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Growing Subspace Pattern Recognition Methods
and Their Neural-Network Models
M. Prakash and M. Narasimha Murty

Abstract—In statistical pattern recognition, the decision of 1) methods based on weighted orthogonal projections and 2)
which features to use is usually left to human judgment. If methods based on the rotation of subspaces. There have been

possible, automatic methods are desirable.’Like multilayer per- many attempts of associating weights to the basis vectors
ceptrons, learning subspace methods (LSM’s) have the potential . th tati fth th | ecti 111 12
to integrate feature extraction and classification. In this paper, I the computation of the orthogonal projections [11], [12].

we propose two new algorithms, along with their neural-network By adapting the weights, these learning methods implicitly
implementations, to overcome certain limitations of the earlier integrate feature extraction and classification. The LSM [13]
LSM's. By introducing one cluster at a time and adapting it and its variants [11], [14], [15] belong to the second category.
if necessary, we eliminate one limitation of deciding how many the representations (i.e., the subspaces or the orthonormal
clusters to have in each class by trial-and-error. By using the feat /PC’ adant d" th f rotati Th
principal component analysis neural networks along with this eatures . s) geadaptedin the pr'ocess ot ro g !on.. us,
Strategy, we propose neural-network models which are better in the LSM Integl’ates feature extraction and CIaSS|flcat|0n.
overcoming another limitation, scalability. Our results indicate The learning methods have been successfully applied in
that the proposed classifiers are comparable to classifiers like practice on a variety of applications including speech recogni-
the multilayer perceptrons and the nearest-neighbor classifier in tion [13], [16], texture identification [17], and character recog-
terms of classification accuracy. In terms of classification speed . . ' ! ' o

and scalability in design, they appear to be better for large- nition [12]. T_hese_ methods are fast and exhlblt_ reasona_\bly
dimensional problems. robust behavior with respect to convergence during learning.
At the time of classification, they involve only dot products
and hence are extremely fast. From the point of view of
computational power, two properties are associated with all the
subspace methods: 1) the classification of a pattembased

. INTRODUCTION solely on its direction and does not depend on the magnitude

N this paper, we propose two new learning subspa&é = and 2) the decision surfaces are quadratic. For some

pattern recognition (PR) methods along with their artificid?roblems, highly nonlinear decision surfaces are required.
neural network (ANN) implementations. In statistical patterRRecently, a piecewise approximation has been adopted in the
recognition and in neural networks, a separate phase of featgiéended ALSM [18] to overcome this problem. However,
extraction is necessary because of these of dimensional- this method is not scalable to large-dimensional problems.
ity [1], [2]. Feedforward neural networks have the potentidlso, the number of clusters in each of the classes and
to integrate feature extraction (internal representation) afte number of basis vectors in each cluster have to be
classification [3]_[5] However, these attempts are far fewg?und out by trial-and-error. Constructive neural networks like
compared to the attempts where features are extracted outéitfe cascade correlation [19] and the growing cell structures
the network and are fed as inputs to the network [6], [7{GCS) [20] could eliminate similar problems from multilayer
While discovering good features may be difficult right at theerceptrons and the radial basis function neural networks,
beginning, learning may be used to improve the goodnessrespectively, by introducing one node/unit at a time based on
the features chosen on some basis [8]. The two disciplinestBe misclassifications. In this paper, we propose LSM'’s that are
PR and ANN'’s have benefited from each other [9]. LearnirgPod at scalability and that eliminate the possible limitation of
subspace methods (LSM's) also integrate feature extracti@wadratic decision surfaces on the lines of such constructive
and classification. neural networks.

Watanabe and Pakvasa [10] suggested the subspace pattern
recognition method (SPRM) as a new approach to classifying
and representing patterns given as elements of a vector space.
Here, each class is represented by a subspace spanned by a
group of basis vectors—the orthogonal components obtainedrhe subspace methods of classification are decision-
by the principal component analysis. One drawback heretigoretic pattern recognition methods where the primary
that the features (basis vectors) obtained for one class are M@del for a class is a linear subspace of the Euclidean
dependent on the features of the other classes. Improvemd@atiern space [10]. Any set ofn linearly independent

Index Terms—Subspace methods, learning methods, neural
networks, constructive architectures, character recognition.

