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Abstract 
 
In this paper we regard first the situation where parallel channels are disturbed by noise. With the 

goal of maximal information conservation we deduce the conditions for a transform which „immunizes“ 
the channels against noise influence before the signals are used in later operations. It shows up that the 
signals have to be decorrelated and normalized by the filter which corresponds for the case of one chan-
nel to the classical result of Shannon. Additional simulations for image encoding and decoding show 
that this constitutes an efficient approach for noise suppression. 

Furthermore, by a corresponding objective function we deduce the stochastic and deterministic 
learning rules for a neural network that implements the data orthonormalization. In comparison with 
other already existing normalization networks our network shows approximately the same in the sto-
chastic case but, by its generic deduction ensures the convergence and enables the use as independent 
building block in other contexts, e.g. whitening for independent component analysis. 

 
Keywords: information conservation, whitening filter, data orthonormalization network, image en-

coding, noise suppression. 
 
 
 



1 Introduction 

In many sensor encoding tasks the ability to deal with the noisy environment is of crucial importance. 
More specifically, we regard the situation when a signal x has been encoded and has to be transmitted 
through a noisy environment and has to be reconstructed afterwards. In Fig. 1.1 this situation is shown. 
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Fig. 1.1 The signal encoding situation 

This situation is met for instance in image encoding and transmission systems as well as (replacing the 
reconstruction of a pattern by a stage which needs to distinguish between different patterns, e.g. classifi-
cation or memorization) in the noisy environment of  nervous brain tissue. 

For the scalar signal x, this situation has been treated by Shannon [15] with the performance criterion 
of information maximization for the reconstructed ~x . He assumed a stationary signal of finite power and, 
after a spectral decomposition, treated it as being composed of independent frequency channels. He got 
as optimality condition for maximal information transmission that all frequency comp onents should be 
transformed to equal variance by the transformation W(x). The necessary linear transformation W is called 
a whitening filter. 

The idea of the whitening filter can be extended in our case from one channel to several parallel signal 
channels. The next section will show us how we have to treat the data to obtain maximal noise immunity on 
several, parallel channels by data orthonormalization. Analog to the classical result of Shannon, condi-
tions can be obtained for the actual case of noise immunity for many parallel signals, x being a vector. This 
was done for instance by Plumbley [14].  

In the next section an alternative mathematical treatment for the solution for parallel, disturbed chan-
nels is provided where we obtain the same conditions for the sensor encoding which are multi-channel 
generalizations of the whitening filter. 

After this, we show by simulations for a real image that the analytically obtained noise suppression 
conditions are valid, especially in the case of image encoding. 

In section 3 it is shown that the orthonormalization conditions derived for parallel channels correspond 
well to the conditions which are often used intuitively in a preprocessing stage of data fusion, prior to 
some operations like classification and decision implemented by neural networks. New approaches for data 
orthonormalization are also welcome for neural networks which implement blind source seperation. 

To reflect this needs, we construct a new neural network in section 4 for implementing the information-
optimal filtering and orthonormalization and derive mathematically its error and its convergence properties. 

In section 5, the learning performance of the new network is compared with the well-known networks of 
Silva and Almeida.  

A discussion concludes the paper. 



2  Information transfer in the presence of noise 

Now, let us consider the situation of Fig. 1.1, specified in more detail by the following Fig. 2.1. 
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Fig. 2.1 The information situation 

Let us assume that we have a linear transformation W which prepares the multi-channel signal x = 
(x1,..,xn), i.e. an instance of the compound random variable X, against noise Φ by  

y = W(x) = Wx (2.1) 

How should W be designed to obtain a maximal information transfer from y to z through the noisy channel 
for a limited signal power Py  ? 

2.1 Maximal transinformation for noisy parallel channels 

To resolve this question, let us define the problem more formally. First, we model the variables x, y and 
z as compound stochastic variables X, Y and Z. For these variables, we can define the mutual information 
or transinformation by 

( ) ( ) ( ) ( )H X;Y : H X H Y H X,Y= + − . (2.2) 

which can be generalized (see [12]) to 

( ) ( ) ( ) ( ) ( )H X X X H X H X H X H X X Xn n n1 2 1 2 1 2; ; ; : , , ,K K K= + + + −  

which is equal to zero iff the random variables Xi are independent. 
Now, let us assume that the signal xi has Gaussian properties and is centered. This is often the case in 

real world signals, for instance in some image and short time speech statistics especially when they are 
mixtures of several independent sources. Additionally, the noise Φ is also normally distributed.  
This means e.g. for the signal x 
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with the covariance matrix CXX of the compound random variable X.  
Additionally, we know that a continuous probability density is transformed by the condition 
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or, for linear, neutral transforms with det(W)=1,  

p(y1,y2,...,yn) = p(x1,x2,...,xn) 

This means that our random variables X and Y are both normally distributed. Since the sum of normally 
distributed variables is also normally distributed, this is the case for all three random variables X, Y and Φ. 
In order to maximize the transinformation H(Y;Z) we have to realize that 

