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Abstract—This paper proposes two hierarchical schemes for
learning, one for clustering and the other for classification prob-
lems. Both schemes can be implemented on a fuzzy lattice neural
network (FLNN) architecture, to be introduced herein. The cor-
responding two learning models draw on adaptive resonance
theory (ART) and min–max neurocomputing principles but their
application domain is a mathematical lattice. Therefore they can
handle more general types of data in addition toNNN -dimensional
vectors. The FLNN neural model stems from a cross-fertilization
of lattice theory and fuzzy set theory. Hence a novel theoretical
foundation is introduced in this paper, that is the framework of
fuzzy latticesor FL-framework, based on the conceptsfuzzy lattice
and inclusion measure.Sufficient conditions for the existence of
an inclusion measure in a mathematical lattice are shown. The
performance of the two FLNN schemes, that is for clustering and
for classification, compares quite well with other methods and
it is demonstrated by examples on various data sets including
several benchmark data sets.

Index Terms—ART neural networks, clustering methods, deci-
sion support systems, fuzzy lattice theory, fuzzy neural networks,
learning systems, pattern classification, pattern recognition.

I. INTRODUCTION

A RTIFICIAL neural networks are a technology rooted in
many disciplines. Numerous popular models have been

proposed to date inspired from physics, chemistry, geometry,
statistics, biology, neurobiology, and psychology [1], [2], [4],
[11], [15], [21], [27], [32] to name but a few. The artificial
neural networks are endowed with unique attributes such as
universal input–output mapping, the ability to learn from and
adapt to their environment [14]. A most prominent point of
vantage is their ability for massive parallel processing.

Connectionist schemes have been proposed to process in-
formation using representations other than the numerical one.
For instance, there have been proposed neural networks for ex-
tracting symbolic knowledge [28], for utilizing expert knowl-
edge represented by fuzzy if–then rules [16], [33]. Cross-
fertilization of inferencing networks with conventional neural
networks such as the Kohonen’s model have been reported
[25], and wavelet networks were also considered [8].

Nevertheless the applicability domain of all previous neural
schemes is more or less restricted. More specifically the data
being processed are frequently in the Euclidean space or they
are treated as such. For example, the problem of grammatical
inference is treated in [28] by processing strings of “0’s”
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and “1’s” of positive and negative examples as real numbers.
For the binary ART neural-network [4] inputs of features are
represented by strings of “0’s” and “1’s” and are treated as real
numbers. Moreover even in [16], where human knowledge and
numerical data are integrated by propagating fuzzy numbers
through a neural network, other types of data cannot be treated
in addition.

In an effort to define connectionist schemes able to cope
with a wide gamut of disparate data we came to grips with
mathematical lattices. The work herein reports on both theoret-
ical and practical results in this direction. Our contribution can
be summarized as follows. We propose a sound mathematical
ground, that is thefuzzy lattice frameworkor FL-framework.
Based on the FL-framework we show a connectionist archi-
tecture, namely fuzzy lattice neural network (FLNN) [20],
[29], which can treat with mathematical consistency and
jointly such disparate data as conventional vectors, fuzzy
sets, symbols, propositions, etc. Next, two learning schemes
implementable by the FLNN are shown, one scheme for
clustering and the other scheme for classification. These two
FLNN schemes are applied quite successfully on several
benchmark data sets for learning and recognition.

Employment of mathematical lattices is not new in engi-
neering. They appear either explicitly or implicitly in many
instances. For example lattices are employed explicitly in [6]
for controlling discrete-event systems. Complete lattices are
employed in [23] in deductive databases. In [35] and [12]
it is explained how a lattice may generalize the notion of a
fuzzy set while in [35], in particular, it is noted that “fuzzy
sets (over a universe of discourse) constitute a distributive
lattice with a “0” and “1.” In neurocomputing, lattices appear
implicitly in the fuzzy ART [5] and in the min–max neural
nets [30], [31] since both types of neural networks deal with
hyperboxes in the conventional set ; note that the set of
hyperboxes is a lattice. Regarding neurocomputing in lattices
the oldest attempt known to the authors is noted in [19], where
the work is oriented more toward medical applications than
toward theoretical substantiation.

According to the neurocomputing approach to learning we
have taken, sets of lattice elements are specified by sets
of finitely many overlapping and/or nonoverlapping lattice
intervals. In this sense the FLNN approach to learning is
similar to the one taken by the biologically motivated adaptive
resonance theory (ART) [5] and the min–max neural networks
[30], [31]. Nevertheless, even though it is originated in the
adaptive resonance as well as the min–max neural networks
the FLNN proceeds far beyond. It generalizes both of them by

1045–9227/98$10.00 1998 IEEE



878 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 5, SEPTEMBER 1998

employing the theory of lattices [3] which is cross-fertilized
with the theory of fuzzy sets [35] as explained throughout this
paper. Note that the work herein is not merely a combination
of lattice theory and fuzzy set theory but instead it is a fruitful
cross-fertilization of the two theories.

The layout of this paper is as follows. Section II outlines
a novel theoretical foundation for learning which employs
mathematical lattices. Section III introduces the FLNN archi-
tecture as well as two learning schemes, one for clustering
and the other for classification. Section IV shows sufficient
conditions for applying an FLNN scheme on lattices of in-
tervals. Section V reports on the capacity of the FLNN for
pattern recognition of various data sets, including five bench-
mark data sets. Finally Section VI summarizes the principal
achievements.

II. A N EW THEORETICAL FOUNDATION FOR LEARNING

The goal of this section is to introduce a new a viable theo-
retical framework for hybrid learning with a wide application
domain.

A. Fuzzy Lattices

Recall that a lattice is a partly ordered set any two of whose
elements have a greatest lower bound ormeetdenoted by
and a least upper bound orjoin denoted by . A lattice
is completewhen each of its subsets has a least upper bound
and a greatest lower bound in. A nonvoid complete lattice
contains a least and a greatest element denoted, respectively,
by and [3].