Il. EXTENDED SUBSPACE METHODS
OF PATTERN RECOGNITION

to the basic SPRM can be put under the following categoriegctors uy,---, and u,, in R" (with m<n) spans a
. m
subspacel: L = L(uy, -, um) = {z/z = 3. | ou
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by P = AAA)TAL A = [ug, - ,um]- 2 = ¢ — & method (GSM) to overcome these drawbacks. Like in the
is the corresponding orthogonal residual. Givéh pattern EALSM, we use several clusters to represent each class here
classesw!, -, w’, each represented by its subspdde= too. Also, we use the same classification rule as given by (3)
L(ut,---,ui ), the classification rule is and (4).
) ) Lo o ) The GSM starts with one cluster per class and keeps on
if 6(x, L') > 6(x, L7), Vj # i, then classifyr intow’ (1) growing the ensemble of clusters by introducing one cluster
ata time. A new cluster can be introduced in a class only

whereé(z, L7), the squared orthogonal projection distance, L :
(2, %), a ¢ pro) when 1) the number of clusters in this class is less than the

defined as : . , allowable number of clusters, MAXCLUSTERS, and 2) the
' Pl whenwy, - u ; number of patterns of any one cluster of this class that are
' . are nonorthonormal misclassified into another cluster of any other class exceeds

6z, L) =04 <=, , oy ; ; (2) a minimum number of patterns, MINPATS. This process of
Z(x ui)® whenuj,. - up; growing terminates when 1) all the patterns are correctly

=t are orthonormal. classified or 2) the number of misclassified patterns is less

than MINPATS for every class where a new cluster can be

In the extended av_eraged learning §ubspace me”lﬂ oduced. Once a cluster is introduced, it remains fixed from
(EALSM), each class is represented using one or mMofen on

clysters. !‘/etcl’ 2 Cn reeresent thm . clusters of class At any stage, introducing and fixing of a cluster in the GSM
w'. Let L = L(uy’,---,w ;) and P* be the subspace

= ; 2isd _ . proceeds as follows. Only misclassified patterns at that stage
and the projection matrix, respectively, corresponding to the,erm the introduction of a cluster. We use the notion of a
jth cluster of theith class. The classification rule given byy,act class, correct cluster, wrong class, and wrong cluster
(1) and (2) is modified as follows: as described in the previous section. For every quadruple
if 6(x, L#9) > 8(x, LMY, V(i §) # (k1) (i,j,k,.l), we obtain the number of misclassified patterns
for which the correct class, correct cluster, wrong class, and
wrong cluster aré, j, k, andl, respectively. Let the quadruple

where §(z, Li+/), the squared orthogonal projection distance» ¢; 7> 8) correspond to the maximum number of misclassified

then classifyz into (w*, C?) (3)

(SOPD) on thejth cluster of theith class, is defined as patterns. Onl)_/ classes for which the number of clusters ?s less
o o o than the maximum number of clusters allowed are considered
Tt Py whenuy’, - w here. If the number of misclassified samples is less than
N 7 are nonorthonormal MINPATS, the entire procedure terminates. Otherwise, a new
8z, L) = § X i g i (4) subspace is created by taking the first required number of PC’s
Z(x wy')® whenuy?, e of the correlation matrix obtained using the misclassified sam-

=t are orthonormal. ples corresponding t¢p, ¢, 7, s). This subspace is associated

F 3y and (4 that the classification is ind with a new cluster which is associated with the class
rom (3) and (4), we see that the classification is in €PeN" I the EALSM, one or two correlation matrices have to be

degt of magnl';]udde as in the"SPRMd The (ljec;]smn su-rf?cesdB ated for every pattern presentation during every iteration.
subspace methods are usually quadratic. In the special casg g , at the end of an iteration, eigenvectors for all the clusters

equal number of basis vectors, the decision surfaces are Iln%%r.e to be obtained. The scalability of the growing methods

