense of interpreting z as a time shift operator. 
Here z - 'h (u(k) )  will represent h(u(k - 1)). Fig. 4 shows the 
results using the test sequence (27) for the 6:l network. 

Example 3.3 Our final example is an MIMO plant with two 
inputs and two outputs. Thus we will use a network with four 
network neurons in the input layer and two network neurons 
in the output layer. For this example our network structure is 
6: 1.  The plant is specified by 
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Fig. 5. Output of the MIMO plant and model network for Example 3.3; (a) 
shows the first output of a 6:l network and (b) shows the second output of 
the same network. 

TROL OF DYNAMICAL SYSTEMS 313 

the output of a neural network controller) so that the output 
of the plant follows that of the reference model. 

In indirect control, one identifies the plant using some 
identification model and then uses the parameters of the 
learned model to derive the controller network. The method of 
indirect control relies on the ability to derive the control law 
given the identified model, for a class of systems (often using 
the so called certainty equivalence control). The main difficulty 
with using neural networks for indirect control is the fact that 
these are nonparametric identifiers [12] and hence there is no 
simple relationship between the learned weights of the network 
and the parameters of the plant (even if we had known the form 
of the nonlinear transformation of the plant. This method is 
discussed in detail by Narendra and Parthasarathy [3], [4] and 
MNN can be used for indirect control in a similar way (See 
example 4.2 in [20]). 

In direct adaptive control, the parameters of the controller 
are directly adjusted based on the error between output of the 
plant and that of the reference model. The main difficulty here 
is that of credit assignment in training the controller network. 
We cannot supply a proper error signal to the controller net 
because the unknown plant lies between the controller and the 
available error signal. 

Various strategies have been tried to overcome this problem. 
The simplest solution will be if we have a “knowledgeable 
controller” (e.g., a human or other costly control device) which 
already knows how to control the plant. However, this is not 
often practical. 

There are at least two general purpose techniques to tackle 
the problem of training the controller net [2], [13]. Both of 
them make use of an identification model. However, instead 
of using the parameters in the identified model to directly 
derive the controller net, these techniques obtain some signal 
using the identification model which is then used to train 
the controller net. We use one of the methods here. Fig. 6 
shows the block diagram of the method we discuss here, 
which is called differentiating the model or.forward and inverse 

Fig. 5(a) and Fig. 5(b) show the output of the plant and modeling [21, [ij]. Here we keep a forward model of the 
network for the test signal given by (27). As is easy to see, the plant (network to 
identification is good for the MIMO plant also. Table I gives black-ProPagate the error at the plant output up to the plant 

all these examples. to the plant input and this back-propagated error is used for 
training the controller net ( N 2  in Fig. 6). For the technique 

in Fig. 6, which is used as a 

the actual error between the plant and the network outputs for input and this back-propagate the error at the plant Output 

Iv .  ADAPTIVE CONTROL OF 
DYNAMICAL SYSTEMS USING MNN 

In contrast to linear systems, for which there now exists 
considerable theory regarding adaptive control [21], very little 
is known conceming adaptive control of plants govemed 
by nonlinear equations. Thus, like in many other areas, ap- 
plications of neural networks for control is largely driven 
by empirical studies [2]. In this section, we discuss model 
reference adaptive control using memory neuron networks. We 
assume that the plant is stable in the BIB0 sense and that there 
is sufficient knowledge about the plant to specify the goal of 
control in terms of a reference model. 

Given a plant, a reference model and a reference input, the 
problem is to determine the input to the plant (which will be 

to work properly, the forward model of the plant should be 
accurate at all times. So, at each time step we will update the 
weights of the plant model based on the error ( e l  in Fig. 6) 
between the output of the plant and that of the network N1. 
Then we calculate the error ( e ,  in Fig. 6) between the output 
of the plant and that of the reference model, which is then 
back-propagated through NI to supply the error signal for the 
controller network. 

A .  Training the Controller Network 

As explained above, we use the method of differentiating 
the model which is a general purpose control scheme for ANN 
based methods. The overall structure of the controller is as 
shown in Fig. 6. However there is one serious difficulty in 
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Reference 7 4  Model 1- Reference 
Model 

I =I 

Fig. 6. Model reference adaptive control with neural networks: Diflerentiar- 
ing the plant model. The error e1 is used for online adaptation of plant model 
N1 and the error eo is used for online adaptation of the controller N 2 .  eo is 
generated by back-propagating the error e, through N1, up to its input. 