Let be a lattice, either complete or not. Consider the
relation of the induced partial ordering in, and let

. Then either and arecomparable,that is or
, or and are incomparable,that is none of the

previous ordered pairs belongs to. The novel notionfuzzy
lattice is introduced in order to extend the crisp, if existent,
lattice relation of partial ordering to any pair of the set

. The practical significance for such
an extension is that it may associate any two lattice elements.
Hence to every a real number is
attached to indicate the degree of inclusion ofin . Formally
an extension (relation) can be defined [36] by

where the real function is a fuzzy membership
function on the universe of discourse .

To keep the extension compatible with the original
lattice’s partial ordering relation , is defined under the
constraint that if and only if in . The
definition of a fuzzy lattice ensues.

Definition 1: A fuzzy lattice is a pair ,
where is a conventional lattice and is
a fuzzy membership function on the universe of discourse

. It is if and only if
in .

We remark that real function can be interpreted
as specifying the degree of inclusion of in . We will

refer to the collection of all fuzzy lattices by the termFL-
framework. Learning in the FL-framework is achieved by
specifying sets of lattice elements by intervals. To this end
rendering “fuzzy” a conventional lattice is convenient as the
latter enables association of lattice elements to one another,
even when those lattice elements are incomparable. Note that
in this work we deal solely with complete lattices.

B. Inclusion Measure

A fuzzy lattice can ensue from a conventional one by an
inclusion measure defined next.

Definition 2: Let be a complete lattice with least and
greatest elements and , respectively.An inclusion measure
is a mapping : such that

satisfies the following three conditions:

(C1)

(C2)

(C3)

Consistency Property.

Conditions (C2) and (C3) jointly imply
. The latter

furthermore implies , where is the greatest
element in . It can be argued that shows the
degree of truth of the lattice inclusion relation , that
is the degree of inclusion of in .

In order an inclusion measure to define a fuzzy lattice out
of a conventional lattice it suffices to be

, according to Definition 1. To this end we considered
a real-valued function - defined below.

Definition 3: A function- on a complete
lattice , satisfies the following three properties:

(P1) where O is the least element in

(P2)

and

(P3)

.
We remark that if , then a function with

can be defined out of by subtracting
from all . A function- does not exist necessarily
in a lattice. Nevertheless when it exists it can be shown that

where is a function- ,
defines an inclusion measure in.

Theorem 1: Let be a complete lattice. Then the existence
of a function- on is sufficient for the function

to be an inclusion measure in, that
is .

The proof of Theorem 1 is given in the Appendix.
Note that

. Hence is
a fuzzy lattice. Function will be employed as an
activation function by the neurons of an FLNN neural model.
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Example 2.1:Consider the lattice , that is the
closed interval of real numbers between 0.0 and 1.0. This
lattice is calledchain [3] because it is characterized by atotal
instead of a partial ordering. It is clear that is a
complete lattice with least and greatest elements 0.0 and 1.0,
respectively. The corresponding lattice meet () and join ( )
operations are given, respectively, by and

, .
Any monotone increasing real function with

is a function- because properties (P1) and (P2) of Definition 3
are obviously true. Property (P3) can be shown by considering
the three cases: 1) ; 2) ; and 3)

. Case 1) implies
, case 2) implies

, and case 3)
implies .
Hence (P3) holds.

For all examples herein drawn from the Euclidean space the
function- : was employed.

C. A Hierarchy of Fuzzy Lattices

It holds that the product of lattices , that
is , is lattice with an induced partial
ordering relation defined by

[3]. This partial ordering relation is
called hereinrelation . Lattice is called
product lattice,and each one of the is
called constituent lattice.The product lattice meet () and
join ( ) are defined, respectively, by

and
[3].

Note that if the constituent lattices are
all complete with least and greatest elements
and , respectively, then the product lattice

will be a complete lattice with least element
and greatest element .

Regarding function- the following statement holds.
Lemma 1: Let be the product of com-

plete constituent lattices with function(s)-: ,
respectively. Then
defines a function- on the product lattice .

The proof of Lemma 1 is given in the Appendix.
We remark that Lemma 1 substantiates FL-framework’s

claim for a “disparate data fusion capacity,” suffices the data
be elements of complete constituent lattices where a function-

is available on each constituent lattice. Lemma 1 also partly
substantiates the claim for “a hierarchical nature” of the FLNN.
An additional conceptual level in the hierarchy of lattices is
incurred by considering the set of intervals of lattice elements
as shown in the sequel. The set in question augmented by a
least element is a complete lattice, denoted herein by. The
following definition suggests a “measure of the magnitude” of
an interval in with respect to a function-defined on .

Definition 4: Let be a complete lattice with and
its least and greatest elements, respectively, and letbe a

function- on . Then thesizeof with respect to
is defined by .

At this point it is necessary to cite a convention regarding
the notation employed. Specifically let denote a product
lattice, and let , denote its constituent lattices. We
agree to denote an element of the product latticeby a letter
without any subscript, for instance . On the other hand,
an element of a constituent lattice is denoted by a letter
with a subscript, for instance . Same subscripts imply
elements of the same constituent lattice and vice-versa.

Example 2.2:Consider the product lattice
, that is the unit-square. In this case there exist two

identical constituent lattice-chains . By Lemma 1
we infer that function on the lattice-chain
implies the function-:
on the product lattice .

In lattice-chain the size of an interval
with is defined by

. On the other hand an
interval in the product lattice corresponds
to a rectangle in the unit-square and its size equals half the
circumference of the corresponding rectangle.