By havmg many clusters in each class, and same numberC8 pared to the EALSM arises out of the following three
basis vectors in all clusters, these extended methods oblgipyg . 1) their neural-network implementations; 2) in case of
a piecewise linear dgcmon boundary. In case of misclass Ktraction of PC’s using algebraic techniqgues—one correlation
cations, the EALSM involves the notlgn of a correct CIUStanatrix will be updatedonly for those patterns for which the
When (3) and (4) are used, we can find OUt. the wrong cl Grrent cluster is either the correct cluster or the wrong cluster;
and the wrong cluster to which a sample is assigned. T envectors of only this matrix will be obtained at the end

Za?plz h.‘"‘s (l)nly atr(]:otrrelct tclass_tlﬁlbel. The co;rglgtDclustero an iteration; and 3) for both neural network and algebraic
efinéd simply as that cluster with maximum among, hlementation to get PC's—since a cluster remains fixed

all thethclust(;rstkt})elon_gl_ng.to ttr:]e E%[escl\t/l CIZT;?]' Thﬁ Sugsrt’f ﬁ%r its introduction, we can store the orthogonal projection
?tz;lss I(SOlkJ)g bte' orgpqc m re '.f id oug ath EW€istances for all the patterns for all but one cluster. These will
it wou e obtained if the linear manifolds pass rouga{,ilve considerable computation time.

the cluster centers, we have not considered it as neur
network implementations are available for obtaining principal

components corresponding to only correlation matrices. V. GROWING LEARNING SUBSPACE METHOD

The LSM's adapt the subspaces such that the recognition

IIl. GROWING SUBSPACE METHOD accuracy increases. Hence, after introducing a new cluster

The drawbacks of the EALSM are 1) it is not good aés in the GSM, by adapting the new cluster/subspace before
scalability and does not have a neural implementation afiding it, we can hope to improve the recognition accuracy
2) the number of clusters for all classes has to be determiretdthat stage. Thus, the total number of clusters is likely to
only by trial and error. Here, we propose the growing subspale less in this approach. Also, this may have a better regu-
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larization effect. Our aim here is to investigate the influencibnet represents the maximum WSOPD of all the clusters
such adaptation has on the total number of clusters and tkeresenting a particular class.
generalization capability. We call this variation as the growing Fig. 1(a) showsK such subnets corresponding to the
learning subspace method (GLSM). classes. These outputs are fed to a winner-take-all neural net-
Adaptation of a subspace is done on the lines of the Halwerk (WTANN) [21]. Only one of the outputs corresponding
bian learning subspace method (HLSM) [12]. By associatirig the maximum will be one, and the rest will be zero. An out-
different weights with different basis vectors, and by adaptingut of one indicates that the pattetris assigned to that class.
these weights, the classification accuracy can be improvedLet us now look at the training procedure to obtain the
In the GLSM, we adapt the weights of the new clustedesired weights. The first layer corresponds to the extraction
The classification rule used in the GSM and the EALSM isf the PC’s which form a set of basis vectors. Many neural
modified as networks have been designed to extract the PC's [22], [23].
. i ‘ . Any of these principal component analysis neural networks
it 6(z, L) > 8, LM), v(i,g) # (k, 1), (PCANN’s) could be used to extract the PC’s of each class
then classifyz into (w*, C5) (5) separately from a given set of training samples. Initially, all the
amples belonging to a particular class are used to obtain the
C’s corresponding to the first cluster. Subsequently, when
a new cluster needs to be introduced, we need to identify

where§(x, L), the weighted squared orthogonal projectio
distance (WSOPD) on thgh cluster of theth class, is defined

as . .
y iy those samples corresponding to the maximum entry of the
TP whenwui?, - u confusion matrix. Identification of the correct class and the
o hy are nonorthonormal  wrong class are straight forward. However, identification of
6(x, L") = the correct and wrong clusters can be achieved by passin
sz,J(xtuz,J)Q whenwid ... i ‘ 9 -ar y P g
— k k Lo Pmid the j* information along with thez*%" information from the
- are orthonormal. MWTANN's to the end. Thus, identification of the maximum

