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1 Introduction

Based on a lattice A of NV neural units i € A, Kohonen’s self-organizing feature
map algorithm (SOFM) is able to form a topology preserving map M4 of a data
manifold M C ®¢ [1]. This property can be employed in a variety of information
processing tasks, ranging from speech and image processing over robotics to data
reduction and knowledge processing [2], [3], [4], [5], [6], [7], [8], [9], [10]. To each
neural unit ¢ € A a reference or synaptic weight vector w; € R¢ is assigned. The
map My = (VU 4_p, Vpr4) of M formed by A is then defined by the mapping
Up— 4 from M to A and the inverse mapping ¥ _p from A to M. These two
mappings are determined by

Upas : M— A ; veMr—i*(v)e A
My = (1)

Vo : A— M ; {cA—w,eM

with ¢*(v) as the neural unit with its synaptic weight vector Wis(v) closest to v,
i.e., with

iy = o] < llws vl Vi a (2)

Starting from a fixed lattice structure A, Kohonen'’s self-organizing feature map
algorithm distributes the synaptic weight vectors w; such, that the map M4 of

M formed by A is as topology preserving as possible. The reference vectors w;
are adapted in a learning step according to

Aw; = €hiei (v — w;) forall i€ A, (3)

where v € M is the presented stimulus vector, i* (v) is defined again by eq.(2)
and the neighborhood function

hies = exp (_ﬂ——”) (4)
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determines the neighborhood range in A by the choice of the radius o. ||-||,
denotes the Euclidean distance in A. ¢ is the learning parameter.

To what degree the topology is preserved depends on the choice of the lattice
structure A. Depending on the form of the manifold M, a one-dimensional, two-
dimensional, etc. lattice has to be chosen to obtain the best result. In most
applications, however, the form of the manifold M is not known and, hence, it
is not clear a priori which lattice structure one should choose. One has to try
different lattice structures and has to determine somehow which lattice yields the
highest degree of topology preservation.

Various qualitative and quantitative methods for characterizing the degree of
topology preservation have been proposed [11], [12], [13], [14], [15). However, non
of these approaches take the form of the data manifold into the measurement and,
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Abstract

The neighborhood preserving property of self-organizing feature maps
like the Kohonen map is a useful quality of this algorithm. However, if
a dimensional conflict arises this property is lost. Various qualitative and
quantitative measures are known for determining the degree of topology
preservation. They are based on using the locations of the synaptic weight
vectors. This point of view may fail in case of non-linear data manifolds.
To overcome this problem, in this paper we present an approach which uses
the induced receptive fields for determining the degree of topology preserva-
tion. We first introduce a precise definition of what topology preservation
means and then give a tool for measuring it, which we call the topographic
function.The topographic function vanishes if and only if the map is topol-

ogy preserving. We demonstrate the power of this tool for various examples
of data manifolds. '



is captured?

A reasonable definition for neighborhood of reference vectors w;, w; on M was
given in [16], [17] based on the masked Voronoi polyhedra of w; and w;. Two
synaptic weight vectors w;, w; are adjacent on M if and only if their receptive
fields on M, determined by the masked Voronoi polyhedra R; = 17,-, R; =V, with

Vi={ve M|llv—wil S Jo-wll VjeA} (5)

are adjacent, i.e., if and only if R; N R; # 0. We remark that the definition
of adjacency by the non-vanishing intersections makes sense, because the V; are
defined as closed sets.

Two vertices ¢ = (i1,...,%a,), § = (j1,-+-,74,) of a rectangular
d4—dimensional lattice are adjacent in A if and only if they are nearest neigh-
bors in the lattice A. A proper definition of the two neighborhood preservations,
however, requires us to take into account both the nearest lattice neighbors based
on the maximum-norm sof d

-l 2/ i (-] (6)
and the nearest lattice neighbors based on the Euclidean norm ||.||, if we consider
the positions of the neural units in the lattice as usual vectors. This is illustrated
in Fig. (7), which shows a two-dimensional rectangular lattice representing a
square. To be able to discern the adjacency of reference vectors w; their receptive
fields, i.e., their masked Voronoi polygons V;, are depicted. Of course, the SOFM
in Fig. (7) is topology preserving. Obviously, this requires vertices which are

adjacent in the lattice according to the Euclidean norm ||.||g or the summation-
norm

Il z ] (™)

to be assigned to neighboring locations w;. On the other hand, adjacent locations
w; have to belong to adjacent vertices. However, they do not necessarily have
to belong to vertices which are adjacent according to the Euclidean norm ||.||z,
which would be too strict, but only to vertices which are adjacent according to
the maximum-norm ||.||max. This leads us to the following definition of topology
preservation of SOFMs with rectangular lattices:

Definition 2.1 Let A be a d4-dimensional rectangular lattice and M be a data
manifold M C R?¢. A map My = (Va_pr, Y 4) of M is topology preserving if
both the mapping Upr_ 4 from M to A and the inverse mapping W 4p from A
to M is neighborhood preserving.