Rcfcrrn + 

back-propagating the error e, through N1 for training the 
controller network when the plant involves significant delay. 
Since this has not been pointed out in literature, we explain 
the problem and suggest a solution. 

Consider Fig. 7, which shows an adaptive controller for 
an SISO plant using feed-forward nets. The figure shows 
explicitly the delayed inputs that are fed to the network. Let us 
say we know that the plant output can depend on u(IC - l), and 
U( k - 2), and hence these are fed to the net N1 by delays from 
the single output of N2. (We will forget about other inputs, 
such as past outputs of the plant, to N1 for now because they 
are not important to this discussion). For training N 2 ,  we need 
to fine the error at the output node of N 2  which is directly 
connected to input node 1 of N1. So, it seems all we need do is 
to back-propagate the error, e,, through N1 to reach node 1 in 
its input layer. But suppose that the plant output depends only 
on u(k - 2). Then N1, which has three inputs, would have 
learned a function that is independent of input 1. Hence if the 
identification was good, then the back-propagated error will 
always be zero! Thus, in general if the plant output depends 
on many previous inputs (or if the plant has some unknown 
pure delay) then there will be a problem regarding this back 
propagation of error through N1 to train N2. We think the 
correct procedure would be to use the idea of dynamic back 
propagation [4] to propagate the error through the delay line 
(which is just a linear filter with transfer function z - l ) .  In 
practice this would mean we have to back-propagate the error 
e, up to all input nodes of N1, then add appropriately delayed 
versions of these errors to get the error at the output node 
of N2. Hence, even if we are using feed-forward nets with 
incremental learning algorithms, we need to store past values 
of errors etc. at nodes to implement this back propagation 

In the case of Memory neuron networks, since there are 
no extemal delay lines this problem will not occur. However 
if we use the approximation of unfolding in time by exactly 
one step, as discussed in Section 11-C, then we will get into 
similar problems. Consider the network shown in Fig. 6 with 
both NI and N2 being Memory Neuron Networks of the 
general structure shown in Fig. 1. If we use the algorithm 
as given in Section 11-C when we back-propagate error e, to 
calculate the controller error, we would be back-propagating 
only through the weights w;j’s and not through the memory 

- N2 

Fig. 7. 
delay (see text). 

Problems with training the controller net when the plant involves 

neurons (see Section 11-C). Hence, once again we would get 
wrong value of error if the plant output depended only on some 
past values of input. In case of MNN, the problem is only 
due to the approximation used in Section 11-C in calculating 
the gradient. Here we can take care of it by back-propagating 
error through the memory neurons also. That is, when the plant 
model network is used as a channel for back propagation, we 
unfold the recurrent network by more than one time step. This 
results in a better approximation of the gradient than the one 
given by (9). 

Let e t  denote the error at the single output node of network 
N1 (the equations given below are extended in an obvious 
manner of multiple outputs). Let ef denote the error at the j th  
network neuron at level C. Let e; be the error at the j th  input 
node of N1 and hence for j = 1 (say) it will be the eo that is 
needed for updating N2. The errors are calculated as below. 
(Recall from Section 11-C that z$ is the net input to neuron j at 
level I and gi, gk are the derivatives of the activation functions 
of the hidden and output nodes). 

p = l  

N ,  

l I C < L ,  

p=l  

It is easy to see that (31) is still only an approximation 
to the actual gradient. Otherwise we have to include terms 
f&(l - a:)a$ etc. in the error back propagation equations. 
However, the above approximation seems to work well in 
practice. As a matter of fact, if we use (9) for calculating 
e:, 1 > 0 and use (31) only for calculating eo, we still get 
good performance with the adaptive controller. In (3 1) we have 
deliberately left out dependence on IC of the weights because 
for calculating this error we are assuming that the plant model 
is fixed. In practice, though the weights in N1 do get updated, 
the amount of change during the online adaptation would be 
very small. 