H(Y,Z) = H(Y,Φ) (2.4a) 

and  

H(Y,Φ) = H(Y) + H(Φ)  (2.4b) 

The first equation can be results by the fact that the compound random variable a ≡ (Y,Z) is a linear trans-
form of b ≡ (Y,Φ) by  
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Since we have det(W) = 1 we get p(a)=p(b) and therefore (2.4a).The second equality (2.4b) is due to p(Y,Φ) 
= p(Y)p(Φ) for independent signals Y and noise Φ. 
Thus, with eqs.(2.2) and (2.4a,b) we get for the mutual information between the channels  



H(Y;Z) = H(Y) + H(Z) - H(Y) - H(Φ) = H(Z) - H(Φ) (2.5) 

With the average information or entropy H(X) of a normally distributed, centered X with equivariant noise 
we get for eq.(2.5), cf. appendix A, eqs.(A.1) and (A.2): 
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To maximize the monotone increasing function H(Y;Z), it is sufficient to maximize an objective function 
defined by its argument 
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We know that for the determinant of a matrix A = (A
ij
) the property 

det A < A11A22⋅⋅⋅Ann 

holds (Wegners theorem, see [2] or [12]) with the equality iff A is a diagonal matrix. Therefore, our objec-
tive function R1 takes its maximum when  
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i.e. the objective function R2 defined by  
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becomes a maximum under the constraint of finite, e.g. constant signal power 

PY = c ii
i

∑ = const (2.8) 

This goal is achieved by using a Lagrange function 

L(c11, ..,cnn,λ) = R2(c11, ..,cnn) + λ(PY - c ii
i

∑ ) 

The conditions ∂L/∂cii = 0 are necessary for a multi-dimensional extremum, a maximum in our case. These 
conditions are satisfied when e.g. for the elements ckk and css we have 
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Thus, for each pair of diagonal elements we can conclude  

1 1
1

P P
css

Φ Φ
( )+  = 

1 1
1

P P
ckk

Φ Φ
( )+          or     css = ckk 

which means with condition (2.8) 

cii = PY/n,    cij=0      ∀j≠i (2.9) 

i.e. equal variance for all neural outputs. 
What does this mean for the basis vectors of the transform ? 
With 

cij = y y xxi j i
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T
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and expanding the row vectors wi
T  of W in the base of eigenvectors {er} of CXX we get with  

wi
T  = (w1i, ..,wni) in Cartesian  ≡ (a1i, ..,ani) in eigenvector coordinates 

and aij = ei
Twj  we get 
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We can see that the new base vectors wi are orthogonal  
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if we scale the eigenvector base system by e r r
2 1= −λ . Please note that generally this is not the case in 

Cartesian coordinates. 
The length of the new base vectors in the eigenvector base coordinates are computed by 
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Our result indicates that we should use a linear transform which decorrelates the output and normalizes 
the output variance to equal signal power P. 

In the next section, we will use the orthonormalization approach for the noise resistant encoding of im-
ages. For this reason, let us first shortly introduce the transform coding approach for image encoding and 
modify it for our situation. Then, some simulations show the performance of the conditions deduced so 
far. 

2.2 Orthonormalized transform coding 

The standard transform coding approach for pictures, which is the base for several actual encoding 
schemes like JPEG or MPEG (cf. [17] ) sees the pixels of an image as parallel signals which have to be en-
coded. For this purpose, the picture is subdivided into subimages (e.g. 8×8 pixels) and transformed by a 
linear transform into coefficients. Afterwards, the code coefficients are quantized according to a quantiza-
tion table. For the reconstruction process, these procedures are inversely done. In Fig. 2.2 the encoding 
and decoding situation is visualized. 
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Fig. 2.2 The transform coding approach 



What do our results of the previous section 2.1 mean for transform coding?  
It is known that transform coding minimizing the least mean squared error (LMSE) for the reproduced 

images can be obtained by lateral inhibited neural networks implementing a principle component analysis 
(PCA), see [4]. For the linear transformation conditions (2.9), we have to take into account the conditions 
(2.11) and (2.12) for the weights. This means that we have no longer to implement a PCA, but to decorrelate 
and normalize the output data. This can be done by an infinity of base vector systems that satisfy the 
conditions above. Among them, a PCA with scaled eigenvectors according to the conditions of (2.11, 2.12) 
is just one sufficient solution, not a necessary one. 

The reproduction is obtained by the inverse transform matrix W-1=(b1 ... bn) which contains as base 
vectors  

bi = 1/P CXXwi (2.13) 

This can be easily verified, based on eqs.(2.10) and (2.11), because with 

wibj = 1/P wi CXX  wj = 1/P cij 

we get the equation 

W W-1 = (w1 ... wn)T  (b1 ... bn) = 1/P CYY = E 

with the unity matrix E. Thus, if we have the transform matrix W we easily get the inverse transform for 
calculating the reproduced signal by 
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Now, let us regard the case when we reduce the number of coefficients from n to m, dropping n-m ones. 
This kind of compression is typical for the transform coding approach, see Fig. 2.2.  
It is shown in appendix C that the resulting reproduction error is given by 
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This is minimized if the n-m weight vectors are the n-m eigenvectors with the least eigenvalues and the 
error becomes 
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Thus, the base {w} of the transform consists of the m most significant eigenvectors. This result is in good 
correspondence to the classical results of PCA, whereas the scaled eigenvectors constitute only a special 
solution for the orthonormalization problem. 