1. The mapping Wpr_, 4 is neighborhood preserving if and only if locations w;,
w; which are adjacent on M belong to vertices i, j which are adjacent in A
according to the maximum-norm ||.||max in A.



hence, can provide correct results only for linear or nearly linear submanifolds
M C R4, If the manifold is nonlinear, as it is the case in many practical applica-
tions of SOFMs, non of these approaches can distinguish a correct folding due to
the folded non-linear data manifold from a folding due to a topological mismatch
between M and A. Particularly when using the SOFM for non-linear principle
component analysis (PCA) one has to have a means to distinguish between these
two cases. In this paper we give a new approach for quantifying topology preser-
vation which explicitly takes the structure of the data manifold into account. The
approach, which employs what we call the topographic function, can be applied
to linear and non-linear data manifolds M and, further, allows us to quantify the
range of the folds.

In Section 2 we introduce a mathematical definition of topology preservation
for rectangular lattices A, which in Section 3 leads to the so-called topographic
function as a measure for the degree of topology preservation of a map M4 of M.
It is shown how the topographic function can be evaluated by a simple mechanism
based on the “competitive Hebbian rule”, which was introduced in [16], [17]. In
Section 4 we demonstrate via examples, ranging from the logistic map, over
speech data to satellite images, the potential of the topographic function not
only as a measure for the degree of topology preservation but as a general means
for obtaining information about the dimensionality and structure of the data
manifold M. The results are compared with the results provided by the so-called
topographic product, which was proposed by [11] as an alternative method for
measuring the degree of topology preservation. In the last section, we show how
the mathematical definition of topology preservation for rectangular lattices can
be generalized to arbitrary lattice structures.

2 A Definition of Topology Preservation for
Rectangular Lattices

We want to call a map My = (,_,y, Wp—.a) of M “topology preserving”, if
both the mapping Wps_. 4 from M to A as well as the inverse mapping ¥4 ar
from A to M is neighborhood preserving. Hence, to determine whether a SOFM
is topology preserving we have to measure these two neighborhood preservations.
To be able to measure these two neighborhood preservations we first have to
define them. Per definition we regard the mapping ¥ps_, 4 from M to A as being
neighborhood preserving if reference vectors w;, w; which are adjacent on M
belong to vertices ¢, j, which are neighbors in A. On the other hand, the inverse
mapping ¥ 4_.» from A to M is neighborhood preserving if adjacent vertices ¢, j
are mapped onto locations w;, w; which are neighbors on M. How can we define
neighborhood of vertices 1, j in A and neighborhood of reference vectors w;, w; on
M in a way that the intuitive understanding of topology preservation of a SOFM



is then defined by
N ieafi(k) k>0
OM (k)L oM (1) + M (1) k=0 (10)

& Ljea fi (k) k<0

We obtain ®¥ = 0 and, particularly, ¥ (0) = 0 if and only if the SOFM is
perfectly topology preserving.

The largest k* > 0 for which &% (k+) # 0 holds yields the range of the largest
fold if the effective dimension of the data manifold M is larger then the dimension
da of the lattice A. This is depicted in Fig.3 and Fig.4. Fig.3 shows a map of
a squared data manifold onto a chain of 100 neural units, together with their
receptive fields. The folds are involved all over the whole chain and, hence, the
topographic function vanishes only for k-values larger then k* = 98, as seen in
Fig.4. On the other hand, the smallest k= < 0 for which % (k) # 0 holds yields
the range of the largest fold if the effective dimension of the data manifold M is
smaller than the dimension d4 of the lattice A. In this way the values k* and
k~ give information about the degree of the dimensional conflict. Small values of
k* and k- indicate that there are only local dimensional conflicts,whereas large
values indicate the global character of the dimensional conflict.