B. Simulations 

In this section we describe the results obtained using MNN 
as controllers for some nonlinear plants. The general structure 
is shown in Fig. 8. The figure is for SISO plants and hence 
both networks have two inputs and one output. At time step 
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Fig. 8. Model reference adaptive control with Memory Neuron Networks. 
Adaptation is same as in Fig. 6.  Here only one previous output of the plant 
is fed into networks ,Xr1 and *V2. 

k , r ( k )  is the reference input, u ( k )  is the input to the plant 
(which is the output of the controller net), y p ( k )  and yp(k) 
are the output of the plant and the model net N1,  and y m ( k )  
is the output of the reference model. 

Training of the controller proceeds as follows. We start with 
off-line identijication phase where we train the network N1, 
using the methods described in Section 111-A. Then we have 
an off-line training phase for the controller where cascade of 
N 2  and N1 are trained to mimic the reference model. Here 
we update only the weights of N 2  using N1 as a channel 
of back propagation It should be noted that the plant is not 
involved in this training. For this off-line training, r ( k )  is taken 
to be iid uniformly distributed over [-1; 11 and this training 
is continued for about 10 000 to 20 000 time-steps. Then we 
will connect the plant (as in Fig. 8) and train the controller 
online. We get fairly good results even if we did not use the 
off-line training, the controller is able to input fairly accurate 
control inputs right from the beginning when connected with 
the plant. Since, off-line training does not involve the plant, 
this seems to be a better strategy. During online adaptation 
of the controller, (refemng to Fig. 8), we use e l  to update 
N1, back-propagate e, through N1 to calculate error at output 
of N2, denoted by eo, and use this error to update N2.  We 
use the algorithm as in Section 11-C to update N1 using e, 
and N 2  using eo. However, as explained in Section IV-A, for 
calculating the error, eo, we use (31). 

We now describe several examples, where the scheme as 
discussed above is utilized for adaptively controlling some 
nonlinear plants. As in Section 111-B, most of these examples 
are also from [3], [4]. In these examples, training of network 
N1 proceeds in the same fashion as in Section 111-B. For 
training network N 2 ,  we use a smaller learning rate. Typically 
the parameters 77; 77' for N 2  are between 0.25 to 0.5 times the 
values of corresponding parameters for N1 (which are 0.2 
and 0.1 respectively). It is observed that, unlike the case of 
identification described in Section 111-B, performance of the 
controller network is sensitive to these parameter values. 

Example 4.1: The plant is given by 
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Fig. 9. Outputs of reference model and the plant in example 4.1. (a) shows 
the output of the uncontrolled plant and (b) shows the output of the plant 
with the controller. 

The reference model is a second order linear system given by 

ym(k + 1) = O.6ym(IC) + 0.2ym(k - 1) + O . l ~ ( k )  

As in Section 111-B, we have used some constant gains to 
keep the output of the plant and reference model in [ - 1, 11 for 
all inputs that we encounter. For testing the adaptive controller, 
we use the following reference input. 

r ( k )  = sin(rk/25), k < 500 
= 1.0, 500 5 k < 1000 
= -1.0, 1000 5 k < 1500 
= 0.3sin(rk/25) + 0.4sin(rk/32) 

+ 0.3sin(rk/40), k 2 1500 (33) 

Fig. 9(a) shows output of the reference model and the un- 
controlled plant (where u ( k )  = r ( k ) ) .  We use the structure 
in Fig. 8 for control. N1 is a 6:l network, off-line trained 
as in Section 111-A. N2 is also a 6:l network. The activation 
function for output node of N 2  has range [ - 2 ,  21 (i.e., c2 = 2 
in (3)). This provides sufficient range at the input of the plant 
for it to follow the reference model. As explained earlier, N 2  
is off-line trained without the plant for 20 000 time steps using 
iid input uniformly over [-1, 11. We then connect the plant 
and keep r ( k )  = SiIl(Tk/45) for another 20 000 time steps. 
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We then test the online control using r ( k )  given by (33). The 
output of the controlled plant and that of the reference model 
are shown in Fig. 9(b). Comparing this with Fig. 9(a), it is 
easy to see the control is quite effective. 

