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Growing Subspace Pattern Recognition Methods
and Their Neural-Network Models

M. Prakash and M. Narasimha Murty

Abstract—In statistical pattern recognition, the decision of
which features to use is usually left to human judgment. If
possible, automatic methods are desirable. Like multilayer per-
ceptrons, learning subspace methods (LSM’s) have the potential
to integrate feature extraction and classification. In this paper,
we propose two new algorithms, along with their neural-network
implementations, to overcome certain limitations of the earlier
LSM’s. By introducing one cluster at a time and adapting it
if necessary, we eliminate one limitation of deciding how many
clusters to have in each class by trial-and-error. By using the
principal component analysis neural networks along with this
strategy, we propose neural-network models which are better in
overcoming another limitation, scalability. Our results indicate
that the proposed classifiers are comparable to classifiers like
the multilayer perceptrons and the nearest-neighbor classifier in
terms of classification accuracy. In terms of classification speed
and scalability in design, they appear to be better for large-
dimensional problems.

Index Terms—Subspace methods, learning methods, neural
networks, constructive architectures, character recognition.

I. INTRODUCTION

I N this paper, we propose two new learning subspace
pattern recognition (PR) methods along with their artificial

neural network (ANN) implementations. In statistical pattern
recognition and in neural networks, a separate phase of feature
extraction is necessary because of thecurse of dimensional-
ity [1], [2]. Feedforward neural networks have the potential
to integrate feature extraction (internal representation) and
classification [3]–[5]. However, these attempts are far fewer
compared to the attempts where features are extracted outside
the network and are fed as inputs to the network [6], [7].
While discovering good features may be difficult right at the
beginning, learning may be used to improve the goodness of
the features chosen on some basis [8]. The two disciplines of
PR and ANN’s have benefited from each other [9]. Learning
subspace methods (LSM’s) also integrate feature extraction
and classification.

Watanabe and Pakvasa [10] suggested the subspace pattern
recognition method (SPRM) as a new approach to classifying
and representing patterns given as elements of a vector space.
Here, each class is represented by a subspace spanned by a
group of basis vectors—the orthogonal components obtained
by the principal component analysis. One drawback here is
that the features (basis vectors) obtained for one class are not
dependent on the features of the other classes. Improvements
to the basic SPRM can be put under the following categories:
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1) methods based on weighted orthogonal projections and 2)
methods based on the rotation of subspaces. There have been
many attempts of associating weights to the basis vectors
in the computation of the orthogonal projections [11], [12].
By adapting the weights, these learning methods implicitly
integrate feature extraction and classification. The LSM [13]
and its variants [11], [14], [15] belong to the second category.
The representations (i.e., the subspaces or the orthonormal
features/PC’s) getadaptedin the process of rotation. Thus,
the LSM integrates feature extraction and classification.

The learning methods have been successfully applied in
practice on a variety of applications including speech recogni-
tion [13], [16], texture identification [17], and character recog-
nition [12]. These methods are fast and exhibit reasonably
robust behavior with respect to convergence during learning.
At the time of classification, they involve only dot products
and hence are extremely fast. From the point of view of
computational power, two properties are associated with all the
subspace methods: 1) the classification of a patternis based
solely on its direction and does not depend on the magnitude
of and 2) the decision surfaces are quadratic. For some
problems, highly nonlinear decision surfaces are required.
Recently, a piecewise approximation has been adopted in the
extended ALSM [18] to overcome this problem. However,
this method is not scalable to large-dimensional problems.
Also, the number of clusters in each of the classes and
the number of basis vectors in each cluster have to be
found out by trial-and-error. Constructive neural networks like
the cascade correlation [19] and the growing cell structures
(GCS) [20] could eliminate similar problems from multilayer
perceptrons and the radial basis function neural networks,
respectively, by introducing one node/unit at a time based on
the misclassifications. In this paper, we propose LSM’s that are
good at scalability and that eliminate the possible limitation of
quadratic decision surfaces on the lines of such constructive
neural networks.

