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Neural Intelligent Control for a Steel Plant
Gérard Bloch, Frank Sirou, Vincent Eustache, and Philippe Fatrez

Abstract—The improvement of the performances of a complex
production process such as the Sollac hot dip galvanizing line
of Florange (France) needs to integrate various approaches,
including quality monitoring, diagnosis, control, optimization
methods, etc. These techniques can be grouped under the term
of intelligent control and aim to enhance the operating of the
process as well as the quality of delivered products. The first
section briefly describes the plant concerned and presents the
objectives of the study. These objectives are mainly reached by
incorporating the skill of the operators in neural models, at
different levels of control. In Section II, the low-level supervision
of measurements and operating conditions are briey presented.
The control of the coating process, highly nonlinear, is divided in
two parts. In Section III, the optimal thermal cycle of alloying is
determined using a radial basis function neural network, from
a static database built up from recorded measurements. The
learning of the weights is carried out from the results of a
fuzzy C-means clustering algorithm. In Section IV, the control
of the annealing furnace, the most important equipment, is
achieved by mixing a static inverse model of the furnace based
on a feedforward multilayer perceptron and a regulation loop.
Robust learning criteria are used to tackle possible outliers in
the database. The neural network is then pruned in order to
enhance the generalization capabilities.

Index Terms—Intelligent control, fault diagnosis, galvanneal-
ing, neural network, modeling, steel industry.

I. INTRODUCTION

Worldwide use of metallic coated steel sheet in the car

industry is continually increasing. Particularly, the market

evolves toward the use of zinc iron alloy coating. These

galvannealed sheets have excellent corrosion resistance and

the surface quality is high after painting. As the production

cost is moderate, these galvannealed sheets become of major

interest for the car industry [1], [2].

This paper presents the works led by the French steel

company Sollac and the Research Centre for Automatic

Control of Nancy (CRAN) to improve the quantity and the

quality of the galvannealed sheet produced on the galvanising

line of Florange, France. The industrial use of the proposed

techniques should be mentioned. The low-level supervision of

measurements and operating conditions is currently used. The

thermal cycle optimization and the annealing furnace control

can be considered in β test.

A. The Galvannealing Process

In January 1990, Sollac started up a new hot dip galva-

nizing line. This line was designed for the production of

galvanized steel sheets for the outside panels of automobiles
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with optimum surface quality. The line, which is 500 m long,

is equipped with about 5000 sensors and produces 300 000

tons/yr of galvanized steel sheet, at a speed of 80 to 120

m/min. A layout of the galvannealing section of this plant

is shown in Fig. 1, including the galvannealing furnace, the

soaking furnace, and the air cooling section. The steel sheet,

exiting the annealing furnace, is dipped into a bath of molten

zinc allowing the zinc coating. The thickness of this coating

is controlled by an air knives wiping system. The coated

strip is then annealed to permit the diffusion of strip iron in

the coating: the strip is reheated with an induction furnace

until reaching a set point known as the induction temperature

(θinduction). Next it goes through a soaking furnace, whose

inner temperature is called holding temperature (θholding) and

then moves into the cooling section to stop the galvannealing

reaction.

The quality of the product is related to the percentage of iron

at the surface. An under-alloyed product (lack of iron in the

coating) is caused by an insufficient alloying temperature while

an over-alloyed product (excess iron in the coating) is obtained

when the thermal cycle is too high. The control of the alloying

is based on θinduction. The problem is to determine and to

control the optimal temperature at this point, knowing the

operating conditions which are the speed, width and thickness

of the strip, and the thickness of the coating by acting on the

total heating power applied to the furnace.

Fig. 1. The galvannealing section.
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B. Intelligent Control Approach

This brief description highlights some features currently

found in steel industry:

- numerous and interconnected describing variables;

- complex physical phenomena, only partially known in an

industrial production context;

- nonlinear relationships;

- importance of the skill of the operators.

As pointed out by Harris [3], many processes, too complex

for direct modeling based on physical laws, are manually

controlled by human operators before automatic controls are

installed. The plant operator is able to cope with plant non-

linearities and slowly varying parameters. He is also able to

respond to complex sets of noisy observations and poorly

specified constraints and to satisfy multiple subjective-based

performance criteria.