D. Lattices and

Let be a complete product lattice and letand denote,
respectively, the least and greatest element of. In line with
last section’s analysis it can be inferred that implies a
complete lattice, which will be denoted by . Lattice
is defined on the set and the relation of
its partial ordering is the samerelation , as before, implied
by product lattice . That is
if and only if and . The join and the meet in

are defined by

and

where

The least element of the complete lattice is ,
whereas its greatest element is .

By virtue of Lemma 1 it can be shown that if is a
function- on a lattice , then defines
a function- on .

In the sequel another lattice is defined on the set
, that is lattice of generalized intervals

in . But lattice is defined with a different partial
ordering. Note that the set will also
be denoted by .

Theorem 2: A complete lattice can be defined on the
set where is a complete lattice,
with two binary operations between elements of defined
as following:

and

where
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because the following laws L1–L4 are satisfied, for:
[3]

L1.

and

(Idempotent)

L2.

and

(Commutative)

L3.

and

(Associative)

L4.

(Absorption)

The proof of Theorem 2 is given in the Appendix.
The implied relation of partial ordering in

is equivalent to
, and it will be called (partial ordering)

relation . Note that is the least element and is
the greatest element in the complete lattice .

An element of is calledgeneralized intervalbecause
of the way lattice was defined. Note that lattice of
intervals is a sublattice of . Recall that “a sublattice of a
lattice is a subset of such that imply
and ” [3]. As the least element in we may take the
least element of , that is the generalized interval .
Furthermore note that parenthesesare used to embrace an
element of , for instance , whereas brackets
[] are embracing elements of , for instance ,
intentionally, to underscore the two different lattice orderings
on the same set .

Example 2.3:Regarding the unit-square product lattice
an element of or is given by

a vector of four numbers. These vectors, as elements of the
two distinct lattices and , differ as to the manner
in which their meet ( ) and the join ( ) are calculated. For
instance, consider the elements (0.1, 0.7, 0.3, 0.4) and (0.5,
0.8, 0.5, 0.2) of . Their meet and join are, respectively

and

The same vectors of numbers considered as elements of,

are combined as follows:

and

where it was assumed that [0.1, 0.7], [0.3, 0.4], [0.5, 0.8], and
[0.5, 0.2] specify generalized intervals in the constituent lat-
tices. Note that a single point can be represented
in by the trivial interval .

III. FUZZY LATTICE NEURAL NETWORK (FLNN)

The goal in this section is to employ the FL-framework
presented in the previous section in order to introduce 1) a
neural architecture, that is the fuzzy lattice neural network
(FLNN) and 2) two learning schemes, one for clustering and
the other for classification problems which (schemes) can be
applied by the FLNN. Some additional notions need to be
introduced in the following section.

A. Families of Lattice Intervals

The elements of the set , by being intervals of lattice
elements, define sets of “adjacent” latticeelements. The
FLNN deals with certain families of lattice intervals denoted
by , where and is in a finite index set. The
FLNN aims at identifying sets of lattice elements, namely
classes,which can be represented by the set-union of a finite
number of intervals, that is . Note that more
than one families of intervals may specify the same class.

Instrumental to the applicability of the FLNN in lattice
is the existence of an inclusion measure in. Throughout
this section we assume the existence of an inclusion measure
in . In the next section we show sufficient conditions for
its existence. The degree of inclusion of an interval
in a class is defined as follows.

Definition 5: If and then thedegree
of inclusion of in class is defined as

.

Remark that sometimes
will be denoted instead by . Moreover, when it
happens to be we will write and say:
“ is in(side) class .” The definition of connectedclasses
will be useful.

Definition 6: A class is called connectedif
and only if for any two intervals , inside there exists
a sequence of intervals inside class , from
to . That is , , and ,

.
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Note that a family is calledconnectedif and only if it defines
a connected class.

Decision making in the FLNN is driven by the degree of
true of proposition “ ” as expressed by ,
where is an input lattice interval that excites the system and
the ’s are learned classes kept in the system’s memory.

Let be the collection of all families that can represent
a concrete class in lattice . Note that the cardinality of a
family of intervals used to represent classneed not
be constant. We say that a family in is “smaller
than or equal to” another family in symbolically

, if and only if in there exists a
in such that . Moreover, a family is “strictly
smaller” than another family and we write
if and only if it is and either there is a in

and a in such that or the cardinality of
family is strictly smaller than the cardinality of family

. In conclusion is a partially ordered set. Consider the
following lemma.

Lemma 2: The collection of families representing a
concrete class has a maximum element, namely
quotientof class , and denoted by .

The proof of Lemma 2 is given in the Appendix.
A quotient is the maximum element in the set.

In fact, it is easy to show that the set is a lattice, and
it constitutes another conceptual “pinnacle” in the hierarchy
of lattices implied by the FL-framework. There is a concrete
benefit in replacing a family which represents a class
by the quotient . That is for any input
interval it holds , where

. In other words the quotient maximizes the
degree of inclusion of in the class .

Example 3.1:The utility of the technique of maximal ex-
pansions is illustrated in Fig. 1. Note that the complete lattice
in this case is the unit-square defined as the product

of the two lattices-chains . Recall that
an interval in the lattice unit-square is a rectangle. Consider
the class and let the rectangle consist solely of
points of and [Fig. 1(a)]. Then it is reasonable to expect

. But this is not the case in Fig. 1(a) because
both and hold, therefore it is

, according to Theorem 1. The technique
of maximal expansions comes to restore the expected equality
relation by replacing class by its quotient, that is
the family of the maximal rectangles of[Fig. 1(b)].
Hence any rectangle containing solely points of the classis
contained in at least one of the quotient members, , and
equality is guaranteed.

