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Gradient Radial Basis Function Networks for Nonlinear 
and Nonstationary Time Series Prediction 

E. S. Chng, S. Chen, and B. Mulgrew 

Abstract-We present a method of modifyiog the structure of 
radial basis function (RBF) network to work with nonstationary 
series that exhibit homogeneous nonstationary behavior. In the 
original RBF network, the hidden node’s function is to sense 
the trajectory of the time series and to respond when there is 
a strong correlation between the input pattern and the hidden 
node’s center. This type of response, however, is highly sensitive 
to changes in the level and trend of the time series. To counter 
these effects, the hidden node’s function is modified to one which 
detects and reacts to the gradient of the series. We call this new 
network the gradient RBF (GRBF) model. Single and multistep 
predictive performance for the Mackey-Glass chaotic time series 
were evaluated using the classical RBF and GRBF models. The 
simulation results for the series without and with a time-varying 
mean confirm the superior performance of the GRBF predictor 
over the RBF predictor. 

I. INTRODUCTION 
HE radial basis function (RBF) network has enjoyed con- 
siderable success in application to nonlinear time-series 

prediction [ 11-[4]. Most of the successful results, however, 
are obtained when the network is applied to predict signals 
that are stationary. The performance of the RBF predictor for 
nonstationary signal is less satisfactory [5].  This is because the 
RBF network, like many other neural-network models, does 
not characterize temporal variability well. Since red-world 
signals are often not only highly nonlinear but also highly 
nonstationary, it is desired to develop predictors which can 
handle signals that exhibit both such characteristics. 

For nonstationary time series involving variations of local 
mean and trend, the series can be made stationary by applying 
a suitable difference on the signal. This is the implementation 
behind the linear auto-regressive integrated moving average 
(ARIMA) model [6] to predict nonstationary signals. By 
incorporating a similar mechanism into the RBF network, the 
resulting model will have better predictive performance for 

difference of the signal as the input vector to the network, 
nonstationary homogeneous time series. As well as using the 
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we also modify the response of each hidden node with a term 
which can be interpreted as a local one-step predictor. We refer 
to this new network as the GRBF network. 

In Section 11, after a summary of the classical RBF net- 
work, the GRBF network is introduced and some geometric 
interpretations of this model are given. The construction of 
the GRBF network using the orthogonal least squares (OLS) 
subset selection technique [2] is briefly discussed. Simulation 
results using the classical RBF and GRBF networks to predict 
the Mackey-Glass chaotic time series with and without time- 
varying meadtrend are given in Section I11 to demonstrate the 
effectiveness of the GRBF network. Section IV contains some 
concluding remarks. 

11. THE RBF NETWORK 

The RBF network is a single-hidden-layer feedforward neu- 
ral network [4]. Each node of the hidden layer has a parameter 
vector called center. This center is used to compare with 
the network input vector to produce a radially symmetrical 
response. Response of the hidden layer are scaled by the 
connection weights of the output layer and then combined to 
produce the network output. 

To predict the signal value y,, the RBF network input vector 

(1) 

is an M-dimensional vector consisting of past signal samples. 
M is often referred to as the embedding vector length. In 
the present study, we choose the Gaussian function as the 
nonlinearity of the hidden nodes. The response of the j th  
hidden node to x, is given by 

(2) 

where cI, is an M-dimensional center vector and Q: is a 
positive constant which determines the width of the symmetric 
response of the hidden node. Theoretical investigations have 
shown that the choice of nonlinearity for hidden nodes is not 
crucial [7], [8] and a uniform width for every hidden node is 
sufficient for universal approximation [8]. The network output 

T x, = [Yz-1, Y,-2,. . . , Yt-M] 

4JZJ = exp(--cullx, - CJ2) 

is defined as 
K 

Bi = &jhj 
j=1 

where hj are the network connection 
number of hidden nodes. 

(3) 

weights and K is the 
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Fig. 1. Topology of first-order GRBF network. 

Assume that N samples of the signal, {y;}zl,  are available 
for training. The centers, cj, 1 5 j 1. K ,  can be selected 
from the network training input x,, 1 5 i 5 N .  The weights 
can then be solved for using the least squares method [9]. 
A constructive approach is to use the OLS algorithm to 
simultaneously determine RBF centers and weights [ 2 ] .  

Time Series 
e----. 
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Fig. 2. Training mode of j th  hidden node. If the lcth training input x i  is 
chosen as the center cl, 6, is set to d k .  

Time Series 
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A. The GRBF Network 

The GRBF network, like the RBF case, is a single-hidden- 
layer feedforward neural network. In the GRBF network, 
however, the network input vector is generated by differencing 
the raw data. The order of differencing determines the order 
of the GRBF network. For example, the input vector of the 
first-order GRBF network at time i is given by 

x', = x, - x,-1 
T - - [!/,-I - YZ-21 YZ-2 - YZ-37 ' .  YZ-M - Yt-M-11 (4> 

where x, and x,-1 are the original input vectors to the RBF 
network at time i and (i - l), respectively. The elements of 
xi show the rate of change in the trajectory of the time series 
for the past M samples. 