3.2 Evaluating the Topographic Function &%

Calculating ® requires to determine the induced Delaunay triangulation Dpy.
A way to determine Djs has been proposed in [16], [17]. Let C be a connectivity
matrix which determines connections between units ¢,j € A (in addition to the
connectivity matrix defined by the fixed lattice structure). Initially, the elements
C;; € {0,1} of C are set to zero. It can be shown that simply by sequentially
presenting input vectors v € M and each time connecting those two units i*, 5*
(setting C;sj» = 1) the reference vectors w;., w;j« of which are closest and second
closest to v, the connectivity matrix C converges to

tl_ifgCg=1 & RNR;#0 (11)
[16], [17]. After a sufficient number of input vectors v have been presented, the
connectivity matrix C connects units and only units ¢, j the receptive fields
Ri=V, R; = f/_, of which are adjacent and, hence, defines the induced Delau-
nay triangulation Dp. With this algorithm we obtain the following scheme for
determining the graph structure C of the Delaunay triangulation:

1. present an input vector v € M



2. The mapping W sy is neighborhood preserving if and only if vertices ,
j which are adjacent in A according to the Euclidean norm ||.||g or the
summation-norm ||-||; in A are assigned to neighboring locations w;, w; €

M.

These definitions of neighborhood preservation are valid for the special but most
widespread case of SOFMs based on rectangular lattices. How they can be gen-
eralized to arbitrary lattices is shown in the Appendix.

3 The Topographic Function ®¥
3.1 Definition of the Topographic Function &

Let Abea Ny x Ny x...x Ny 4 rectangular lattice of dimension d4. The lattice
consists of N = Ny x Ny x ... x Ny , Deural units, and each unit ¢ is indicated
by ¢ = (i1,...,44,). To each i a reference vector is assigned which maps ¢ onto
a location w; on the given data manifold M. As has been outlined in [16], [17],
the masked Voronoi polyhedra in eq. (5) define the so-called induced Delaunay
triangulation Dps of the set of w;. The induced Delaunay triangulation is the
graph which connects those and only those w;, w; which have adjacent masked
Voronoi polyhedra V;, 17,-, l.e., which have adjacent receptive fields R;, R; on M.
The induced Delaunay triangulation Dy defines a distance metric ||.||p,, between
the w;. The distance

dp,y (1,5) 2 flwi — wiliny, 8)

between two reference vectors is then determined by their shortest distance within
the graph Dys. Hence, two reference vectors w;, w; are adjacent on M according
to our definition in Section 2 if and only if they are nearest neighbors in Dyy,
ie., if and only if dp,, (4,j) = 1. We can now define the topographic function &N
which is able to measure the topology preservation of a SOFM according to our
definition. For each neural unit ¢ we define

FR)E 0| = fllme > k5 dpy (4,5) = 1}
9)
FROE#G li-dllg=1; doy, (i,5) > k}

with k = 1,...,N — 1. #{-} denotes the cardinality of a set. Looking at
a neural unit ¢, f; (k) measures the neighborhood preservation of ¥ ., and
fi (—k) measures the neighborhood preservation of W4, , as they have been
defined in Section 2. The topographic function of the map My = (¥ 4_pr, Upre, A)



For instance, if we map a squared input space onto a lattice of 16 x 16 neural
units, we obtain P = 0.0005. We applied both the topographic function &
and the topographic product P to various examples of linear and nonlinear data
manifolds. In the linear cases both approaches gave the same result. In the
nonlinear cases, however, only the topographic function provided correct results.
If a real dimensional conflict occurs, i.e., the map “folds’ itself into the input
space, the topographic function indicates this situation. Further, it is even able
to measure the scale of existing folds. As an example we consider again the map
from a squared input space onto a chain of 100 neural units. In this case the
chain folds itself into the input space like a Peano curve, as shown in Fig.3. The
topographic function reveals the various length scales of the folds. The highest
k-value k* for which ®% (k) # 0 indicates the longest range. For our example
we find k* = 98 (see Fig.4), i.e., the range includes nearly the whole chain. The
topographic product yields P = —0.107 which also indicates the dimensional
conflict.

To demonstrate the difference between the topographic product and the to-
pographic function in the case of non-linear data manifolds we first investigate
the logistic map

Tap1 = TuA(l — ). (13)

The states (zn, Zn41) of the system form a nearly linear submanifold M, for small
values of A, but a nonlinear one otherwise. For various cases of A we trained a
chain of 64 neural units to represent M,. We computed both the topographic
product and the topographic function and obtained in all cases % = 0. The
topographic product P, however, decreases with increasing A

A = 050: P = 0.0009
A = 300: P = —-0.002 (14)
A = 395: P = —0.015.