B. The FLNN Architecture

Fig. 2 shows the basic FLNN architecture which can be em-
ployed for learning and decision making in the FL-framework
including the conventional set . Notice the resemblance to
the two layer ART neural network [4] which was introduced
in the mid-1970’s to solve some problems in sensory coding.
The many variations of the ART have modeled a variety of

(a) (b)

Fig. 1. (a) Despite the fact that rectanglex is inside classc = w1[w2 it is
neitherx � w1 nor x � w2, therefore it follows�(x � c) < 1 and (b) the
technique of maximal expansions finds the quotientfw1; w

0

2
g of classc and

it guarantees�(x � c) = 1 whenx is inside classc = w1 [w2 = w1 [w0

2
.

Fig. 2. The basic two layer FLNN architecture for learning in the latticeL
of intervals.L is the number of category layer neurons which equals the total
number of intervals used to defineM classes. The category layer neurons
employ the lattice inclusion measure�(:) as their activation functions.N is
the number of input layer neurons. The two layers are fully interconnected by
lattice L weighted links that filter-up or -down activity of a layer. A “reset”
node is used for resetting nodes in the category layer.

neurobiological and behavioral data and they were also applied
in a range of engineering applications [7], [13]. Nevertheless
ART is restricted to the set .

Like ART, the FLNN proposes a modifiable recurrent archi-
tecture for clustering in two layers. One layer, calledcategory
layer, is cognitively “higher” than the other called theinput
layer. Single nodes at the category layer encode patterns of
node activities from the input layer. On the one hand the
category layer consists of artificial neurons specifying
intervals that define classes (Fig. 2); it is . On
the other hand the input layer consists ofartificial neurons
used for buffering and matching. The two layers are fully
interconnected by lattice-weighted bidirectional links which
may filter-up or -down the activities of the corresponding layer.
A “reset” node (Fig. 2) operates much the same way as the
orienting subsystem of the ART does [4].

A key difference between FLNN and ART, besides FLNN’s
own activation function , is the applicability of
FLNN on fuzzy lattices which could imply significant tech-
nological benefits stemming from a much wider application
domain than the conventional Euclidean space. Another van-
tage point of the FLNN compared to the ART is that the
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inputs to the FLNN (Fig. 2) are intervals,
that is hyperboxes in the set in particular. Hence we
may compensate for the uncertainty of the measurements by
feeding to the FLNN a neighborhood of values as defined
by an interval rather than feeding a single point. A final
advantage of the FLNN is the technique ofmaximal expansions
which enhances the overlapping of two intervals by enlarging
their lattice meet to the maximum and in all possible ways.
The basic FLNN architecture of Fig. 2 can be employed for
learning by either clustering or classification.

C. FLNN for Learning—Clustering

The FLNN scheme for unsupervised learning is described
below next.

0) The first input is stored in the memory, that is FLNN’s
category layer. From then on learning proceeds as fol-
lows (at an instant there are known classes

, stored in the memory).
1) Present an input interval to the initially “set” classes

.
2) Calculate for all , that

have not yet been “reset,” where and
.

3) Competition among the classes: select such that
= , where is the index of

corresponding winner and .
4) The maximum-size-test (assimilation condition or

matching test): Is the size of less than a user
defined threshold ? ( where corresponds to the
“ .”

5) If the maximum-size-test is successful, then incorporate
into by replacing by and then by calculating

the new quotient .
6) If the maximum-size-test fails then “reset” . That is,

while the current input is present make inaccessible
during subsequent quests for a winner.

7) Completion-test: Are all the classes “reset”?
If the completion-test fails go to Step 2) to look for
another winner.

8) If the completion-test is successful then memorize
.

The previous algorithm corresponds to the learning phase
of the FLNN scheme for clustering where learning is “on”
and the classes are updated continually. As soon as learning
is over the testing data are applied, and then only the degrees
of inclusion are calculated of an input datum
to all classes , stored in FLNN’s category
layer (Fig. 2) and is assigned to the winner class. During
the testing phase no class is updated whatsoever.

Example 3.2:This example illustrates graphically the me-
chanics of the FLNN for clustering on the plane and it also
demonstrates the technique of maximal expansions. Assume
that the FLNN has already stored two distinct classes

and in its category layer and let a new input
, that is a rectangle in the general case, be presented to the

system as in Fig. 3(a). The two classesand compete with
one another by comparing the inclusion measures

(a) (b)

(c) (d)

Fig. 3. Learning by the fuzzy lattice neural network (FLNN) for clustering.
The two classesc1 = fw1g and c2 = fw2g compete over inputx. (a)
Classc1 is the winner because�(x � c1) is larger than�(x � c2), but
it is reset because it does not satisfy the maximum-size-test, (b) classc2 is
selected as the new winner that satisfies the maximum-size-test, (c) rectangle
w2 is replaced byw0

2
= x _ w2. The overlapping rectanglesw1 andw0

2

define now one class enhanced by rectanglesw3 andw4 produced by the
technique of maximal expansions, and (d) a new input rectangley appears
and the learning cycle repeats.

and , and let be the winner class. Assume
that the maximum-size-test is not met then classis reset.
Searching for a winner class continues, is tested next
[Fig. 3(b)], and let satisfy the maximum-size-test. Then
is replaced by . Note that the rectangles and

overlap. The FLNN for clustering assumes that now
and are in the same family of lattice intervals that defines
a single class, say , and it triggers the technique of maximal
expansions. This technique considers the intersection
and it expands it maximally in both dimensions [Fig. 3(c)].
Finally, one class is specified consisting of four rectangles

. Rectangle is specified by its four
corners 1-2-3-4, rectangle is specified by its corners 5-6-
7-8, rectangle is specified by 9-2-10-8, and rectangle
by 11-6-12-4. The collection of the maximal rectangles for a
given family of overlapping intervals, as in Fig. 3(c), isthe
quotientof the corresponding class. The degree of inclusion
of a new input in class as shown in Fig. 3(d), is given
by .
Note that input could be a trivial interval, that is a point in
the unit-square .