2.3 Orthonormalized image encoding  

As the last and most important issue, let us investigate the benefits of our model: the noise immunity 
which it shares with all data orthonormalizing models. Let us regard the case where the parallel channels 
constitute the set of pixels of a discretized image. In the image encoding case, let us regard the unfavorite 
case of  a picture with not many regularities, a face, shown in Fig. 2.3. 

 

Fig. 2.3 The sample picture ”Zoe” 

We divided the whole picture in subpicture blocks of the size of 8x8 pixels, where each block might 
form the 64-dim input vector for neural networks which are discussed in more detail in the next section. 
The ensemble of all blocks of this picture gives us the image statistic. To show the pure characteristics of 
the transform, we excluded the problem of network convergence which depends on the neural model and 
simulation time (which is quite important for a net of 32 or 64 neurons) and assumed perfect convergence.  

Therefore, we determined the eigenvectors and eigenvalues of the 64x64 covariance matrix with con-
ventional approximation methods. We used for data compression the eigenvectors with the most signifi-
cant eigenvalues. They formed the set of base vectors of the transformation. The eigenvectors were all 
scaled with the same scaling coefficient, the biggest eigenvalue λ0, in order to obtain unit variance for the 

first component. For orthonormalization, the eigenvectors were additionally scaled er r
2 1= −λ by their 

eigenvalues, see eq. (2.11). This gives unit variance in all the comp onents. 
In the simulation, each image block was transformed to the encoding coefficients, superimposed by 

Gaussian noise with different variance and then transformed back again to the image. The squared differ-
ence between the original image and the reconstructed one is the error of the disturbed encoding. 

If we drop some of the encoding coefficients additionally, we get an additional reconstruction error. To 
show the interdependence of the two different error sources, let us consider the two cases of  on one hand 
fully using the 64 encoding coefficients and on the other hand only half of it, i.e. 32 coefficients.  



Each situation is tried with three variances, σ2=0, 0.001 and 0.01. The following table shows the mean 
squared error per pixel for using either the simple eigenvectors of the PCA analysis or the scaled eigenvec-
tors of the normalization (called NPCA) 

  
Transform   m σ2= 0.0 0.001 0.01 

PCA 64 0.0 59 591 
NPCA 64 0.0 1 11 
PCA 32 12 41 308 

NPCA 32 12 13 22 
PCA 16 28 42 175 

NPCA 16 28 29 38 
 

The table shows us the overlap effect of the two error sources. For a complete decomposition and recon-
struction (m=64) with no noise present, the error is restricted on the pure computing error of the computer 
which is very small. Nevertheless, when we add noise, the NPCA scheme shows its strength by a smaller 
error of a factor about 60. The situation is illustrated in Fig. 2.4. On the left hand side, the reconstructed 
image of the 64 PCA components, corrupted heavily by noise, is shown. On the right hand side, benefits 
of the orthonomalization approach are well demonstrated. The visual error is dominated by the error in the 
first component (the average tile gray level) which does not profit by the variance downscaling process 
because its variance remains one. 

  

a)  PCA reconstruction b) NPCA reconstruction  

Fig. 2.4 The reconstructed image (m=64) of code  
corrupted by Gaußian noise of σ2=0.01 

For the case of dropped components (m=16), the noise influences the result only remarkably if it is lar-
ger than the error due to the neglected components as it is the case for σ2=0.01. Here again, the normaliza-
tion scheme works well. 



  

a)  PCA reconstruction b) NPCA reconstruction 

Fig. 2.5 The reconstructed image (m=16) of code  
corrupted by Gaußian noise of σ2=0.01 

There is an additional effect which can be seen in the table above: the error for using 64 noise-corrupted 
PCA components is much higher than the error when using only 16 components. This behavior is due to 
the fact that in the high components the image variance (σ2 =0.00028 for k=64) is remarkably smaller than 

the noise variance (σ2 =0.01 for k=64). Thus, the additional components do not reduce the error but are the 
source of additional error. This behavior is shown generally in Fig. 2.6. Here, the mean squared error per 
pixel is shown as a function of the number of reconstruction components for PCA and NPCA. Additional 
parameter are the three noise levels of σ2 = 0, 0.001 and 0.01. 

The behavior of the error can be better understood by the following arguments. In the PCA case, we 
have a linear, non-scaling transform by |w|=1. Since the noise is not correlated to the image, we find as 
resulting reconstruction error ε2 the sum of the n-m eigenvalues λi (the variance of the neglected compo-
nents, see eq. (C.2)) and the noise of the m components used 

ε2 = λ i
i m

n

= +
∑

1

+ mσ2 (2.15) 

The first term is a non-linear monotone decreasing function of m while the second term adds linearly. For 
m→∞ the error becomes proportional to the number of available components. This can be observed in Fig. 
2.6 where the error function approaches a line with positive slope. 
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Fig. 2.6 The mean square error as a function of the number of components and the noise level 

In the NPCA case, this is not the case. Since each coefficient i is transformed by the scaling factor of 
λi, the noise is also suppressed by a factor of λi.  