Thus, one of the basic ideas of the presented study, which

can be termed an intelligent control application, is to incorpo-

rate the flexible and creative attributes of human controllers,

while avoiding their associated characteristics of unreliability.

The global objective is to improve the overall equipment

effectiveness (OEE). This indicator quantifies the proportion

of the installed production capacity which is actually used

to supply products of required quality. In the spirit of total

productive maintenance (TPM) [4], the efficiency of a plant

can be dened with respect to the different types and causes of

losses: by stopping (for failures, tools changes, preparations,

and setting), by slowing (light running, micro-failures, produc-

tion rate lowering) and by product quality defects. The overall

equipment effectiveness can be thus increased by analyzing the

sources of losses and classifying them with respect to their

economical impact. The means to eliminate or reduce these

causes are then related to the hierarchical functional breaking

up of the plant (computer integrated production, or CIP) given

Fig. 2.

Fig. 2. CIP breaking up of industrial plant.

Leaving on one side the production management and plan-

ning aspects, the improvement of the galvannealing process

control must tackle the three levels of the breaking up men-

tioned above: sensors, control, and optimization. The intelli-

gent control approach must improve the performances over

a wide range of operating conditions. It must also increase

the fault tolerance and recongurability degree of the plant.

Another important aspect is to reduce the design cost of the

control procedures.

This paper is organized as follows. Section II deals with

the monitoring of measurements and operating conditions of

the alloying process. This supervision is based on redundancy

of sensors and on analytical models. It uses detection tests

of changes of mean in the residuals generated from measured

signals.

Section III presents the optimization of the thermal cycle

of the alloying process. A static database is first built up from

recorded measurements. The operating points which have led

to a good quality of the product are used to determine the

optimal alloying thermal cycle. This estimation is achieved

by using a radial basis function (RBF) neural network, which

predicts, from the operating conditions and the features of the

steel sheet, the thermal energy required for correct alloying.

The centers of the RBF network are obtained with a fuzzy C-

mean (FCM) algorithm. This neural model gives the optimal

temperatures which will be used as set points to control the

alloying process.

Described in Section IV, this control is based on the steady-

state modeling of the induction furnace used in the line

for galvannealing. Its nonlinear behavior is modeled by a

feedforward multilayer perceptron. Robust learning criteria are

used to take into account possible outliers in the database. The

neural network obtained is then pruned to reduce the number

of connections and enhance the generalization capabilities. The

resulting model is finally used in association with a control

loop to regulate, on-line, the temperature at the exit of the

furnace.

II. SUPERVISION OF MEASUREMENTS

AND OPERATING CONDITIONS

The easiest way to validate the measurement of a physical

quantity is to multiply the sensors (material redundancy) or the

estimations (analytical redundancy) of this variable. The re-

dundancy principle is then to compare these different measure-

ments, direct or indirect, of the variable. Several approaches

have been proposed, but it is possible to find a common

structure represented at Fig. 3 [5], [6]. A detector/estimator

takes into account information from sensors or models to

validate the measured variable and to give a warning signal if

a fault is detected.

Fig. 3. General principle of measurement validation.
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The detection procedure presents three main steps: measure-

ment filtering, residual generation, residual evaluation. The

measurement filtering, not always necessary, can be used to

minimize the noise effect or to reject outliers. The residual

generation consists, for material redundancy, of a simple

difference between the filtered measurements. This residual

without faults is assumed to be zero mean and with constant

variance. When a failure occurs, the statistical properties of the

residual are modied by a jump of mean, a change of variance,

a modication of the statistical distribution or a variation of the

spectral properties. The residual evaluation allows to detect

this change. The nature of the statistical test used depends on

how the failure modifies the residual.

In the present case, the possible faults transform the resid-

uals by a jump of mean which is easily detected by the

commonly used Page-Hinkley test.