II. EXTENDED SUBSPACE METHODS

OF PATTERN RECOGNITION

The subspace methods of classification are decision-
theoretic pattern recognition methods where the primary
model for a class is a linear subspace of the Euclidean
pattern space [10]. Any set of linearly independent
vectors and in (with spans a
subspace, :
for some scalars The basic operation on a
subspace is a projection of a vector, and is given by

, where the projection matrix of is given
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by
is the corresponding orthogonal residual. Given pattern
classes each represented by its subspace

the classification rule is

if then classify into (1)

where the squared orthogonal projection distance, is
defined as

when
are nonorthonormal

when

are orthonormal.

(2)

In the extended averaged learning subspace method
(EALSM), each class is represented using one or more
clusters. Let represent the clusters of class

Let and be the subspace
and the projection matrix, respectively, corresponding to the
th cluster of the th class. The classification rule given by

(1) and (2) is modified as follows:

if

then classify into (3)

where the squared orthogonal projection distance
(SOPD) on the th cluster of the th class, is defined as

when
are nonorthonormal

when

are orthonormal.

(4)

From (3) and (4), we see that the classification is indepen-
dent of magnitude as in the SPRM. The decision surfaces in
subspace methods are usually quadratic. In the special case of
equal number of basis vectors, the decision surfaces are linear.
By having many clusters in each class, and same number of
basis vectors in all clusters, these extended methods obtain
a piecewise linear decision boundary. In case of misclassifi-
cations, the EALSM involves the notion of a correct cluster.
When (3) and (4) are used, we can find out the wrong class
and the wrong cluster to which a sample is assigned. The
sample has only a correct class label. The correct cluster is
defined simply as that cluster with maximum SOPD among
all the clusters belonging to the correct class. The subspaces
pass through the origin in the EALSM. Although a better
fit would be obtained if the linear manifolds pass through
the cluster centers, we have not considered it as neural-
network implementations are available for obtaining principal
components corresponding to only correlation matrices.

III. GROWING SUBSPACE METHOD

The drawbacks of the EALSM are 1) it is not good at
scalability and does not have a neural implementation and
2) the number of clusters for all classes has to be determined
only by trial and error. Here, we propose the growing subspace

method (GSM) to overcome these drawbacks. Like in the
EALSM, we use several clusters to represent each class here
too. Also, we use the same classification rule as given by (3)
and (4).

The GSM starts with one cluster per class and keeps on
growing the ensemble of clusters by introducing one cluster
at a time. A new cluster can be introduced in a class only
when 1) the number of clusters in this class is less than the
allowable number of clusters, MAXCLUSTERS, and 2) the
number of patterns of any one cluster of this class that are
misclassified into another cluster of any other class exceeds
a minimum number of patterns, MINPATS. This process of
growing terminates when 1) all the patterns are correctly
classified or 2) the number of misclassified patterns is less
than MINPATS for every class where a new cluster can be
introduced. Once a cluster is introduced, it remains fixed from
then on.

At any stage, introducing and fixing of a cluster in the GSM
proceeds as follows. Only misclassified patterns at that stage
govern the introduction of a cluster. We use the notion of a
correct class, correct cluster, wrong class, and wrong cluster
as described in the previous section. For every quadruple

we obtain the number of misclassified patterns
for which the correct class, correct cluster, wrong class, and
wrong cluster are and respectively. Let the quadruple

correspond to the maximum number of misclassified
patterns. Only classes for which the number of clusters is less
than the maximum number of clusters allowed are considered
here. If the number of misclassified samples is less than
MINPATS, the entire procedure terminates. Otherwise, a new
subspace is created by taking the first required number of PC’s
of the correlation matrix obtained using the misclassified sam-
ples corresponding to This subspace is associated
with a new cluster which is associated with the class

In the EALSM, one or two correlation matrices have to be
updated for every pattern presentation during every iteration.
Also, at the end of an iteration, eigenvectors for all the clusters
have to be obtained. The scalability of the growing methods
compared to the EALSM arises out of the following three
factors: 1) their neural-network implementations; 2) in case of
extraction of PC’s using algebraic techniques—one correlation
matrix will be updatedonly for those patterns for which the
current cluster is either the correct cluster or the wrong cluster;
eigenvectors of only this matrix will be obtained at the end
of an iteration; and 3) for both neural network and algebraic
implementation to get PC’s—since a cluster remains fixed
after its introduction, we can store the orthogonal projection
distances for all the patterns for all but one cluster. These will
save considerable computation time.

