IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 3, MAY 1997 519

An lterative Pruning Algorithm for
Feedforward Neural Networks

Giovanna Castellano, Anna Maria FanelNiember, IEEE,and Marcello PelilloMember, IEEE

Abstract—The problem of determining the proper size of an embedded in small trained networks is presumably easier to
artificial neural network is recognized to be crucial, especially interpret and thus the extraction of simple rules can hopefully
for its practical implications in such important issues as learning be facilitated [14]. Lastly, from an implementation standpoint,

and generalization. One popular approach tackling this prob- Il network | ire limited . hvsical
lem is commonly known as pruning and consists of training a SMall NEWOrKS only require imited resources in any physica

larger than necessary network and then removing unnecessary COmputational environment.
weights/nodes. In this paper, a new pruning method is developed, To solve the problem of choosing the right size network,

based on the idea of iteratively eliminating units and adjusting the two different incremental approaches are often pursued (e.g.,
remaining weights in such a way that the network performance [1], [15], [16] and references therein). The first starts with

does not worsen over the entire training set. The pruning problem L . .
is formulated in terms of solving a system of linear equations, and a small initial network and gradually adds new hidden units

a very efficient conjugate gradient algorithm is used for solving ©OF layers until learning takes place. Well-known examples
it, in the least-squares sense. The algorithm also provides a simpleof such growing algorithms are cascade correlation [17] and

criterion for choosing the units to be removed, which has proved others [18]-[20]. The second, referred to @sining starts
to work well in practice. The refsults obtained over various test with a large network and excises unnecessary weights and/or
problems demonstrate the effectiveness of the proposed approach. . . - L
units. This approach combines the advantages of training large
_Index Terms—Feedforward neural networks, generalization, networks (i.e., learning speed and avoidance of local minima)
hidden neurons, iterative methods, least-squares methods, net-gnq those of running small ones (i.e., improved generalization)
work pruning, pattern recognition, structure simplification. [21]. However it requires advance knowledge of what size
is “large” for the problem at hand, but this is not a serious
I. INTRODUCTION concern as upper bounds on the number of hidden units

ESPITE many advances, for neural networks to find gehave been established [22]. Among prur_1ing algorithms _there
Deral applicability in real-world problems, several queére methods that reduce the excess weights/nodes during the

tions must still be answered. One such open question involfEANING process, such as penalty term methods [23]-{25] and
determining the most appropriate network size for solving t4€ 9ain competition technique [26], and methods in which the
specific task. The network designer’s dilemma stems from tH&ining and pruning processes are carried out in completely
fact that both large and small networks exhibit a number gfParate phaséghe latter approach is exemplified by Sietsma

advantages. When a network has too many free parame@PQ Dow’s two-stage procedure [28], [29], Mozer and Smolen-
(i.e., weights and/or units) not only is learning fast [2]_[5]skysskeleto_mzaﬂon technique [32], the op_tlmal brain damage
but local minima are more easily avoided [6]. In particular(,OBD) algorithm [30] and the optimal brain surgeon (OBS)

a theoretical study [7] has shown that when the number bf- These pgst-trammg pruning procedures do notllnterfere
hidden units equals the number of training examples (mindth the leaming process [3], but they usually require some
one), the backpropagation error surface is guaranteed to h5g&ining to mantain the performance of the original network.

no local minima. Large networks can also form as complex N this paper, a novel postiraining pruning method for arbi-

decision regions as the problem requires [8] and should exhij"y feedforward networks is proposed, which aims to select
a certain degree of fault tolerance under damage conditidh€ OPtimal size by gradually reducing a large trained network.
(however, this appears not to be as obvious as might intuitively’€ Method is based on the simple idea of iteratively removing
have been expected [9]). On the other hand, both theory [fH#iden units and then adjusting the remaining weights with a
and experience [11]-[13] show that networks with few fredeW to ma|nta|n|ng the (_)r|g|nal input—output behavior. ThIS is

parameters exhibit a better generalization performance, dtfemMPplished by imposing that, at each step, the net input of
this is explained by recalling the analogy between neurihe units fed by the unit being removed be approximately the

network learning and curve fitting. Moreover, knowledg&®Me as the previous one, across the entire training set. This
amounts to defining a system of linear equations that we solve
lgggnusgfiopt {egeivgdl'\é'g%’ 16, 1994; revised February 13, 1995, January §. the least-squares sense using an efficient preconditioned
, and October 8, . . .
G. Castellano is with the Istituto di Elaborazione dei Segnali e delféonjygate gratﬁent pro_cedure. Althoth the apprPaCh does
Immagini, Consiglio Nazionale delle Ricerche, 70126 Bari, Italy. not itself provide a criterion for choosing the units to be
A. M. Fanelli is with the Dipartimento di Informatica, Universita’ di Bari,
70126 Barri, Italy.
M. Pelillo is with the Dipartimento di Matematica Applicata e Informatica, 1This idea has been proved to be quite effective in the analogous problem
Universita’ “Ca’ Foscari” di Venezia, 30173 Venezia Mestre, Italy. of determining the proper dimension of a classification tree, thereby improving
Publisher Item Identifier S 1045-9227(97)01755-4. its generalization performance [27].

1045-9227/97$10.001 1997 IEEE

520 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 3, MAY 1997

removed, a computationally simple rule has been derivedits (or neurons),E C V x V is a set of connections,
directly from the particular class of least-squares procedurasd w: £ — R is a function that assigns a real-valued
employed, and has proved to work well in practice. Besidegightw(i, j) to each connectio(i, j) € E; positive weights
sharing the advantages of posttraining pruning procedures, toerespond to excitatory connections and negative weights to
one proposed here exhibits a number of additional featur@shibitory connections. In the following, the more familiar
First, in contrast with many existing algorithms (e.g., [28]notationw;; will be used instead ofv (i, j).

[29], [34], [35]), ours does not make use of any working Each unit; € V' is associated with its owprojective field
parameter and this frees the designer from a lengthy, problem- . o

dependent tuning phase. Second, the proposed algorithm does Pi=1{jeV:(i,j) € B} (@
not require any retraining phase after pruning, like the OBghich represents the set of units that are fed by énénd
procedure [31], but it requires far less computational effofs own receptive field

(see Section IlI-D for details). Finally, although we shall focus

primarily on hidden unit removal in feedforward networks, the R ={jeV:(j,i)e L} 2

approach presented_ here is quite general and can be apg}\ifﬁgch is the set of units that feed unitin the special case of
to networks of arbitrary topology [36] as well as to thefayered fully connected networks, the receptive and projective

elimination of connections. fields of a given unit are simply its preceding and succeeding
Some algorithms bear similarities with the proposed Ong,

ers, if any, respectively. In the following, we will denote the
First, the basic idea of removing redundant hidden units a@grdinality 3?}1 bsp‘ andythe cardinality gR by ;. The set

properly adjusting remaining weights was proposed by Siets@fiunits V' is divided into three subsets: the set of input units

and Dow [28], [29] who heuristically derived a two-stagq/b having an empty receptive field, the set of output ubis

pruning procedure for layered networks. While their primarp{aving an empty projective field, and the set of hidden units

goal was to devise specific rules for locating redundant unitﬁ{_ As usual, it is assumed that a particular input unit (here

we f.OGUS mginly_on directly solving a linear SyStem \{vi_tho bbeled by zero) works as a bias unit which is permanently
explicitly taking into account the redundancy of individua, lamped at+1 and is connected to any noninput unit. Fig. 1
units. Furthermore, as described in Section 1V, their stage-ogje