We next investigate the ability of the controller to take care 
of changes in the plant online We train our controller as earlier 
and then start , r (k)  given by (33) at time 0. Then at time 150, 
we change the constant 2.5 in the plant equation to zero. At 
time 800, we change the plant equation to 

Fig. 10(a) shows the output of reference model and the 
uncontrolled plant with the above online changes. Comparing 
this with Fig. 9(a) gives an idea of the changes that need to 
be compensated online by our controller. Fig. 10(b) shows 
the output of the controlled plant and that of the reference 
model. It is easy to see that, though the control goes wrong 
when the plant changes, the controller is able to adapt itself 
online to the changes. For this part, the learning rate parameter 
of the network N 2  is doubled after 2000 steps of online 
adaptation (which is before the test signal is input to the 
system). Fig. 1O(c) shows the performance when there is no 
online adaptation of the controller, that is the weights in the 
network N2 are fixed after the initial training phase. 

Example 4.2 The plant is given by 

Here the output is a nonlinear function of the input that is not 
invertible. The reference model is a first order linear system 
given by 

ym(k + 1) = 0.6ym(k) + 0.15r(k) 

We use the same procedure as in Example 4.1 to train the 
controller. Fig. 11 shows its performance when tested with 
reference input given by (33). It may be noted here that the 
output of the plant without the controller would be zero when 
the reference input is +1 or -1. 

1 
“ d e l -  

Plant ---- 
0.8 :---------! 

0.6 I I J 
0 4  

02 

0 

02 

0 4  

-0 - 0 j O  8 loo0 1500 2wo 

I” 
500 

. .  
ref.model - 

Plant ---- 

. l o ~  500 1wo lime 1 MO 

(b) 

x) 

re(.mcdel - 
plam 

I I :------- 
I ,  , ,  

V. DISCUSSION 
In this paper we have suggested Memory Neuron Networks 

as general models for identification and control of dynamical 
systems. The main attraction of these networks is that they 
have intemal memory and hence are themselves dynamical 
systems. Most of the neural network models used for iden- 
tification and control are feed-forward networks. Since feed- 
forward nets can only represent memoryless transformations, 
one needs to explicitly feed all the past inputs and outputs of 
the plant to the network model through explicit delays. This 
is not wholly satisfactory on two grounds. 

First, we need to know the exact order of the system to be 
able to feed the right set of inputs to the network model. This 
limits the utility of these models and also may make them 
inefficient due to large number of inputs needed. The second 
problem is that using static networks to model dynamical 

-I t 
I I 
0 lodo 1500 2oM) 

time 
so 

(C) 

Fig. 10. Output of reference model and plant with online changes for 
Example 4.1. (see text). (a) shows the output of the uncontrolled plant, (b) 
shows the output of the plant with a MNN controller that is adapted online, 
and (c) shows the plant output when the controller is not adapted online. 

systems is inherently unsatisfactory. (See also the discussion 
in [9]). 

In this sense, Memory Neuron Networks offer truly dy- 
namical models. The memory neurons are sensitive to history 
and the memory coefficient in the network are the parameters 
that control what past values can affect the current output. 
Moreover these memory coefficients are modified “online” 
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Fig. 1 1 .  Outputs of reference model and the controlled plant in Example 
4.2, for the reference input given by (33). 

during the learning process [6]. The model is much simpler 
compared to a general recurrent network which allows for 
arbitrary feedback connections [16]. Here the network has a 
“near-to-feed-forward” structure which is useful both for the 
heuristic design of the network architecture and for having an 
incremental learning algorithm that is fairly robust. Following 
Back and Tsoi [22], we can consider Memory Neuron Net- 
works to be a “locally” recurrent and “globally” feed-forward 
architecture that can be considered as intermediate between 
feed-forward and general recurrent networks. 