The negative values of P indicate an increasing dimensional conflict (see eq.( 12)),
the submanifold, however, is still one-dimensional; i.e., there is no dimensional
conflict. As second example we take the twice iterated logistic map, i.e.,

Tng2 = A2, (1 — 2,) (1 — Az, (1-2z,)). (15)

The submanifold is now generated by the states (z,,Zn42) of the system. For
A =3.00 and A = 3.95 we obtain P = —0.007 and P = —0.06, respectively. The
topographic function vanishes in both cases.

Now we investigate a more realistic example. The satellites of LANDSAT-
TM type produce pictures of the earth in 7 different spectral bands. The reso-
lution is 30m x 30m for the bands 1-5 and band 7. Band 6 has a resolution of



2. determine the nearest reference vector w;. and the second nearest reference
vector w;.

3. connect the units ¢*, §*, i.e., set Cieju 1= 1

4. gotostep 1.

With this connectivity matrix C we are able to determine the distances dp,, (3, 5)

between the reference vectors [18], which then allows us to calculate ¥ according
to (9) and (10).

4 Applications of the Topographic Function
and Comparison with the Topographic
Product

4.1 Comparison of the Topographic Function with the
Topographic Product for Various Examples

Kohonen'’s algorithm defines a self-organizing feature map (SOFM) from a data
manifold M embedded in a d-dimensional input space R¢ onto a d4-dimensional
lattice A of neural units. A method for quantifying the topology preservation
of a SOFM is the topographic product P which was introduced by Bauer and
Pawelzik [11]. It measures the neighborhood preservation of the mapping from
the neural units 7 in A onto their reference vectors w;. Thereby however, the
topographic product does not take into account the shape of M, but considers
only the neighborhood relations of the reference vectors within the embedding
space V. Hence, an approach based on the topographic product is not able to
differentiate between correct foldings arising from a nonlinear data manifold M
and incorrect foldings which may result from a dimensional conflict between M
and A or an incorrect formation of the map (topological defects, twists, kinks).
An example which illustrates the problem is shown in Fig.l and Fig. 2. In both
the linear and nonlinear case of M the topographic product has the same value
indicating a loss of topology preservation. However, in the nonlinear case the
map has been formed correctly.

In the linear case we get the following values for P, depending on whether d4
is smaller, equal to or larger then d [11]

P<0 for dya<d
P=0 for dy=d (12)

P>0 for dA>d.



4.2 Principal Component Analysis and the Topographic
Function

The advantage of the SOFMs is that they can represent linear and non-linear data
manifolds in the sense of principle component analysis (PCA). In this section we
want to use the topographic function as a tool to control the evaluation of a
SOFM for PCA of a possibly non-linear data manifold M. We discuss the case of
a linear data manifold M C R¢ with the probability density p(M) and M C M
as a nonlinear submanifold with 1 > p(v) > 0if v € M and 0 < p(v) K 1 if
veM \M . The map folds itself into M because of the higher probability density
in M. Furthermore, we assume that the choice of the structure (connectivity

graph C#) of the used lattice A is in agreement with the structure of M. The
task is to minimize the description error

p= {Ifg}\}( “U — Wix(v)

(16)

with ¢*(v) as defined in eq.(2) under the condition that the map M, =
(Ya—M, Yrp—a) of M formed by A as introduced in eq.(1) is topology preserving.
If the topographic function indicates a loss of the topology preserving property
during the learning process, which is coupled with the annealing algorith. m for
the parameter o of the neighborhood function in eq.(4), one have to increase the
value of o again.

The map folds itself into M because of the higher probability density in M.
However, if we compute ®¥ as defined above it will indicate the folds as topo-
logical defects although in the sense of a PCA the map is correctly formed. We
can overcome this problem by introducing the induced receptive fields of high
probability )

RI=R;NM (17)
of neuron j. Now the idea is the same as above. We determine the non-vanishing
intersections of the R;-‘ to compute

oM — ¢y|M. (18)