A. Page-Hinkley Test

This test, proceeding from the works of Page [7] and

Hinkley [8], has been amply studied [9], [10]. Only the

recursive forms of the test are presented here. For a positive

jump in the mean

U0 = 0, Un = Un−1 + (xn − µ0 −
δm
2
), n ≥ 1, (1a)

m0 = 0, mn = min(mn−1, Un), n ≥ 1, (1b)

Un −mn ≥ λ, (1c)

and for a negative jump

T0 = 0, Tn = Tn−1 + (xn − µ0 +
δm
2
), n ≥ 1, (2a)

M0 = 0, Mn = max(Mn−1, Tn), n ≥ 1, (2b)

Mn − Tn ≥ λ, (2c)

where xn is the nth sample of the signal to test, δm the

minimum magnitude of the jump to detect, and λ the detec-

tion threshold. The initial mean µ0 (before jump) is usually

considered as zero in lack of fault.

Nevertheless, in the present industrial context, the residuals

differ from the theoretical hypotheses. An example of residual

is presented Fig. 4. This residual is not centered around zero

before the jump and the mean µ0 must be estimated during an

initialization period of the algorithm. The example of residual

includes normal fluctuations caused by the coming of a new

roll of steel sheet (around 15 mn), but also includes an increase

of mean after fluctuations. For the test, these fluctuations are

considered as outliers.

The robustness to these outliers can be reached by two ways:

before the test by filtering the rough signals; by using a robust

form of the algorithm.

B. Prefiltering

The problem is to reduce the noise influence and above

all to reject outliers. The median filter which is selected is

nonparametric, does not use a priori considerations on the

noise, and is more robust than the mean filter [11].

Fig. 4. Example of residual for θinduction.

On a moving window of size 2m + 1 points, the signal

values to be filtered are sorted in ascending order and denoted

Ysn+j . The expression of the median filter is then

Yfn =
1

(2m+ 1)− r − s

m−s
∑

j=−m+r

Ysn+j , n > m. (3)

In this filter parameterized by r and s, the r smallest values

and the s greatest values are excluded of the moving mean

calculation. When the r and s values go from zero to m, the

filter moves from a mean filter to a median filter with the

robustness properties of the median with respect to the mean.

C. Robust Page-Hinkley Test

The idea of this test, proposed by Huber [12], is to limit

the outlier magnitude in order to reduce their influence. In

the cumulative sum Un (respectively, Tn), the contribution of

the current value xn is limited to the values d1 and d0 with

d1 ≤ 0 ≤ d0. The recursive form of this robust test is then for

a positive jump

U0 = 0, Un = Un−1

+min

(

d0,max(d1, xn −µ0−
δm
2
)

)

, n ≥ 1, (4a)

m0 = 0, mn = min(mn−1, Un), n ≥ 1, (4b)

Un −mn ≥ λ, (4c)

and for a negative jump

T0 = 0, Tn = Tn−1

−min

(

d0,max(d1, xn−µ0+
δm
2
)

)

, n ≥ 1, (5a)

M0 = 0, Mn = max(Mn−1, Tn), n ≥, 1 (5b)

Mn − Tn ≥ λ. (5c)

These three possibilities, standard, prefiltered, and robust

Page-Hinkley tests are presented and tested in [13] and [14].

These monitoring tests are implemented on the plant supervi-

sion system. They provide the operators with an on-line valida-

tion of the pyrometer temperatures, the cooling pressures, and

the operating conditions of the induction and soaking furnaces,

and with fault detection of sensors. These modules improve

the fault tolerance of the measurement systems at low level.
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III. OPTIMIZATION OF THE ALLOYING THERMAL CYCLE

After an on-line validation of the most important measure-

ments and processes, the following step of the study concerns

the improvement of the product quality, which needs the

determination of the optimal set points of the thermal cycle,

particularly θinduction, for different line speeds and product

types.

To obtain a quality coating, with about 10% of iron, an

optimal energy must be supplied to the coated strip. The

energy (E) useful to the alloying reaction is given by means of

an induction furnace and a soaking zone which heat the strip

at the θinduction and θholding temperatures, respectively (see

Fig. 5).

Fig. 5. Thermal cycle.

The metallurgy knowledge is not sufficient to explain and to

know the optimal temperature to initiate the alloying reaction.

