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Fuzzy Lattice Neural Network (FLNN):
A Hybrid Model for Learning

Vassilios PetridisMember, IEEE,and Vassilis George Kaburlasagember, IEEE

Abstract—This paper proposes two hierarchical schemes for and “1’'s” of positive and negative examples as real numbers.
learning, one for clustering and the other for classification prob-  For the binary ART neural-network [4] inputs of features are
lems. Both schemes can be implemented on a fuzzy lattice neural represented by strings of “0’s” and “1’s” and are treated as real

network (FLNN) architecture, to be introduced herein. The cor- b M in 1161 wh h K led d
responding two learning models draw on adaptive resonance NUMbers. Moreover even in [16], where human knowledge an

theory (ART) and min-max neurocomputing principles but their numerical data are integrated by propagating fuzzy numbers
application domain is a mathematical lattice. Therefore they can through a neural network, other types of data cannot be treated
handle more general types of data in addition toN-dimensional jn addition.

vectors. The FLNN neural model stems from a cross-fertillzatl_on In an effort to define connectionist schemes able to cope
of lattice theory and fuzzy set theory. Hence a novel theoretical . . . . .
foundation is introduced in this paper, that is the framework of With @ wide gamut of disparate data we came to grips with
fuzzy latticesor FL-framework, based on the conceptfuzzy lattice mathematical lattices. The work herein reports on both theoret-
and inclusion measure.Sufficient conditions for the existence of ical and practical results in this direction. Our contribution can
an fi”dUSiO” measure irl]: I?Nanathr?maticaihlattt'iC? are Sft‘o"_"” Tho? be summarized as follows. We propose a sound mathematical
performance of the two schemes, that is for clustering an : : )

for classification, compares quite well with other methods and ground, that is théuzzy lattice frameworkr FL frariie\ivork. .
it is demonstrated by examples on various data sets including Based on the FL-framework we show a connectionist archi-

several benchmark data sets. tecture, namely fuzzy lattice neural network (FLNN) [20],

Index Terms—ART neural networks, clustering methods, deci- [29]. which can treat with mathematical consistency and

sion support systems, fuzzy lattice theory, fuzzy neural networks, Jointly such disparate data as conventiofdl vectors, fuzzy
learning systems, pattern classification, pattern recognition. sets, symbols, propositions, etc. Next, two learning schemes
implementable by the FLNN are shown, one scheme for
clustering and the other scheme for classification. These two
“FLNN schemes are applied quite successfully on several

RTIFICIAL neural networks are a technology rooted ienchmark data sets for learning and recognition.

many disciplines. Numerous popular models have beenEmployment of mathematical lattices is not new in engi-
proposed to date inspired from physics, chemistry, geometRgering. They appear either explicitly or implicitly in many
statistics, biology, neurobiology, and psychology [1], [2], [4]instances. For example lattices are employed explicitly in [6]
[11], [15], [21], [27], [32] to name but a few. The artificialfor controlling discrete-event systems. Complete lattices are
neural networks are endowed with unique attributes such @fployed in [23] in deductive databases. In [35] and [12]
universal input-output mapping, the ability to learn from ang js explained how a lattice may generalize the notion of a
adapt to their environment [14]. A most prominent point ofyzzy set while in [35], in particular, it is noted that “fuzzy
vantage is their ability for massive parallel processing.  sets (over a universe of discourse) constitute a distributive

Connectionist schemes have been proposed to processjdfice with a “0” and “1.” In neurocomputing, lattices appear
formation using representations other than the numerical Ofplicitly in the fuzzy ART [5] and in the min-max neural
For instance, there have been proposed neural networks for gs [30], [31] since both types of neural networks deal with
edge represented by fuzzy if-then rules [16], [33]. Crosgyperhoxes is a lattice. Regarding neurocomputing in lattices
fertilization of inferencing networks with conventional neurajje gldest attempt known to the authors is noted in [19], where
networks such as the Kohonen’s model have been reporigd \york is oriented more toward medical applications than
[25], and wavelet networks were also considered [8]. toward theoretical substantiation.

Neverth.eless the applicability domain of all prgvious neural According to the neurocomputing approach to learning we
sci_iemes is more or less restricied. More §peC|f|caIIy the data e taken, sets of lattice elements are specified by sets
being processed are frequently in the Euclidean space or tB?yfiniter many overlapping and/or nonoverlapping lattice
are treated as such. For example, the problem of grammatic@lyais. In this sense the FLNN approach to learning is
inference is treated in [28] by processing strings of “0'Sgimilar to the one taken by the biologically motivated adaptive
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employing the theory of lattices [3] which is cross-fertilizedefer to the collection of all fuzzy lattices by the terAb-

with the theory of fuzzy sets [35] as explained throughout thfsamework. Learning in the FL-framework is achieved by

paper. Note that the work herein is not merely a combinati@pecifying sets of lattice elements by intervals. To this end

of lattice theory and fuzzy set theory but instead it is a fruitfukendering “fuzzy” a conventional lattice is convenient as the

cross-fertilization of the two theories. latter enables association of lattice elements to one another,
The layout of this paper is as follows. Section Il outlinesven when those lattice elements are incomparable. Note that

a novel theoretical foundation for learning which employm this work we deal solely with complete lattices.

mathematical lattices. Section Il introduces the FLNN archi-

tecture as well as two learning schemes, one for clusteriBg Inclusion Measure

and 'Fhe other for cl_assification. Section IV showg suffici_ent A fuzzy lattice can ensue from a conventional one by an

conditions fo_r applying an FLNN scheme on lattices of INselusion measure defined next.

tervals. Section V reports on the capacity of the FLNN for pefinition 2: Let I be a complete lattice with least and

pattern recognition of various data sets, including five bencafeatest element® and I, respectivelyAn inclusion measure
mark data sets. Finally Section VI summarizes the principgl a mappings: S = {(z, y): .y € L} — [0, 1] such that

achievements. o((z, u)) = o(x < u) satisfies the following three conditions:

II. A NEW THEORETICAL FOUNDATION FOR LEARNING (C1) o(u<0)=0, u# 0.

The goal of this section is to introduce a new a viable theo{(C2) olu<u)=1,  Vuel.
retical framework for hybrid learning with a wide application (C3) u <w = o(z <u) < o(x < w), z,u, wel
domain. — Consistency Property.

O
o Conditions (C2) and (C3) jointly imply,: < w = o(u <
Recall that a lattice is a partly ordered set any two of Whosg < 4(u < w) = o(u < w) = 1, u, w € L. The latter
elements have agreatest_lo_wer boundneetdenoted b}a:/\y furthermore impliess(u < I) = 1, wherel is the greatest
and a least upper bound min denoted byr v y. Alattice . element inL. It can be argued that(z < ) shows the
is completewhen each of its subsets has a least upper bougdlgree of truth of the lattice inclusion relatian < w, that
and a greatest lower bound in A nonvoid complete lattice i5 the degree of inclusion of in .
contains a least and a greatest element denoted, respectivelyy order an inclusion measure to define a fuzzy lattice out
by O-and I [3]. _ _ of a conventional lattice it suffices to hgu < w) = 1 =
Let L be a lattice, either complete or not. Consider thg < 4, according to Definition 1. To this end we considered
relation R of the induced partial ordering in, and letz, y € 3 real-valued function’ defined below.
L. Then eitherz andy arecomparablethat is(z, y) € Ror  pefinition 3: A function- h, h: L — R on a complete

(v, #) € R, or z andy areincomparablethat is none of the |attice L, satisfies the following three properties:
previous ordered pairs belongs f& The novel notionfuzzy

lattice is introduced in order to extend the crisp, if existent, (P1) 7(0) =0, where O is the least element in
lattice relation of partial ordering to any pdit, ) of the set (P2) u<w= h(u) < h(w), u, w €L
S = {(z, y): z, y € L}. The practical significance for suchgng
an extension is that it may associate any two lattice elements.