. . ) of the confusion matrix can be done. We can now pass all the
Let the new cluster be thgth cluster of theith class. patterns once more and identify the required patterns leading
The V\{e|ghts of.the new cluster are mOdIfI.ed according to thg the quadruple corresponding to this maximum. Once the
following equations for every pattern that is presented:  wejghts of this layer are found out in this manner, they remain
5wi’j :n+£i,jvi,j @) fixed until the end. o
St = =gy 8 The w weights are initialized to “1's”. In the case of the
Wi =1 gk & ®) Gsm, they remain fixed till the end. However, in case of the
bwy! =ng v (9) GLSM, once a new clusteg has been introduced in class
iG i p as above, we need to adapt ig-?s. Training patterns
1,7 __ t,,00\2 ] — Y'm 2,7 ¢t + . g
where&p” = (afuy’)® and Vo = S50, wy/ &7 0", and e gresented one at a time. Letand ¢ be the input and

n~ are small positive constants witit usually taken to be yo target output vectors of the current training pattern: If
much smaller than the others. In case of misclassification, longs to class then; is one and(; is zero for allj # i
03 J .

is used when(¢, 7) = (correct class, correct cluster) and (9 e passz through the network and obtain the outpyfrom
is used wher{i, j) = (wrong class, wrong cluster). In case o h

lassificati 9) i d Whéi 1) — | e WTANN. Then, we compute the reinforcement sighal
correct classification, (9) is used whéij) = (correct class, whereR; = y; — (i,i = 1,- -+, K. Note that when the pattern
correct cluster).

is misclassified,R; is —1 only for the correct class ang;
is one only for the wrong class. For the other clasggss
V. A NEURAL-NETWORK MODEL FOR zero. In case of correct classification, all component& efill
THE GROWING SUBSPACE METHODS be zeros. OnlyR,, is backpropagated to the third layer of the

The entire neural network is depicted in Fig. 1(a), (b) anekbsubnet? 4. The weight changes are computed according to
(c). Each of the subnets shown in Fig. 1(a) has the form sho@f) or (8) whenR, is —1 or one, respectively. I, is zero
in Fig. 1(b). Each of the subsubnets shown in Fig. 1(b) hand(, is one, then (9) is used to compute the weight changes.
the form shown in Fig. 1(c). Fig. 1(c) shows the subsubn@itherwise, the weight changes are assumed to be zeros. This
corresponding to theth cluster of class (subsubnet’™’). process of training is repeated for a given number of steps.
The number of nodes in the first, second, and third layers areAs mentioned earlier, one of the reasons for the scalability of
n,m>, andm®J, respectively. The nodes in the second layehe growing methods is their possible neural implementation.
are linear. The output of a nodein this layer corresponds to Here, the extraction of PC’s using NN'’s is the most important
z*uy”’ . These outputs are simply squared by the correspondistgp. Using the algebraic techniques, the time and space
nodes in the third layer. The single node in the last layer is alsomplexities areD(n?), wheren is the dimensionality. This
linear, and thus its output corresponds to the WSOPB. is because of the fact that correlation matrices of size n

Fig. 1(b) shows then’ subsubnets corresponding to thdave to be dealt with. However, using PCANN'’s, they are
n' clusters of class. The outputs of these subsubnets gonly O(nV), whereN is the number of PC'’s in each cluster
into a modified winner-take-all neural network (MWTANN).and N < n for large-dimensional problems. This is because
The output of the MWTANN, 2%/, representsi’*i' where of the ability of these neural networks to extract the first few
it is the maximum of all thel’*:/s. Thus, the output of eachPC’s directly from the data.
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Fig. 1. (a) Block diagram of the neural network. (b) Subnet to compute the maximum WSOPD for all clusters aof ¢@sSubsubnet to compute
the WSOPD for thejth cluster of class:.