; , X . ows an example of feedforward network architecture and
pruning rules are but special consistency conditions for the SYj

| d th . ioh d Istrates the notations introduced above.
tem we solve, and the remaining weights update correspondspg neqyork operates as follows. Input units receive from

to a particular solution of that system. Second, the Froben% external environment an activity pattern which is propa-

app_roximatio_n r_eduction method (FARM) [37] selects th_e SGhted to all units in the corresponding projective fields. Every
of hidden units in a layered network so as to preserve, like ninput uniti € Vi U Vo, in turn, receives from its own

our approach, the original training-set behavior. Ouralgorithrpéce tive fieldR: a net input given b

however, differ significantly as regards how both the units P ’ put g y

to be removed are selected and the weights of the reduced & = Z Wil 3
networks are derived. Further, for FARM to be applicable, JER;

itrTeag\[/);:(]:zl ?‘:}Eb;nogeh'ggﬁ?e dur(])ILSt gr;/uzt f:mgﬁzztri?r'g?ﬁhere y; represents the output value of ugitand sends to
expensive singular value decomposition (SVD) procedure [Sé) projective fieldF; an output signal equal to

[39], but it may fail to detect linear dependencies among ¥ = f(&) 4

hidden neurons even in very redundant networks [9]. Finally,

system formulations similar to ours were used in [3] and [4O]f, being an arbitrary differentiable activation function. The
but for different goals process continues until the output units are reached and their

The definitions and notations used in this paper are intrg¥t90ing signals are thus taken to be the actual response of the

duced in Section Il. In Section Il we formulate the prunin etWF’”‘- A common choice for the funct_ioﬁ is _the logistic
unction f(z) = 1/(1 + ¢~*) but no restriction is placed on

problem in terms of solving a system of linear equatio A 4
and derive the pruning algorithm. In Section IV the relation&€ type of activation function used.

between the proposed pruning approach and that of Sietsma

and Dow are pointed out. In Section V experimental results lll. THE ALGORITHM
on different test problems are presented. Finally, Section VI _
gives the summary and conclusions. A. Problem Formulation

Our approach to network minimization consists of suc-
cessively removing hidden units after the network has been
trained for satisfactory performance. It is assumed that learning

Since the pruning algorithm presented in this paper c@nhcarried out over a sample @f training patterns by means
be applied to arbitrary feedforward networks, not necessarit§ an arbitrary learning procedure (note that the pruning al-
layered or fully connected, some definitions and notatiog®rithm developed in the following is completely independent
must be introduced. A feedforward artificial neural networkf the particular training procedure).
can be represented by an acyclic weighted directed graptAssume that hidden unitt € Vy has somehow been
N = (V,E,w) whereV = {0,1,---,n} is a set ofn + 1 identified as a candidate for removal (later on, we shall address

Il. DEFINITIONS AND NOTATIONS

CASTELLANO et al: ITERATIVE PRUNING ALGORITHM 521

upon presentation of pattegne {1,---, M} is given by

€9 = 3wy

JER;

where y§“) denotes the output of unif corresponding to
patterngz. After removal ofh, unit ¢ will take its own input
from R; — {h}.2 In order to maintain the original network
behavior, we attempt to adjust the remaining weights incoming
into nodet, i.e., thewy,’s for all j € R; — {h}, so that its
new net input remains as close as possible to the old one, for
all the training patterns (see Fig. 2). This amounts to requiring
that the following relation holds:

Swi = > (wii+ 600 (5)

JER; JER;—{h}
foral o = 1.--M and¢ € F,, where theé;;'s are ap-
propriate adjusting factors to be determined. Simple algebraic
manipulations yield

S st = wiyy” (6)
JER;—{h}
which is a (typically overdetermined) system bfp;, linear
equations in the;, = X;cp, (r;—1) unknowns{é;;}. Observe
that x;, represents the total number of connections incoming
into A’'s projective field after unit. has been removed.

It is convenient to represent system (6) in a more compact
matrix notation. To do so, consider for each uhi¢ P, the
M-vectory, composed of the output values of usitupon
presentation of thé/ training patterns

7= M)

Also, letY; ;, denote thel x (r; — 1) matrix, whose columns
are the output vectors afs new receptive fieldR; — {h},
that is,

Y;7}L = [yjl yjz T yjri—l] (7)
where the indexeg,, forall k =1---r,— 1, vary in R, —{h}.
Now, we have to solve thg;, disjoint systems

Fig. 1. Example of feedforward network architecture to illustrate notations Y; h5‘ = Ei 3 (8)
(the bias unit zero has not been included to make representation easier).
Here, the set of input units i$7 = {1,2,3,4}, the set of hidden units for everys € Pj,, whered; is the unknown vector, and
is Vy = {5,6,7}, and the set of output units 8, = {8,9,10}. As an
example, the receptive field of node 7/ = {1,3,5} (Iight-gray units) Zih = Whily,- 9
whereas its projective field i®; = {8,10} (dark-gray units). . . .

Finally, putting these systems together, we obtain

the question of how to choose the units to be excised). First, the Yid =z (10)
elimination of unith involves removing all its incoming and where

outgoing connections. More precisely, this amounts to stating ‘ ‘

that the new pruned network will have the following set of dlag(“”L’Y”Z’I’j’ Yipin) (11)

. . T
connections: 6= (5 175127 3 0ip) (12)
Enew — Loold — ({h} X Ph U Rh X {h}) and
where F,4 is the connection set of the preceding unpruned Z, = (?;‘Fl,hjg;,hv o 7512:]“h)T' (13)

network.
Removing the in/fouk’s connections is not the whole story. . . .
Our approach to network pruning consists first of removinﬂere’ the indexes’s (k = 1---pp) vary in I}.
unit A and then appropriately adjusting the weights incoming
into h’s projective field so as to preserve the overall network 2For convenience, it is assumed here that the following condition is always
satisfiedvi € Py: R; — {0.h} # 0, which means that, after removing node
input/output behavior of the training set. To be more preus,e

rall the units of |ts projective field will receive at least one input other than
let i € V be a unit ofh’s projective field P,. Its net input the bias signal.

522 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 3, MAY 1997

we deviate from this practice and will be satisfied with any
solution vector, regardless of its length.

We emphasize that, although it was developed to prune off
hidden units, the approach presented here can be applied to
remove single connections as well. Supposing that connection
(h,i) € E'is to be removed, the idea is to distribute the weight
wy; over the connections incoming into uritin such a way
that i's net input remains unchanged across the training set.
It is easy to see that this condition is equivalent to solving a
single system ofA/ equations and-; — 1 unknowns that is
identical to (8).

B. Weight Adjustment by a Conjugate
Gradient Least-Squares Method

To solve the least-squares problem (14), standard QR factor-
ization methods with column pivoting or the SVD technique
can be employed [41]. These methods, however, turn out
to be impractical for large and sparse coefficient matrices,
and iterative conjugate gradient (CG) methods, especially
when used in conjunction with appropriate preconditioning
techniques [41]-[43], are advantageous in this case. Moreover,
CG-methods are particularly attractive because they do not
depend upon parameters that are difficult to choose. In this
work we made use of a general preconditioned CG-method
derived by Bprck and Elfving in [44], which proved to be
extremely efficient thanks not only to its modest computational
cost per step, but also to its fast rate of convergence. This
section is devoted to a brief description obBjk and Elfving’s
so-called CGPCNE algorithfhas applied to problem (14).