. P3 < Mz vw)—hizvu) <hw)—nh
Hence to everyz, y) € S a real numbep.p(z, y) € [0, 1] is (P3) w=w = hlwvw) = hzvu) < hw) =)

A. Fuzzy Lattices

attached to indicate the degree of inclusion:ah . Formally x, u, w € L
an extension (relationf can be defined [36] by ) O
P={((x,v), pr(z, 9)): ¢,y € L, up(z, y) € [0, 1]} We remark that if2(O) # 0, then a functionhg(.) with

ho(O) = 0 can be defined out ok(.) by subtractingh(O)

where the real functiorup(z, v) is a fuzzy membership from all 2(z), « € L. A function- does not exist necessarily
function on the universe of discourse= {(x, y): z, y € L}. in a lattice. Nevertheless when it exists it can be shown that

To keep the extensior” compatible with the original k(z, y) = h(y)/h(zVy), x, y € L whereh(.) is a function#,
lattice’s L partial ordering relatiork, P is defined under the defines an inclusion measure lin
constraint thayup(z, y) = 1 if and only if z < y in L. The Theorem 1: Let L be a complete lattice. Then the existence
definition of a fuzzy lattice ensues. of a function® on L is sufficient for the functionk(z <

Definition 1: A fuzzy lattice is a pair (I, pp(z, y)), u) = h(u)/h(z Vv «) to be an inclusion measure In, that
where I is a conventional lattice angep: S — [0, 1] is is k(z € u) = o(x < uw) = h{u)/h(z V u).

a fuzzy membership function on the universe of discourse O
S ={(z,y): 2,y € L}. Itis pp(x, y) = 1 if and only if The proof of Theorem 1 is given in the Appendix.
z < yin L. Note thatk(z < w) = h(u)/h(z Vu) = 1 & hlu) =

O AzVu) eou=zVus e < u Hence(l, k(z < w)) is
We remark that real functiopr(x, ) can be interpreted a fuzzy lattice. Functiork(z < y) will be employed as an
as specifying the degree of inclusion ef in y. We will activation function by the neurons of an FLNN neural model.
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Example 2.1: Consider the latticd = [0, 1], that is the function/ onL. Then thesizeof [a, ] € V, with respect to
closed interval of real numbers between 0.0 and 1.0. THig.) is defined byZ([a, b]) = h(b) — h(a).
lattice is calledchain[3] because it is characterized bytatal O
instead of a partial ordering. It is clear thht= [0, 1] is a At this point it is necessary to cite a convention regarding
complete lattice with least and greatest elements 0.0 and 1t notation employed. Specifically 1€t denote a product

respectively. The corresponding lattice meg&} é&nd join () lattice, and lef_,, ---, L 5, denote its constituent lattices. We
operations are given, respectively, by\y = min {z, y} and agree to denote an element of the product lattidey a letter
xVy=max{z, y}, z,y € 1 = [0, 1]. without any subscript, for instancee L. On the other hand,

Any monotone increasing real functidg.) with 2(0.0) =0 an element of a constituent lattite, is denoted by a letter
is a functionk because properties (P1) and (P2) of Definition @ith a subscript, for instance; € L ;. Same subscripts imply
are obviously true. Property (P3) can be shown by consideriagments of the same constituent lattice and vice-versa.
the three cases: 1 < v < w; 2) u < z < w; and 3) Example 2.2: Consider the product lattickl = [0, 1] x
v < w <z, Case 1) impliest < u < w = h(x Vw) — [0, 1], that is the unit-square. In this case there exist two
hiz vV u) = h(w) — h(u), case 2) impliess < x < w = identical constituent lattice-chairls= [0, 1]. By Lemma 1
hMazVw)—h(xVu) = h(w)—h(z) < h(w)—h(u), and case 3) we infer that functiom:(z) = = on the lattice-chaill = [0, 1]
impliesu < w < x = h(zVw)—h(zVu) =0 < h(w)—h(w). implies the functionk: h(z1, x2) = h(xy) +h(z2) = 21+ 22

Hence (P3) holds. on the product latticd) = [0, 1] x [0, 1].
For all examples herein drawn from the Euclidean space theln lattice-chain I = [0, 1] the size of an interval
function-h: h(z) = = was employed. [z1, 1], 21, 91 € [0,1] with &3 < gy is defined by

O Z([z1, n1]) = h(y1) — A(xz1) = y1 — z1. On the other hand an
interval in the product lattic®& = [0, 1] x [0, 1] corresponds
to a rectangle in the unit-square and its size equals half the

C. A Hierarchy of Fuzzy Lattices circumference of the corresponding rectangle.

It holds that the product ofV latticesl q, ---, Ly, that U
isL =1y x---x Ly, is lattice with an induced patrtial
ordering relation defined by, - - -, zx) < (41, - -, yn) & D. LatticesPL; andPL,
z1 <y, -+, 2y < yn [3]. This partial ordering relation is | et be a complete product lattice and tetand I denote,
called hereirrelationr;. LatticelL =L, x --- x Ly is called respectively, the least and greatest elemerit.ofn line with
product lattice,and each one of the;, ¢ € {1, ---, N} is |ast section’s analysis it can be inferred thak L implies a
called constituent lattice.The product lattice meetA) and  complete lattice, which will be denoted IBL ;. Lattice PL
join (v) are defined, respectively, byAy = (21, -+, 2xv) A is defined on the set = {(a, b): a, b € L} and the relation of
(yi,-vyn) = (@1 Ay, -, anv Ayn) and z V' y = its partial ordering is the santelation 1, as before, implied
(z1, - an) VY, o, unv) = (@ Vs, 5 en Vun) [Bl by product latticdl = Ly x --- x Ly. That is(a, b) < (¢, d)
Note that if the constituent latticels;, ¢ € {1, ---, N} are if and only if a < ¢ andb < d. The join and the meet in
all complete with least and greatest eleme@s ---, On PL, are defined by
and Iy, ---, I, respectively, then the product lattite =

Ly x -+ x Ly will be a complete lattice with least element (a,b) V(e, d) =(aVe bVd)
O = (04, ---, Oy) and greatest elemedt= (I, ---, Iy). and

Regarding functior: the following statement holds. (a, D) A(c,d) =(anc, bAd), wherea, b, ¢, d € L.
Lemma 1: Letl =L; x---x Ly be the product ofV com- ) ]
plete constituent lattices with function(8)-h1(.), - - -, hx(.), 1he least element of the complete lattied . is (O, O),

respectively. Them(zy, -+, ox) = hi(z1) + -+ hn(y) whereqs its greatest elem.ent(is I). _
defines a functiork on the product latticé = L, x - - x L. By virtue of Lemma 1 it can be shown that i(.) is a
7 function on a latticel, thenH ((a, b)) = h(a)+h(b) defines
The proof of Lemma 1 is given in the Appendix. a functionf on PL,.

We remark that Lemma 1 substantiates FL-framework’s [N the sequel another lattice is defined on the Set=

claim for a “disparate data fusion capacity,” suffices the dafa® 0): @ b € L}, thatis latticeP’L, of generalized intervals
p-L. But lattice Pl , is defined with a different partial

be elements of complete constituent lattices where a functid ) A

1 is available on each constituent lattice. Lemma 1 also parfijdering. Note that the set = {(a, b): a, b € L} will also

substantiates the claim for “a hierarchical nature” of the FLNNP€ denoted bys = {[a, 0]: a, b € L}. _

An additional conceptual level in the hierarchy of lattices is 11€orem 2:A complete latticeP’L» can be defined on the

incurred by considering the set of intervals of lattice element§t S = {[a; V]: @, b € L} whereL is a complete lattice,

as shown in the sequel. The set in question augmented bY/Iif! tWo binary operations between elementsaf, defined

least element is a complete lattice, denoted hereily pyThe &S following:

following definition suggests a “measure of the magnitude” of

an interval inV, with respect to a functiof- defined onlL.
Definition 4: Let L be a complete lattice witt0 and 7 a@nd

its least and greatest elements, respectively, anfl(l¢tbe a [a, 8]V [c, d] =[aAe, bV d], wherea, b, ¢, d € L

[a, )] Ale, dl =[a Ve, bA]
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because the following laws L1-L4 are satisfied, fomare combined as follows:
a, b, e, d e f el [3]
[0.1,0.7, 0.3, 0.4] A [0.5, 0.8, 0.5, 0.2]

L1. [a, B] A [a, b] = [a, b] =[0.1Vv0.5,0.7A0.8,0.3V0.5, 0.4 A0.2]
and =[0.5, 0.7, 0.5, 0.2]
[a, O] V [a, b] = [a, U] (Idempotent) and
L2. [a, b]A[c, d] = [c, d] A a, b] [0.1, 0.7, 0.3, 0.4] v [0.5, 0.8, 0.5, 0.2]
and =[0.1A0.5,0.7Vv0.8,03A0.5,04V0.2]
[a, b] V[c, d] = [c, d] V [a, b] (Commutative) =[0.1, 0.8, 0.3, 0.4]
L3 fa, B A (le, d] Alfe, f1) = ([a, Y Ale, dl) Ale, f] where it was assumed that [0.1, 0.7], [0.3, 0.4], [0.5, 0.8], and
and [0.5, 0.2] specify generalized intervals in the constituent lat-
[a, b]V ([e, d] Ve, f]) = ([a, ] Ve, d]) V [e, f] tices. Note that a single poifit;, y1) € U can be represented

(Associative) in PU, by the trivial interval[zy, =1, y1, y1].