D. FLNN for Learning—Classification

In this case a different learning algorithm is implemented on
the FLNN architecture. In particular a training set is employed
explicitly consisting of pairs of
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data, where is an input pattern and element of a
lattice , and is an index for the category of . That is the
range of is the set where is the number of
categories. Note that the basic FLNN architecture of Fig. 2 has
to be enhanced so as to accommodate information regarding
the index of a category. Such an accommodation can be
achieved 1) by allowing for storage of an index in the
category layer; 2) by augmenting the input layer by one node
so as to be able to store the indexof a category; and 3) by
fully interconnecting the two layers. The FLNN scheme for
supervised learning follows.

1) For to consider the training pair .
2) Set .
3) For to consider the next training pair

such that .
4) Set .
5) For all with , test

whether .
6) If the test in Step 5) succeeds then replaceby .
7) If go to Step 3).
8) Store in the category layer of the FLNN together with

indicating ’s category.

The above algorithm for training the FLNN terminates. In
particular there exist three processing loops at Steps 1), 3),
and 5) implying that the complexity is , where is the
number of training data. Note that the technique of maximal
expansions was not employed for training.

Regarding the testing phase, the testing set is applied and
the degrees of inclusion are calculated for each
datum to all classes in FLNN’s category
layer (Fig. 2). Finally is assigned to the winner class, that is
the class which provides with the largest degree of inclusion.

For both the clustering and the classification schemes,
the FLNN allows overlapping of intervals. The idea for
interval overlapping was borrowed from [18] where mutually
nonexclusive classes are treated and the mechanics of human
pattern recognition are modeled with good learning results in
benchmark data sets.

At this point it is worth referring to the neural architecture
in [16] which maps fuzzy input vectors to fuzzy outputs.
The architecture in question is able to integrate knowledge,
presented by fuzzy if–then rules, and numerical data into
a single information processing system. This is effected by
employing an extension of the conventional backpropagation
algorithm which (extended algorithm) can handle-level sets
of fuzzy numbers. Despite its enhanced scope of applicability
the architecture in [16] can not accommodate additional types
of data, for instance symbols and/or propositions. On the other
hand the FLNN is universal in scope and it can handle in
principle any type of data suffices the data in question be
lattice-ordered and both a dual-automorphism (to be discussed
in the sequel) and a function-be available.

IV. DEFINITION OF AN INCLUSION MEASURE

IN THE LATTICE OF INTERVALS

In the previous section we assumed the existence of an
inclusion measure in the lattice of intervals. Herein we

show sufficient conditions for this existence. The only way
known to the authors for constructing an inclusion measure
is via a function- . Nevertheless we could not find such a
function in the lattice of intervals. Therefore we decided
to search for an inclusion measure in lattice . Note
that such a would be a valid inclusion measure in lattice

as well, because is a sublattice of . Unfortunately,
we could not define an inclusion measure in because we
could not find a function- in . Nevertheless, we already
know that a function- in lattice would imply a function-
in lattice by virtue of Lemma 1. Therefore we directed
our efforts to finding an isomorphism between the lattices
and . Recall that an isomorphism between two lattices is
a bijection (one–one correspondence) between them such that
the image of the meet equals the meet of the images and
likewise for the join [3]. A sufficient condition was found for
the existence of an isomorphism between the lattices and

.
We have found that the existence of a dual-automorphism in
is sufficient for establishing an isomorphism between lattices

and . Recall that a dual-automorphism in a lattice
is a bijection (one–one correspondence): such that

, [3]. To show that a dual-automorphism
in is sufficient for an isomorphism between and
assume that there exists a dual-automorphism in the complete
lattice . Then in implies and

and in ,
and vice-versa. Therefore an isomorphism is implied between
lattices and , and the elements and

are isomorphic. A dual-automorphism in
implies and , hence the least element

of maps to the least element
of . Likewise, the greatest element of maps to
the greatest element of .

To recapitulate, an inclusion measure can be defined in the
lattice of intervals as follows.

1) A function- in the lattice can define a function in
lattice by virtue of Lemma 1.

2) Function- in lattice implies an inclusion measure
in by virtue of Theorem 1.

3) A dual-automorphism in can define an isomor-
phism between and , as it was shown above.

4) In conclusion, an inclusion measure between two inter-
vals is given by

, where and
are in and is the inclusion measure in .

Regarding computation of the meet () and join ( ) in
lattice note that the join
is straightforward because it is always . However,
computation of the meet is attained only after
the following inclusion testin :

(true)

and

(false)

That is any generalized interval , for which it is not
, is mapped to the least element in the lattice of
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Fig. 4. In the unit-square it can be calculated that rectangleu in included in
rectanglew more than the other way around when functionsh(x) = x and
�(x) = 1�x are selected, respectively, as function-h and dual-automorphism
in the constituent lattices = [0; 1].

intervals. Since all versions of the FLNN presented in this
paper use solely the lattice join () operator to update inter-
vals during learning, we did not employ the aforementioned
inclusion test herein.

Example 4.1:Let’s consider our familiar lattice-chain
. Then function defines a dual-

automorphism in lattice . The isomorphic of an
interval, say is

in lattice . Therefore the degree
of inclusion of an interval, say [0.1, 0.3], to another one, say
[0.2, 0.5], is calculated as follows:

where . Co
nversely the degree of inclusion of [0.2, 0.5] in [0.1, 0.3] is

.
To keep building on the plane consider the unit-square

lattice , where an interval in the unit-
square is a rectangle. Consider two rectangles in the unit-
square, say and
as shown in Fig. 4. Rectangle: cor-
responds to element [0.1, 0.5, 0.2, 0.3] of whose iso-
morphic is in

, whereas the isomorphic of rectangle:
is

in . The degree of inclusion of rectangle
in rectangle is computed to be

, whereas
the degree of inclusion of rectangle
in rectangle is

.
For the -dimensional space an interval is an -

dimensional hyperbox, orhyperboxfor short.