Consider our original systeny,6 = %, as defined in
(10)—-(13). For notational convenience the index which
denotes the unit being removed, will be suppressed. Write the
matrix Y+ as

Y'Y =L+D+L* (15)

input

and recall from the previous section thatlenotes the number

Fig. 2. lllustration of the pruning process. Unit 7 has been selected to bé columns ofY. Here, D is a x x diagonal matrix whose
removed. After pruning, all its incoming and outgoing connections (dash%nzero elements are defined to be
lines) will be excised and all the weights incoming into its projective field

(thick lines) will be properly adjusted. .
(D) = 1Y G I3 (16)

To summarize, the core of the proposed pruning approadhe notationY'(:,;) indicates thejth column of matrixY’),
consists of solving the linear system defined in @Ohis will andL is a strictly lower triangular matrix constructed as
be accomplished in the least-squares sense, which amounts to v T .
solving the following problem: (L) =YY R, gk (17)

minimize||z;, — Y38|2. (14) Now, consider the normal systeli’ Y6 = Y%z, and let
C,, denote the following preconditioning matrix:
Since we start with larger than necessary networks, linear
dependencies should exist among the output vectors of the Co=(D+wL)D™/? (18)

hidden units, and the matri;, is therefore expected to be rank

deficient, or nearly so. This implies that an infinite number (yyherew represents a relaxation parameter in the i.nterval (0’, 2)
solutions typically exist for problem (14) and in such cas ed to control the-convergencTe_rate Of. the aIgor|thm. Making
the one having the lowest norm is generally sought. Beca2€ chadr'ltge o; varlabIIeS :t C., 8, we finally arrive at the
of the particular meaning of our unknown vectgrhowever, preconditioned normal system

SInstead of directly solving system (10), one can independently solve the C’JIYTYC:.TW = C’JIYTZ (29)
py, disjoint systems (8). Here, the former approach was preferred because of

the moderate dimensions of the networks considered. When large network§The acronym CGPCNE is not explicitly defined in [44]; however, it should
are involved, the latter approach can well be pursued. stand for “conjugate gradient preconditioned normal equation.”

CASTELLANO et al: ITERATIVE PRUNING ALGORITHM 523

Applying the CG-method to (19), the CGPCNE algorithm fobackpropagation epoch). However, unlike backpropagation,
solving problem (14) results. It begins with an initial tentativhe CGPCNE algorithm contains dependencies which make
solutioné, € range(Y'?) and iteratively produces a sequencé less suitable for parallel implementation. Fortunately, this

of points {6} in such a way that the residuals does not appear to be a serious problem because, as seen in the
experimental section, the number of CGPCNE cycles needed

p(8r) = 17 = Yol (20) {5 find a solution is typically low.
are monotonically decreased, i.e(§ for all k > 0p(6x+1) <
p(6r) . C. Choosing the To-Be-Removed Units
Algorithm 1: CGPCNE Least-Squares Algorithm One of the fundamental concerns in any pruning algorithm
1) 7o :=% — Y38 is how best to select the units to be eliminated. One possible
2) 50 := C51Y 77, strategy is to make use of some relevance or sensitivity
3) Py := 5o measure to quantify the contribution that individual nodes
4 k=0 make in solving the network task, and then to select the
5) repeat less relevant units as those to be removed (see, e.g., [32]).
6) g, == YC1p, This ch_oice, however, has nothing to do with the basic idea
7) o = |I3x13/ 1712 underlying the propoged method, as there is in general no
8) Pry1 =Tk — kil guarantee that selecting the less relevant units will actually
9) Syt == O Y Ty make _system (10) consistent, or nearly so, which is clearly
10) i = I[5k1l13/I158l1 our uttmate goal S -
11) Pryr = Sttt + BBy Ideally, the most appropriate choice would be to ellml—
12) Sip1 = 6% + arC3 1P, nate among aII. the hidden units the one that, after_ solving
13)k=k+1 the. correqundlng problem (14), results in the smal!mﬁai
14) until ||5; — Sx—1|]2 < e, /* wheree is a residual. ThIS guaran_tees that the r_emoval_ of that unit gnd the
small predetermined constant *. corresponding updating of the weights will have a minimal

effect on the network’s input—output behavior. This brute-force
Bjorck and Elfving showed that the vectdrs- C;7p and approach, however, involves solving as many least-squares
g = YC;Tp can be computed efficiently according to the@roblems as there are hidden units and would become im-

following iterative procedure (wheré; = (D);;). practical even for moderate problem dimensions. Fortunately,
. the specific method we use to solve problem (14) exhibits a

Algorithm 2 . . .
Dk =0 nice property that naturally suggests a suboptimal selection

criterion. Namely, recalling that CG-methods monotonically
decrease the residuals(;) = ||z—Y7.6x/|3 at each time step,
a reasonable approximation to the globally optimal approach
mentioned above is to choose the uhito be eliminated in

2) for j := k downto 1 do
3) t; = dj_l/ij - wdj_lY(:,j)TH(j)
4) g =7 +,Y(,4)

2; ;r.wﬂf%r(o). such a way that thénitial residual
S = =12
Analogously, the following algorithm calculatgs= C;1Y77. pr(80) = (21 = Yrdolly (21)
Algorithm 3 be the smallest among all the hidden units or, more formally,
D =7 h = argmin py,(6o). (22)
2) forj:=1tox do REVEH

3) s; == d; 7Y (5, j))

) 7UHD = 70) — (de_l/QSj)Y(:,j) Since the initial solutiort, is typically chosen to be the null

vector, and recalling the meaning ®f, from (9) and (13),

5) endfor. rule (22) becomes
Therefore, the above vectors can be computed with only . 21— 12
two sweeps through the columns of the matlix so that h= “Ei{rjjn ; Wi [T l2- (23)
® h

the overall computational complexity of each CGPCNE cycle
turns out to be in the order ofz(Y"), wherenz(}") denotes Along the same lines, in the case of weight elimination,
the number of nonzero elements¥8f Analyzing the structure the rule for detecting the to-be-removed connections would
of Y from (11), it is readily seen thatz(Y) < Mk and, become

in turn, x is smaller tharw, the total number of connections) o 2

in the network. Consequently, each CGPCNE cycle requires (h,1) = aggmgl Wiy |7 13- (24)

a number of operations which is roughly proportional to ()¢

My and this is exactly the computational complexity of It should be clear that the proposed criterion is by no means
one epoch of the feedforward backpropagation algorithm [1Bitended to be thglobally optimal choice because there is no
(observe that one CGPCNE cycle “sees” all the traininguarantee that starting from the smallest initial residual will
patterns at once, and therefore it should be compared with arsult in the smallest final residual. Moreover, these selection

524 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 3, MAY 1997

rules suffer from the same disadvantage as the sensitivity methn be measured as the error rate over validation data, in an
ods [21]. Namely, since the decision as to which unit/weiglatitempt to improve generalization). Moreover, after pruning,
to remove is based mainly on the output of individual nodethe final network N*) need not be retrained because the
we could fail to identify possible correlations among units. Tapdating of the weights is embedded in the pruning algorithm
avoid this problem, combined selection criteria that take inttself.
account some correlation measure could well be employedFinally, we point out that the overall computational cost
without altering the nature of the proposed pruning algorithrof each iteration of our pruning algorithm depends mainly on
Despite these caveats, in the present work we prefer ti§itep 4) which, as seen in Section IlI-B, requires a number of
criterion not only because of the encouraging results it yieldegerations per step roughly proportional A&ér, v being the
in practice but also for its operational simplicity. total number of connections in the network. Also, the number
As a final remark, we note that the preceding selectiaf cycles performed by thEGPCNEprocedure, like any CG-
rules have an interesting interpretation which comes frobased least-squares method [42], [43], turns out to be very
rather different considerations. In fact, as suggested in [4&w and typically far less than eithei or v, so that the
the quc':lntity(whiy,(b”))2 can be regarded as a measure of theverall computational complexity of each pruning step can
synaptic activity of the connection between uriitandi upon be approximatelyO(Mv). It may be interesting to compare
presentation of patterp. By averaging across all trainingthis computational cost with that of the OBS procedure [31]
patterns we obtainl /Af EM(WMZJ;(L”))Q = wi|[7,l13/M. which, like our algorithm, does not demand further retraining