L4. [a, b]A([a, b] Ve, d]) = [a, ] V ([a, b] Alc, d]) = [a, 0]
(Absorption)

O

Ill. Fuzzy LATTICE NEURAL NETWORK (FLNN)

- The goal in this section is to employ the FL-framework

The proof of Theorem 2 is given in the Appendix. presented in the previous section in order to introduce 1) a

The implied relationfa, b] < [c, d] of partial ordering in neural architecture, that is the fuzzy lattice neural network
PL . is equivalent tda, b]A[c, d] = [a, b] & aVe=a, bAd = (FLNN) and 2) two learning schemes, one for clustering and
b c<ab<d and it will be called (partial ordering) the other for classification problems which (schemes) can be
relation r,. Note that[/, O] is the least element ar{@, I] is applied by the FLNN. Some additional notions need to be
the greatest element in the complete lattitle,. introduced in the following section.

An element ofPL is calledgeneralized intervabecause
of the way latticePL, was defined. Note that latticé;, of A Families of Lattice Intervals
intervals is a sublattice dPl_,. Recall that “a sublattice of a

lattice L is a subsek of L such that, b € X imply aAb € X The elements of the sét;, by being intervals of lattice

elements, define sets of “adjacent” lattite elements. The

andavb € X [3]. As the Iegst element 'W_L we may take the FLNN deals with certain families of lattice intervals denoted
least element oPL., that is the generalized intervil, O]. by {w;}, wherew; € V; andi is in a finite index set. The

Furthermore note that parenthegesare used to embrace ang| NN aims at identifying sets; of lattice elements, namely
element ofPL,, for instance(a, b) € PL,, whereas brackets ¢|asseswhich can be represented by the set-union of a finite
[I are embracing elements &fl.,, for instancefc, d| € PL2, number ofv, intervals, that is;, = |J, wy. ;. Note that more
intentionally, to underscore the two different lattice orderingﬁan one families of intervals may Specify the same class
on the same ses§. Instrumental to the applicability of the FLNN in latticéy,
Example 2.3:Regarding the unit-square product latticgs the existence of an inclusion measureMp. Throughout
U = [0, 1] x [0, 1] an element ofPU; or PU; is given by this section we assume the existence of an inclusion measure
a vector of four numbers. These vectors, as elements of itheV . In the next section we show sufficient conditions for
two distinct latticesPU; and PUs,, differ as to the manner its existence. The degree of inclusion of an interyat Vy,
in which their meet 4) and the join ) are calculated. For in & classc; is defined as follows.
instance, consider the elements (0.1, 0.7, 0.3, 0.4) and (0.5Definition 5: If x € Vi, andcx = |J; we,: then thedegree
0.8, 0.5, 0.2) ofPU;. Their meet and join are, respectively Of inclusionof z in classc; is defined aso(z < c;) :=
max; o(z < wg ;).
(0.1, 0.7, 0.3, 0.4) A (0.5, 0.8, 0.5, 0.2) O
=(0.1A0.5,0.7A0.8, 0.3A0.5, 0.4 A0.2) Remark that sometimes(z < cx) = o(z < U; we,i)
will be denoted instead by(z < {w_ ;}). Moreover, when it
=(0.1,0.7, 0.3, 0.2) happens to be(z < ¢) = 1 we will write = < ¢; and say:
“z is in(side) classci.” The definition of connectedclasses
will be useful.
(0.1, 0.7, 0.3, 0.4) v (0.5, 0.8, 0.5, 0.2) Definition 6: A class ¢ = |J; w; is called connectedif
and only if for any two interval®, ¢ inside ¢ there exists
=(0.1v0.5,0.7v0.8,0.3Vv 0.5, 0.4 v 0.2) a sequence of intervalg, -- -, ty_; inside classc, from p
=(0.5,0.8, 0.5, 0.4). tog. Thatisto Ap = p, tn_1 Aq =g andt; At # O,
i =0,---, N —2,
The same vectors of numbers considered as elemeifits/ af O

and
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Note that a family is calledonnectedf and only if it defines 4 4
a connected class.

Decision making in the FLNN is driven by the degree of!
true of proposition & < ¢” as expressed by(z < ¢),
wherex is an input lattice interval that excites the system and
the ¢;’s are learned classes kept in the system’s memory.

Let F be the collection of all families that can represent
a concrete class in lattice L. Note that the cardinality of a
family {w;} of intervals used to represent classeed not
be constant. We say that a famifyp,,} in F is “smaller
than or equal to” another familyq,} in F symbolically @ (b)

{pm} < {aqn}, if and only if Yp in {p,,} there exists a7 Fig. 1. (a) Despite the fact that rectangles inside class: = wy Uw, it is

in such thatp < ¢. Moreover, a famil is “strictl neithe_rar < wy nor x < wg, therefo_re it foIIows.'r_(V:r < ¢) < 1 and (b) the
{an} b<q P} y technique of maximal expansions finds the quotigmi, w)} of classc and

smaller” than another familyg, } and we write{p,,} < {g.} i guarantees (x < ¢) = 1 whenu is inside class: = w1 Uwz = wy Uw).
if and only if it is {p,.} < {¢.} and either there is a in

{pm} and aq in {g,} such thatp < ¢ or the cardinality of S

family {p,»} is strictly smaller than the cardinality of family comion:wimerwesan

{g»}. In conclusionF is a partially ordered set. Consider the | 2 3 L>M

following lemma. [ I T T
Lemma 2: The collection 7 of families representing a
. <
concrete clasg = |J, w; has a maximum element, namely obsw)
quotientof classe, and denoted by(F) = Q({w;}). >

/ \\ E /“’reset
of lattices implied by the FL-framework. There is a concrete” | : i
benefit in replacing a family{w;} which represents a class I I Iy
.by the QL'JOtIentQ({wi}) = Q(F). That is for any input Fig. 2. The basic two layer FLNN architecture for learning in the latiige
intervalz it holds o (z < Q(F)) = max o(x < {w;}), Where qfintervals.L is the number of category layer neurons which equals the total

{w;} € F. In other words the quotier(F) maximizes the number of intervals used to define classes. The category layer neurons

degreea(a: < c) of inclusion ofz in the class: — U Iy employ the lattice inclusion measus€.) as their activation functionsV is
- i v the number of input layer neurons. The two layers are fully interconnected by

EX‘_ampl_e 3-1:The Ut"ity _Of the technique of maximal €X-Jattice v, weighted links that filter-up or -down activity of a layer. A “reset”
pansions is illustrated in Fig. 1. Note that the complete latticede is used for resetting nodes in the category layer.

in this case is the unit-square defined as the product
[0, 1] x [0, 1] of the two lattices-chaink= [0, 1]. Recall that neurobiological and behavioral data and they were also applied
an interval in the lattice unit-squakgis a rectangle. Considerin a range of engineering applications [7], [13]. Nevertheless
the class: = {w1, w2} and let the rectangle consist solely of ART is restricted to the sek.
points ofw,; andws [Fig. 1(a)]. Then itis reasonable to expect Like ART, the FLNN proposes a modifiable recurrent archi-
o(x < ¢) = 1. But this is not the case in Fig. 1(a) becausgcture for clustering in two layers. One layer, calezdegory
bothw; < zVw; andw, < zVw, hold, therefore itisr(x < layer, is cognitively “higher” than the other called theput
c) = k(z < ¢) < 1, according to Theorem 1. The techniquéayer. Single nodes at the category layer encode patterns of
of maximal expansions comes to restore the expected equatityle activities from the input layer. On the one hand the
relation by replacing class= {w;, w.} by its quotient, thatis category layer consists ot artificial neurons specifying.
the family {w;, w}} of the maximal rectangles of[Fig. 1(b)]. intervals that definel/ classes (Fig. 2); it isL > M. On
Hence any rectangle containing solely points of the claiss the other hand the input layer consists/éfartificial neurons
contained in at least one of the quotient memhberswy, and used for buffering and matching. The two layers are fully
equalityo(z < ¢) = 1 is guaranteed. interconnected by lattice-weighted bidirectional links which
O may filter-up or -down the activities of the corresponding layer.