VI. EXPERIMENTS AND RESULTS 3) Vowel Data: This problem addresses the identification
of 11 steady-state vowels of English spoken by 15 speakers
A. Data Sets Used for a speaker normalization study. Extensive results on this
We have chosen three data sets: the optical character del@ig are reported [20]. Both the vowel and the sonar data
the sonar data, and the vowel data. are electronically available from the connectionist benchmark
1) Character Data: This data set consists of handwrittercollection of Carnegie-Mellon University, Pittsburgh, PA [26].
digits, and was used earlier [6], [24], [12]. Each digit is
a binary image of size 3% 24 pixels. There are 13326 ) i
training and 3333 test samples. In [12] the original 13328 Results and Discussion
training samples are divided into two near-halves: a training We have simulated the GSM and the GLSM on all three data
set consisting of 6670 samples, and a validation set consistsels. We have used the algebraic techniques to extract the PC’s
of 6656 samples. Further, the dimensionality is reduced bystead of the PCANN's. Since we have not taken more than
forming nonoverlapping windows of size»2 2 over the entire 13 PC’s in any of our simulations, the discrepancy in numerical
image, and replacing each window by one feature whose vaheruracy between both implementations will be negligible. We
corresponds to the number of bits on in that window. Thus tlieel this based on such comparisons made earlier [7].
value of every feature varies from zero to four, and there areAs mentioned, at the beginning of growing, we will have
a total of 192 features. We have used this data here. one cluster per class. This corresponds to the SPRM. In both
2) Sonar Data: This problem addresses the undersea targbe GSM and the GLSM, the starting point is this. We have
identification. A set of 208 sonar returns (one class of 1Maried the number of PC’s per cluster, which is the only
cylinder returns and another class of 97 rock returns) weraportant design parameter. The other parameters have been
split into a training and a test data set of size 104 each [25fjxed somewhat arbitrarily. MINPATS is one; the number of
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TABLE |
CLAssIFICATION ResuLTs UsING THE SPRM AT THE BEGINNING OF GROWING
SONAR VOWEL CHARACTER
Number | Accuracy (%) | Number | Accuracy (%) | Number | Accuracy (%)
of PCs | Trg | Test of PCs | Trg | Test of PCs | Trg | val | Test
\ 64.4 66.3 1 43.0 33.5 1 66.7 | 66.5 | 66.4
2 75.0 69.2 2 64.0 43.3 2 74.9 | 74.7 | 74.3
3 80.8 81.7 3 70.5 38.7 3 79.3 | 79.5 | 794
4 76.9 80.8 4 75.2 35.5 9 89.3 | 87.4 | 88.4
) 86.9 83.7 ) 82.6 37.0 11 90.4 | 88.7 | 89.0
6 85.6 81.7 6 84.3 29.2 13 91.2 | 88.7 | 88.9
TABLE I

CLASSIFICATION ReSULTS USING THE GSM AND THE GLSM oN THE CHARACTER DATA

GSM GLSM

Number Accuracy (%) Total number of | Number Accuracy (%) Total number of

of PCs | Trg | val | Test | clusters | PCs of PCs | Trg | val | Test | clusters | PCs
1 89.5 | 84.6 | 85.1,| 192 192 1 89.1 | 82.6 | 83.6 192 192
2 94.9 | 86.1 | 86.0 186 372 2 94.5 | 86.0 | 85.4 191 382
3 979 | 874 | 87.9 184 552 3 97.7 | 88.1 | 88.1 181 543
9 100.0 | 90.1 | 90.8 94 846 9 100.0 | 89.7 | 91.0 108 972
11 100.0 | 90.5 | 90.8 77 847 11 100.0 | 90.4 | 90.7 85 935
13 100.0 | 90.8 | 90.8 49 637 13 100.0 { 90.6 | 90.8 77 1001

iterations of weight adaptations, HLSMITERS, is 200, 500,

and 500 for the character, the sonar, and the vowel data sets,
respectivelyy is zero in all cases;™ (= 7~) is 1.0e-9, 1.0e-
6, and 1.0e-6 for the character, the sonar, and the vowel data
sets, respectively; MAXCLUSTERS is 20 in all cases.