Accordingly, the total synaptic activity of unitcan be defined Sessions after pruning. Whereas OBS takdd/1?) time to

by summing the above quantities across all the unitg’sn remove one single weight and update the remaining ones, we
projective field and this is proportional ®;cp, w?,||7,|3 (@ @are able to remove a processing unit with all its incoming
nearly identical measure was independently proposed in [48]1d outgoig connections and adjust the remaining weights in
in an attempt to quantify the “goodness” of individual hiddef(M) time (a major difference between the two procedures
units). Therefore, rules (23) and (24) can also be interpreti&dthat, unlike our method, OBS updates all the weights in
as criteria that select, respectively, the units and connectidAg network). Furthermore, if our procedure were employed to

having the smallest synaptic activity. remove a single connection, séy,) € E, its computational
complexity would scale t&(Mr;), wherer; is the number of
D. Definition of the Pruning Algorithm connections incoming into unit sincer; < 1%, our pruning

, . . : ._algorithm is far | tationall ive than OBS.
We now define precisely the pruning algorithm. Startln&g1 gorrthm 15 far fess computationally expensive than

with an initial trained networkiN(® = (VO E(0) 4,(0))

the algorithm iteratively produces a sequence of smaller and IV. RELATIONS WITH SIETSMA

smaller networks N)} by first identifying the unith to be AND DOW'S PRUNING APPROACH

removed, and then solving the corresponding system (10) tan this section we show how the linear system formulation
properly adjust the remaining weights. The process is iteratggveloped in this paper can lead to an alternativanual
until the performance of the reduced networks falls below t%proach to network pruning, of which Sietsma and Dow’s
designer’s requirements. More explicitly, the algorithm can R&g D) algorithm [28], [29] is the best-known representative

written as follows. (see also [35], [47]). Specifically, rather than trying to di-
Algorithm 4: Proposed Pruning Algorithm rectly solve system (10), one can study specific consistency
k=0 conditions for it, thereby deriving rules for locating and
2) repeat removing redundant units. This is basically the approach

3) identify excess unib ¢ VIS’“) in network made by Sietsma and Dow, although they were apparently
N®) according to rule (23) unaware of the linear system formulation underlying their idea.

4) apply theCGPCNEalgorithm to find a Starting from simple heuristic considerations, they developed
§ that solves problem (14) the following simple rules for pruning layered networks.

5) constructV *+1) = (Y (k+1) k1) 4, (k+1)) 1) If the output of hidden unik is constant over the whole
as follows: training set, i.e.y{" = a,u = 1--- M, then removeh
VD = Y& — () and, for each unit in the succeeding layer (which igs
E®+D .= E® — ({h} x PF U R x {n}) projective field), add to its bias value,; the quantity

A if i ¢ Py Whad- _
Wi; = w® s ificp, 2) If unit h gives the same output(a)s a s(ec):ond unit
6) k=K +1 gt 7 across the entire training set, i.@.h“_ =y, for all
7) until the “performance” ofV(*) deteriorates p= 1--- M, then removeh and adjusti’s outgoing
excessively. weights aswy; «— wi; + wp;.

3) If unit 4 gives opposite output values as a second unit
Note that the iterative nature of the above procedure allows the £, i.e., y,(L”) =1- y,(fb),u = 1---M, then removeh,
network designer to define appropriate performance measures adjustk’s outgoing weights asvy; «— wi; — wy;, and,
depending on his own requirements (e.g., if separate training for each: in the next layer, add to its bias valuey;
and validation sets are available, the network’s performance the quantitywy,;.

CASTELLANO et al: ITERATIVE PRUNING ALGORITHM 525

We now demonstrate how S&D’s rules can easily be derivedFor comparison, the S&D pruning algorithm was imple-
within our framework. In particular, if any of the previousmented with a fine-tuned choice of parameters. Specifically, a
conditions are fulfilled then all the subsyster#is;é; = hidden unit was regarded as having constant output (rule 1)
Zin,t € Py, defined in (8) are consistent, and so therefonghen the variance of its output vector is lower than a threshold
will be system (10). Moreover, the way in which rules 1)-39;; two hidden unitsh and &£ had the same output values
update the remaining weights after pruning corresponds tqrale 2) when the normalized distanfig, — v, ||*/M is less
specific solution of that system. In fact, all the matri¢gg’s than a threshold,, and the same condition was appliedzip
defined in (7) will always contain a column consisting oénd ~7,, for locating anti-parallel units (rule 3). The choice
all “1's”, which corresponds to the output of the bias unitof ¢; = 1072 ande; = 10~! appeared to be near-optimal
When the output of unith is constant (rule 1), the vectorfor the considered problems. Also, following S&D’s practice
Z;n (for all i € P,) becomeswy;(a,a,---,a)’; by simply [29], before detecting the units to be removed, output values
settingéo; = wy;a and all the other components &f at zero, less than 0.35 and greater 0.65 were approximated to zero and
Zin, can therefore be written as a linear combination of thene, respectively. Units were removed in the following order,
columns ofY; , which means thaYi,hEi = Z; 5 is consistent, shown to be the best: first constant-output units, then parallel
for any i € P,. Similar arguments apply to rule 2) whereunits, and finally antiparallel units.
the vectorz, ;, now becomes proportional to the column in To evaluate the behavior of both methods, three different
Y; 1, corresponding to unik; in this case, too, system (8) ismeasures were adopted: 1) the number of hidden nodes in
consistent and a solution can be obtained by setting= wy; the reduced networks; 2) the recognition rate, measured as the
and all other components at zero. Finally, rule 3) can hgoportion of examples for which all network output values
derived analogously by observing that the vecirg's can be differed from the corresponding target by less than 0.5; and 3)
obtained as a linear combination of the columns ofthg’s the usual mean-squared error (MSE).
corresponding to the “0” (bias) an units.

It is clear that the major drawback of S&D’s approach
is its simplicity: in real-world applications, in fact, hiddenA- Parity and Symmetry Problems
units are unlikely to be exactly correlated and the algorithm To assess the performance of the proposed method, the
may thus fail to detect redundant elements. Additionallyvell-known parity and symmetry tasks [2] were chosen, as
although rules 1)-3) are particularly simple to implement ithe near-optimal number of hidden units required to achieve
networks of threshold units, in the practical case of nonlinegeir solution is known. In the case of the parity task, this is
activation functions, they must be translated into more preciggual to the number of input units (but, see [48] for smaller
criteria. This involves determining a number of problemsolution networks), while the symmetry problem can be solved
dependent threshold parameters whose choice is problemagiith only two hidden nodes, whatever the length of the input
small threshold values, in fact, typically lead to removing verstring. In both series of experiments, ten randomly initialized
few redundant units, while large values result in too mamt10-1 networks were trained until, for each pattern in the
excised nodes, thereby seriously worsening the performanegining set, all the network output values differed from the
of the network. Due to these approximations, a further slogerresponding targets by less than 0.05.
retraining stage is generally required after pruning and weThen, to evaluate the behavior of our pruning procedure
found experimentally that sometimes the retraining procegader “stressed” conditions, each trained network was pruned
may even fail to converge. The approach to network prunirigegardless of its performance) until the hidden layer contained
pursued in this paper offers a general and systematic methodctly one unit. The average results are shown in Fig. 3 which
for reducing the size of a trained network which contrasisiots, for both problems, the evolution of the recognition rate
sharply with the heuristicad hoc procedure developed byand the MSE during the pruning process. As can be seen, our
Sietsma and Dow: ours, in fact, is not based on any simplifyirggorithm exhibits very steady behavior in the first stages of
assumption, does not depend on any working parameter, gidning, whereas, as may be expected, it performs poorly when
does not demand additional retraining sessions. near-optimal size is approached. Also, as shown in Fig. 4, the
number of CGPCNE iterations required to find a solution for
each pruning step is extremely small and decreases linearly