The complexity of the reaction and the numerous nonlinear

relationships between all variables lead to the use of learning

algorithms from the operating points fixed by the control

operators during several months.

The idea is first to model the energy supplied to the strip

with respect to the features of the strip and to the line speed.

Second, from this estimated energy, the induction temperature

is calculated by imposing particular conditions on the thermal

cycle. Fig. 6 summarizes the estimation of the θinduction
temperature.

Fig. 6. Estimation of the induction temperature.

Before explaining the determination of the induction tem-

perature from the estimated energy, the modeling of the energy

supplied to the strip is described below.

Model learning requires a steady-state database. From dy-

namic measurements, operating points are extracted to gen-

erate this database, following the method described in [15].

Each operating point is validated as good or bad with respect

to the quality of the product and only good points are kept.

The criteria for quality which are used are the strip aspect,

evaluated by a surface finish inspector, and the results of an

off-line mechanical test of the coating adhesion (“powdering”).

The remaining steady states are then separated in two sets, a

modeling one of 260 points and a test one of 130 points. The

variables included in the data sets are all the temperatures of

the galvannealing section, the speed of the line and the features

of the strip. A “measured” energy is also included. This

measured energy is actually calculated from the temperatures

of the thermal cycle. This energy is then used as target for the

model learning, as presented in Fig. 7.

Fig. 7. Model learning.

The process typically operates around a finite number of

operating points corresponding to the different strip formats

and speeds. So, the most suitable neural model is an RBF

network.

The network is composed of three layers. The input vari-

ables of the network are the features of the strip and the line

speed. The hidden layer is composed with n1 neurons whose

the output is given by

hi = exp

(

−
1

2
(X − Ci)

TQi(X − Ci)

)

, (6)

where X is the input vector, Ci is the center, and Qi is the

dispersion matrix for neuron i.

The output of the network represents the predicted energy

and is given by

z =

n1
∑

i=1

wihi(X,Ci, Qi) + w0. (7)
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The choice of this neural structure involves to determine the

position of the centers, the dispersion matrices, and to estimate

the weights wi between the hidden and output layers. Several

methods have been used knowing that great care must be taken

in deciding how the network centers are positioned.

The first method is the orthogonal least squares algorithm

proposed by Chen [16]. This algorithm selects the centers

among the database points and supposes an equal dispersion

for each neuron. The estimation of the weights wi then uses

an orthogonal least squares algorithm. The method is useful

to determine the number of hidden neurons, but the choice of

the centers among the database is not the best.

The other method deals separately with the choice of

centers of the hidden layer and with the weights estimation.

Furthermore, contrary to the previous method, Qi matrix,

chosen diagonal, is supposed different for each neuron i.
The determination of the centers is based on unsupervised

clustering in the input space.

The first method used is the K-means method (KM) known

as efficient for large data sets [17]. The purpose of this method

is to obtain a final partition represented by n1 clusters, each

one composed of its own data points and center of gravity.

The choice of the number of clusters is based on a criterion

represented by the ratio W/B between the within-clusters

variance W and the between-clusters variance B. This method

allows to know how many neurons are necessary to build the

RBF network.

In this algorithm, the belonging of each data point to the

clusters is binary. A fuzzy clustering algorithm known as the

fuzzy C-means (FCM), presented by Bezdek [18], can be

applied. The major feature of this method is the use of a

membership degree of each data point to each cluster. The

final result provides n1 clusters having the same shape. With

the fuzzy partition, the boundaries between clusters are not

obvious. As the previous method, the initialization of the

partition must be performed with care. The ratio used to select

the appropriate number of clusters is the ratio of two criteria.

The first one, NFI , proposed by Libert and Roubens [19],

checks the maxima of the membership degrees of the points

to the clusters and must be maximized. The second one, S,

proposed by Xie and Beni [20], tests the separability of the

clusters and must be minimized.

Both of the methods have been tested with the same matrix

of data to be clustered. In each case, the number of clusters

has continually increased from ten to 45. Fig. 8 shows, for

FCM, the ratio NFI/S. The appropriate partition is obtained

with 38 clusters corresponding to a maximum ratio.