ε2 = λ i
i m

n

= +
∑

1

+ λ σi
i

m
2

1=
∑ =  λ i

i m

n

= +
∑

1

+ σ λ2

1
i

i

m

=
∑  (2.16) 

= λ λi
i

n

i
i

m

= =
∑ ∑−

1 1

+ σ λ2

1
i

i

m

=
∑ = P – (1–σ2) λi

i

m

=
∑

1

 

In this case the resulting reconstruction error is determined by the noise level as a fixed fraction of the 
reconstructing components. Here, the error becomes a decreasing function of m: the more components we 
have the smaller the error will be. 

Now, before we present a new neural network model to implement the transformation above by mas-
sively parallel means, let us show that the demand for orthonormalization is also important in other situa-
tions than for the reconstruction of noisy images. 

3 Other neural network applications of data orthonormalization  

Beside the neural network implementation of noise resistant image transform coding by orthonormaliza-
tion as we discussed it above there are a lot of other applications of data orthonormalization by neural 
networks. 

3.1 Sensor fusion and data orthonormalization 



In neural network modeling, especially for networks which deal with a mixture of different kind of real-
world data, e.g. medical diagnosis which has to combine blood pressure, heart beat data and questionnaire 
data, a typical problem of data fusion arises: different kind of data sources give also rise to different ampli-
tudes. Also if we combine two signals with the same analog values, e.g. an auditorial signal and a tactile 
signal, due to the different nature of the two sensors the scaling of the two signals are not the same. If we 
process them equally, the bigger one may dominate the learning process without any rational justification.  

Thus, to obtain valuable results and to speed up learning, all data have to be transformed up to one 
unique scale. Here, the objective to have the same, normalized variance in each variable is a widely ac-
cepted scaling criterion. To obtain the normalized variance on each sensor channel, a linear normalization 
procedure is commonplace. This situation is shown in Fig. 3.1. 
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Fig. 3.1 Sensor fusion and signal normalization 

Additionally, error correction procedures in the neural network (which has the task e.g. to classify the 
input or to approximate a given function of the input) encounter problems if the input channels are inter-
dependent. Then, the error correction in one direction might counteract the error correction in another 
direction. A good procedure to circumvent this kind of problems consists of decorrelating the input chan-
nels before feeding them to the network. This concludes the specification of the sensor fusion network: it 
scales the signals to the same variance and additionally decorrelates them. This is done by a data or-
thonormalization procedure as it was deduced for the necessity of noise-immune sensor encoding. 

3.2 PCA, independent component analysis (ICA) and data orthonormalization 

The linear transformation of the input space to the base of principal components, which minimizes the 
mean squared error when dropping some of the output channels, is called Principal Component Analysis 
(PCA) and is obtained by aligning the base vectors to the directions of  maximal variance. This is identical 
to a discrete Karhunen-Loève or Hotelling transformation. 

The approach of PCA is only optimal for the performance measure of the mean squared error and as-
sumes no specific information about the statistical properties of the observed signals. If we want to maxi-
mize other measures of information processing, for instance the information capacity of the encoding coef-
ficients (i.e. the output signals of the transforming system), we have to obtain other properties.  

Here, the mutual information H(y1;y2;..;yn) between the output channels is a good measure for an effi-
cient output coding. The output information H(y1,y2) of two channels y1 and y2  

H(y1,y2) = H(y1) + H(y2) - H(y1;y2) 



becomes maximal if for constant channel information H(y i) the mutual information becomes minimal. 
This is the case if  

H(y1,y2) = H(y1) + H(y2)  

which means  

p(y1,y2) = p(y1)p(y2) 

Thus, the demand for minimal transinformation is identical with the demand for independent channel 
probability distributions ("factorial code"). For n channels this means 

p(x) = p(x1)p(x2)⋅⋅⋅p(xn)  

This demand for minimal transinformation can be used for a special situation. Let us assume that all 
observed signals x=(x1,..,xn) are composed by a linear mixture of independent source signals s=(s1,..,sn) 

x = Ms  

How can the original source signals be reconstituted? Another linear transformation 

y = Bx = BMs   

might obtain the sources if 

y = s     ⇔  BM = I  

the demixing matrix B becomes the inverse of M. 
The problem of finding this matrix B is known as the problem of "blind separation of sources" or "In-

dependent Component Analysis" ICA and is a fast growing topic in neural network research, see e.g. [1], 
[7],[8], [10],.. 

The standard ICA procedure consists mainly of the following stages, shown in Fig. 3.2. 