In practice we compute the connectivity matrix C;; with respect to the R;. In
addition to the usual algorithm we introduce a suitable chosen maximal age amax
of a connection C;;. For instance, we choose @max = N/Pmin Where N is the
number of neural units and pmin is the minimum of p(v) for all v € M. In every
time step the age a;+; of all existing connections of the best matching unit ¢* is
increased. The age a;.;» of the new connection C;.;+ of the two best matching
units is set to zero. Connections C;.; with an age higher than the maximal
age amax Will be removed. This idea was first used in [16], [17] to compute
the Delaunay triangulation of a ”"Neural-Gas-Network” in a parallel step during

the evaluation of the net. With this algorithm we get the following scheme for
determining ®¥:
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60m x 60m only. The spectral bands represent useful domains of the whole spec-
trum in order to detect and discriminate vegetation, water, rock formations and
cultural features {19], [20]. The spectral information associated with each pixel
of a LANDSAT scene is represented by a vector v € R4 with d = 7, the number
of spectral bands. Because of the rougher resolution of band 6 this channel is
often dropped. Hence, the LANDSAT data may be represented as clouds of data
points in a 6-dimensional space. The aim of any classification algorithm is to
subdivide this data space into subsets of data points which belong to a certain
category corresponding to a specific feature like wood, industrial region, and so
on, each feature being specified by a certain prototype data vector. An approach
with self-organizing feature maps has been successfully applied for instance in
meteorology (cloud detection) [21] and earth surface clustering of Kuwait [22].

One way to get good results for visualization is to use a SOFM dimension
da = 3. Then we are able to interprete the positions of the neurons in the
three-dimensional neuron lattice A as a vector ¢ = (r,g,b) in the color space
C, where r, g, b are the intensity of the colors red, green and blue. This assigns
colors to categories (winner neurons) so that we end up immediately with the
pseudo color version of the original picture for visual interpretation [23]. How-
ever, since we are mapping the data clouds from a 6-dimensional input space onto
a three-dimensional color space there may arise dimensional conflicts and the vi-
sual interpretation may fail. Therefore, we tested lattices with the dimensions
dy = 2,3 with 16 x 16 and 7 X 6 x 6 neural units, respectively, to see whether
they are topology preserving according to both the topographic product and the
topographic function. In the three-dimensional case both the topographic prod-
uct and the topographic function indicate mismatches. The topographic product
yields P = 0.09. The topographic function is plotted in Fig.5 (points as <).
In case of the two-dimensional lattice of neural units we get for the topographic
product P = 0.002, which suggests to prefer this configuration. However, the
topographic function still indicates mismatches, as shown in Fig. 5 (points as *).
This demonstrates that a visual interpretation of the results without a detailed
consideration of the topology preserving property of the SOFM is misleading.

Finally, we discuss, again in comparison to the topographic product, the ap-
plication of our approach to a set of speech data from the DPI-database of the III.
Physikalisches Institut, Universitat Gottingen, Germany. The data preprocessing
is described in [24]. Here we remark only that the 4500 feature vectors represent
a data submanifold lying in a 19-dimensional input space. We applied a two- and
a three-dimensional SOFM to the data manifold, because the topographic prod-
uct in the two-dimensional case is smaller than zero and in the three-dimensional
case larger than zero. The topographic function for both cases is shown in Fig.6.
In agreement with [11] we obtain that in both cases the topology preservation of
the map is not perfect. Further, the topographic function indicates that it is not
clear which lattice should be preferred.



Definition 5.1 Suppose A to be a network of N neurons which are situated
at points i = (i1,...,i5,) € R with reference or synaptic weight vectors
w; € M C R4 The connectivity graph C4 of A defines the structure of A.
Let furthermore C4 (i) denote C4 where the neural unit i was taken as root. A
(discrete) topology T} (1) is induced by the graph metric in CA (). TF (@) is
said to be the strong neighborhood topology in A with respect to ¢, and
(A, T+ (z)) is a topological space.

Definition 5.2 Consider for the moment A to be a set of points in R, LetV
be the Voronoi diagram of R44 with respect to A and Dy be its dual, the Delaunay
graph. Let furthermore D, (¢) denote Dy where the neural unit i was taken as
root. D4 (i) is equipped with the graph metric that in turn induces the (discrete)
topology T, (i), in V and, hence, also in A. T4 () is said to be the weak
neighborhood topology in A with respect to ¢, and (A, ' (z)) is a further
topological space defined on the set A.

Remark 5.1 In the case of a rectangular lattice the weak neighborhood topology
T4 (2) is weaker then the strong neighborhood topology T} (i) also in the sense of
mathematical topology (27], [28].