As discussed in Section I, many initial efforts at controlling 
dynamical systems using Neural Networks made use of feed- 
forward networks with tapped delay lines [9] on the input 
to capture dynamics. One way of improving this delay line 
network model is to keep a fixed number of delays, but 
adaptively modify the amount of delay. Day and Davenport 
[23] recently suggested a continuous time temporal back 
propagation algorithm with adaptive time delays. This model 
requires a priori knowledge of the plant, to decide on the 
number of delay links required in the network. Leighton and 
Conrath [24] suggested the Auto-Regressive model neuron 
(AR neuron) which consists of a nonlinear element in cascade 
with a linear filter. This filter could be of some nth order 
and the feedback connections through delays helps in storing 
the necessary past information. Input to the nonlinear element 
is just the current input. Back and Tsoi [22] have suggested 
an architecture in which inputs to the nonlinear element are 
obtained after passing thrpugh a FIR or IIR filter (referred as 
FIR/IIR synapse). Memory Neuron Networks are similar to the 
above architectures except @at 1) they use simple first order 
filters (memory neurans) in cascade and 2) direct links are 
provided from the output of the filters as well as the nonlinear 
elements to the next lixyer neurons. 

There are no analytical results, at present, regarding the 
representational capability of any of these dynamical models. 
Filter parameters are adjusted online in all of the above models. 
As pointed out in [24], ensuring the stability of a general nth 
order filter requires extfa non-trivial computations (e.g., Ruth- 
Hurwitz criterion to test stability during each update), while it 
is simple for a first order filter as used in MNN. We refer to 

the recent review by Nerrand et al. [25] for a unified view of 
such network architectures (both feed-forward and recurrent 
models). 

Gradient based leaming algorithms for recurrent networks 
are not direct as in the case of feed-forward networks since 
the output is affected by the current as well as past inputs. To 
account for the effects of the past inputs, the weights can be 
held constant over a fixed time interval in order to minimize 
some integral squared error criterion [ 161. Required gradient 
information is accumulated over this time interval and the 
weights are updated at the end of the time interval. Many 
“episodes” of such updates over fixed intervals are used for 
adaptively leaming the weights and the length of this interval 
depends on the application [ 161, [24]. 

For real-time application it will be convenient to minimize 
only the instantaneous error rather than the integral error. 
For sufficiently small step size, if the weight changes are 
small, then the instantaneous updates can be considered as 
a close approximation to the (above) method of updates 
over fixed intervals. Such algorithms recursively use the 
gradient values calculated at previous time steps to compute 
the current weight change [16]. The past gradient values used 
in these procedures are computed using the weight values 
in the past. These recursive first-order gradient algorithms 
can thus be considered equivalent to the algorithm which 
performs back propagation through n,-time steps, added with 
the corresponding momentum terms from the past n-time 
steps. For the Memory Neuron Networks which uses first order 
filters, Poddar and Unnikrishnan [6],  [ I l l  have suggested a 
similar gradient computation procedure. 

For the purpose of this work, we have used only back- 
propagating through one time step for updating the parameters 
of MNN and recursive computation is not used. Though the 
procedure is simplified, in all our simulations it performs 
very well on various plants considered for identification and 
control [20]. Further work is needed to decide what level 
of approximation is appropriate for the problem of adaptive 
control of dynamical systems. 

Unlike in pattem classification problems where one can 
cycle through the training data repeatedly, for identification 
and adaptive control we need incremental leaming algorithms. 
Thus at each time step we have to use the instantaneous 
error at that time for updating the weights. Since the teaching 
signal itself is the output of an unknown dynamical system, 
an important question that needs to be answered is: what does 
following the gradient of the instantaneous error lead to. We 
have shown that if the unknown plant is BIB0 stable and 
controllable, and the random test input is stationary with a 
distribution that has compact support, then asymptotically we 
will be minimizing a meaningful error measure. 

However, this analysis of the identification algorithm is still 
incomplete. We have shown that the algorithm will minimize 
the expected value of the error (between the outputs of plant 
and model network) where the expected value is with respect 
to the stationary distribution of the test input. This does not 
answer the question of whether the test signal chosen (in our 
case iid with uniform distribution) is good enough for the 
model network to mimic the plant for all signals. Further 
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theoretical analysis is needed to prove the correctness of 
identification procedures using neural networks. 