, A “reset” node (Fig. 2) operates much the same way as the
B. The FLNN Architecture orienting subsystem of the ART does [4].

Fig. 2 shows the basic FLNN architecture which can be em-A key difference between FLNN and ART, besides FLNN’s
ployed for learning and decision making in the FL-framewor&wn activation functions(z < w), is the applicability of
including the conventional sét” . Notice the resemblance toFLNN on fuzzy lattices which could imply significant tech-
the two layer ART neural network [4] which was introducedhological benefits stemming from a much wider application
in the mid-1970’s to solve some problems in sensory codingomain than the conventional Euclidean space. Another van-
The many variations of the ART have modeled a variety ¢dge point of the FLNN compared to the ART is that the

[x 1 (w, =1 w3

W Wi
class ¢ class ¢

v
v

The proof of Lemma 2 is given in the Appendix.
A quotient Q(F) is the maximum element in the sét.
In fact, it is easy to show that the s is a lattice, and
it constitutes another conceptual “pinnacle” in the hierarchys s




882 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 5, SEPTEMBER 1998

inputs I, Is, ---, In to the FLNN (Fig. 2) are intervals,
that is hyperboxes in the se&”" in particular. Hence we
may compensate for the uncertainty of the measurements by 1
feeding to the FLNN a neighborhood of values as defined |class ¢, class ¢,

by an interval rather than feeding a single point. A final [w; W)

advantage of the FLNN is the techniquenadiximal expansions D W D W
which enhances the overlapping of two intervals by enlarging [ - & o.

their lattice meet to the maximum and in all possible ways. x class ¢, X class ¢,

The basic FLNN architecture of Fig. 2 can be employed for > >
learning by either clustering or classification. 0 1 0 1

@) (b)

C. FLNN for Learning—Clustering

The FLNN scheme for unsupervised learning is describe({ T
below next.

0) The first input is stored in the memory, that is FLNN’s
category layer. From then on learning proceeds as fol-
lows (at an instant there areM = M (¢) known classes "
¢k, k=1, ---, M stored in the memory). 4

1) Present an input interval to the initially “set” classes
1, e, e

2) Calculates(z < ¢) for all ¢, & = 1, ---, M that 0 1 0 1
have not yet been “reset,” wherg = [J, wx,; and © (d)
oz < ck) = oz <U; wy, ) = max; o(z < wy, ). Fig. 3. Learning by the fuzzy lattice neural network (FLNN) for clustering.

3) Competition among the classes: selectc; such that The two classes; = {w;} ande; = {w2} compete over input. (a)

o(x < ¢y) = max;, o(x < ¢), where.J is the index of Classe; is the winner because(z < c¢1) is larger thano(z < ¢2), but

e ; ; o _ . it is reset because it does not satisfy the maximum-size-test, (b) €laiss
correspondmg er,mer andy o UZ W, i . selected as the new winner that satisfies the maximum-size-test, (c) rectangle
4) The maximum-size-test agsimilation condition or w, is replaced byw!, = x V w.. The overlapping rectangles; and ),

matching test Is the size ofr v w less than a user define now one class enhanced by rectangigsand w., produced by the
. technique of maximal expansions, and (d) a new input rectangiepears

defined thresholdz? ( wherew corresponds to the 4"\ learning cycle repeats.

“max; o(x < wy ;)"

5) If the maximum-size-test is successful, then incorporaggid o(x < ), and lete; be the winner class. Assume
a into ¢, by replacingw by =V« and then by calculating that the maximum-size-test is not met then classs reset.
the new quotient)({wy,.}). ~ Searching for a winner class continues, is tested next

6) If the maximum-size-test fails then “reset;. That is, [Fig. 3(b)], and letc, satisfy the maximum-size-test. Then
while the current input is present make; inaccessible s replaced byw), = = V w,. Note that the rectangles; and

1 9 2 W3
class ¢, W class ¢;
5 6

3%12
8 10 7

]
W4 ] W'z

v

A 4

during subsequent quests for a winner. w), overlap. The FLNN for clustering assumes that naw

7) Completion-test: Are all the classes, - - -, ca “reset”? andwy, are in the same family of lattice intervals that defines
If the completion-test fails go to Step 2) to look forg single class, say, and it triggers the technique of maximal
another winner. expansions. This technique considers the interseetion w}

8) If the completion-test is successful then memorizgnd it expands it maximally in both dimensions [Fig. 3(c)].
TiCM41 = X Finally, one class; is specified consisting of four rectangles

The previous algorithm corresponds to the learning phase= {w:, w}, ws, ws}. Rectanglew; is specified by its four
of the FLNN scheme for clustering where learning is “ontorners 1-2-3-4, rectangle’ is specified by its corners 5-6-
and the classes are updated continually. As soon as learnia8, rectanglews is specified by 9-2-10-8, and rectangle
is over the testing data are applied, and then only the degrégsl1-6-12-4. The collection of the maximal rectangles for a
of inclusiono(z < ¢) are calculated of an input datum given family of overlapping intervals, as in Fig. 3(c), tise
to all classese, kK = 1, ---, M stored in FLNN’s category quotientof the corresponding class. The degree of inclusion
layer (Fig. 2) andz is assigned to the winner class. Duringf a new inputy in classc; as shown in Fig. 3(d), is given
the testing phase no class is updated whatsoever. by max {o(y < wy), o(y < wh), oy < ws), o(y < wa)}.
Example 3.2: This example illustrates graphically the meNote that inputy could be a trivial interval, that is a point in
chanics of the FLNN for clustering on the plane and it alsthe unit-squarg0, 1] x [0, 1].
demonstrates the technique of maximal expansions. Assume O
that the FLNN has already stored two distinct classgs=
{w1} ande; = {w2} in its category layer and let a new inpu
z, that is a rectangle in the general case, be presented to thin this case a different learning algorithm is implemented on
system as in Fig. 3(a). The two classgsandc, compete with the FLNN architecture. In particular a training set is employed
one another by comparing the inclusion measureés < ¢;) explicitly consisting of N pairs (z;, ¢;), ¢ € {1, ---, N} of

{D. FLNN for Learning—Classification
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data, wherez; € L is an input pattern and element of ashow sufficient conditions for this existence. The only way
lattice L, andg; is an index for the category af;. That is the known to the authors for constructing an inclusion measure
range ofg; is the se{1, ---, K} whereK is the number of is via a functionk. Nevertheless we could not find such a
categories. Note that the basic FLNN architecture of Fig. 2 hasiction in the latticeV, of intervals. Therefore we decided
to be enhanced so as to accommodate information regardiagsearch for an inclusion measusé.) in lattice PL,. Note

the indexg; of a category. Such an accommodation can likat such as(.) would be a valid inclusion measure in lattice
achieved 1) by allowing for storage of an indegx in the Vg as well, becaus¥y, is a sublattice oPL,. Unfortunately,
category layer; 2) by augmenting the input layer by one node could not define an inclusion measurefih, because we
SO as to be able to store the indgxof a category; and 3) by could not find a functiork in PL,. Nevertheless, we already
fully interconnecting the two layers. The FLNN scheme foknow that a function: in lattice L would imply a functionk

supervised learning follows. in lattice PL; by virtue of Lemma 1. Therefore we directed
1) Fori =1to N consider the training paifz;, g;). our efforts to finding an isomorphism between the lattieks
2) Setz = ;. andPL,. Recall that an isomorphism between two lattices is
3) Forj —1to N consider the next training paft:;, g;,) @ bijection (one—one correspondence) between them such that
such thatg; = g;. the image of the meet equals the meet of the images and
4) Setx’ =z V ;. likewise for the join [3]. A sufficient condition was found for
5) For all (zx, gx), k € {1, ---, N} with g, # g;, test the existence of an isomorphism between the lattitles and
whethero(z;, < ') < 1. PLo>.
6) If the test in Step 5) succeeds then repladey =’. We have found that the existence of a dual-automorphism in
7) If 5 < N go to Step 3). L is sufficient for establishing an isomorphism between lattices
8) Storez in the category layer of the FLNN together withP’L1 andPL.. Recall that a dual-automorphism in a lattice
g; indicating ’s category. is a bijection (one—one correspondenée]. — L such that