IV. GROWING LEARNING SUBSPACE METHOD

The LSM’s adapt the subspaces such that the recognition
accuracy increases. Hence, after introducing a new cluster
as in the GSM, by adapting the new cluster/subspace before
fixing it, we can hope to improve the recognition accuracy
at that stage. Thus, the total number of clusters is likely to
be less in this approach. Also, this may have a better regu-
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larization effect. Our aim here is to investigate the influence
such adaptation has on the total number of clusters and the
generalization capability. We call this variation as the growing
learning subspace method (GLSM).

Adaptation of a subspace is done on the lines of the Heb-
bian learning subspace method (HLSM) [12]. By associating
different weights with different basis vectors, and by adapting
these weights, the classification accuracy can be improved.
In the GLSM, we adapt the weights of the new cluster.
The classification rule used in the GSM and the EALSM is
modified as

if

then classify into (5)

where the weighted squared orthogonal projection
distance (WSOPD) on theth cluster of theth class, is defined
as

when
are nonorthonormal

when

are orthonormal.
(6)

Let the new cluster be theth cluster of the th class.
The weights of the new cluster are modified according to the
following equations for every pattern that is presented:

(7)

(8)

(9)

where and and
are small positive constants witht usually taken to be

much smaller than the others. In case of misclassification, (8)
is used when (correct class, correct cluster) and (9)
is used when (wrong class, wrong cluster). In case of
correct classification, (9) is used when (correct class,
correct cluster).

V. A NEURAL-NETWORK MODEL FOR

THE GROWING SUBSPACE METHODS

The entire neural network is depicted in Fig. 1(a), (b) and
(c). Each of the subnets shown in Fig. 1(a) has the form shown
in Fig. 1(b). Each of the subsubnets shown in Fig. 1(b) has
the form shown in Fig. 1(c). Fig. 1(c) shows the subsubnet
corresponding to the th cluster of class
The number of nodes in the first, second, and third layers are

and respectively. The nodes in the second layer
are linear. The output of a nodein this layer corresponds to

These outputs are simply squared by the corresponding
nodes in the third layer. The single node in the last layer is also
linear, and thus its output corresponds to the WSOPD

Fig. 1(b) shows the subsubnets corresponding to the
clusters of class The outputs of these subsubnets go

into a modified winner-take-all neural network (MWTANN).
The output of the MWTANN, represents where
it is the maximum of all the s. Thus, the output of each

subnet represents the maximum WSOPD of all the clusters
representing a particular class.

Fig. 1(a) shows such subnets corresponding to the
classes. These outputs are fed to a winner-take-all neural net-
work (WTANN) [21]. Only one of the outputs corresponding
to the maximum will be one, and the rest will be zero. An out-
put of one indicates that the patternis assigned to that class.

Let us now look at the training procedure to obtain the
desired weights. The first layer corresponds to the extraction
of the PC’s which form a set of basis vectors. Many neural
networks have been designed to extract the PC’s [22], [23].
Any of these principal component analysis neural networks
(PCANN’s) could be used to extract the PC’s of each class
separately from a given set of training samples. Initially, all the
samples belonging to a particular class are used to obtain the
PC’s corresponding to the first cluster. Subsequently, when
a new cluster needs to be introduced, we need to identify
those samples corresponding to the maximum entry of the
confusion matrix. Identification of the correct class and the
wrong class are straight forward. However, identification of
the correct and wrong clusters can be achieved by passing
the information along with the information from the
MWTANN’s to the end. Thus, identification of the maximum
of the confusion matrix can be done. We can now pass all the
patterns once more and identify the required patterns leading
to the quadruple corresponding to this maximum. Once the
weights of this layer are found out in this manner, they remain
fixed until the end.

The weights are initialized to “1’s”. In the case of the
GSM, they remain fixed till the end. However, in case of the
GLSM, once a new cluster has been introduced in class

as above, we need to adapt its s. Training patterns
are presented one at a time. Letand be the input and
the target output vectors of the current training pattern. If
belongs to class then is one and is zero for all
We pass through the network and obtain the outputfrom
the WTANN. Then, we compute the reinforcement signal
where Note that when the pattern
is misclassified, is 1 only for the correct class and
is one only for the wrong class. For the other classesis
zero. In case of correct classification, all components ofwill
be zeros. Only is backpropagated to the third layer of the

The weight changes are computed according to
(7) or (8) when is 1 or one, respectively. If is zero
and is one, then (9) is used to compute the weight changes.
Otherwise, the weight changes are assumed to be zeros. This
process of training is repeated for a given number of steps.