For the control scheme we have used a network model for 
the forward dynamics of the plant as a channel for back- 
propagating the error in the plant output to be able to update 
the controller net. This technique has been used by many other 
researchers [7], [8], [26]. However, there is one difficulty in 
this back-propagation if the plant involves some delay. We 
have discussed this problem and have suggested a solution 
both for feed-forward controllers and for Memory Neuron 
Networks. We have not presented any theoretical analysis 
of the control algorithm. At present there are no known 
theoretical results regarding convergence of neural network 
algorithms for control of nonlinear systems. For the control 
technique discussed in Section IV (see Fig. 8), the presence 
of two networks and separate updating make the analysis 
difficult. To get an appreciation of the difficulties involved, 
consider the simple case of a constant reference input (i.e., a 
regulation problem). Assuming correct identification, (i.e., the 
model N1 is correct), the controller will leam to minimize 
error e,. However, if the plant characteristic change during 
the operation, we need to examine the combined dynamics 
of N1 and N2 to be sure of the correctness of control. Once 
again if we assume that changes in N1 occur much faster then 
N2,  then at any time the identification is complete before 
the controller is significantly changed. Hence we need also 
to be aware of the problem of stability. Assuming BIB0 
stability of the plant, we can keep the plant output always 
bounded by using a sufficiently small bounded output of the 
controller through a proper sigmoid function. But this assumes 
knowledge of the plant and it would also mean we cannot 
control the plant for all possible reference inputs. Thus, even 
in this simple case, much hand-waving is needed to justify the 
neural network algorithms. 

More work needs to be done, especially in analysis of neural 
network models, before such networks are routinely used for 
controlling nonlinear systems. We feel that endowing feed- 
forward nets with dynamics is a small first step in coming 
out with a tractable class of dynamical models with neural 
networks. Hopefully the current interest in the field will lead 
to work in that direction. 

VI. CONCLUSION 

In this paper we have discussed identification and control of 
nonlinear dynamical systems using Memory Neuron Networks. 
We are able to identify a variety of complex nonlinear systems 
using the same. network structure. As can be seen from the 
results of Section 111-B, this method is quite robust. We 
have given some theoretical justification of our identification 
procedure. 

We have also presented simulations using these networks for 
model reference adaptive control. We have used the technique 
of differentiating the plant model for training the controller. 
This method as currently used [ 2 ] ,  [ 131 has a serious shortcom- 
ing. We have pointed this out and have suggested a solution. 
We have shown the effectiveness of these controllers for both 
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tracking the reference input and for adapting to changes in 
the plant. 

APPENDIX 

A .  Proof of Theorem. 

The proof essentially verifies the conditions for applying a 
result due to Kushner (Theorem 5.5, [17]). We observe the 
following with respect to the given algorithm and the neural 
network model. 

The process { Z ( k ) ;  $(k-l), k > 0) is a Markov process. 
This follows from the algorithm and the definition of the 
vector $. Also note that the process { U (  k ) }  is chosen to 
be an iid process. 
The function G(., .) is continuous in both the arguments 
as can be seen from the algorithm. Hence the function is 
bounded over any compact set. 
The function G(., .) is independent of the step parameter 
71 > 0 and the one step transition probability function 
P($, 1, BIZ) for some bore1 set B on the appropriate 
space is independent of the step size 7, for a fixed value 
of the network parameters z.  
The input { u ( k ) }  is an iid process and hence it is trivially 
stationary. Since the plant is assumed to be stable and 
controllable the output of the plant {yp(k)} is stationary 
[27]. Using the above observations, since the input to the 
network is stationary, for a fixed set of parameters, z ,  of 
the network the process { $ ( I C ) }  is also stationary. Hence 
there is unique invariant distribution M" for the process 

Since the input process is chosen to be an iid process it is 
trivially tight. The other input to the network y,(k) takes 
values in a compact set since the plant is assumed to be 
BIB0 stable. All the other signals in the network also 
take values inside a compact set. In fact, the activation 
function for the network units is the logistic function 
f(x) = 1/(1 + exp(-x)), which is bounded, and the 
memory coefficients ( a )  of the memory units take a value 
strictly less than one and greater than zero, which makes 
the memory units stable. Hence all the signals in the 
network take values inside a compact set. It follows that 
the set of all invariant distributions { M " }  is tight. 

{ 4 ( k ) } -  

From the above observations it follows, using the result 
(Theorem 5.5, [17]), that as 71 --f 0; the interpolated process 
Z n ( t )  weakly converges to z ( t )  which satisfies the projected 
ODE, 

z = E(z )  + y(z) 

here g ( z )  takes values in a cone -C(z)  for all boundary points 
z .  If z is an interior point then g ( z )  is zero. 