The above algorithm for training the FLNN terminates. Iff < ¥ © 6(x) > 8(y), [3]. To show that a dual-automorphism
particular there exist three processing loops at Steps 1), )L iS sufficient for an isomorphism betweéti., andPL,
and 5) implying that the complexity i9(V3), whereX is the aSSume that there exists a dual-automorphism in the complete
number of training data. Note that the technique of maximi@ttice L. Then[a, b < [¢, d] in PL implies ¢ < a andb <
expansions was not employed for training. d= 9,(0) 2 0(a) andb < d = (_9(“)’ b) S (9(.0)’_ d) n PLy,

Regarding the testing phase, the testing set is applied :;H‘&i vice-versa. Therefore an isomorphism is implied between
the degrees of inclusion(z < c,) are calculated for each atticesPL, andPL,, and the elementga, b) € PL, and
datumz to all classesy, k = 1, ---, M in FLNN'’s category [9(_@), l?] € PL, are isomorphic. A dual-automorphis#g.) in
layer (Fig. 2). Finallyz is assigned to the winner class, that i& IMPplies #(0) = I and#(I) = O, hence the least element
the class which provides with the largest degree of inclusiof?; @) Of PL1 maps to the least elemeft(0), O] = [, O]

For both the clustering and the classification scheméy, PLz2- Likewise, the greatest elemeft, 1) of PL, maps to
the FLNN allows overlapping of intervals. The idea fofl® greatest elemenf(/), I] =[O, I] of PL,. o
interval overlapping was borrowed from [18] where mutuall To recapltu_late, an inclusion measure can be defined in the
nonexclusive classes are treated and the mechanics of huﬁ/ﬁ’étt‘f:e Vi of intervals as follows.
pattern recognition are modeled with good learning results in1) A function+ in the latticel. can define a functiot in

benchmark data sets. lattice PL; by virtue of Lemma 1.
At this point it is worth referring to the neural architecture 2) Function4 in lattice PL, implies an inclusion measure
in [16] which maps fuzzy input vectors to fuzzy outputs. o(.) in PL; by virtue of Theorem 1.

The architecture in question is able to integrate knowledge,3) A dual-automorphisn®(.) in L can define an isomor-

presented by fuzzy if-then rules, and numerical data into  Phism betweer’L; andPL,, as it was shown above.

a single information processing system. This is effected by4) In conclusion, an inclusion measure between two inter-

employing an extension of the conventional backpropagation Vvals[a, b], [¢, d] € V is given byo([a, b] < [, d]) =

algorithm which (extended algorithm) can handliéevel sets o((0(a), b) < (6(c), d)), where(8(a), b) and (6(c), d)

of fuzzy numbers. Despite its enhanced scope of applicability ~ are inPL; anda(.) is the inclusion measure Ml ;.

the architecture in [16] can not accommodate additional typesRegarding computation of the meet)(and join () in

of data, for instance symbols and/or propositions. On the otHattice V note that the join[a, b] V [¢, d] = [a A ¢, bV d]

hand the FLNN is universal in scope and it can handle is straightforward because it is alway2 c < bV d. However,

principle any type of data suffices the data in question m®mputation of the me€, b] A [¢, d] is attained only after

lattice-ordered and both a dual-automorphism (to be discusdbd following inclusion testin Vp:

in the sequel) and a functiol-be available.
ave<bAd (true)= [a, b]A e, d| =[aV e, bA]

and

IV. DEFINITION OF AN INCLUSION MEASURE
aVve < bAd (false)= [a, b] Alc, d] == [1, O].

IN THE LATTICE V1 OF INTERVALS

In the previous section we assumed the existence of arThat is any generalized intervét, 3|, for which it is not
inclusion measure in the lattice;, of intervals. Herein we = < ¥, is mapped to the least element in the latti¢g of



884 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 5, SEPTEMBER 1998

V. EXPERIMENTS
Our goal is to demonstrate experimentally the viability of

1 the FLNN as an effective tool for clustering and classification.
Moreover, the results by other methods are cited from the

w relevant references so as to be able to compare performance

0.6— on the same data sets. Since the bulk of the benchmark data are

drawn from the conventional Euclidean space we dealt with
-1 the Euclidean space in most of the examples in the sequel.
N B - Five benchmark and one synthetic data set were processed
1, L by the FLNN. The benchmark data sets can be obtained either
0 L from the Carnegie Mellon University’s neural-net benchmark
0.1 03050.6 1 collection [9], or from the University of California Irvine
Fig. 4. In the unit-square it can be calculated that rectangteincluded in repository of mac_hl_ne learning datab.ases [24]. FQI’ some (.)f .the
rectanglew more than the other way around when functidris) = = and P€NChmarks a training set and a testing set are given explicitly.
6(x) = 1—u are selected, respectively, as functivrnd dual-automorphism |n this case only the training set is employed for learning by
in the constituent lattices = [0, 1]. either clustering or classification. On the other hand when the
data are not given separated into a training set and a testing set,
intervals. Since all versions of the FLNN presented in thistraining set was formed either by leaving one datum out or by
paper use solely the lattice joirv) operator to update inter- leaving randomly 25% of the data out. For leave-one-out, the

vals during learning, we did not employ the aforementione®kperiment was repeated so as to leave, in turn, most data out.
inclusion test herein. For leave-25%-out ten random trials were carried out and the

Example 4.1:Let's consider our familiar lattice-chain @verage performance is reported. The success of an experiment
I = [0, 1]. Then functionf(z) = 1 — = defines a dual- is expressed by the percentage of correctly recognized testing
automorphism in latticdl = [0, 1]. The isomorphic of an data.
interval, say[0.1,0.3] € V; C Ply is (6(0.1),0.3) = We introduce two complete lattices, namely the unit hyper-
(1-0.1, 0.3) = (0.9, 0.3) in lattice Pl;. Therefore the degree cube and the convex fuzzy sets.
of inclusion of an interval, say [0.1, 0.3], to another one, say

oo
e A

v

[0.2, 0.5], is calculated as follows: A. The Unit Hypercube
We summarize in this section our discussions regarding
+([0.1, 0.3] < [0.2, 0.5]) lattice-chainl = [0, 1]. The lattice-chaifl = [0, 1] is complete

where 0.0 and 1.0 are, respectively, its least and greatest

=0((6(0.1), 0.3) < (0(0.2), 0.5)) elements. A functior: and a dual-automorphism are given
8, 0.

=05((0.9,0.3) < (0.8, 0.5)) by h(z) = = and 6(x) = 1 — =z, respectively. Hence the
_ h(0.8, 0.5) ~ 0998 corresponding lattice®l; and Pl, are isomorphic to each
~ 1((0.9,03) Vv (0.8,0.5) ~ other. By employing Lemma 1 one can go to more dimensions

and hence consider hyperboxes in the unit hypercube. Note
that employment of the unit hypercube instead of the whole
. . : .Euclidean space is acceptable in engineering practice [22].
nversely the degree of inclusion of [0.2, 0.5]in 0.1, 0.3] I]S—“inally note that the dual-automorphigit.) is a set theoretic

5] < >~ (.85 ) N
o([0-2,05] < [0.1, 0.3]) = 0.857. . . interpretation in the context of the FL-framework of the so
To keep building on the plane consider the unlt—squa(r:%"ed “complement coding” technique employed by the fuzz
lattice U = [0, 1] x [0, 1], where an interval in the unit- b 9 d ployed by y

square is a rectangle. Consider two rectangles in the unallgaptlve resonance theory (fuzzy ART) [5].

square, say0.1, 0.5] x [0.2, 0.3] and [0.3, 0.6] x [0.1, 0.6]
as shown in Fig. 4. Rectangke [0.1, 0.5] x [0.2, 0.3] cor-
responds to element [0.1, 0.5, 0.2, 0.3] B, whose iso- Let € be the collection of convex fuzzy sets defined over
morphic is(#(0.1), 0.5, #(0.2), 0.3) = (0.9, 0.5, 0.8, 0.3) in & subset of a linear space; the latter space is typically a
PU;, whereas the isomorphic of rectangle [0.3, 0.6] x Subspace o?™. It can be shown thaC is a lattice under
[0.1, 0.6] is (6(0.3), 0.6, 6(0.1), 0.6) = (0.7, 0.6, 0.9, 0.6) the regular containmemt C B < f4 < fp, Where f4 and

in PU;. The degree of inclusion of rectang[e.1, 0.5] x fg are, respectively, membership (characteristic) functions of
[0.2, 0.3] in rectanglef0.3, 0.6] x [0.1, 0.6] is computed to be the fuzzy sets4 and B [35]. To this end we will show that
o([0.1, 0.5, 0.2, 0.3] < [0.3, 0.6, 0.1, 0.6]) =2 0.933, whereas if 4, B € C then bothA A B and AV B exist in C. It is

the degree of inclusion of rectangle.3, 0.6] x [0.1, 0.6] known from [35] thatAN B is the largest set contained in both
in rectangle[0.1, 0.5] x [0.2, 0.3] is o([0.3, 0.6, 0.1, 0.6] < A and B, and moreovertd N B is convex; hence we define

where h(z) = z. Co

B. Fuzzy Numbers

[0.1, 0.5, 0.2, 0.3]) = 0.833. AN B := AN B. On the other hand leE 4 g be the collection
For the N-dimensional space an interval is afv- of convex fuzzy sets that include bothand B. Consider the
dimensional hyperbox, dnyperboxfor short. fuzzy setM = (x.c,, X By employing the “completeness