To test the effectiveness of our pruning algorithm, sevenaith the number of hidden units. This is in agreement with
simulations were carried out over different problems. In alheoretical and experimental results reported in [42] and [43].
the experiments presented, fully connected neural networkHowever, for the proposed procedure to produce useful
with one hidden layer were considered. For each test problesmall networks, a stopping criterion should be specified, which
ten independent networks (denoted with A to J), with weightakes into account the performance of the reduced networks.
randomly generated from a standard Gaussian distributidfor the two tasks at hand, the following stopping rule was
were trained by the backpropagation algorithm [2], {§]= adopted, aiming to obtain networks with the same training-
1.0 and « = 0.7). Each trained network was reduced bet performance as the original ones. At each pruning step,
applying our algorithm, where the CGPCNE procedure walse performance of the reduced network, measured as the
iterated, with relaxation parameter fixed at 1, until the recognition rate over the training set, was compared with that
distance between two successive solutions became smatiethe original network. If a deterioration of 1% or more was
than 108, observed, then pruning was stopped and the previous reduced

V. EXPERIMENTAL RESULTS

526 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 3, MAY 1997

TABLE |
NUMERICAL RESULTS FOR THE PARITY PROBLEM

no. hidden units recognition rate (%) MSE
proposed proposed proposed
net method S&D method S&D method S&D
A 5 3 100 875 0.00 0.12
B 4 5 100 93.7 0.02 0.06
C 5 4 100 93.7 0.00 0.06
D 5 6 100 100 0.00 0.00
E 5 6 100 100 0.01 0.00
F 5 7 100 100 0.00 0.00
G 5 5 100 100 0.00 0.00
H 5 4 100 93.7 0.00 0.06
1 5 6 100 100 0.00 0.00
J 5 5 100 88.0 0.00 0.12
averuge 4.9 5.1 100 95.66 0.003 0.044
TABLE 1l
NUMERICAL RESULTS FOR THE SYMMETRY PROBLEM
uno. hidden units recognition rate (Yo) MSE
proposed proposed proposed

nct method S&D method S&D method S&D
A 3 6 100 100 0.01 0.00
B 3 9 100 100 0.01 0.00
C 4 6 100 100 0.00 0.01
D 4 8 100 100 0.00 0.00
E 2 7 100 100 0.02 0.00
F 3 4 100 100 0.00 0.00
G 4 6 100 875 0.02 0.10
H 4 6 100 93.7 0.01 0.02
i 4 7 100 100 0.02 0.01
J 5 7 100 93.7 0.01 0.04
average 3.6 6.6 100 97.49 0.008 0.018

network was retained as the final one. The results obtainedined for parity and symmetry respectively; the size of these
by our pruning procedure with the above stopping criteriongtworks corresponds to the “median” sizes found by our pro-
and the S&D pruning algorithm with no retraining phase, aigedure. Tables lll and IV show the median number of epochs
summarized in Table | for parity and Table Il for symmetryrequired to train such small networks, for parity and symmetry,
As can be observed, our procedure appears extremely rofg@spectively, and the median number of backpropagation as
since all trials resulted in a near-optimal solution networ®e€ll as CGPCNE cycles (which, as seen in Section 1lI-B, have
with perfect 100% recognition rate, irrespective of the initifomparable computational complexity) needed to train the
conditions. The S&D method, by contrast, exhibits much mof§iginal 4-10-1 networks and then reduce them to the median
unstable behavior with poorer recognition performance of t§##€- AS can be observed, in any case the overall time required

pruned networks, that were therefore later retrained. We foulfj frain @ large network and then prune it to a small size
that in the case of the parity problem five out of ten trials failegPmpPares very ,f?“’orab'l_/ ‘,’\{'th that of simply training a small
twork. In addition, for initially small networks, convergence

to converge within 3000 epochs. The remaining five requir&? Cal teed: in fact t of t ity trial
a median number of 24 (ranging from zero to 119). In thg Not aways guaranteed, in fact, seven out otten parity tnais
) o . id not converge within 3000 epochs.

symmetry case, instead, all the retraining trials converged to a
solution in a median number of 48 epochs.) N

Finally, to compare the time required to train and prun@- A Simulated Pattern Recognition Task
a large solution network with that for directly training a A classification task nearer to real-world problems, sug-
small network, ten independent 4-5-1 and 4-4-1 networks wegested in [49] and used as a test problem by many authors

CASTELLANO et al: ITERATIVE PRUNING ALGORITHM

TABLE 11l

MEeDIAN NUMBER oF BACKPROFCGPCNE QcLES REQUIRED BOTH TO TRAIN A SMALL
NETWORK AND TO TRAIN-AND-PRUNE A LARGE NETWORK, FOR THE PARITY PROBLEM

pruning
architecture failure (%) BP epochs cycles total
4-5-1 70 1228 - 1228
4-10-1 0 630 45 695
TABLE IV

MEeDIAN NUMBER oF BACKPROFCGPCNE QcLES REQUIRED BOTH TO TRAIN A SMALL
NETWORK AND TO TRAIN-AND-PRUNE A LARGE NETWORK, FOR THE SYMMETRY PROBLEM

pruning
architecture failure (%) BP epochs cycles total
4-4-1 0 299 - 299
4-10-1 0 194 51 245
100 1 (1 i (1 oL + 0,25 12 - - -
! . 3 H
90 | Gy / o .
-~ 80 o /102 @
& 70 | ! § al 8
@ | 3= - recognition rate ke © 8 " N
g 601 to1s 3 ..
§ 50 y‘ | ooeo MSE S & 5 6 ~
x L 1 1 > . -
= 40 T ' 0, g 4 -
S 30 £ .
® » 2 N]
S 204 + 0,05 2
10 + /
0 »- < T ' b p—— O 0 s e + t
10 9 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9
number of hidden units pruning steps
(@) (@)
100 5 - e o B = 0,25 12
-
1 1k
22 o 0.2 0 10 '
;\E 70 - /\fﬁ ’ .5 L]
2 ‘ | ——— recognition rate / 5 8- -
B 60 | /10,18 & =
5§ 50 e MSE h w 6 Tm
:g 3 el = S i =
e O E e e
g 30 . £]
£ 20 I 0,05 2
10 - .
| -
Q & o e == } 0 0 e S o
0 9 8 7 6 5 4 3 2 1 1 2 3 4 5 6 7 8 9

number of hidden units pruning steps

(b) (b)

Fig. 3. Behavior of the recognition rate and the MSE during the pruniri(%'g- 4. Number of CGPCNE cycles at each pruning step. (a) Parity problem;
process. (a) Parity problem; (b) symmetry problem.) symmetry problem.