The results of the SPRM for all data sets are presented

in Table I. The results using the GSM and the GLSM are 3)

presented separately for each data set in Tables II-IV. For a
better visualization, we present results for the GSM and the

GLSM in Fig. 2. Fig. 3 shows how the classification accuracy 4)

varies as clusters are introduced one by one in the GSM.
For this illustration, we have chosen the results corresponding

to only the best case from each data set. Best case here

corresponds to the maximum classification accuracy on the
validation/test set. Based on these results (i.e., Tables I-IV

reaches a peak, and starts decreasing as can be seen from
Table Il and Fig. 2. This peaking phenomenon occurs
because of overfitting that arises out of an increase in the
number of free parameters resulting out of an increase in
PC'’s. However, tuning of the design parameter is very
simple.

From Fig. 2, we observe that the GLSM could improve
upon the GSM only marginally in terms of classification
accuracy.

The average time taken for convergence of the GSM
and the GLSM on the character data is approximately 15
min and 5 h, respectively, on a Pentium-based machine.
This is the total execution time, and includes a lot
of input—output. Hence, the GSM has a much better
potential at scalability than the GLSM.

and Figs. 2 and 3), the following observations can be madgn order to be able to compare the proposed algorithms with
1) On all data sets, both the GSM and the GLSM coulidhe other methods including the EALSM, we have summarized
achieve 100% accuracy on the training data as can the relevant results in Tables V and VI. Based on them, we
seen from Fig. 3 and Tables II-IV. Hence, we can corman infer the following.
clude that both the growing methods have the potential Classification AccuracyThe growing methods are slightly
to approximate any decision surface. Thus, one of thaferior to the EALSM on the sonar and the vowel data.

motivations has been achieved.

However, on the character data, they are as good as the

2) On the training sets, the classification accuracy increade&8LSM. The growing methods are better than the ALSM
with an increase in the number of PC’s per cluster fan the sonar and vowel data and are comparable to it on the
all data sets as can be seen from Tables II-IV. On tleharacter data. Also, they are comparable to the other methods
validation/test sets, as the number of PC's per clustir both the character and the sonar data, although they are
increases, the classification accuracy increases initiallgferior for the vowel data.
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TABLE 11l
CLAssIFICATION ResuLTs USING THE GSM AND THE GLSM oN THE SONAR DATA
GSM GLSM
Number | Accuracy (%) | Total number of | Number | Accuracy (%) | Total number of
of PCs | Trg | Test | clusters | PCs of PCs | Trg | Test | clusters | PCs
1 100.0 | 83.7 28 28 1 100.0 | 78.8 38 38
2 100.0 | 86.5 19 38 2 100.0 | 86.5 15 30
3 100.0 | 87.5 11 33 3 100.0 | 84.6 8 24
4 100.0 | 86.5 8 32 4 100.0 | 89.4 8 32
5 100.0 | 85.6 5 25 5 100.0 | 85.6 4 20
6 100.0 | 82.7 7 42 6 100.0 | 80.8 5 30
TABLE IV

CLASSIFICATION RESULTS UsING THE GSM AND THE GLSM oN THE VOwEL DATA

GSM GLSM
Number | Accuracy (%) | Total number of || Number | Accuracy (%) | Total number of
of PCs | Trg | Test | clusters | PCs of PCs | Trg { Test | clusters | PCs
1 98.3 38.5 138 138 1 70.8 35.1 199 199
2 100.0 | 40.0 92 184 2 94.1 43.1 118 236
3 100.0 | 34.6 63 189 3 99.8 | 34.6 68 204
4 100.0 1 33.1 40 160 4 98.7 | 33.3 68 272
5 100.0 | 27.7 35 175 5 99.6 | 31.8 64 320
6 100.0 | 25.1 47 282 6 100.0 | 26.8 34 204
100.00 I 100.00
® g0.00 47 = = 80,00 1
> ] - ]
O ] [¢] q
° ] o ]
3 B 3
S ] S T — Sonor  isbt ends ot 9 clusters
S 60,00 | " S s000] T o NS gy g
- A *>was sONQAr GLSM - B char trg ends at 39 clusters
ks 1 ngas: gng ks i char val ends at 39 clusters
= ] as&a% char GSM - B
8 5 osee+ char GLSM S E
N 4 A \‘: -_4’
' 40.00 H a0 Bo40.00 4 T e e
%] b ]
i) 3 o ]
(@] ] © ]
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5 9 13 o 20 40
Number of PCs Number of clusters introduced

Fig. 2. Number of PC’s versus classification accuracy for the GSM and tRég. 3. Number of clusters introduced versus classification accuracy for the
GLSM for the validation/test sets. GSM.