In the next step we introduce a topology in the set of the synaptic weight vec-
tors on the basis of their receptive fields, which again allows us to describe the
neighborhood relationships between two vectors,

Definition 5.3 Let U, ) : A — MA C M C R be a map attributing to each
neuron i a specific vector w; € M4 with MA = {w,- eERt|ie A}. Furthermore,
let Vi be the induced Voronoi diagram of M with respect to MA. Let Gm be
the dual Delaunay graph of V. Let furthermore Gpr (i) denote Gpr where the
neural unit ¢ was taken as root. A (discrete) topology T+ (i) with respect to i €
A is induced by the graph metric in Gm(1). Gm (i) is equipped with the graph
metric that in turn induces the local (discrete) topology Tyra (i) in Gar (?) and,
hence, also in M“. Tpa (i) is said to be the ¥ 4.m—induced neighborhood
topology with respect to i in M4 and (MA,TMA (z)) is a topological space.

Now topology preservation of a map can be expressed by the following definition:

Definition 5.4 The map M, = (Uar, Upra) is said to be topology
preserving if both Uy, : (MA,TMA (z)) e (A, 7 (z)) and U,y

(A, T (z)) — (MA,TMA (z)) are continuous maps of the respective topologi-
cal spaces for all neural units i € A where Urraa :REDM — A is defined by

t(v) = arg (mineq |jv — wi|) . Irrespective of the different topologies Wpy_. 4 is
the inverse mapping of U4,y

12



1. present an input vector v € M

2. determine the nearest reference vector w;« and the second nearest reference

vector wj.
3. increase the age a;.; for all j for which Ci»; =1 holds
4. connect the units 7, j*, i.e., set C;ojo := 1 and @ejo := 0
3. set Ciej:= 0 if @jo; > amax
6. gotostep 1.

Using this connectivity matrix C we are able to determine the distances |lw; —

w;j||p,, between the reference vectors [18], which then allows us to calculate ®¥
according to (9) and (10).

5 A Definition of Topology Preservation for
Arbitrary Lattices

In this section we give a definition of Topology Preservation for Arbitrary Lattices.
The basic idea is to describe the property of topology preservation in terms of
the mathematical topology. The property of topology preservation of a map may
then be based on the continuity of this map between topological spaces.

The induced Voronoi diagram Vi of a subset M C R¢ and its dual, the
Delaunay graph (Voronoi graph) Dy with respect to a set S = {wy,...,wn} of
points w; € M C R¢, is given by the masked Voronoi polyhedra

Vis{eeM|lle—will <|le—w;| j=1...N, j#i} (19)

as shown in [16], [17]. We remark that the Voronoi polyhedra are closed sets.
The cells form a complete partitioning of M in the sense that M = UY,V;. The
induced Voronoi diagram Vjs uniquely corresponds to its Delaunay graph Dy
[25]. Two Voronoi cells V;, V are connected in Dy if and only if the intersection
of it is non-vanishing, i.e., V NV; # 0 [25], [26]. Now we can define in Dy a
graph metric as the Immmal path length in the graph. In the general case the
Voronoi diagram V of R¢ with respect to S is given by the Voronoi cells defined
by

Vi={ee®|fo-w|<le-wl j=1...N, j#i}  (20)

Using the concepts introduced above we are now able to define in general terms

what topology preservation for arbitrary lattices A with the connectivity graph
C4 means.

By analogy to section 3.1 we define two kinds of neighborhood in the lattice
A, but now as abstract topological definitions:

11



Remark 5.2 We obtain ®% = 0 and, particularly, ®¥ (0) = 0 if and only
if the SOFM is perfectly topology preserving. The largest kt > 0 for which
M (k) # 0 holds yields the range of the largest fold if the effective dimension
of the data manifold M is larger than the dimension da of the lattice A. The
smallest k= < 0 for which ®X (k) # 0 holds yields the range of the largest fold
if the effective dimension of the data manifold M is smaller then the dimension
da of the lattice A. Small values of k* and k~ indicate that there are only local
conflicts, whereas large values indicate a global dimensional conflict.

Kohonen gave a definition for of what it means for a topographic map to be
ordered, which finally should be discussed in the light of the definition studied in

this paper. The following definition, only valid for the one-dimensional case was
introduced in [29):

Definition 5.5 We consider a chain of N neural units i with weight vectors
w; and receptive fields R; = V; as defined in 5. Let n; (v) be an activity func-
tion of the ith neuron with respect to a stimuli vector v € M C R4, for in-
stance the negative distance — ||w; — v|| or the inverse distance { Let

X = {:L'j €MC R |j=1,...,n} be a set of points, such that z, Bl zg B!