O axiom” from real analysis it can be shown tifat; ¢, X
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TABLE | sented to the FLNN for clustering with a sizé of 1.71
RECOGNITION RESULTS FOR THEIRIS resulting in 15 four-dimensional hyperboxes. Then a second-
BENCHMARK BY VARIOUS NEURAL NETWORKS . e
level clustering was effected by determining the degree of
Neural Network % Right on Testing inclusion of each hyperbox in turn in all other, in order to
FLNN for classification, leave-1-out 99.34 associate a hyperbox with another one which corresponded to
1 3 o, * . .
FLNN for classification, leave-23%-out 99.12 () the largest inclusion measure. Thus the 15 hyperboxes were
2-level FLNN for clustering 98.00 L . .
SLT 95.84 partitioned to three groups. In conclusion the Fisher IRIS
FLNN for clustering, leave-25%-out 95.04 (*) data were clustered in three classes with only three (3) data
Back Propagation 94.67 misclassifications (Table ).
ENN for d“s‘f““tg’fleavle'i"’.m g;'gg Table 1l compares the performances of the min—max neural
1In-max neural net 1or clusterin; K . . .
CMOC . 92.00 network [31] with the two-level FLNN for clustering. Besides
(*) Average in 10 random trials FLNN'’s smaller misclassification percentage, it is also impor-

tant to note that the FLNN tracks down three classes after two
) . ) ] consecutive levels of clustering without a teacher, whereas the
is the minimum fuzzy set irC, 5. Hence we definel vV B = min_max neural network identifies a total of 14 clusters in one
MNxec,, X Following the terminology in [35] the smallestieye| of clustering which are then assigned to the three IRIS
convex fuzzy set containingt U B is called theconvex hull j55ses by an external teacher.
of AUB and it is denoted by corivi U B), thatisAV B := Experiment 5.2:The SONAR benchmark was employed
conA U B). In conclusion, the se€ constitutes a lattice.  from the Carnegie Mellon University collection of neural net
Remark that the collection of all fuzzy sets (includingyenchmarks [9]. The data are 60-dimensional vectors that
convex fuzzy sets) is a lattice under theandU operations correspond to sonar signals bounced off either a metal cylinder
[35]. Nevertheless we opted for the latti@eof convex fuzzy o g cylindrical rock. 104 vectors are provided for training and
sets in particular because of an important potential advantaggpther 104 for testing. The aim was the correct classification
that is the generalization implied by replaciayand B by  of sonar testing signals to one of the two classes: “Mine” or
convA U B) instead of replacing them byl U B. “Rock.”
0 Table Il summarizes results by various methods. Back
In all the learning experiments in the sequel both a trainingtopagation and nearest neighbor results are reported in the
set and a testing set are employed. Learning is effected @cumentation that accompanies the SONAR data. Results by
the training set in either supervised or unsupervised fashiqinearest neighbor and the fuzzy adaptive resonance asso-
and then learning is rated by applying the testing set. Déftive map (ARAM) with voting across five simulations are
to the aforementioned similarities between supervised afim [34].
unsupervised learning experiments we decided to put results oRegarding FLNN for clustering the SONAR training data
both types of experiments in the same table for one benchmgjkre fed in for various values of the siz& Table IV details
data set. the results of learning with different sizes &, and the
Experiment 5.1:The Fisher IRIS benchmark [10], [24] wasadditional column “right on training set” is listed to facilitate
processed because its familiarity to the scientific research cotfle comparison with the results cited in Table 1Il. In particular,
munity may allow an assessment of the relative performan@®99 processing cycles were effected for szeralues from
This data set comprises four attributes for three classes of 0is5.998 in steps of 0.001. In every processing cycle the
flowers. Fifty iris flowers per class result in a total of 150 dataraining data were fed only once and a number of clusters was
The aim was the correct classification to one of the three iftgentified. Each cluster was labeled either “Rock” or “Mine”
types. A training set is not given explicitly. according to the majority of the data it encoded. Then the
Table I cites the percentage of correct classifications 8ONAR testing data were fed in and the results in Table IV
the testing set by different methods. Backpropagation agdme out. Note that selection of a good value fbican be
structural learning with forgetting (SLF) were employed imegarded as a “parameter tuning problem” and it depends on
[17] with a randomly selected training set and averages owde specific problem at hand.
five trials. For SLF a statistical overall optimum of 5.0 errors is Experiment 5.3:The WINE benchmark was employed
reported when the training set contained 30 data. For backpré@m the UCI repository of machine learning databases [24].
agation the optimal performance was an average of 4.8 errQise data are 13-dimensional vectors that correspond to various
when the training set contained 60 data. A constrained multipféne constituents determined by chemical analysis. 178 data
objective criterion (CMOC) neural network [26] misclassifiedectors are given distributed by 59, 71, and 48 in three wine
six of the testing data when the first half instances in ea¢ypes. The aim was the correct classification to one of the
IRIS class were employed for training. The min—-max neuréiree wine types. A training set is not given explicitly.
network for clustering [31] reports an optimum 10% plus 12% Table V summarizes the classification results by different
misclassification rate for two IRIS classes that correspondsrethods. Results by regularized discriminant analysis (RDA),
11 misclassifications, for a hyperbox size equal to 0.10. Th@adratic discriminant analysis (QDA), linear discriminant
success percentage rates for the FLNN are shown in Tableahalysis (LDA), and 1-nearest-neighbor (LNN) are reported
In addition, for this benchmark data set, a two-level FLNNh the documentation that accompanies the WINE benchmark,
for clustering was employed as follows. The data were preewever no details on the training and testing sets are given in
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TABLE 1l
COMPARING PERFORMANCES OF THEMIN-MAX NEURAL NET VERsUS THE2-LEVEL FLNN FOR CLUSTERING FOR THEIRIS BENCHMARK
Misclassifications for Number of Number of classes
Class-1 | Class-2 | Class-3 | clustering levels identified

Min-max neural - 12 % 10% 1 14

net for clustering

2-level FLNN - 6 % - 2 3

for clustering

TABLE 1l TABLE V

RECOGNITION RESULTS FOR THESONAR BENCHMARK BY VARIOUS METHODS RECOGNITION RESULTS FOR THEWINE BENCHMARK BY VARIOUS METHODS
INcLUDING RPROP (RsILIENT BACKPROPAGATION), RDA (REGULARIZED
Method % Right on % Right on DISCRIMINANT ANALYSIS), QDA (QUADRATIC DISCRIMINANT ANALYSIS), LDA
Training Set ‘Testing Set (LINEAR DISCRIMINANT ANALYSIS), AND 1NN (1-NeAREST-NEIGHBOR)

FINN for classification 100.0 100.00
FLNN for clustering 100.0 94.23 Method % Right on Testing
Fuzzy ARAM 100.0 94.20 FLNN for classification, leave-1-out 100.00
K-Nearest Neighbor 100.0 91.60 Rprop 100.00
BackProp: Angle-Dep. 99.8 90.40 RDA 100.00
BackProp: Angle-Dep. 99.4 89.30 FILNN for classification, leave-25%-out 99.75 (*)
BackProp: Angle-Dep. 100.0 89.20 QDA 99.40
BackProp: Angle-Dep. 98.1 87.60 LDA 98.90
BackProp: Angle-Dep. 96.2 85.70 FLNN for clustering, leave-25%-out 96.55 (*)
Nearest Neighbor 100.0 82.70 INN 96.10
BackProp: Angle-Ind. @ 894 7710 FLNN for clustering, leave-1-out 96.10
@ Angle Dependent data ordering. CLUSTER 84.09