As mentioned earlier, one of the reasons for the scalability of
the growing methods is their possible neural implementation.
Here, the extraction of PC’s using NN’s is the most important
step. Using the algebraic techniques, the time and space
complexities are where is the dimensionality. This
is because of the fact that correlation matrices of size
have to be dealt with. However, using PCANN’s, they are
only where is the number of PC’s in each cluster
and for large-dimensional problems. This is because
of the ability of these neural networks to extract the first few
PC’s directly from the data.



164 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 1, JANUARY 1997

(a) (b)

(c)

Fig. 1. (a) Block diagram of the neural network. (b) Subnet to compute the maximum WSOPD for all clusters of classi: (c) Subsubnet to compute
the WSOPD for thejth cluster of classi:

VI. EXPERIMENTS AND RESULTS

A. Data Sets Used

We have chosen three data sets: the optical character data,
the sonar data, and the vowel data.

1) Character Data: This data set consists of handwritten
digits, and was used earlier [6], [24], [12]. Each digit is
a binary image of size 32 24 pixels. There are 13 326
training and 3333 test samples. In [12] the original 13 326
training samples are divided into two near-halves: a training
set consisting of 6670 samples, and a validation set consisting
of 6656 samples. Further, the dimensionality is reduced by
forming nonoverlapping windows of size 22 over the entire
image, and replacing each window by one feature whose value
corresponds to the number of bits on in that window. Thus the
value of every feature varies from zero to four, and there are
a total of 192 features. We have used this data here.

2) Sonar Data: This problem addresses the undersea target
identification. A set of 208 sonar returns (one class of 111
cylinder returns and another class of 97 rock returns) were
split into a training and a test data set of size 104 each [25].

3) Vowel Data: This problem addresses the identification
of 11 steady-state vowels of English spoken by 15 speakers
for a speaker normalization study. Extensive results on this
data are reported [20]. Both the vowel and the sonar data
are electronically available from the connectionist benchmark
collection of Carnegie-Mellon University, Pittsburgh, PA [26].

B. Results and Discussion

We have simulated the GSM and the GLSM on all three data
sets. We have used the algebraic techniques to extract the PC’s
instead of the PCANN’s. Since we have not taken more than
13 PC’s in any of our simulations, the discrepancy in numerical
accuracy between both implementations will be negligible. We
feel this based on such comparisons made earlier [7].

As mentioned, at the beginning of growing, we will have
one cluster per class. This corresponds to the SPRM. In both
the GSM and the GLSM, the starting point is this. We have
varied the number of PC’s per cluster, which is the only
important design parameter. The other parameters have been
fixed somewhat arbitrarily. MINPATS is one; the number of
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TABLE I
CLASSIFICATION RESULTS USING THE SPRM AT THE BEGINNING OF GROWING

TABLE II
CLASSIFICATION RESULTS USING THE GSM AND THE GLSM ON THE CHARACTER DATA

iterations of weight adaptations, HLSMITERS, is 200, 500,
and 500 for the character, the sonar, and the vowel data sets,
respectively; is zero in all cases; is 1.0e-9, 1.0e-
6, and 1.0e-6 for the character, the sonar, and the vowel data
sets, respectively; MAXCLUSTERS is 20 in all cases.

The results of the SPRM for all data sets are presented
in Table I. The results using the GSM and the GLSM are
presented separately for each data set in Tables II–IV. For a
better visualization, we present results for the GSM and the
GLSM in Fig. 2. Fig. 3 shows how the classification accuracy
varies as clusters are introduced one by one in the GSM.
For this illustration, we have chosen the results corresponding
to only the best case from each data set. Best case here
corresponds to the maximum classification accuracy on the
validation/test set. Based on these results (i.e., Tables I–IV
and Figs. 2 and 3), the following observations can be made.