The partition obtained with the K-means method leads to

non homogenous clusters, there are some empty clusters in the

final result, while the FCM method creates a partition without

empty cluster and no cluster with a strong number of data

points.

Once the fuzzy partition obtained, all clusters with their own

center are defined. Each data point is attributed to the nearest

cluster (maximum membership degree) and the dispersion

matrices Qi can be estimated with respect to the dispersion

of the data of each cluster. The hidden layer of the neural

network is then completely defined.

Fig. 8. Choice of the appropriate number of clusters.

The three results obtained with each algorithm and associ-

ated to an RBF network are summarized in Table I.

TABLE I
RBF NEURAL-NETWORK RESULTS

Methods Identification RMSE Validation RMSE # hidden units

KM 2.26 3.10 38

FCM 1.29 2.0209 38

OLS 1.44 2.2055 29

The most accurate network is the one built with a FCM

algorithm. This is verified for both identification and validation

databases. It must be noticed that the RBF built with the OLS

algorithm gets a good result with the validation database. This

is due to the fact that the algorithm takes into account the

performance of RBF network to select the appropriate number

of neurons.

From the neural prediction of the energy with respect to the

strip features and operating conditions, the next step consists

in determining the induction temperature to be reached at

the exit of the induction furnace. For confidentiality reasons,

hypotheses about the thermal cycle cannot be exposed. The

results of the prediction obtained for the induction temperature

are shown on Figs. 9 and 10. The difference between the

estimated and the measured temperature is shown on Fig. 9,

for the validation database composed of 130 data points. Note

that the accuracy of the corresponding pyrometer measure is

about 5◦C.

Fig. 9. Difference between measured and estimated exit temperature.
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Fig. 10. Accuracy of predicted values.

Fig. 10 is another representation of the accuracy of the

estimated values. X axis corresponds to the residual expressed

in percent of corresponding measurement. Y axis gives the

percentage of data points. To summarize, the model gives for

at least 98% of the validation database points an estimated

temperature equal to the measured value at 1.2% maximum.

The prediction of the induction temperature being accurate

enough, the problem is then to obtain this temperature at the

end of the induction furnace. This control problem is presented

in the next part.

IV. CONTROL OF THE INDUCTION FURNACE

This part is focused on the control of the alloying cycle and

particularly the strip temperature at the exit of the induction

furnace (θinduction). A power preset (Pgal) to apply to the

furnace is determined with a steady-state inverse model to

obtain a strip temperature close to the optimal temperature

estimated previously (RBF neural network) (see Fig. 11).

The behavior of the furnace being highly nonlinear, a neural

network is used to build the inverse model.

Fig. 11. Open loop control of θinduction temperature.

Because of the small modeling errors and to take into ac-

count the weak fluctuations of the unknown strip temperature

at the entrance of the furnace, a control loop is implemented

on the process (see Fig. 12). Note that the chosen strategy

includes the possibility to disconnect the control loop in case

of measurement unavailability of θinduction. That allows for

the use of only the neural inverse model in open loop in order

to maintain a sufficient degree of fault tolerance.

The model given by the furnace designers provides the

power preset required to obtain specified exit temperature,

with respect to the strip dimensions (width and thickness), line

speed (speed), and the entry temperature. This model is not

used on-line because the entry temperature is not measured but

it provides three useful points of information. First, this model

is a static one. Second, the variables for possible inclusion in

Fig. 12. Control architecture for θinduction.

the Pgal model: exit temperature θinduction, thickness, width,

and speed, can be extracted from this model. And finally, it

provides an analytical nonlinear description of the efficiency of

the furnace. The power to be applied, predicted by the neural

model, will be corrected by this efficiency coefficient.