V. EXPERIMENTS

Our goal is to demonstrate experimentally the viability of
the FLNN as an effective tool for clustering and classification.
Moreover, the results by other methods are cited from the
relevant references so as to be able to compare performance
on the same data sets. Since the bulk of the benchmark data are
drawn from the conventional Euclidean space we dealt with
the Euclidean space in most of the examples in the sequel.

Five benchmark and one synthetic data set were processed
by the FLNN. The benchmark data sets can be obtained either
from the Carnegie Mellon University’s neural-net benchmark
collection [9], or from the University of California Irvine
repository of machine learning databases [24]. For some of the
benchmarks a training set and a testing set are given explicitly.
In this case only the training set is employed for learning by
either clustering or classification. On the other hand when the
data are not given separated into a training set and a testing set,
a training set was formed either by leaving one datum out or by
leaving randomly 25% of the data out. For leave-one-out, the
experiment was repeated so as to leave, in turn, most data out.
For leave-25%-out ten random trials were carried out and the
average performance is reported. The success of an experiment
is expressed by the percentage of correctly recognized testing
data.

We introduce two complete lattices, namely the unit hyper-
cube and the convex fuzzy sets.

A. The Unit Hypercube

We summarize in this section our discussions regarding
lattice-chain . The lattice-chain is complete
where 0.0 and 1.0 are, respectively, its least and greatest
elements. A function- and a dual-automorphism are given
by and , respectively. Hence the
corresponding lattices and are isomorphic to each
other. By employing Lemma 1 one can go to more dimensions
and hence consider hyperboxes in the unit hypercube. Note
that employment of the unit hypercube instead of the whole
Euclidean space is acceptable in engineering practice [22].
Finally note that the dual-automorphism is a set theoretic
interpretation in the context of the FL-framework of the so
called “complement coding” technique employed by the fuzzy
adaptive resonance theory (fuzzy ART) [5].

B. Fuzzy Numbers

Let C be the collection of convex fuzzy sets defined over
a subset of a linear space; the latter space is typically a
subspace of . It can be shown thatC is a lattice under
the regular containment , where and

are, respectively, membership (characteristic) functions of
the fuzzy sets and [35]. To this end we will show that
if C then both and exist in C. It is
known from [35] that is the largest set contained in both

and , and moreover is convex; hence we define
. On the other hand letC be the collection

of convex fuzzy sets that include bothand . Consider the
fuzzy set C . By employing the “completeness
axiom” from real analysis it can be shown that C
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TABLE I
RECOGNITION RESULTS FOR THEIRIS

BENCHMARK BY VARIOUS NEURAL NETWORKS

is the minimum fuzzy set inC . Hence we define

C . Following the terminology in [35] the smallest
convex fuzzy set containing is called theconvex hull
of and it is denoted by conv , that is
conv . In conclusion, the setC constitutes a lattice.

Remark that the collection of all fuzzy sets (including
convex fuzzy sets) is a lattice under theand operations
[35]. Nevertheless we opted for the latticeC of convex fuzzy
sets in particular because of an important potential advantage:
that is the generalization implied by replacing and by
conv instead of replacing them by .

In all the learning experiments in the sequel both a training
set and a testing set are employed. Learning is effected on
the training set in either supervised or unsupervised fashion,
and then learning is rated by applying the testing set. Due
to the aforementioned similarities between supervised and
unsupervised learning experiments we decided to put results of
both types of experiments in the same table for one benchmark
data set.

Experiment 5.1:The Fisher IRIS benchmark [10], [24] was
processed because its familiarity to the scientific research com-
munity may allow an assessment of the relative performance.
This data set comprises four attributes for three classes of iris
flowers. Fifty iris flowers per class result in a total of 150 data.
The aim was the correct classification to one of the three iris
types. A training set is not given explicitly.

Table I cites the percentage of correct classifications of
the testing set by different methods. Backpropagation and
structural learning with forgetting (SLF) were employed in
[17] with a randomly selected training set and averages over
five trials. For SLF a statistical overall optimum of 5.0 errors is
reported when the training set contained 30 data. For backprop-
agation the optimal performance was an average of 4.8 errors
when the training set contained 60 data. A constrained multiple
objective criterion (CMOC) neural network [26] misclassified
six of the testing data when the first half instances in each
IRIS class were employed for training. The min–max neural
network for clustering [31] reports an optimum 10% plus 12%
misclassification rate for two IRIS classes that corresponds to
11 misclassifications, for a hyperbox size equal to 0.10. The
success percentage rates for the FLNN are shown in Table I.

In addition, for this benchmark data set, a two-level FLNN
for clustering was employed as follows. The data were pre-

sented to the FLNN for clustering with a size of 1.71
resulting in 15 four-dimensional hyperboxes. Then a second-
level clustering was effected by determining the degree of
inclusion of each hyperbox in turn in all other, in order to
associate a hyperbox with another one which corresponded to
the largest inclusion measure. Thus the 15 hyperboxes were
partitioned to three groups. In conclusion the Fisher IRIS
data were clustered in three classes with only three (3) data
misclassifications (Table I).

Table II compares the performances of the min–max neural
network [31] with the two-level FLNN for clustering. Besides
FLNN’s smaller misclassification percentage, it is also impor-
tant to note that the FLNN tracks down three classes after two
consecutive levels of clustering without a teacher, whereas the
min–max neural network identifies a total of 14 clusters in one
level of clustering which are then assigned to the three IRIS
classes by an external teacher.