Fig. 1 depicts the structure of the first-order GRBF network. 
Although the Gaussian function still serves as the nonlinear 
function which compares the similarity of the input vector 
to the hidden node's center, the response of the Gaussian 
function is now multiplied by an additional term (y,-~ + 6). 
The response of the j th  hidden node of a first-order GRBF 
network to the input vector xi is therefore given by 

dJ = exP(-4lx', - C(11l2) x (Yz-1 + 6,) ( 5 )  

where ci is an M-dimensional center vector and 6, is a 
constant value associated with the center. The term (y,-1+6,) 
can be interpreted as a local single-step prediction of y, by the 
j th hidden node. From (3, if the input vector is very similar 
to the j th  center, the value of the Gaussian function will be 
close to 1.0 and the predictor (yt-l +S,) becomes fully active. 
As in the case of the RBF network, the output layer is a linear 
combiner with weights h,, 1 5 j 5 K .  

The centers c: and the scalars S,, 1 5 j 1. K ,  can be 
chosen during the training from the training data {x;}:=~ as 

Fig. 3. Predictive mode of j th  hidden node. If the center ci matches xi, 
( ~ ~ - 1  + 63) is a good approximation of yz. 

illustrated in Fig. 2. For each training input vector xi, define 

dk Yk - Yk-1. (6) 

If x; is selected as the j th center ci, we set 6, = d k  to ensure 
that the j th hidden node is a perfect predictor of yk. In this 
way, the problem of constructing a network is equivalent to 
the task of selecting a K-term subset model {ci, 6,},"=, from 
the full N-term model {xi7 dk}:=l. The OLS algorithm can 
readily be applied to perform this subset selection task. 

The rationale behind the GRBF model become obvious 
when the network performs predictive operation. Each hidden 
node compares the network input vector x: with its center 
c:. The Gaussian response of each hidden node indicates the 
degree of matching between x', and c: . The hidden nodes thus 
sense the gradient of the time series rather than the series itself 
as in the case of the RBF model. The term (yz-l + 6,) also 
has a clear geometric meaning. Referring to Fig. 3, if the j th 
center c: matches the gradient x', of the series, (y+1 + 6,) is 
likely to be a very good prediction of y,. 

Fig. 4 illustrates different behavior of the RBF and GRBF 
nodes. The task is to sense peaks of a sinusoid signal embedded 
in a varying mean. Both the RBF and GRBF centers were set 
according to a segment of signal containing a peak. The results 
clearly show that the GRBF node was able to respond to each 
peaks while the RBF node was unable to track the time series. 

Although the GRBF has better generalization property, the 
complexity of the GRBF hidden node is greater than that 
of a RBF hidden node. This, however, is not a significant 
disadvantage as the better generalization property often results 
in smaller network. Therefore, the overall complexity of the 
GRBF network may not necessarily be greater than that of the 
RBF network in practical applications. 
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Fig. 4. RBF and GRBF node’s response. 
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B. Higher-Order GRBF Networks 

We can extend the idea of mapping the data’s gradient by 
the first-order GRBF network to that of matching higher-order 
gradient by a higher-order GRBF network. For instance, the 
input vector to the second-order GRBF network at time i can 
be defined as 

= - x/ 
z 2 2-1 = [(Yz-1 - Yz-2) - (Yz-2 - Y2-3)1. . .  , 

(Ya-M - Yz-M-1) - (Yz-M-1 - Yz-M-2)IT. (7) 

The response of the j th hidden node of the second-order GRBF 
network to xy is calculated according to 

#’. 
23 

The M-dimensional center vectors cy and the scalars S i ,  
1 5 j 5 K ,  can similarly he selected from the training data 
{x:}:=~. For each training input vector x;, define 

d‘, = ~ I C  - &-I = ( ~ k  - ~ k - 1 )  - ( ~ k - 1  - ~1c-2) .  (9) 

If xg is selected as the j th center cy, the value of 6: is set to 
dk. The OLS algorithm is well suited for this subset selection 
problem. 

Geometric properties of the first-order GRBF network can 
similarly be extended to a higher-order GRBF network. If 
we view that the first-order GRBF network uses a matching 
of gradient to predict the next value of the time series, 
then the second-order GRBF network predicts the next rate 
of change based on a matching of second-order gradient. 
This interpretation can be generalized to higher-order GRBF 
networks. 

C. Subset Model Selection 
In the previous work [2] ,  the problem of constructing a RBF 

network from training data is formulated as one of selecting 
a K-term subset network from the N-term full network based 
on the OLS algorithm. The same approach can readily be 
applied to construct a GRBF network from training data. In 
fact, the OLS algorithm can be applied to any model which 
has a linear-in-the-parameter structure. 

