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Abstract

Human eye movement mechanisms (saccades) are very useful for scene
analysis, including object representation and pattern recognition. In this
letter, a Hopfield neural network to emulate saccades is proposed. The
network uses an energy function that includes location and identification
tasks. Computer simulation shows that the network performs those tasks
cooperatively. The result suggests that the network is applicable to shift-
invariant pattern recognition.

1 INTRODUCTION

The human eye is distinguished from commercially available electronic cam-
eras by virtue of having much better resolution in the fovea near the optical
axis. The eccentricity of the retina, which produces a large field of view and
high acuity at the fovea, causes the human visual system to have quick jerky
eye movements - i.e., saccades. It was shown that an artificial visual system
equipped with saccades could reduce the number of processing units required
for pattern recognition [3] and could greatly simplify the calculations in low-
level vision systems [1]. The saccades involve two subtasks; i.e., a location task
and an identification task. The location task fixates the location of a pattern
in a wide field of view using a priori knowledge of the pattern class of inter-
est. On the other hand, the identification task determines the class of a pattern
under the assumption that the location of the pattern can be fixated. These sub-
tasks are therefore cooperative. Recently, Hopfield and his colleagues have shown
that a symmetric interconnected neural network (a Hopfield neural network) can
perform error corrections in associative retrieval [2] and lead to appropriate so-
lutions in optimization problems [5, 4]. In this letter, we treat the saccades as
the optimization problem and apply the Hopfield network to the emulation of sac-
cades. Computer simulation confirms that the network performs these subtasks
cooperatively. It also suggests that the network is applicable to shift-invariant
pattern recognition.
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2 ENERGY FUNCTION FOR SACCADES

The network (shown in Fig.1) comprises three blocks of neurons called the sac-
cades (S) block, hidden (H) block, and output(O) block, respectively. Its energy
function is defined as follows:
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where

Z l,m
i,j = Al+i−(I+X)/2,m+j−(J+Y )/2Wl+i−(I+X)/2,m+j−(J+Y )/2 (2)

and

Al+i−(I+X)/2,m+j−(J+Y )/2 =

{

1 if 0 ≤ i < I and 0 ≤ j < J
0 otherwise

(3)

where (l,m) is a gaze position, W a pixel image of an input pattern, A a window
function, u∗

i,j and activity of the (i, j)th neuron of ∗ block, V ∗

i,j the output of the

(i, j)th neuron of ∗ block (V ∗

i,j = (1 + exp(−u∗

i,j)
−1), T n the nth template em-

bedded in the weights between the D and O blocks, C∗ positive constants. The S
block is a matrix representation of the location of an input pattern relative to a
gaze position represented as the (X/2, Y/2)th neuron. The most-activated neu-
ron in the O block indicates the class of the input pattern whose location would
be represented by the S block. The location and identification tasks are obtained
by minimizing the first and second terms in the energy function, respectively.
The third and fourth terms represent winner-take-all constraints in the S and
O blocks, respectively.

A gaze position is updated by the following rule:

l = l + xmax −X/2,m = m+ ymax − Y/2 (4)

where (xmax, ymax) is an index of the most-activated neuron in the S block.
When the gaze position is unchanged by the updating rule, the tasks are complete.

2



Figure 1: Schematic view of our network. Fully interconnected in the S and O
block. Fully interconnected between the S and D block and between the D and
O block.
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3 SIMULATION RESULTS

the first simulation confirmed that the network can perform cooperative subtasks
in the saccades. Positive constants in the energy function and the number of
neurons of each block were chosen to be C0 = 0.1, C1 = 0.1, C2 = 1.0, C3 = 1.0
and X = Y = 9, I = J = 8, N = 4, respectively. Four templates (8 × 8
binary-valued pixels) are depicted in Fig.2. The stable states of the network are
illustrated in Fig.3(a)-(d), where one side of each square represents an output
level of the corresponding neuron, an empty circle in W a gaze position, and a
directed line in the S block a saccadic vector. It is also seen that the activation
pattern of the H block resembles the template of the class of the target pattern.

The network was next applied to shift-invariant pattern recognition. Positive
constants in the energy function and the number of neurons of each block were
chosen to be C0 = 0.2, C1 = 0.1, C2 = 2.0, C3 = 10.0 and X = Y = 3, I =
J = 16, N = 10, respectively. Ten templates (16× 16 binary-valued pixels) are
depicted in Fig.4. In the experiment, 160 input patterns shifted in any direction
by one pixel and deformed by no more than eight hits (Hamming distance),
including the patterns shown in Fig.5, were recognized perfectly. The behavior
of the network is illustrated in Fig.6. Figure 6(a) and (b) show the stable states
before and after a saccade by one pixel to the upper left, respectively. We can
see the identification task was completed by the saccade that resulted from the
location task.

4 CONCLUSIONS

A Hopfield neural network for saccades has been proposed. Computer simula-
tions confirmed that the network performs the location and the identification
tasks in a cooperative fashion. It has also been demonstrated that the network
can be applied to shift-invariant pattern recognition. Since out network is a
standard Hopfield-type neural network, it is suitable for VLSI and optical imple-
mentations and therefore can speed up saccadic tasks and shift-invariant pattern
recognition significantly.

Figure 2: Templates T n used in the first simulation.

4



Figure 3: Stable states of the network where the location and the identification
task of the line completed.

Figure 4: Templates T n used in the second simulation.

Figure 5: Examples of patterns recognized by the network.
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Figure 6: Behavior of the network in the second simulation.
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