Experiment 5.2:The SONAR benchmark was employed
from the Carnegie Mellon University collection of neural net
benchmarks [9]. The data are 60-dimensional vectors that
correspond to sonar signals bounced off either a metal cylinder
or a cylindrical rock. 104 vectors are provided for training and
another 104 for testing. The aim was the correct classification
of sonar testing signals to one of the two classes: “Mine” or
“Rock.”

Table III summarizes results by various methods. Back
propagation and nearest neighbor results are reported in the
documentation that accompanies the SONAR data. Results by
K-nearest neighbor and the fuzzy adaptive resonance asso-
ciative map (ARAM) with voting across five simulations are
from [34].

Regarding FLNN for clustering the SONAR training data
were fed in for various values of the size. Table IV details
the results of learning with different sizes of, and the
additional column “right on training set” is listed to facilitate
the comparison with the results cited in Table III. In particular,
5999 processing cycles were effected for sizevalues from
0–5.998 in steps of 0.001. In every processing cycle the
training data were fed only once and a number of clusters was
identified. Each cluster was labeled either “Rock” or “Mine”
according to the majority of the data it encoded. Then the
SONAR testing data were fed in and the results in Table IV
came out. Note that selection of a good value forcan be
regarded as a “parameter tuning problem” and it depends on
the specific problem at hand.

Experiment 5.3:The WINE benchmark was employed
from the UCI repository of machine learning databases [24].
The data are 13-dimensional vectors that correspond to various
wine constituents determined by chemical analysis. 178 data
vectors are given distributed by 59, 71, and 48 in three wine
types. The aim was the correct classification to one of the
three wine types. A training set is not given explicitly.

Table V summarizes the classification results by different
methods. Results by regularized discriminant analysis (RDA),
quadratic discriminant analysis (QDA), linear discriminant
analysis (LDA), and 1-nearest-neighbor (1NN) are reported
in the documentation that accompanies the WINE benchmark,
however no details on the training and testing sets are given in
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TABLE II
COMPARING PERFORMANCES OF THEMIN-MAX NEURAL NET VERSUS THE2-LEVEL FLNN FOR CLUSTERING FOR THEIRIS BENCHMARK

TABLE III
RECOGNITION RESULTS FOR THESONAR BENCHMARK BY VARIOUS METHODS

TABLE IV
PERFORMANCE OF THEFLNN-FOR-CLUSTERING IN CLASSIFYING SONAR

RETURNS FORVARIOUS VALUES OF THE SIZE Z. THE SELECTION OF A

“GOOD” V ALUE FOR Z DEPENDS ON THESPECIFIC RECOGNITION PROBLEM

there. Procedure CLUSTER from the SAS/STAT package, and
resilient backpropagation (Rprop) in Table V are the “best”
among clustering and classification methods, respectively,
reported in [18] for the WINE data set, where two-thirds of
the data were used for learning.

Experiment 5.4:The GLASS benchmark was employed
from the UCI repository of machine learning databases [24].
The data are nine-dimensional vectors that specify various
chemical elements in two types of glass, these are float
processed and nonfloat processed window glasses. Eighty-
seven vectors are given for float processed and 76 vectors are
given for nonfloat processed window glasses. The aim was the
correct identification of a glass in one of the two classes. No
training set is given explicitly.

TABLE V
RECOGNITION RESULTS FOR THEWINE BENCHMARK BY VARIOUS METHODS

INCLUDING RPROP (RESILIENT BACKPROPAGATION), RDA (REGULARIZED

DISCRIMINANT ANALYSIS), QDA (QUADRATIC DISCRIMINANT ANALYSIS), LDA
(LINEAR DISCRIMINANT ANALYSIS), AND 1NN (1-NEAREST-NEIGHBOR)

TABLE VI
RECOGNITION RESULTS FOR THEGLASS BENCHMARK BY VARIOUS

METHODS INCLUDING RPROP (RESILIENT BACKPROPAGATION),
FASTCLUS (A PROCEDURE FROM THESAS/STAT SOFTWARE

PACKAGE), AND BEAGLE (A RULE-BASED SYSTEM)

Table VI summarizes the classification results by different
methods. Results by Beagle (a rule-based system), nearest
neighbor, and discriminant analysis are reported in the docu-
mentation that accompanies the GLASS data, nevertheless no
details are provided regarding the training and testing sets. Pro-
cedure FASTCLUS from the SAS/STAT package and Rprop
are, respectively, the “best” among clustering and classification
methods reported in [18] for the GLASS benchmark, where
two-thirds of the data were used for learning.

Experiment 5.5:The IONOSPHERE benchmark was em-
ployed from the UCI repository of machine learning databases
[24]. The aim was the correct identification of the type of radar
returns in one of two classes from a vector of 34 attributes.
The classes are “good” radar returns which show evidence
of some type of structure in the ionosphere, and “bad” radar
returns which do not. Two hundred instances are given for
training and 151 instances are given for testing.
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TABLE VII
RECOGNITION RESULTS FOR THEIONOSPHEREBENCHMARK BY VARIOUS

METHODS INCLUDING IB3 (AN INSTANCE-BASED ALGORITHM), RPROP
(RESILIENT BACKPROPAGATION), AND QUINLAN’S C4 ALGORITHM

Table VII summarizes the classification results by vari-
ous methods. Results by linear perceptron, nonlinear per-
ceptron, backpropagation, nearest neighbor, Quinlan’s C4 al-
gorithm, and Aha’s IB3 (an instance-based algorithm) are
reported in the documentation that accompanies the IONO-
SPHERE data set. The multiresolution algorithm (a variant
of the min–max neural net) and Rprop are, respectively,
the “best” among clustering and classification methods re-
ported in [18] for the IONOSPHERE data set, where ap-
proximately two-thirds of the data were employed for learn-
ing.

Here concludes our FLNN processing of benchmark data
sets. For all benchmarks it was noted a good performance of an
FLNN scheme which (performance) is attributed, first, to the
specific decision function employed by an FLNN scheme, that
is the inclusion measure of Theorem 1, and second,
to the specific FLNN schemes for clustering and classification
presented in Section III.