@ Angle Independent data ordering. (*) Average in 10 random trials

TABLE IV TABLE VI
PERFORMANCE OF THEFLNN-FOR-CLUSTERING IN CLASSIFYING SONAR RECOGNITION RESULTS FOR THEGLASS BENCHMARK BY VARIOUS
RETURNS FORVARIOUS VALUES OF THE SIZE Z. THE SELECTION OF A METHODS INCLUDING RPROP (RSILIENT BACKPROPAGATION),
“GooD” V ALUE FOR Z DEPENDS ON THESPECIFIC RECOGNITION PROBLEM FasTcLUS (A PROCEDURE FROM THESAS/STAT SFTWARE

PAcCKAGE), AND BEAGLE (A RULE-BASED SYSTEM)

size Z range % Right on % Right on
Training Set | Testing Set Method % Right on Testing

0-3.077 100.00 93.27 FLNN for classification, leave-1-out 99.38
3.078-3.329 100.00 94.23 FLNN for classification, leave-25%-out 98.88 (*)
3.33-3.763 100.00 90.38 Rprop 95.23
3.764-4.333 100.00 91.35 FASTCIUS 89.25
4,334-4.751 100.00 90.38 Nearest Neighbor 82.82
4.752-4.802 100.00 89.42 Beagle 82.20
4.803-4.804 100.00 85.58 FLNN for clustering, leave-25%-out 81.84 (%)
4.805-5.243 100.00 84.62 FLNN for clustering, leave-1-out 80.98
5.244-5.363 99.03 87.50 Discriminant Analysis 73.62
5.364-5.379 99.03 90.38 (*) Average in 10 random trials
5.38-5.434 99.03 87.50
5.435-5.636 98.07 85.58
5.637.5.892 28.07 88.46 Table VI summarizes the classification results by different
5.893-5.998 98.07 90.38

methods. Results by Beagle (a rule-based system), nearest
neighbor, and discriminant analysis are reported in the docu-

there. Procedure CLUSTER from the SAS/STAT package, afgntation that accompanies the GLASS data, nevertheless no
resilient backpropagation (Rprop) in Table V are the “besft€tails are provided regarding the training and testing sets. Pro-
among clustering and classification methods, respectivefgdure FASTCLUS from the SAS/STAT package and Rprop
reported in [18] for the WINE data set, where two-thirds ofi'e, respectively, the “best” among clustering and classification
the data were used for learning. methods reported in [18] for the GLASS benchmark, where
Experiment 5.4:The GLASS benchmark was employedwo-thirds of the data were used for learning.
from the UCI repository of machine learning databases [24]. Experiment 5.5:The IONOSPHERE benchmark was em-
The data are nine-dimensional vectors that specify variop®yed from the UCI repository of machine learning databases
chemical elements in two types of glass, these are fld@#]. The aim was the correct identification of the type of radar
processed and nonfloat processed window glasses. Eighigturns in one of two classes from a vector of 34 attributes.
seven vectors are given for float processed and 76 vectors Bhe classes are “good” radar returns which show evidence
given for nonfloat processed window glasses. The aim was tfesome type of structure in the ionosphere, and “bad” radar
correct identification of a glass in one of the two classes. Neturns which do not. Two hundred instances are given for
training set is given explicitly. training and 151 instances are given for testing.
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TABLE VII to compute the numbeh(6(0O), Fs) = h(I) + h(Fs) =
RECOGNITION RESULTS FOR THEIONOSPHEREBENCHMARK BY VARIOUS 20 + h(Fs).
METHODS INCLUDING IB3 (AN INSTANCE-BASED ALGORITHM), RPROP Wi il illustrat lv the FLNN h f lusteri
(RESILIENT BACKPROPAGATION), AND QUINLAN'S C4 ALGORITHM e wi _I ustrate only the scheme tor clustering
on synthetic data. Let two fuzzy numbets, u» € F enter
_ Method % Right on Testing the FLNN [Fig. 5(a)], where a size threshold = 3 has
IFBL;\IN for classification 19060'7000 been defined. Becaus# = 3 < sizeu; V up) = 4.75,
Rprop %03 Uy and u Were not replaced pyq V uz. The technique of
FLNN for clustering 96.02 maximal expansions was applied. Each one ofitheand u.
Backpropagation 96.00 was expanded maximally to define fuzzy numbefsandv3,
€l . . 24.00 respectively, and the nonconvex fuzzy set shown in Fig. 5(b)
Multiresolution Algorithm 92.87 i d b N d ot be di d
Nearest Neighbor 9210 was formed. Fu;zy numbers} and w3 can be discerne
Non-linear Perceptron 92.00 more clearly in Fig. 5(c) and (d), respectively. A new “input”
Linear Perceptron 90.70 fuzzy numberr enters the FLNN. Fig. 5(c) and (d) show how

the degrees of inclusion(x < uj) and o(x < u}) can
- be calculated viar v «f and x V u3, respectively. Because
Table VII summarizes the classification results by Varkizgx v ut) > 3 and sizéx V u3) > 3, the fuzzy number
ous methods. Results by linear perceptron, nonlinear peris not incorporated into neithes; nor «j but it defines
ceptron, backpropagation, nearest neighbor, Quinlan's C4 glmew class of its own. Finally, note that more lattices of
gorithm, and Aha’s IB3 (an instance-based algorithm) atgzzy numbers can be considered jointly along additional
reported in the documentation that accompanies the ION§mensions.
SPHERE data set. The multiresolution algorithm (a variant On the other hand, regarding the FLNN for classification

of the min-max neural net) and Rprop are, respectivelyjpte that it can be applied in principle, likewise.
the “best” among clustering and classification methods re-

ported in [18] for the IONOSPHERE data set, where ap-
proximately two-thirds of the data were employed for learn- VI. DISCUSSION AND CONCLUSION

ing. The novel FLNN for clustering and for classification was

) introduced with a wide domain due to its applicability on
Here concludes our FLNN processing of benchmark dafgaihematical lattices. The FLNN emerges as a promising

sets. For all benchmarks it was noted a good performance of@fyral architecture for hybrid learning on disparate lattice
FLNN scheme which (performance) is attributed, first, to thgzia The efficiency of FLNN for pattern recognition was
specific decision function employed by an FLNN scheme, thgemonstrated on five benchmark data sets. In all cases it
is the inclusion measurk(x < v) of Theorem 1, and second,compared well with other recognition methods. One additional
to the specific FLNN schemes for clustering and classil‘icati@;(fm|O|e demonstrated the applicability of the FLNN beyond
presented in Section Il the conventional seR” in one lattice of fuzzy numbers.

In general, the FLNN for classification performed better The FLNN draws on ART [4], [5] and min—-max neural-
than the FLNN for clustering because of the presence ofpatwork principles [30], [31]. Nevertheless the FLNN im-
teacher. Regarding the FLNN for cIassificationaleave—one—cpfbves on both of these neurocomputing paradigms in a
experiment performed better than a leave-25%-out experimeimber of ways such as its applicability on mathematical
because for a leave-one-out experiment there existed more qafces, the novel technique of maximal-expansions, and its
in the training set. Nevertheless with regards to clustering,capacity for treating intervals, which could compensate for
leave-25%-out experiment provided consistently with a bettgfe uncertainty of measurements.
result than a leave-one-out experiment. This led us to thewe went one step further from demonstrating an efficient
conclusion that the FLNN for clustering generalizes bett@bnnectionist scheme for hybrid learning. Hence a new per-
when more outliers are removed from the data. Finally notgective to machine learning and decision making, namely
that an FLNN scheme for clustering can perform better thahe FL-framework, was delineated and novel formalism was
other classification methods, for instance with the Fisher IRIftroduced. Sound theoretical results were demonstrated such
benchmark (Table 1). as the fuzzy degree of inclusion of a lattice interval into

Experiment 5.6:We considered the collectioR of fuzzy another one which can be calculated by a novel tool-concept,
numbers over the domain [0, 20]. In line with the analysis inamely “inclusion measure.”