ACKNOWLEDGMENT 

The authors thank Hossein Javaherian for many helpful 
discussions. The clarity of the paper has been improved by the 
comments of Hossein Javaherian and James Elshoff. Harmon 
Nine helped us in generating the figures and Lalitha had done 



SASTRY et al.: MEMORY NEURAL NETWORKS FOR IDENTIFICATION AND CONTROL OF DYNAMICAL SYSTEMS 319 

some early simulation of MNN for identification. Most of 
this work was done while he first author (pss) was visiting 
the University Of Michigan, Ann Arbor, Motors 
Research Laboratories, Warren, MI. 

[22] A. D. Back and A. C. Tsoi, “FIR and IIR synapses, a new neural network 
architecture for time series modeling” Neural Computation, vol. 3, no. 
3, pp. 375-385, 1991. 

[23] S. P. Day and M. R. Davenport, “Continuous time temporal back 
propagation with adaptable time delays,” IEEE Transactions on Neural 

REFERENCES 

W. T. Miller, R. S. Sutton, and P. J. Werbos, Neural Networks for  
Control. Cambridge, MA: MIT Press, 1990. 
A. G. Barto, “Connectionist learning for control: An overview,” in 
Neural Networks for Control W. T. Miller, R. S. Sutton, and P. J. 
Werbos, Eds. MIT Press, Cambridge, 1990. 
K. S. Narendra and K. Parthasarathy, “Identification and control of dy- 
namical systems using neural networks,” IEEE Transactions on Neural 
Networks, vol. 1, no. 1, pp. 4-27, 1990. 
K. S. Narendra and K. Parthasarathy, “Gradient methods for opti- 
mization of dynamical systems containing neural networks,” IEEE 
Transactions on Neural Networks. vol. 2, no. 2, pp. 252-262, 1991. 
Y. Ichikawa and T. Sawa, “Neural network application for direct 
feedback controllers,” IEEE Transactions on Neural Networks, vol. 3, 
no. 2, pp. 224-231, 1992. 
P. Poddar and K. P. Unnikrishnan, “Memory neuron networks: A 
prolegomenon,” Tech. Rep. GMR-7493, General Motors Research Lab- 
oratories, 199 I .  
D. A. Hoskins, J. N. Hwang, and J. Vagners, “Iterative inversion 
of neural networks and its application to adaptive control,” IEEE 
Transactions on Neural Networks, vol. 3, no. 2, pp. 292-301, 1992. 
Q. H. Wu, B. W. Hogg, and G. W. Irwin, “A neural network regulator 
for turbogenerators,” IEEE Transactions on Neural Networks, vol. 3, 
no. 1, pp. 95-100, 1992. 
R. J. Williams, “Adaptive state representation and estimation using 
recurrent connectionist networks” in Neural Networks for Control W. 
T. Miller, R. S. Sutton, and P. J. Werbos, Eds. Cambridge, MA: MIT 
Press, 1990. 
K. P. Unnikrishnan, J. I. Hopfield, and D. W. Tank, “Connected- 
digit speaker-dependent speech recognition system using a neural net- 
work with time-delayed connections,” IEEE Transactions on Accoustics 
Speech and Signal Processing, vol. 39, pp. 698-713, 1991. 
P. Poddar and K. P. Unnikrishnan, “Efficient real-time prediction 
and recognition of temporal patterns,” in IEEE Workshop on Neural 
Networks for Signal Processing, Princeton, USA, October 199 1. 
S. Geman, E. Bienenstock and R. Doursat, “Neural networks and the 
biadvariance dilemma,” Neural Computation, vol. 4, pp. 1-58, 1992. 
M. Kawato, “Computational schemes and neural network models for 
formation and control of multijoint arm trajectory,” in Neural Networks 
for Control W. T. Miller, R. S. Sutton, and P. J. Werbos eds. Cambridge, 
MA: MIT Press, 1990. 
M. 1. Jordan and D. E. Rumelhart, “Forward models: Supervised learning 
with a distal teacher,” Cognitive Science, vol. 16, pp. 307-354, 1992. 
K. P. Unnikrishnan and K. P. Venugopal, “Alopex: A correlation-based 
learning algorithm for feedforward and recurrent neural networks,” in 
Neural Computation, vol. 6, pp. 467488, 1994. 
R. J. Williams and D. Zipser, “A learning algorithm for continually 
running recurrent neural networks,” Neural Computation, vol. I ,  no. 2, 
pp. 270-280, 1989. 
H. J. Kushner, Approximation and Weak Convergence Methods for 
Random Process, Cambridge, MA: MIT Press, 1984. 
C.-M. Kuan and K. Homik, “Convergence of learning algorithms with 
constant learning rates,” IEEE Transactions on Neural Networks, vol. 2, 
pp. 484489, 1991. 
A. Beneveniste, M. Metivier, and P. Priouret, Adaptive Algorithms and 
Stochastic Approximations. New York: Springer Verlag, 1987. 
P. S. Sastry, G. Santharam, and K. P. Unnikrishnan, “Memory neuron 
networks for identification and control of dynamical systems,” Tech. 
Rep. GMR-7916, General Motors Research Laboratories, 1993. 
K. S. Narendra and A. M. Annaswamy, Stable Adaptive Systems. 
Englewood Cliffs, NJ: Prentice-Hall, 1989. 