Rel 1 e .
T3 0 ... s Ty and for all neural units ¢ exists a z; € X for which z; € R;

holds. The "' is an arbitrary suitably chosen relation, not necessarily transi-

tive. The system is said to implement a one-dimensional ordered mapping if for
1:1>i2>i3>...

1
[lwi=vl|

75, (.’L‘l) = maX=1,.,N7; (.’B1)

T (T2) = maxi=y,. 7 (22)

i, (1223) = maXi=i,.,N (:113) (26)
ete.

holds.

We have given in this paper an explicit order relation %' based on an under-
lying topology, in contrast to the requirement of the existence of such a relation.
The proposed straight—forward generalization of definition (26) to higher dimen-
sions is (as pointed out in [30]) by no means trivial. In fact, one needs to make

the relation &' more explicit in order to find whether definition (26) is applicable
to higher-dimension, too. In this sense we gave the justification for Kohonen’s
early and not yet otherwisely worked out frame work, although the starting point
of our investigation was the desire to improve the methods proposed in [11].
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We have immediately the following two corollaries for the most important cases
of rectangular and hexagonal (triangular) lattices:

Corollary 5.1 In the case of a rectangular d4-dimensional lattice A of neurons
the strong topology is induced by the Euclidean norm ||-||g in A or the summation-

norm ||-||s = ?21 l()Jl’ and the weak topology is induced by the mazimum-norm
Nl max = ma.x‘;-lg1 I()JI The systems of open sets Sz (1) and Smax () defining the
topologies T,f (i) = T} (i) and T (i) = T (i) are determined by
Se()={stlse={l€ Alli-llly=k2=1}} (21)
and
Smax (1) = {sk | sk = {1 € A|[li = Uy = & 2 1}}, (22)

respectively.

Corollary 5.2 In the special case of A being a hezagonal (triangular) lattice the
weak and strong topology coincide. Hence, the definition of topology preservation
relies on a single topology in the net which corresponds to the strong neighborhood
topology.

The conclusion in corollary 5.2 is in agreement with the definition of neighborhood
given in [17]. By means of the definitions 5.1, 5.2, 5.3 and 5.4 we can now
generalize the definition of the topographic function given in the equations (9)
and (10). For each unit i we define

k)L #{5 | drogy (hd) > k5 dr,, 0 (y5) =1}

(23)
F(=R)E #{i | dppy(id) =15 dg, a0 G5) > k}
with k=1,...,N — 1. #{-} denotes the cardinality of the set and
. . def
dr(y (4,5) = |lwi — willrogyy - (24)

is a distance measure based on the topology 7°(i). Looking at a neural unit
i, fi(k) with £ > 0 determines the continuity of ¥ps_,4 and f; (k) with £ < 0
determines the continuity of W,_, ) as defined above. The topographic function
of the neural lattice A with respect to the input manifold M is then in analogy
to definition (10), again defined as

¥ lijeafi(k) k>0
M (k)L L M (1) + M (~1) k=0 (25)

v Zjeafi(k) k<O

in analogy to section 3.1 we remark:
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Figure 2: Example of a nonlinear ( M C V) data manifold together with the
hypothetical positions of the images of the neural units. The induced receptive
fields are drawn by dashed lines.
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Figure 1: Example of a linear ( M = V') data manifold together with the hypo-
thetical positions of the images of the neural units.
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Figure 4: The topographic function of a map of a squared input space onto a

chain of 100 neural units.
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Figure 3: Plot of a map of a squared input space onto a chain of 100 neural units,
the receptive fields of the units are shown.
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Figure 6: The topographic functions obtained from a map of a set of speech
data onto a squared lattice of 16 x 16 neural units (points as %) and onto a
three-dimensional lattice of 7 x 6 x 6 neural units (points as <).
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Figure 5: The topographic functions obtained from a map of a 6-dimensional

LANDSAT TM satellite image onto a squared lattice of 16 x 16 neural units

) and onto a three-dimensional lattice of 7 x 6 x 6 neural units (points

(points as *

as O).
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Figure T: The receptive fields of a squared lattice of neural units.
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Figure 7: The receptive fields of a squared lattice of neural units.
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