[50]-[52], was chosen to test the generalization performanceA training set of 200 samples, and two separate 1000-sample
of the networks reduced by our procedure. This is a two-cla@ata sets, one for validation and the other for testing, were
simulated pattern recognition problem with a two-dimensiongandomly generated from the Gaussian distributions for both
continuous feature space, and known probability distributiorglasses with equal probability. Due to overlapping between
As shown in Fig. 5, class 1 is a single Gaussian distributioplasses, perfect learning cannot be achieved. Accordingly, ten
while class 2 is an equal likelihood mixture of two Gaussiangandomly initialized 2-10-1 networks were trained for 1000
In the experiments reported here the valpgs= 2.300, i, = epochs. After training, the pruning procedure was applied.
2.1060, ando = 0.2 were used, which correspond to “mixturerig. 6 shows the results of running the algorithm until all but
2" data used by others [50], [51]. one unit remained in the hidden layer; the performance over

528 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 3, MAY 1997

TABLE V
NUMERICAL RESULTS ON TRAINING AND VALIDATION SETS FOR THE PATTERN RECOGNITION PROBLEM
on training scl on validation sci
no. hidden units recognition rate (%) MSE recognition rate (%) MSE
proposed proposcd proposed proposed proposed
net mcthod S&D Original method S&D Original method S&D Original method S&D Original method S&D
A 4 6 96.5 93.0 97.0 0.03 0.06 0.03 92.6 94.0 92.8 0.057 0.052 0.057
B 1 6 97.5 93.5 96.0 0.02 0.06 0.04 92.0 93.7 93.7 0.065 0.064 0.059
C 4 4 96.0 95.0 95.0 0.03 0.03 0.03 943 042 94.9 0.042 0.041 0.040
D 3 5 97.0 94.0 96.5 0.03 0.04 0.04 92.4 944 93.3 0.056 0.044 0.053
E 1 4 97.0 94.5 94.0 0.03 0.05 0.04 91.8 93.1 93.1 0.061 0.067 0.049
F 4 6 96.5 94.0 96.5 0.03 0.05 0.03 92.7 944 92.7 0.055 0.050 0.056
G 5 5 97.0 97.0 97.0 0.03 0.03 0.03 94.7 94.6 94.2 0.045 0.044 0.047
H 4 6 96.5 94.5 95.5 0.03 0.06 0.04 93.1 944 92.6 0.060 0.059 0.065
2 5 95.5 925 955 0.03 0.06 0.03 93.0 93.6 949 0.047 0.063 0.041
J 1 4 97.0 943 935 0.02 0.05 0.05 91.8 93.2 93.2 0.061 0.067 0.049
average 2.9 51 96.65 94.25 95.65 0.027 0.049 0.035 92.84 93.96 93.54 0.055 0.055 0.052

both the training and the validation set, averaged over the

ten trials, is reported. It can be observed how the algorithm
exhibits a very stable behavior, both in terms of recognition

rate and MSE and even with just one hidden unit performance
deterioration is negligible. In Fig. 7, the (average) number of
CGPCNE cycles is plotted as a function of the size of the
hidden layer. As in both the previous logical tasks, lineabloss]
behavior can be observed.

In practical real-world applications, a better generalization
performance is more important than optimal behavior over the
training data. As suggested by many authors [53], [54], one
way to improve generalization and thereby avoid overfitting
consists of stopping the learning stage as soon as a deteriora-
tion of the network performance over a separate validation se}jass 2
is observed. Recently, this approach has proved to be effective
when combined with some pruning process [55]. Accordingly,
the following rule was employed to stop pruning. Whenever
a hidden unit was removed, the recognition rate of the new
smaller network was evaluated over the validation set, and
then compared with the performance of tireviousnetwork.

If a deterioration of 1% or more was observed, then prunimgy. 5. Gaussian densities used in the pattern recognition example.
was stopped and the previous reduced network was taken as
the final one. Next, we evaluated the generalization ability of the reduced

Table V summarizes the results obtained by applying onetworks with respect to the original ones. The statistics of the
pruning with the above stopping condition as well as thgerformance measures, number of hidden units and recognition
S&D results. It is clear that our procedure yields a betteate computed over the test set, are listed in Table VI. As can
performance than S&D procedure, in terms of network siz® seen, the networks reduced by our procedure generalize
reduction. Comparable results, instead, were obtained in tershghtly better than the original ones as well as the ones
of recognition rate over both the training and validation seteduced by S&D.

The original networks performed better than the pruned onesFinally, we point out that the generalization results of the
over the training set, due to the particular rule employed to stoptworks reduced by our pruning algorithm are not only
pruning, which does not take into account the performansaperior to those found by Holt [51] under experimental
of the reduced networks over the training data as pruniegnditions similar to ours (i.e., same classification problem,
proceeds. Besides, it is well known that good generalizati@qual training and test set sizes, network architecture, and
results are typically achieved when performance over thearning stopping criterion), but are comparable with the best
learning set is nonoptimal [53]-[55]. On the other hand, wheesults he obtained using an alternative cost function aiming
the performance on the training set is important, alternatite improve the generalization performance. Moreover, the
criteria can be employed to stop pruning, in order to avoitiedian size of our reduced networks (2-3-1) coincides with
loss of accuracy on training data. the minimal network size required for achieving the best

CASTELLANO et al: ITERATIVE PRUNING ALGORITHM 529

TABLE VI
GENERALIZATION RESULTS FOR THE PATTERN RECOGNITION PROBLEM

no. hidden units

recognition rate (%)

standard standard
average deviation average deviation
original 10 0 92.61 0.74
proposed method 29 1.52 93.36 0.691
S&D 5.1 0.88 93.04 0.538
100 T T 0,25
*m— - @ - e - e — .
00 § - o nrRTE—— o
80 t + 0,2
70 |
& — it t lidati t
\é 60 1 d recogniton rate on validation se 1 0’1 5
° ———4——= MSE on training set w
§ 50 T 2
2 ~=~—4—— MSE on validation set 2
=
2 40 + 0.1
3 =4
30 T /a—k"*’ﬁ/
o
20 5 7 * AT T A *‘fx"”/’j‘// + 0,05
10 4 ¢ ———t—————6—- —— T
0 t } } - t t t t 0
10 9 8 7 6 5 4 3 2 1

number of hidden units

Fig. 6. Behavior of the recognition rate and the MSE during the pruning process for the pattern recognition problem. Both the behavior over the

training and validation sets are displayed.

12

10 4

number of iterations

5

pruning steps

Fig. 7. Number of CGPCNE cycles at each pruning step for the patt
recognition problem.

consists of iteratively removing hidden units and then adjusting
the remaining weights in such a way as to preserve the over-
all network behavior. This leads to formulating the pruning
problem in terms of defining a system of linear equations that
we solve with a very efficient conjugate gradient least-squares
procedure. A simple and effective rule is also derived which
proves to work well in practice, and turns out to be closely
related with a selection rule derived elsewhere in a different
context. However, alternative selection rules can be adopted as
well, without altering the method as a whole. A nice feature is
that no parameter needs to be set, and this contrasts with most
existing pruning procedures. Furthermore, the iterative nature
€gt the algorithm permits the network designer to monitor
the behavior of the reduced networks at each stage of the
pruning process, so as to define his own stopping criterion.

generalization results for this problem, as claimed in [51] anghe experimental results obtained prove that the method does

[49]. This demonstrates once again that the proposed

a very good job of reducing the network size while preserving

pruning procedure is able to find the most appropriaigcellent performance, without requiring the additional cost

network architecture to solve a given problem.