→             →            →             →            →
s       x           x’ v y=s

    mix         center        whiten       indep.

x-〈x〉 Wwhit WICAM

 

Fig. 3.2 The processing stages in ICA 

After mixing the sources, the observed signals x are diminished by their first and second moments: 
They are centered, decorrelated and whitened to unit variance (orthonormalized) by a linear transform with 
a matrix Wwhit, and then separated by their higher moments in the last stage by a linear transform WICA. The 
latter which uses the preprocessed input is often referred as "the  ICA matrix". 



The whitening is often performed by computing the PCA matrix using conventional methods and then 

rescaling the basis vectors with their corresponding eigenvalues by e r r
2 1= −λ . This is acceptable for 

quick data preprocessing, but it takes only one solution, impeding all other possible solutions which might 
also reflect other demands. For instance, the whole ICA process formally can also be obtained by one 
linear matrix only, combining the centering, whitening and ICA into one transform. Certainly, the resulting 
base vectors of this transform are not the eigenvectors; the PCA approach does not help here. 

To obtain learning algorithms for this, more general neural network learning models for data orthonor-
malization are necessary. In the following section, we will therefore further investigate learning the data 
orthonormalization. 

4 A new network model for data orthonormalization 

There are several neural network models mentioned in the literature that implement the demands of 
eq.(2.9). Since the power is assumed to be normalized, they are termed data orthonormalization networks. 
The most well known ones are the nets of Silva and Almeida [16] and the one of Plumbley [14]. There are 
problems associated with these networks: The former one is purely heuristic which prohibits the combina-
tion with other constraints or conditions. Additionally, the signals are routed backwards through the 
weights which is biologically implausible. The latter one uses only constant feedforward weights which is 
not plausible either. Therefore, let us introduce a new network model in this section which avoids these 
problems. 
It is well known that n linear neurons each implementing a scalar product  

y = w xj j
j

n

=
∑

1

= wTx   

as a network they imp lement a linear transform of eq.(2.1) by their parallel action 
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 (4.1) 

This is shown in Fig. 4.1.  
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Fig. 4.1 The neural network model 

Now, let us introduce an objective function to obtain the learning rules to implement the conditions 
(2.9) for the covariance coefficients  

c y y
i j

P
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i j
ij i j

Y
= =
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0 ( )

( )

decorrelation

normalization
  

For making a neural network learn the desired optimum, one could think of using the Lagrange function 
we used in section 2.1 to design the rules for the weights as a gradient descent on it, see e.g. [14]. This 
approach is not valid. First, it assumes that a Lagrange function has a maximum in all parameters. This is 
generally not true: consider for instance a Lagrange function L(a,λ)=R(a)+λc(a). Apparently, when λ is 
increased L(a,λ) tends to infinity and has no maximum. Further on, the condition ∂L/∂a = 0 indicates an 
extremum and not necessarily a maximum.  

Therefore, we chose here another approach by designing an objective function for the network per-
formance which is minimized by the learning process, not using the Lagrange function. 

Using the abbreviation P = PY/m we choose the following objective function 
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which is composed by two terms R1 and R2. The first term becomes zero only when all crosscorrelation 
terms cij are zero while the second term only becomes zero when all variances cii of the neurons become 
equal. 

Now we let the weights of this feedforward network learn by the simple gradient descent learning rule 

 ( ) ( ) ( ) ( )w w w w wk k k mt t t Rw= − − ∇1 1 2γ , , ,K      k = 1, 2,…, m 

with  the learning rate γ and the Nabla-operator ∇ for the gradient. 



With the gradient we can directly compute the deterministic learning rule for the k-th neuron 
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Introducing lateral coupling weights which are often observed in biological nervous circuitry 
uij = - 〈yiyj〉    lateral inhibition (4.4) 

 
between the neurons for the learning process (see e.g. [3]) we finally get as the deterministic learning rule 
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and the corresponding stochastic rule 
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The lateral inhibition weights should also be updated and reflect an average of the most recent pat-
terns. Please note that the standard stochastic approximation approach yields some problems in this case 
because the distribution of the y is not stationary; they are subject for change of the weights. Therefore, 
the learning rate γ(t) should not be chosen as 1/t which is normally a good compromise between the influ-
ence of the sample history and the present samples (see [13]), but otherwise, e.g. by decreasing it each 
time the sign of the gradient changes, indicating an overshooting step. 

It can be shown that all sequential gradient learning rules which use limited objective functions princi-
pally lead to convergence, see appendix B-1. However, for discrete time steps in the stochastic case the 
convergence can be disturbed and limits for the parameters γ(t) and β have to be established additionally, 
see e.g. [5]. However, this is not done here.  

Now, assuming convergence we still have to ask whether the system will converge to the desired state 
implementing the two objectives at the same time. Intentionally, when the learning process stops the learn-
ing goal is reached and the value of the objective function should be zero. For given learning rules, this is 
neither obvious nor trivial. Therefore, in appendix B-2 it is shown that for the learning equations (4.5) 
above the goal of the learning process, the state where the gradient is zero, is reached when the weight 
vectors become basis vectors which satisfy our demands for noise immunity of eqs. (2.10) and (2.11) i.e. 
data orthonormalization. 