The neural architecture used to determine the furnace model

is a feedforward one hidden layer perceptron. The predicted

power is given by the output z of the single output neuron

z =

n1
∑

i=1

w2
i x

1
i + b2 =

n1
∑

i=1

w2
i g

(

n0
∑

h=1

w1
ihx

0
h + b1i

)

+ b2 (8)

where x1i , i=1, . . . , n1, are the outputs of the hidden neurons,

w2
i , i=1, . . . , n1, and b2 are, respectively, the weights and bias

associated with the output neuron, x0h, h=1, . . . , n0, are the n0

inputs of the network, and w1
ih, i = 1, . . . , n1, h = 1, . . . , n0,

and b1i , i = 1, . . . , n1, are, respectively, the weights and biases

associated with the hidden neurons. Note that the activation

functions g of the hidden neurons are hyperbolic tangent

functions and the activation function of the output neuron is

simply the identity function.

The learning method used is a constructive one. The algo-

rithm starts from a minimal neural network, adds new hidden

units, and learns the corresponding weights. To reduce the

learning time, the number of hidden units is limited to 10 and

the number of random initializations of the weights to 20. The

best neural network is thus determined with respect to three

criteria:

Mean error: ME =
1

n

n
∑

k=1

(y(k)− ŷ(k)),

Root mean square error: RMSE =

√

√

√

√

1

n

n
∑

k=1

(y(k)− ŷ(k))2,

Maximal error: Emax = max
k

(|y(k)− ŷ(k)|),

where y and ŷ are, respectively, the measured and predicted

outputs and n the number of points.

The prediction error can be introduced:

ε(k, θ) = y(k)− ŷ(k, θ), (9)

where θ comprises all the unknown weights and biases of the

network and the following criterion can be written:

V (θ) =
1

n

n
∑

k=1

L(ε(k, θ)), (10)

where L(.) is a scalar valued function, often called case cost

function.



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 8, NO. 4, JULY 1997 7

The minimization of the criterion (10) can therefore be

performed using the Gauss-Newton algorithm

θ̂i+1 = θ̂i − (H(θ̂i))−1V ′(θ̂i). (11)

The gradient of the criterion (10) with respect to θ can be

written

V ′(θ) = −
1

n

n
∑

k=1

ψ(k, θ)L′(ε(k, θ)), (12)

where ψ(k, θ) is the gradient of ŷ(k, θ) with respect to θ and

L′(ε(k, θ)) is the first derivative of L with respect to ε, often

called score function.

The second derivative of the criterion (10) with respect to

θ, known as the Hessian matrix, is obtained by differentiating

(12) and can be approximated classically by

H(θ) =
1

n

n
∑

k=1

ψ(k, θ)L′′(ε(k, θ))ψT (k, θ), (13)

where L′′(ε(k, θ)) is the second derivative of L with respect

to ε. In case the matrix H(θ) may be close to singular, the

following approximate Hessian can be taken, leading to the

Levenberg-Marquardt update rule:

H(θ) =
1

n

n
∑

k=1

ψ(k, θ)L′′(ε(k, θ))ψT (k, θ) + β I, (14)

where I is the identity matrix and β a nonnegative small scalar.

The first criterion used is the classical least squares one

corresponding to the following case cost function:

L(ε(k)) =
1

2
ε2(k) (15)

in the criterion (10), with its first derivative

L′(ε(k)) = ε(k) (16)

in the gradient (12) and with its second derivative

L′(ε(k)) = 1 (17)

in the approximate Hessian (14). This algorithm will be called

Levenberg-Marquard neural network (LMNN).

Three other outlier-robust algorithms have been used. They

are more precisely described in [21]. The first one, called

weighted neural network (WNN), is based on the Huber’s

model [22] of measurement noise contaminated by outliers.

The corresponding criterion involves the weighted robust norm

as case cost function

L(ε(k)) =
1

2

ε2(k)

σ2
n(k)

(18)

with its first derivative

L′(ε(k)) =
ε(k)

σ2
n(k)

(19)

in the criterion gradient (12) and with its second derivative

L′(ε(k)) =
1

σ2
n(k)

(20)

in the approximate Hessian (14). The expression of the vari-

ance σ2
n(k) of the kth prediction error, calculated at each

iteration of algorithm (11), from all the n errors, is given in

[21].