Classification Speedhll subspace methods are comparableith all the 13326 (their) training patterns. Thus, on large-
as only dot products are involved. They will be better than trdimensional problems, our methods can be much faster.
other methods as nonlinearity computation in the MLP’s, while Ease of DesignFrom the point of view of determining the
the RBF's and the GCS will turn out to be costlier. In casdesign parameters, the growing methods are superior to the
of the character data, the feature extraction is extremely tiBALSM as they have eliminated the necessity to determine
consuming. In case of the NNC, one will have to compatbe number of clusters in each class by trial-and-error. Since
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TABLE V
COMPARISON OF RESULTS OBTAINED BY DIFFERENT SUBSPACE METHODS

Data set | Classification Accuracy (%) Total | Reported in
method Trg | val | Test | PCs | Reference number
EALSM 100.0 | 91.9 [ 920 | 99 |[27]
SPRM 91.2 | 88.7 ('89.0 | 130 | This paper
CHAR ALSM 99.1 |90.5| 91.1 | 140 | This paper
GSM 100.0 | 90.8 | 90.8 | 847 | This paper
GLSM 100.0 | 90.6 | 90.8 | 1001 | This paper
EALSM 100.0 | - [933; 20 |[27]
SPRM 86.5 - | 837 | 10 | This paper
SONAR | ALSM 100.0 | - 85.6 | 12 | This paper
GSM 100.0 | - 87.5 | 33 | This paper
GLSM 100.0 | - 89.4 | 32 | This paper
EALSM 100.0 | - [4591( 99 |[27]
SPRM 64.0 - 43.3 | 184 | This paper
VOWEL | ALSM 76.1 - 37.2 | 33 | This paper
GSM 100.0 | - | 40.0 | 184 | This paper
GLSM 98.5 - | 41.6 | 380 | This paper
TABLE VI
OTHER KNOWN RESULTS FOR THE SELECTED DATA SETS
Data set | Classifier Features Accuracy (%) Reported in
or hidden units Test Reference number
NNC 40 Zernike 86.4 [24]
CHAR | NNC 100 topological and statistical 90.5 (6]
MLP 100 topological and statistical 90.4 [6]
SONAR | MLP 12 hidden units 90.4 [25]
MLP 88 hidden units 51.0 [20]
VOWEL | RBF 528 hidden units 53.0 [20]
GCS 154 hidden units 67.0 [20]

these methods exhibit a peaking behavior, tuning the desige could successfully eliminate the difficult issue of deciding
parameters is easy. how many clusters to have in each class. The degradation

Scalability From both time and space complexities, then classification accuracy is small. The growing methods,
growing methods are better than the EALSM, especially dike the EALSM, have the potential to approximate any
large-dimensional problems. The time taken on the charactiscision surface. The limitation of scalability of the EALSM
data by the GSM, the GLSM, and the EALSM is 15 mingould be overcome by these methods by the above strategy
5 h, and 2.5 h, [27] respectively, on the same machin@. addition to the neural-network implementation. We have
If simulations to extract PC’s is based on neural-netwodonducted experiments on three data sets including a 192
implementations, then the time will be even less for thdimensional large character data. We have shown that these
growing methods. methods are comparable to other classifiers like the MLP
and the NNC in terms of classification accuracy. In terms
of classification speed and ease and scalability of design,
they are better for large-dimensional problems. In addition

In this paper, we have proposed two growing subspat® these, the appropriate features are extracted automatically
algorithms. The design of these algorithms is inspired by tlie these methods. Thus, we feel that the subspace methods
constructive neural-network architectures. They could succebave the potential to become general purpose classifiers for
fully eliminate two problems associated with the EALSM. Byarge-dimensional problems where magnitude information is
introducing one cluster at a time and adapting it if necessangt crucial for discrimination.

VIl. SUMMARY AND CONCLUSION
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