The data orthonormalization network defined by Fig. 4.1 and the activation and learning rule differs 
greatly from the ones introduced by Silva and Almeida [16] and Plumbley [14]. Contrary to Silva and 
Almeida, we have no biologically implausible activation backwards through the weights, changing the 
input signals according to the neuronal processing, but here we have a feedforward network, comple-
mented by lateral inhibition lines and directly deduced by the theoretical demands. 



The difference to the network of Plumbley is more subtle: his network is a pure lateral feedback network 
and does not contain feedforward weights. Thus, after convergence the lateral inhibition weights of our 
network are decreasing to zero, the main information is held in the feedforward weights. In his  network, the 
feedforward weights are weighted equally by one and the inhibition weights will contain all the information 
after convergence.  

Depending on the application, other demands (cf. section 3) can be combined with one of the two net-
works, implementing these demands by either feedforward or feedback activity lines. Thus, the two net-
works are suitable for different situations and purposes. 

5 Comparative simulation results for image encoding 

First, let us compare the performance of our orthonormalization algorithm for image encoding with the 
one of Silva and Almeida which is known for their fast convergence. As input we chose an synthetic im-
age according to the statistic model proposed by Habibi and Wintz [11] by 

C(x1,x1’,x2, x2’) = e x x x x− − ′ − − ′α β1 1 2 2  

which describes the 2-dim image pixel correlation between two pixels at the image coordinates x and x’. For 
α=0.125 and β=0.249 (which corresponds to a moderate contrastive image) we constructed the correlation 
matrix for the pixel input vector, formed by concatenating all N rows of N pixels to an n = N×N dimensional 
vector. 

As algorithms, we compare the deterministic learning rule of Silva and Almeida, called here ”SAnet”, 
which turned out to be faster in our simulations than the algorithm of Plumbley, 
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 (5.1) 

with the learning rule of our model (”RipNet”) 
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(5.2) 

Let us compare the expected performance of the two models for the input statistics specified above for 
P = 1 and k = 1, 2, …, n. Initially, the weight matrix was set to the unity matrix W=I. As performance meas-
ure we chose the cost function defined in eq.(4.2). Since the „best choice“ for the initial parameter of the 
two algorithms  depends heavily on the input statistics, we chose the initial learning rate as γ=0.05 for both 
models. The weight vector update was done sequentially to ensure a proper gradient descend. In Fig. 5.1 a 
objective function time course in a typical simulation run is shown for the SAnet. 
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Fig. 5.1 The objective function development of  the SAnet 

Conversely, in Fig. 5.2 the convergence of the RipNet model is shown. 
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Fig. 5.2  The objective function development of the RipNet model. 

We can see that under the same conditions for the example input statistics the model of Silva and 
Almeida performs better than ours. The two models differ in the learning rules just by an factor CXX in the 
decorrelation and the normalization term. Additional simulations confirmed  that the expectation term CXX 
slows down the convergence a lot. So, by dropping the CXX term in the RipNet model at the normalization 
only, let us define another model (”RipNet2”) which contains an additional term CXX at the decorrelation 
component compared to the SAnet. 
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(5.3) 



In Fig. 5.3 we see  the corresponding performance of this algorithm for the same parameters. 
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Fig. 5.3 The objective function development of the RipNet2 Model 

As we expected, under these conditions the RipNet2 model has a convergence performance between the 
two others. Now, does this mean that our model that is directly derived from theoretic considerations is 
generally slower for the same input and learning rate than the heuristic model of Silva and Almeida?  

First, we did not used specially designed, application-dependent „optimal“ parameters for each algo-
rithm and each input pattern set. So, our simulations gives us only trends but no absolute rankings. Sec-
ond, let us regard the stochastic versions of the deterministic algorithms which are much more important in 
an unknown environment. Here, we replace the deterministic term in the learning rules by the averaged, 
measured output correlations 

w C w w xx wi
T

XX j i
T T

j i jy y= =  

and the averaged input term by the non-averaged stochastic terms  

C w xx w x xXX i
T

i i iy y= = →  

By this, the expectation value of the learning rules, i.e. the learning goal, remains the same.  
For the simulation, we initialized again the weight matrix by W=I and chose γ=0.08. To ensure the con-

vergence of the stochastic case, we decreased the learning rate by 0.004 after each 20 steps. For n=5 units 
we generated 20 stochastic input vectors containing 5 independent, Gaussian distributed, centered com-
ponents with different variance each. 

Now, we compare the convergence of the resulting stochastic learning algorithms by typical sample 
runs of the cost developments. First, the performance of the stochastic learning rule (5.1) is shown in Fig. 



5.4. We can see that contrary to the „experience gathering“ the expectation terms do not speed up the 
convergence. In reverse, the convergence is much faster now. 
 