VL.
This paper describes a method for reducing the size

CONCLUSIONS

of a retraining phase. In addition, the time required to train
a small network is typically much longer than that needed to
train a large network and then reduce its size by means of our
pfuning procedure. The results of the experimental comparison

trained feedforward neural networks, in which the key ideaith a well-known pruning procedure show that the proposed

530

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 3, MAY 1997

one yields better results in terms of network size, performanggq] M. Mezard and J.-P. Nadal, “Learning in feedforward layered networks:
and robustness.

Although we have focused primarily on the problem 0?1]
removing units, our approach is naturally applicable to the2]
elimination of single connections as well. Our choice was
motivated by the observation that computational nodes reps)
resent the “bottleneck” through which information in a neural
network is conveyed, and are therefore more important thgd!
individual connections [26]. Moreover, node pruning algo-

rithms are more efficient, although less accurate, than weight
elimination methods. However a “coarse-to-fine” approa A

could be pursued by removing first units and then, when no
unit can be further excised, single connections. Finally, we

emphasize that the proposed pruning approach is far m
general than we have presented here and can be applie

networks of arbitrary topology.

(1]
(2]

(3]

(4]

(3]

(6]

(7]
(8]
(9]

[20]

[11]

(12]

(13]

(14]

(18]

[16]

(17]

(18]

[29]

(27]

REFERENCES 28]
D. R. Hush and B. G. Horne, “Progress in supervised neural networks,”
IEEE Signal Processing Magvol. 10, pp. 8-39, 1993. I[29]
D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning internal
representations by error propagation,”Rarallel Distributed Process- [30]
ing—Vol. 1: FoundationsD. E. Rumelhart and J. L. McClelland, Eds.
Cambridge, MA: MIT Press, 1986, pp. 318-362.

S. Y. Kung and J. N. Hwang, “An algebraic projection analysi§31]
for optimal hidden units size and learning rates in backpropagation
learning,” in Proc. |IEEE Int. Conf. Neural Network§an Diego, CA,

vol. 1, 1988, pp. 363-370.

D. C. Plaut and G. E. Hinton, “Learning sets of filters using backpropBZ]
agation,”Comput. Speech Languagel. 2, pp. 35-61, 1987.

D. J. Burr, “Experiments on neural net recognition of spoken and Writte['§3]
text,” IEEE Trans. Acoust., Speech, Signal Processuaj, ASSP-36,

pp. 1162-1168, 1988.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-[34]
sentations by backpropagating errorblature, vol. 323, pp. 533-536,
1986.

X.-H. Yu, “Can backpropagation error surface not have local minima,‘['35]
IEEE Trans. Neural Networksjol. 3, pp. 1019-1021, 1992.

R. P. Lippmann, “An introduction to computing with neural net€EE 36]
Acoust., Speech, Signal Processing Magl, 4, pp. 4-22, 1987.

M. D. Emmerson and R. |. Damper, “Determining and improving
the fault tolerance of multilayer perceptrons in a pattern—recognitio&n
application,”|EEE Trans. Neural Networksol. 4, pp. 788-793, 1993.

E. B. Baum and D. Haussler, “What size net gives valid generalization?”
Neural Computa.yol. 1, pp. 151-160, 1989.

J. Denker, D. Schwartz, B. Wittner, S. Solla, R. Howard, L. Jackel, and
J. Hopfield, “Large automatic learning, rule extraction, and generaliz@B]
tion,” Complex Systyol. 1, pp. 877-922, 1987.

Y. Le Cun, “Generalization and network design strategiesCamnec-
tionism in PerspectiveR. Pfeifer, Z. Schreter, F. Fogelman-Soulie, and

L. Steels, Eds. Amsterdam: Elsevier, 1989, pp. 143-155. [39]
Y. Chauvin, “Generalization performance of overtrained backpropaga-
tion networks,” inNeural Networks—Proc. EURASIP Wkshp. 1980

B. Almeida and C. J. Wellekens, Eds. Berlin: Springer-Verlag, 1990,
pp. 46-55. [40
G. G. Towell, M. K. Craven, and J. W. Shavlik, “Constructive induction

in knowledge-based neural networks,”RBnoc. 8th Int. Wkshp. Machine
Learning L. A. Birbaum and G. C. Collins, Eds. San Mateo, CA:[41]
Morgan Kaufmann, 1991, pp. 213-217.

J. Hertz, A. Krogh, and R. G. Palmelntroduction to the Theory of [42]
Neural Computation. Redwood City, CA: Addison-Wesley, 1991.

Y. H. Hu, “Configuration of feedforward multilayer perceptron net-
work,” unpublished manuscript, 1993.

S. E. Fahlman and C. Lebiere, “The cascade-correlation learning ar-
chitecture,” in Advances in Neural Information Processing Systems 444]
D. S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1990, pp.
524-532.

S. | Gallant, “Optimal linear discriminants,” ifProc. 8th Int. Conf.
Pattern RecognitionParis, France, 1986, pp. 849-852.

T. Ash, “Dynamic node creation in backpropagation networkagh-
nection Sci.vol. 1, no. 4, pp. 365-375, 1989.

[45]

3

The Tiling algorithm,”J. Phys. Avol. 22, pp. 2191-2204, 1989.

R. Reed, “Pruning algorithms—A reviewJEEE Trans. Neural Net-
works, vol. 4, pp. 740-747, 1993.

S. C. Huang and Y. F. Huang, “Bounds on the number of hidden neurons
in multilayer perceptrons,IEEE Trans. Neural Networksyol. 2, pp.
47-55, 1991.

G. E. Hinton, “Connectionist learning procedureAtificial Intell., vol.

40, no. 1, pp. 143-150, 1989.

Y. Chauvin, “A backpropagation algorithm with optimal use of hidden
units,” in Advances in Neural Information Processing System®.1

S. Touretzky, Ed. San Mateo, CA: Morgan Kaufmann, 1989, pp.
519-526.

5] A. S. Weigend, D. E. Rumelhart, and B. A. Huberman, “Generalization

by weight-elimination with application to forecasting,” Advances in
Neural Information Processing Systemd:3 P. Lippmann, J. E. Moody,
and D. S. Touretzky, Eds. San Mateo, CA: Morgan Kaufmann, 1991,
pp. 875-882.

J. K. Kruschke, “Creating local and distributed bottlenecks in hidden
layers of backpropagation networks,” froc. 1988 Connectionist Mod-
els Summer SchadD. S. Touretzky, G. E. Hinton, and T. J. Sejnowski,
Eds. San Mateo, CA: Morgan Kaufmann, 1988, pp. 120-126.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. St@iassification
and Regression Trees Belmont, CA: Wadsworth, 1984.

J. Sietsma and R. J. F. Dow, “Neural net pruning: Why and how,” in
Proc. IEEE Int. Conf. Neural Network§an Diego, CA, vol. 1, 1988,
pp. 325-333.

, “Creating artificial neural networks that generalizéyéural
Networks,vol. 4, pp. 67-79, 1991.

Y. Le Cun, J. S. Denker, and S. A. Solla, “Optimal brain damage,” in
Advances in Neural Information Processing Systeni3.2S. Touretsky,
Ed. San Mateo, CA: Morgan Kaufmann, 1990, pp. 598-605.

B. Hassibi and D. G. Stork, “Second-order derivatives for network
pruning: Optimal brain surgeon,” idvances in Neural Information
Processing Systems S. J. Hanson, J. D. Cowan, and C. L. Giles, Eds.
San Mateo, CA: Morgan Kaufmann, 1993, pp. 164-171.

M. C. Mozer and P. Smolensky, “Using relevance to reduce network
size automatically,'Connection Sci.yol. 1, no. 1, pp. 3-16, 1989.

E. D. Karnin, “A simple procedure for pruning backpropagation trained
neural networks,1IEEE Trans. Neural Networksjol. 1, pp. 239-242,
1990.