1) On all data sets, both the GSM and the GLSM could
achieve 100% accuracy on the training data as can be
seen from Fig. 3 and Tables II–IV. Hence, we can con-
clude that both the growing methods have the potential
to approximate any decision surface. Thus, one of the
motivations has been achieved.

2) On the training sets, the classification accuracy increases
with an increase in the number of PC’s per cluster for
all data sets as can be seen from Tables II–IV. On the
validation/test sets, as the number of PC’s per cluster
increases, the classification accuracy increases initially,

reaches a peak, and starts decreasing as can be seen from
Table II and Fig. 2. This peaking phenomenon occurs
because of overfitting that arises out of an increase in the
number of free parameters resulting out of an increase in
PC’s. However, tuning of the design parameter is very
simple.

3) From Fig. 2, we observe that the GLSM could improve
upon the GSM only marginally in terms of classification
accuracy.

4) The average time taken for convergence of the GSM
and the GLSM on the character data is approximately 15
min and 5 h, respectively, on a Pentium-based machine.
This is the total execution time, and includes a lot
of input–output. Hence, the GSM has a much better
potential at scalability than the GLSM.

In order to be able to compare the proposed algorithms with
the other methods including the EALSM, we have summarized
the relevant results in Tables V and VI. Based on them, we
can infer the following.

Classification Accuracy: The growing methods are slightly
inferior to the EALSM on the sonar and the vowel data.
However, on the character data, they are as good as the
EALSM. The growing methods are better than the ALSM
on the sonar and vowel data and are comparable to it on the
character data. Also, they are comparable to the other methods
for both the character and the sonar data, although they are
inferior for the vowel data.
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TABLE III
CLASSIFICATION RESULTS USING THE GSM AND THE GLSM ON THE SONAR DATA

TABLE IV
CLASSIFICATION RESULTS USING THE GSM AND THE GLSM ON THE VOWEL DATA

Fig. 2. Number of PC’s versus classification accuracy for the GSM and the
GLSM for the validation/test sets.

Classification Speed: All subspace methods are comparable
as only dot products are involved. They will be better than the
other methods as nonlinearity computation in the MLP’s, while
the RBF’s and the GCS will turn out to be costlier. In case
of the character data, the feature extraction is extremely time
consuming. In case of the NNC, one will have to compare

Fig. 3. Number of clusters introduced versus classification accuracy for the
GSM.

with all the 13 326 (their) training patterns. Thus, on large-
dimensional problems, our methods can be much faster.

Ease of Design: From the point of view of determining the
design parameters, the growing methods are superior to the
EALSM as they have eliminated the necessity to determine
the number of clusters in each class by trial-and-error. Since
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TABLE V
COMPARISON OF RESULTS OBTAINED BY DIFFERENT SUBSPACE METHODS

TABLE VI
OTHER KNOWN RESULTS FOR THESELECTED DATA SETS

these methods exhibit a peaking behavior, tuning the design
parameters is easy.

Scalability: From both time and space complexities, the
growing methods are better than the EALSM, especially on
large-dimensional problems. The time taken on the character
data by the GSM, the GLSM, and the EALSM is 15 min,
5 h, and 2.5 h, [27] respectively, on the same machine.
If simulations to extract PC’s is based on neural-network
implementations, then the time will be even less for the
growing methods.

VII. SUMMARY AND CONCLUSION

In this paper, we have proposed two growing subspace
algorithms. The design of these algorithms is inspired by the
constructive neural-network architectures. They could success-
fully eliminate two problems associated with the EALSM. By
introducing one cluster at a time and adapting it if necessary,

we could successfully eliminate the difficult issue of deciding
how many clusters to have in each class. The degradation
in classification accuracy is small. The growing methods,
like the EALSM, have the potential to approximate any
decision surface. The limitation of scalability of the EALSM
could be overcome by these methods by the above strategy
in addition to the neural-network implementation. We have
conducted experiments on three data sets including a 192
dimensional large character data. We have shown that these
methods are comparable to other classifiers like the MLP
and the NNC in terms of classification accuracy. In terms
of classification speed and ease and scalability of design,
they are better for large-dimensional problems. In addition
to these, the appropriate features are extracted automatically
in these methods. Thus, we feel that the subspace methods
have the potential to become general purpose classifiers for
large-dimensional problems where magnitude information is
not crucial for discrimination.
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