0

2

4

6

8

10

12

0 20 40 60 80 100 120

Cost

time steps

Stochastic learning of Silva und Almeida

 

Fig. 5.4 The objective function of a typical simulation run of the stochastic SAnet 

The corresponding time course of the stochastic RipNet model of eq. (5.2) shows the same proportions for 
the same input: 
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Fig. 5.5 The objective function of a typical simulation run of the stochastic RipNet 

Now, the difference between the two models is no longer of practical importance: the convergence of both 
is much faster than in the deterministic case and is nearly the same. This includes also the case of the 
RipNet2 of eq. (5.3) model that is not shown here. 

There is another interesting fact to notice: Comparing Fig. 5.1 and Fig. 5.2 with Fig. 5.4 and Fig. 5.5 we 
see that the cost, i.e. the objective function does not decrease monotonically any more. This is due to the 



stochastic nature of the algorithm; the stochastic approximation properties of the heuristic network are 
very irregular while our network performs in the average just the sequential gradient descent.  

6 Discussion and conclusion 

In this paper we deduced the conditions for a transform which „immunizes“ parallel channels against noise 
influence before the signals are used in later stages and which conserves the maximal information. It 
shows up that the signals have to be decorrelated and normalized by the filter which corresponds for the 
case of one channel to the classical result of Shannon.  

In the application of image encoding the proposed methodology shows good results and constitutes 
an efficient approach for noise suppression. 

Furthermore, by a corresponding objective function we deduced the deterministic and stochastic learn-
ing rules for a neural network that implements data orthonormalization. In comparison with other already 
existing normalization networks it complements the one of Plumbley by a complementary architecture: it 
stores the information in the feedforward lines and not in the lateral inhibition ones. Compared to the heu-
ristic network of Silva and Almeida our network shows a slower convergence speed in the deterministic 
case, but approximately the same in sample stochastic cases.  

Additionally, by our systematic canonical derivation its convergence proportions are very regular. 
Contrary to the one of  Silva and Almeida it is based on an objective function and can therefore serve as a 
building block for further enlarged objectives, i.e. objective functions containing additional terms, which 
can not be handled by scaled PCA network solutions for orthonormalization.  

Certainly, there are still many questions open for the algorithms presented here. For instance, the opti-
mal initial setting of the parameters depending on the input statistics, the global convergence behavior of 
the different algorithms and their restrictions on the input pattern range, the optimal parameter regime to be 
used for the discrete algorithm in the case of sequential and parallel update. All this is  left for future re-
search. 
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Appendix A  
The information of multichannel gaussian sources 

For the convenience of the reader we present here the multidimensional extension of the computations 
presented in [15]. 

 
Theorem A: Let X be a n-dimensional, normally distribute random variable with the probability density 
function 
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Then, the average information or entropy of  X is given by 

( ) ( )H X e n
XX= ln det2π C . (A.1) 

and the transinformation for the noisy channels of eq. (2.5) becomes 
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Proof: 
Equation (A.1)  is a standard result of information theory, see e.g. [9] Theorem 9.6.5.  
Therefore, we get for eq. (2.5) 
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and for equivariant noise on all channels with CΦΦ
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q.e.d.  



Appendix B  The convergence 
 

Theorem B-1   The convergence proof 
 
If we change for the objective function 
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the weight parameters sequentially that for each time step the learning equation is of the form of a gradient 
descend, i.e. 
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then the weights will be changed such that the objective function R(w) becomes the global minimum. 
 

Proof 
If we can show that the function R decreases at each time step and has a global lower limit it has the 

properties of a Ljapunov function. According to [6] then the convergence to a minimum is given. 
For the time development of the objective function R we know that  
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Combining the two equations gives us 
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This means that the objective function R decreases monotonously at each time step t. Additionally, R 
has a minimal limit, because R1 and R2 are sums of squares which has the lower limit 0. Therefore, all condi-
tions for a Ljapunov function are fulfilled and the learning equation supplies us with the solutions the 
minimum of the objective function. 

q.e.d.  



Theorem B-2  The convergence goal  
 
With the objective function 
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we get as all solutions of the equation system 
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the weight vectors wi in the eigenvector base er of the correlation matrix CXX 
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for the coordinates in the orthogonal eigenvector base {e1, e2, …, en} of the input correlation matrix CXX 
with different eigenvalues {λ1, λ2, …, λn}.  
Additionally, for the norm of each eigenvector we have 

e r r

2
1= λ   r = 1, 2, …, n. (B.4) 

Proof  
Let us prove the theorem by showing that the conditions (B.3) for the coordinates in the eigenvector base 
(B.2) above satisfy the equation (B.1) and is therefore a valid solution for the minimization of the objective 
function. 

The gradient of the objective function gives us (see eq. 3.3) 
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which becomes under the condition (B.4) 
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= 0       k = 1, 2, …, m. 

For the m different equations we have at most m different solutions. Since the m linear independent weight 
vectors wi with conditions (B.2) and (B.3) are valid solutions, they form a m-dim. solution space which is 
sufficient for the maximal m-dim. space span by the m equations with m variables of (B.1). There can be no 
more valid solutions which means that we have found them all.  

 
q.e.d. 