A. Burkitt, “Optimization of the architecture of feedforward neural
networks with hidden layers by unit eliminationComplex Systyol.

5, pp. 371-380, 1991.

F. L. Chung and T. Lee, “A node pruning algorithm for backpropagation
networks,”Int. J. Neural Syst.yol. 3, no. 3, pp. 301-314, 1992.

G. Castellano, A. M. Fanelli, and M. Pelillo, “Pruning in recurrent neural
networks,” inProc. Int. Conf. Artificial Neural Networks (ICANN’94),
Sorrento, Italy, 1994, pp. 451-454.

S. Y. Kung and Y. H. Hu, “A Frobenius approximation reduction
method (FARM) for determining optimal number of hidden units,” in
Proc. Int. J. Conf. Neural NetworksSeattle, WA, vol. 2, 1991, pp.
163-168.

Q. Xue, Y. H. Hu, and W. J. Tompkins, “Analyzes of the hidden units
of backpropagation model by singular value decomposition (SVD),” in
Proc. Int. J. Conf. Neural Network$yashington, D.C., vol. 1, 1990, pp.
739-742.

Y. H. Hu, Q. Xue, and W. J. Tompkins, “Structural simplification of
a feedforward multilayer perceptron artificial neural network, Piroc.

Int. Conf. Acoust., Speech, Signal Processifigronto, Canada, 1991,
pp. 1061-1064.

] M. A. Sartori and P. J. Antsaklis, “A simple method to derive bounds

on the size and to train multilayer neural network&€EE Trans. Neural
Networks,vol. 2, pp. 467-471, 1991.

G. H. Golub and C. F. Van LoarMatrix Computations. Baltimore,
MD: Johns Hopkins Univ. Press, 1989.

A. Bjorck, “Methods for sparse linear least-squares problemsSpiarse
Matrix ComputationsJ. R. Bunch and D. J. Rose, Eds. New York:
Academic, 1976, pp. 177-199.

] I. S. Duff, “A survey of sparse matrix researctPtoc. IEEE,vol. 65,

no. 4, pp. 500-535, 1977.

A. Bjorck and T. Elfving, “Accelerated projection methods for comput-
ing pseudoinverse solutions of systems of linear equatidBs; vol.

19, pp. 145-163, 1979.

G. Orlandi, F. Piazza, A. Uncini, E. Luminari, and A. Ascone, “Dynamic
pruning in artificial neural networks,” irParallel Architectures and
Neural Networks E. R. Caianello, Ed., Singapore: World Scientific,
1991, pp. 199-208.

CASTELLANO et al: ITERATIVE PRUNING ALGORITHM 531

[46] K. Murase, Y. Matsunaga, and Y. Nakade, “A backpropagation algr Anna Maria Fanelli (M’89) was born in Bari, Italy,
rithm which automatically determines the number of association units on June 29, 1949. She received the “Laurea” degree
in Proc. Int. J. Conf. Neural Network§ingapore, pp. 783-788. in physics from the University of Bari, Italy, in
[47] T.-C. Lee, Structure Level Adaptation for Artificial Neural Networks. 1974.
Boston, MA: Kluwer, 1991. From 1975 to 1979, she was full-time Researcher
[48] A. Sperduti and A. Starita, “Speed up learning and network optimizati at the Physics Department of the University of Bari,
with extended backpropagatiorfleural Networksyol. 6, pp. 365-383, Italy, where she became Assistant Professor in 1980.
1993. In 1985 she joined the Department of Computer
[49] L. Niles, H. Silverman, J. Tajchman, and M. Bush, “How limited trainin Science at the University of Bari, ltaly, as Professor
data can allow a neural network to outperform an optimal statistical cl of Computer Science. Currently, she is responsible
sifier,” in Proc. Int. Conf. Acoust., Speech, Signal Processigsgow, for the courses “computer systems architectures”
Scotland, vol. 1, 1989, pp. 17-20. o and “neural networks” at the degree course in computer science. Her research
[50] P.Burrascano, “Learning vector quantization for the probabilistic neurgktivity has involved issues related to pattern recognition, image processing,
network,” [EEE Trans. Neural Networks/ol. 2, pp. 458-461, 1991. and computer vision. Her work in these areas has been published in several
[51] M. J. J. Holt, “Comparison of generalization in muI_nIayer_percep”onﬁ)umals and conference proceedings. Her current research interests include
with the log-likelihood and least-squares cost functions,Pic. 11th ypificial neural networks, genetic algorithms, fuzzy systems, neuro-fuzzy
Int. Conf. Pattern RecognitionThe Hague, The Netherlands, vol. 2vmodeling, and hybrid systems.
1992, pp. 17-20. Prof. Fanelli is a Member of the System, Man, and Cybernetics Soceity

[52] W.T. Lee and M. F. Tenorio, “On an asymptotically optimal adaptive,y the |nternational Neural Network Society. She is also on the editorial
classifier design criterion,/EEE Trans. Pattern Anal. Machine Intell., board of the journaNeural Processing Letters.

vol. 15, pp. 312-318, 1993.

[53] N. Morgan and H. Bourlard, “Generalization and parameter estimation
in feedforward nets: Some experiments,”Advances in Neural Infor-
mation Processing Systems . S. Touretzky, Ed. San Mateo, CA:
Morgan Kaufmann, 1990, pp. 630-637.

[54] A. S. Weigend, B. A. Huberman, and D. E. Rumelhart, “Predicting the
;u;grso/;’cigggftlomst approachifit. J. Neural Systyol. 1, no. 3, pp. Marcello Pelillo (M'92) was born in Taranto, Italy,

[55] W. Zinnoff, F. Hergert, and H. G. Zimmermann, “Improving model on June 1, 1966. He received the “Laurea” degree
selection by nonconvergent methodsyeural Networks,vol. 6, pp. with honors in Computer Science from the Univer-
771-783, 1993. sity of Bari, Italy, in 1989.) B

From 1988 to 1989 he was at the IBM Scientific
Center in Rome, where he was involved in studies
on natural language and speech processing. In 1991
he joined the Department of Computer Science at

Giovanna Castellanowas born in Bari, Italy, on - the University of Bari, Italy, as Assistant Professor.

June 27, 1969. She received the “Laurea” degref Since 1995 he has been with the Department of

with honors in computer science from the Universitys i 4 Applied Mathematics and Computer Science at the

of Bari, Italy in 1993, with a thesis on structural yniversity of Venice “Ca’ Foscari.” In 1995 and 1996 he was a Visiting

optimization of artificial neural networks. Professor at the Department of Computer Science of the University of York,

From 1993 to 1995 she worked at the Computey K., and in 1995 he visited the Center for Intelligent Machines of the

Science Department of the University of Bari for pepartment of Electrical Engineering at the McGill University, Méait

research in the field of artificial neural networks.Canada. His research interests include computer vision, neural networks, and

Since March 1995, she has been a Researcher gdttern recognition, where he has published over 40 papers in refereed journals

the Institute for Signal and Image Processing witthnd conference proceedings.

a scholarship under a grant from the “Consiglio prof. Pelillo is currently the Program Cochair of tinéernational Workshop

Nazionale delle Ricerche.” Her current research interests include artificgd Energy Minimization Methods in Computer Vision and Pattern Recognition

neural networks, fuzzy systems, neuro-fuzzy modeling, intelligent contrgdat will be held in Venice, Italy, in May 1997. He is a Member of the IEEE

using fuzzy logic, robotics, and autonomous systems. Computer Society and the Pattern Recognition Society.