Section V-B,F is a lattice. In particular latticE is complete;  Finally note that an efficient hardware implementation of
its least elemen® equals 0 on [0, 20], whereas its greateshe FLNN as shown in Fig. 2 should address accordingly the
element! equals one on [0, 20]. On [0, 20] a functidnwas “representation problem.” That is the question of how a lattice
defined by the integral of a membership function over [0, 20dlement is stored and processed by the FLNN. Hence if one
A dual-automorphisn¥(.) was not identified; therefore welattice element, like for example a fuzzy number, could be
worked with intervaldO, Fs], whereO is the least element in represented as a whole object in an analog form and if the
F andFs € F. Recall that for any dual-automorphigt) itis lattice join (v) and meet 4) operations could be performed
6(0) = I, hence it followsh(I) = 20. To calculate the degreein one step, then quite an efficient hardware implementation
of inclusion of an interva]O, Fs] to another interval we need of the FLNN would result in.
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Fig. 5.

(a) Three fuzzy numbers enter the FLNN for clustering in the ongder:2, andx. (b) becauseZ = 3 < sizgu; V uz) = 4.75, u; anduz were

not replaced byu; V uy. Instead,u; andu, were expanded maximally to] andu3, (c) the inclusion measure(x < u}) is calculated by considering
the 2 vV «}, and (d) the inclusion measure(s: < u}) is calculated by considering the V «3.

APPENDIX
Proof of Theorem 1:

_ MOy _nO) _
Lo KusO)=3006) = haw
assumingu # O.
2. k(uﬁu):%:%:l, Vuel.
3.

w<w= h{zVw)—h{zVvu) <h(w)—h(u)
= h(z Vw) < h{w) — h(u) + h(zVu).
For w # O it holds
h(w) h(w)
h(w)( ) = h(u)
hMw) — h(u
— Wh(u)—i——h(a:\/u)
hw) = h(w)
h(w)

eV w) <

o>~
—~

<
o

hiz Vv u)+

h(u)
h{z Vv u)

h{z V u)
=h(zVu)=

h(w)

Smék(xswgk(xgw).

Proof of Theorem 2:

L1. [a, )]Afa, bl=]aVa, bAD = [a, ]
L2, [a,b]Ale,dl=[aVe, bAd=[cVa, dAD
= [¢, d| A a, b].

() [h(w) — h(w) + h(z V w)]

L3. [a, o)A ([e, d]Ale, f]) =[a, b]Alc Ve, dA ]
=lav(cve), bA(dA )]

[(avVe)Ve, (DAd) A f]

=laVe bAdIAe, f]

= ([a, bl A e, d]) Ale, f].

In cases L1-L3 the truth for the joint operation may be
shown dually.

L4. [a, b]A([a, B Ve, d]) =[a, b]AlaAc, bV d]

=JlaVv(ane), bABVI)]=]a,d
and

[a, O]V ([a, b] A e, d]) = [a, b] V[a Ve, bAd]
=JlaA(aVe), bV (bAd)]=][a, .

Proof of Lemma 1:Suffices to show that function
Mz, -+, an) = hi(xy) + - - + hn(zy) satisfies (P1)—(P3)
of Definition 3.
(P1) Let h;(0;) = 0, for ¢ € {1,.--, N}, where O,
is the least element of lattick,. Then h(O) =
h(Ol, SR ON) = hl(Ol) + -+ hN(ON) = 0,
where O = (O, ---, O) is the least element of
lattice L = L; x --- x Ly.
(P2) Sinceh;(.), ¢ € {1, ---, N} is a function# it holds
U < w; = hz(uz) < hi(wi), Whereui, w; € L.
On the other hand, condition = (uy, ---, uy) <
(wy, -+, wy) = w is equivalent toiu; < w; for
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all ¢ € {1,---, N} andu; < w; for at least one neitherw; norw,. Because of the way the sete(w,, w2) was
i € {1,---, N}, henceh(u;) < h(w;) for at least constructed it follows that, < me(w;, w2). In conclusion,
onei € {1,---, N}. Therefore(ui, - -, un) < me(wy, we) is the maximum family in{w; }, ¢ € {1, 2}, that
(wy, -+, wy) = hi(u)+ - +hy(un) < hi(wi)+  is the quotientd({w1, wa}) = me(wy, we) = Q(F).

)

-~ +hy(wy), thatisu < w = h(u) < (w), u, w €
L=Lyx---xLy.

Let v, < w; = h(a:z \Y wz) - h(a:z \Y U'z) <

h(wz) — h(uz), iy Uiy Wy € ﬂ_i, for: e {1, s, N},

Consider now a third intervakvs such that {ws} U
Q{w1, wa}) is connected. Assume the maximal expansions
me(ws, wy) andme(ws, wy). Then any interval, containing
only elements of one ofyy, ws, ws, wy andws, we andws,

and letx = (z1, -+, n), u = (ug, -+, uy), w = ws andw; will be included inme(w;, we) U me(ws, ws) U
(wy, ---,wy), and w = (ug,---,uy) < me(ws, wy). In addition to that and in order to consider
(wi, -+, wy) = w. Thenh(z vV w) — h(z Vu) = Iintervals containing exclusive elementswf AND w; AND
hzy Vwy, -+, ay Vwy) — h{zy Vug, -, zy V  ws, if any, the following maximal expansions will have to

U,N) = [hl(azl le)+' . '+hN($N\/wN)]—[h1($1\/
U,l) +---+ hN(QZN \/U,N)] = [hl(azl \/wl) — hl(azl \Y

be consideredme(w;, me(ws, ws)), me(ws, me(ws, wi)),
andme(ws, me(wy, ws)). Note that one of the latter maximal

u)] + -+ [An(zy V wn) = An(zy Vouy)]
) — )] + o+ o) — huy)

expansions, sayme(ws, me(ws, we)) between an interval
wz and the family of intervalsme(w,, wz) is calculated
[1(wi)+- - +hn(wn)]— [ (u)+- - +hn(uy)] by finding the maximal expansions betwees; and all
h(w) — h(w). the intervals inme(ws, wy). Finally, the set-union of the
Proof of Lemma 2:Let {w;} be a connected family of intervals in all the resulting maximal expansions is the
lattice intervals. Amaximal expansiomf {w;} is defined to quotient@{{wi, w2, ws}). Apparently the problem becomes
be another family{q;} in the collectionF of families that a combinatorial one and the truth of Lemma 2 follows, in
represent class such that{w;} < {¢;}. The intervals in{g;} 9eneral, by mathematical induction.
are calledmaximal intervalsWe will delineate a method for U
constructing an ever (strictly) larger maximal expansion of aThe aforementioned algorithm which calculates the quotient
family. This construction process will be shown to terminat@({w:}) of a connected family{w;} of intervals, wherei
and a global maximum will be reached, that is the quotieRelongs to a finite index set, is called algorittiyn-Note
Q(F) = Q{w;}). that the order in which the intervals dfv;} are selected to
The truth of Lemma 2 will be shown by induction. Letcalculate the maximal expansions is not important. Remark
family {w;} contain exactly two connected intervals, saghat algorithme) is not computationally efficient due to the
w, and ws. In order to progressively construct maximafxponential explosion of the required operations as a family’s
expansions of the family{w;, wo}, assume it isw; cardinality increases. Nevertheless, it does find the quotient
[wi1, - wig] and wy = [war, - -, war], Wherew,; and @({wi}) and it was proven handy in the classification exam-
wo;, 4 = 1, -+, L are intervals “along” each constituent latticé?les presented in this paper where families of relatively small
and L is the total number of constituent lattices. The maxim&@rdinality (a few tens of intervals, at the most) were identified.
expansion “along” the first constituent lattice is determined Finally, note that any interval not connected to the rest
by inserting to the family{w;, wy} the interval[max(wy; A intervals in a family does not have to be considered in any
wa1), Wiz A wag, - -+, wiy, Awar], wheremax(wi; Awy) is maximal expansion because such an interval is by itself a

the largest interval in the first constituent lattice which contaifgaximal interval. Likewise, any connected group of intervals,
w11 Awsy and consists of elements af;; or wo;. The latter but detached from the rest intervals in a class, is treated by
is a trivial problem framed within the first constituent latticeitself when calculating the maximal expansion of the class the
In the sequel consider the maximal expansions “along” tiggoup in question belongs to.

rest of the constituent lattices, these are at the most another

L — 1 maximal expansions. The set-uniore(w, , w2) of the
intervals in all maximal expansions “along” all the constituent
lattices has to be the maximum element jn that is the
quotient Q(F).

To prove the latter statement consider any inteevathich
contains only elements af; U w». If » contains exclusively
elements ofw; OR exclusively elements of; then it will
be v < w; or w < wy respectively, hence < me(w;, ws).

[l IA
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