Appendix C The minimal reconstruction error 
 

Theorem C-1  The reconstruction error 
 

Let y = Wx be a linear transformation by a matrix W such that the transformation performs a data or-
thonormalization. Since we have dim(x)=rank(W)=n there exists an inverse transformation W-1 and each 
input vector x ∈ X can be decomposed by the inverse transformation (2.14).  
Then, to each x there exists an approximate vector x' defined by 
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With y y Pi i =  and the eigenvector decomposition (B.2) of wi this becomes 
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q.e.d. 
 

Theorem C-2    The minimum of the error 

Let y = W x be a linear transformation with a matrix W such that the transformation performs a data or-
thonormalization. The eigenvectors should be ordered according to their size and be scaled such that their 
norm fulfills the following condition 

e i
i

2 1
=

λ
             i = 1, 2, …, n. 

Then the mean squared reconstruction error 
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2 2= −x x'  

becomes minimal when the rows of W become 
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i
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with {e1, e2, …, en} being the eigenvectors of the Correlation matrix CXX with the different eigenvalues {λ
1, λ2, …, λn} and the error has the form 
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Proof 
Let W be an arbitrary transformation matrix such that it performs a linear transformation y = Wx imple-

menting a data orthonormalization. By theorem C-1 the mean squared error of the reconstruction is given 
by eq. (C.1) 
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To minimize this error, we are looking for the relative extrema of this function under the constraint of con-
stant signal power 
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In order to solve this problem, we use a Lagrange function. The constraint becomes  
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Using the (n-m) unknown Lagrange multipliers µm+1, …, µn the Lagrange-Funktion L becomes 
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For the unknown coefficients { }a ri r = 1, 2, …, n; i = m+1, …, n and { }µ i i = m+1, …, n we have to solve 

the equation system 
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The equations gi(a1i, …, ani) = 0 for i = m+1, …, n are fulfilled when the constraints are satisfied. What we 
really are interested in are the remaining equations to be solved 

 ( )( )∂
∂

µ µL
a

a a
jk

m nn m n1 1 1+ +, , , , ,K K  

 ( )=








 + −





















= += == +
∑∑ ∑∑∂

∂
λ µ

a
P a a P

jk
r ri

i m

n

r

n

i si
s

n

i m

n

1 2

11

2

11

 

 ( )=








 + −











= += == +
∑∑ ∑∑∂

∂
λ

∂
∂

µ
a

P a
a

a P
jk

r ri
i m

n

r

n

jk
i si

s

n

i m

n

1 2

11

2

11

 

 ( )=








 + −











= +

= ≠

= =

= ≠

= +
∑∑ ∑∑1 2

1

0

1

2

1

0

1

P
a

a
a

a Pr
jk

ri
i m

n

a a

r

n

i
jk

si
s

n

a a

i m

n

ri jk si jk

λ
∂

∂
µ

∂
∂

1 244 344 1 2444 3444

 



 ( ) ( )( )= + = +1 2 2 2 1P a a a Pj jk k jk jk j kλ µ λ µ  

 =  0    for j = 1,2,…,n; k = m+1,…, n. 

This means that 

( )( )a Pjk j k1 0λ µ+ =  j = 1,2,…,n; k = m+1,…, n 

which is fulfilled by the conditions 

ajk=0  or  ( )( )1 0P j kλ µ+ =  

For a non-zero component ajk ≠ 0 we conclude ( )µ λk jP= − 1 . 

Now, let us assume that there are two non-zero components 
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which contradicts the assumption that different eigenvectors of CXX have different eigenvalues. Thus, the 
assumption is wrong: if a component ajk of wk is not zero all the other ones in wk must be zero 

 If   a jk ≠ 0 for each j = 1,2,…, n   ⇒  a rk = 0  for  r = 1,2,…, n; r ≠ j. 

i.e. for the extremum of the error the components in the eigenvector base 

( )a a ak k nk1 2, , ,K  k = m+1, …, n 

of the vector wk must be zero except just one element. With the constraint for gk(.) we know that then this 
element has the value P .  
Additionally, with eq.(2.11) we know that for a complete orthonormal transform with n basis vectors we 
have 
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Now, we know more: The coefficient arj (r=1..n, j=1,..n) is always zero except for one index i where it is non-
specified. With (2.12) we also have for the complete orthonormal transformation 
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which gives us the complete picture: For a minimum error the coefficients in the scaled eigenvector system 
of all basis vectors wi are zero except for just one component in each basis vector. This  means that each 
base vector is completely aligned to just one eigenvector direction. Since the complete transform with m=n 
is invertible, the base vectors wi are linear independent which means that the non-zero components have 
different indices. 

Now we order the vectors wi by the index of the non-zero component in the eigenvector base, i.e. re-
number the indices such that aii

2=P is the non-zero element. Then each base vector is aligned to the ei-
genvector with the same index, i.e. 
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and we get 
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with the Kronecker symbol δij.  
The sum becomes minimal if we use only the m-n smallest eigenvalues i.e. neglect the eigenvectors 

with the smallest eigenvalues. This means that the transformation base vectors {wk} should be the m ei-
genvectors with the biggest eigenvalues.  
This concludes the proof. 
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