Networks, vol. 4, pp. 348-354, 1993. 
[24] R. R. Leighton and B. C. Conrath, “The autoregressive backpropagation 

algorithm,” in Proceedings of the International Joint Conference on 
Neural Networks, vol. 2,  pp. 369-377, 1991. 

[25] 0. Nerrand, P. Roussel-Ragot, L. Personnaz, G. Dreyfus, and S. Macros, 
“Neural networks and nonlinear adaptive filtering: Unifying concepts 
and new algorithms,” Neural Computation, vol. 5, pp. 165-199, 1993. 

[26] D. Nguyen and B. Widrow, “The truck backer-upper: An example of 
self-learning in neural networks,” in Neural Nehvorks for Control W. 
T. Miller, R. S. Sutton, and P. J. Werbos, Eds. Cambridge, MA: MIT 
Press, 1990. 

[27] S. P. Meyn and P. E. Caines, “Asymptotic behavior of stochastic 
systems possessing Markovian realisations,” SIAM Journal of Control 
and Optimization, vol. 29, pp. 535-561, May 1991. 

i, 

P. S. Sastry, (S’82-M’85), received the B.Sc. 
(Hons.) in Physics from the Indian Institute of 
Technology, Kharagpur, in 1978, and the B.E. 
degree in Electrical Communications Engineering 
and the Ph.D. degree in Electrical Engineering 
from the Indian Institute of Science, Bangalore, in 
1981 and 1985, respectively. Currently, he is an 
assistant professor in the Department of Electrical 
Engineering at the Indian Institute of Science, 
Bangalore. His research interests include learning 
algorithms, neural networks, pattern recognition, 
and artificial intelligence. 

G. Santharam received the B.Sc. degree in Physics 
from Madras University in 1984, and the M.E. 
degree in Electrical Communications Engineering 
from the Indian Institute of Science, Bangalore, in 
1988. Currently, he is working toward the Ph.D. 
degree in the department of Electrical Engineer- 
ing at the Indian Institute of Science, Bangalore. 
His research interests include learning algorithms, 
neural networks, pattern recognition, and stochastic 
systems. 

K. P. Unnikrishnan, received the B.Sc. degree in 
Physics from Calicut University, India, in 1979, the 
MSc.  degree in Physics from Cochin University, 
India, in 1981, and the Ph.D. degree in Biophysics 
from Syracuse University, Syracuse, NY, in 1987. 

From 1987 to 1989 he was a post-doctoral Mem- 
ber of Technical Staff at AT&T Bell Laboratories, 
Murray Hill, NJ. He is currently a Senior Research 
Scientist in the Computer Science Department at 
the General Motors Research Laboratories, Warren, 
MI, and an Adjunct Assistant Professor in Electrical 

Engineering and Computer Science at the University of Michigan, Ann Arbor, 
MI. His research interests concern neural computation in sensory systems, 
neural mechanisms of learning and development, and neural architectures for 
control. 