The second robust algorithm, called exponential neural

network (ENN), uses, as first derivative of the case cost

function, the following expression:

L′

p(ε)=











p (|ε|−3σ̂(1−p/2))p−1, ε ≥ 3σ̂,

2 ε (p/2)p 3σ̂p−2, |ε| < 3σ̂,

−p (|ε|−3σ̂(1−p/2))p−1, ε ≤ −3σ̂,

(21)

in the criterion gradient (12) and as second derivative in the

approximate Hessian (14)

L′′

p(ε)=

{

(p−1)p(|ε|−3σ̂(1−p/2))p−2, |ε|≥3σ̂,

2 (p/2)p 3σ̂p−2, |ε|<3σ̂.
(22)

The expression of the robustly estimated variance σ̂ of the

prediction errors is given in [21]. When p varies from one to

two, the corresponding Lp criterion goes from a least absolute

values to a least squares criterion.

The third algorithm, called trimmed neural network (TNN),

uses the following rather classical robust norm [23]:

L(ε(k))=











1

2
ε(k)2, |ε(k)| < ρσ̂,

ρσ̂ε(k), ε(k) ≥ ρσ̂,

−ρσ̂ε(k), ε(k) ≤ −ρσ̂,

(23)

where σ̂ is the estimated standard deviation of the prediction

errors and ρ is a scalar in the range 1 ≤ ρ ≤ 1.8. σ̂ should

not be disturbed by outliers and can be thus estimated by

σ̂ =
MAD

0.7
(24)

where MAD is the median of {|ε(k) − ε̃|} with ε̃ as the

median of {ε(k)}.

The first derivative of (23) can be written

L′(ε(k))=











ε(k), |ε(k)| < ρσ̂,

ρσ̂, ε(k) ≥ ρσ̂,

−ρσ̂, ε(k) ≤ −ρσ̂,

(25)

but the second derivative is not continuous and is equal to

zero for the outliers, leading to convergence problems of the

minimization algorithm. Thus this second derivative is simply

always taken equal to one.

Table II presents the final results of the identification of

the inverse model of the furnace. The number of hidden

neurons of the chosen models has been selected from a

tradeoff between model complexity and quality of estimation,

particularly checked on the test set. As expected, the results

of the classical LMNN algorithm are at least as good as those

of the robust ones, for the learning set. However, for the

test (validation) set, the results obtained with robust criteria

are significantly better, leading to improved generalization

capabilities. In the present case, the WNN model seems to

be chosen.

In the preceding learning procedures, each hidden neuron is

connected to all the inputs. This can rapidly lead to overtting

which is harmful to the generalization capacity of the model.

A pruning of the unprofitable connections is thus achieved
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TABLE II
CRITERIA FOR THE FOUR LEARNING ALGORITHMS

Algorithms # hidden Data set ME RMSE Emax

neurons

LMNN 4 Learning 0.24 22.73 65.02
Validation 18.51 38.79 92.71

WNN 4 Learning -0.47 21.41 67.23
Validation 10.11 33.01 77.54

ENN 4 Learning 0.14 24.83 85.67
Validation 16.70 31.86 88.17

TNN 4 Learning 0.18 22.84 88.06
Validation 6.07 26.87 85.07

with the OBS algorithm [24]. This method estimates which

unit is the least important, deletes it, and trains the remaining

weights. This procedure is iterated while the generalization

capacity is improved.

V. CONCLUSION

Neural models have been intensively used in the framework

of an intelligent control application, intended to improve

the performances of a complex galvanizing line. The neural

learning approach allows us to incorporate the skill of the con-

trol operators in automatic control and optimization systems

with a moderate cost of design. Since the mastering of the

galvannealing process is one of the most crucial tasks for the

control of the galvanizing line, the neural tools are introduced

very carefully in the real-time control systems. Presently, the

former and neural means of control are implemented together

in parallel, leaving the operator in a position to go back to

former methods. Although being difficult to quantify, the use

of neural tools leads to a decrease of the occurrence of the

under-alloyed products. This use also permits a progressive

reduction of operator intervention in furnace control. The

adaptation of the neural models for new operating conditions

(particular strip formats, higher line speed) is not an easy

problem, which is currently under investigation.
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