The OLS algorithm is an efficient way of implementing the 
forward regression procedure [IO] and, therefore, it does not 
guarantee to find the best K-term subset model from the N -  
term full model. This, however, is not a serious deficiency as 
the subset model found are normally very good. Furthermore, 

Fig. 5 .  Performance of predictors in training phase for Mackey-Glass series. 
a) linear model, b) linear and RBF model, c) linear, RBF, and first-order GRBF 
model, and d) linear, RBF, first- and second-order GRBF model. 
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Fig. 6. Performance of predictors in testing phase for Mackey-Glass series. 
a) linear model, b) linear and RBF model, c) linear, RBF, and first-order 
GRBF model, and d) linear, RBF, first- and second-order GRBF model. 

the algorilhm is computationally very efficient. This allows us 
to work on a very large initial model set, which can combine 
the linear, RBF, and GRBF expansions. Attempt to find the 
optimal X-term subset model from such a large model set 
would almost certainly be impractical. 

III. SIMULATION RESULTS 
We present some simulation results of time series prediction 

using the RBF and GRBF predictors in this section. Initial 
full models were created by using all the available data in 
the training set as RBF and/or GRBF centers. Some linear 
terms were also included into the full models. Subset models 
were then selected from these large full models using the 
OLS scheme, and used to evaluate single-step and multistep 
prediction performance. 

The time series used to evaluate the performance of the 
various models is the Mackey-Glass time series in chaotic 
mode generated using the following equation 

where r = -21, p = 0.2, b = 0.1, initial conditions 
s ( t  - r) = 0.5 for 0 5 t 5 r and step size = 2 sec. Gaussian 
white noise was added to the series to create a signal to noise 
ratio (SNR) of 50 dB. 
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Fig. 7. Multistep performance of predictors with a model size of 25 for Mackey-Glass series. a) linear model, b) linear and RBF model, c) linear, RBF, 
and first-order GRBF model, and d) linear, RBF, first- and second-order GRBF model. 

Data samples of point 100-600 were used as the training 
set ( N  = 500) and samples 601 to 1100 were used as the 
validation set. The embedding vector's dimension was chosen 
to be M = 6l and the width of Gaussian function was set to 
a = 1.0. The following types of models were used: 
L-model Linear model of order 50. 
LO-model Combinations of the linear mode and 

the classical RBF model. 
LO1-model Combinations of the linear model, the 

2 I I I I I 

modified MackeyGlass data - 
1.8 

classical RBF and first-order GRBF models. 
Combinations of the linear model, the 
classical RBF model, the first and 

0 4 b . i y L i n g T ]  

L012-model 
0.2 sine wave 
0 second-order GRBF models. 0 2M) 400 600 800 loo0 

sample 

A. Simulation for Stationary Series 
For the Mackey-Glass time-series, the results of single-step 

performance for the predictors in training phase are shown in 
Fig. 5, where the vertical axis indicates the normalized mean 
square error (NMSE) in dB. As expected, as the size of each 
selected subset model increases, the accuracy of the model 
continued to improve. The rate of improvement, however, 
was not the same for each model. The predictors with GRBF 
expansion, i.e., LO1 and L012-models, achieved better error 
reduction with a smaller model size. These two GRBF subset 
models also performed better on the validation set compared 
with the classical RBF model, as can be seen in Fig. 6. The 
multistep prediction performance on the validation set for the 
models were tested using a model size of 25 (Fig. 7), and the 
results show that the two GRBF models had better multistep 
predictive accuracy. 

B. Simulation for Nonstationary Series 

Fig. 8. Modified Mackey-Glass time series. 
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Fig. 9. Performance of predictors in testing phase for modified 
Mackey-Glass series. a) linear model, b) linear and RBF model, and 
c) linear, RBF, and first-order GRBF model. 

To examine how the predictors behave for nonstationary 
series, we used a modified Mackey-Glass time-series. This 
new series was formed by adding sinusoid with amplitude 0.3 
and a period of 3000 samples to the Mackey-Glass time series 

used in the previous example (Fig. 8). As the training data 
were formed from samples 100 to 600 and the validation data 
consisted of samples 601-1 100, the predictors were trained 
without being exposed to the change in the level and trend 

'The embedding dimension must be chosen to be greater than 2x D, where Of the test data. The for the single-step prediction 
D is the attractor's dimension [ll]. in the validation phase (Fig. 9) and the multistep predictive 
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Fig. 10. Multistep performance of predictors with a model size of 35 for 
modified Mackey-Glass series. a) linear model, b) linear and RBF model, 
and c) linear, RBF, and first-order GRBF model. 

performance on the validation set using a model size of 
35 (Fig. IO) suggest that the GRBF network can perfom 
better than the classical RBF network in a nonstationary 
environment. 

IV. CONCLUSION 

We have presented a GRBF network for nonlinear and 
nonstationary time series prediction. The hidden layer of this 
GRBF network is designed to respond to the gradient of 
time-series rather than the trajectory itself. This can usually 
improve predictive accuracy, particularly for homogeneous 
nonstationary time series as are demonstrated in the simulation 
results. The construction of the GRBF predictor from the time 
series observations has been proposed using the OLS subset 

selection algorithm. Although the discussion was based on 
time series prediction, this GRBF network can be applied to 
other signal processing applications. 
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