In general, the FLNN for classification performed better
than the FLNN for clustering because of the presence of a
teacher. Regarding the FLNN for classification a leave-one-out
experiment performed better than a leave-25%-out experiment
because for a leave-one-out experiment there existed more data
in the training set. Nevertheless with regards to clustering, a
leave-25%-out experiment provided consistently with a better
result than a leave-one-out experiment. This led us to the
conclusion that the FLNN for clustering generalizes better
when more outliers are removed from the data. Finally note
that an FLNN scheme for clustering can perform better than
other classification methods, for instance with the Fisher IRIS
benchmark (Table I).

Experiment 5.6:We considered the collection of fuzzy
numbers over the domain [0, 20]. In line with the analysis in
Section V-B, is a lattice. In particular lattice is complete;
its least element equals 0 on [0, 20], whereas its greatest
element equals one on [0, 20]. On [0, 20] a function-was
defined by the integral of a membership function over [0, 20].
A dual-automorphism was not identified; therefore we
worked with intervals , where is the least element in

and . Recall that for any dual-automorphism it is
; hence it follows . To calculate the degree

of inclusion of an interval to another interval we need

to compute the number
.

We will illustrate only the FLNN scheme for clustering
on synthetic data. Let two fuzzy numbers enter
the FLNN [Fig. 5(a)], where a size threshold has
been defined. Because size ,

and were not replaced by . The technique of
maximal expansions was applied. Each one of theand
was expanded maximally to define fuzzy numbersand ,
respectively, and the nonconvex fuzzy set shown in Fig. 5(b)
was formed. Fuzzy numbers and can be discerned
more clearly in Fig. 5(c) and (d), respectively. A new “input”
fuzzy number enters the FLNN. Fig. 5(c) and (d) show how
the degrees of inclusion and can
be calculated via and , respectively. Because
size and size , the fuzzy number

is not incorporated into neither nor but it defines
a new class of its own. Finally, note that more lattices of
fuzzy numbers can be considered jointly along additional
dimensions.

On the other hand, regarding the FLNN for classification
note that it can be applied in principle, likewise.

VI. DISCUSSION AND CONCLUSION

The novel FLNN for clustering and for classification was
introduced with a wide domain due to its applicability on
mathematical lattices. The FLNN emerges as a promising
neural architecture for hybrid learning on disparate lattice
data. The efficiency of FLNN for pattern recognition was
demonstrated on five benchmark data sets. In all cases it
compared well with other recognition methods. One additional
example demonstrated the applicability of the FLNN beyond
the conventional set in one lattice of fuzzy numbers.

The FLNN draws on ART [4], [5] and min–max neural-
network principles [30], [31]. Nevertheless the FLNN im-
proves on both of these neurocomputing paradigms in a
number of ways such as its applicability on mathematical
lattices, the novel technique of maximal-expansions, and its
capacity for treating intervals, which could compensate for
the uncertainty of measurements.

We went one step further from demonstrating an efficient
connectionist scheme for hybrid learning. Hence a new per-
spective to machine learning and decision making, namely
the FL-framework, was delineated and novel formalism was
introduced. Sound theoretical results were demonstrated such
as the fuzzy degree of inclusion of a lattice interval into
another one which can be calculated by a novel tool-concept,
namely “inclusion measure.”

Finally note that an efficient hardware implementation of
the FLNN as shown in Fig. 2 should address accordingly the
“representation problem.” That is the question of how a lattice
element is stored and processed by the FLNN. Hence if one
lattice element, like for example a fuzzy number, could be
represented as a whole object in an analog form and if the
lattice join ( ) and meet ( ) operations could be performed
in one step, then quite an efficient hardware implementation
of the FLNN would result in.
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(a) (b)

(c) (d)

Fig. 5. (a) Three fuzzy numbers enter the FLNN for clustering in the orderu1, u2, andx. (b) becauseZ = 3 < size(u1 _ u2) = 4:75, u1 andu2 were
not replaced byu1 _ u2. Instead,u1 andu2 were expanded maximally tou�

1
andu�

2
, (c) the inclusion measure�(x � u�

1
) is calculated by considering

the x _ u�
1
, and (d) the inclusion measure�(x � u�

2
) is calculated by considering thex _ u�

2
.

APPENDIX

Proof of Theorem 1:

1.

assuming

2.

3.

For it holds

Proof of Theorem 2:

L1.

L2.

L3.

In cases L1–L3 the truth for the joint operation may be
shown dually.

L4.

and

Proof of Lemma 1:Suffices to show that function
satisfies (P1)–(P3)

of Definition 3.

(P1) Let , for , where
is the least element of lattice . Then

,
where is the least element of
lattice = .

(P2) Since , is a function- it holds
, where .

On the other hand, condition
is equivalent to: for
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all and for at least one
, hence for at least

one . Therefore

, that is
.

(P3) Let
, for ,

and let
, and

. Then

.

Proof of Lemma 2:Let be a connected family of
lattice intervals. Amaximal expansionof is defined to
be another family in the collection of families that
represent class such that . The intervals in
are calledmaximal intervals.We will delineate a method for
constructing an ever (strictly) larger maximal expansion of a
family. This construction process will be shown to terminate
and a global maximum will be reached, that is the quotient

.
The truth of Lemma 2 will be shown by induction. Let

family contain exactly two connected intervals, say
and . In order to progressively construct maximal

expansions of the family , assume it is
and , where and

, are intervals “along” each constituent lattice
and is the total number of constituent lattices. The maximal
expansion “along” the first constituent lattice is determined
by inserting to the family the interval

, where is
the largest interval in the first constituent lattice which contains

and consists of elements of or . The latter
is a trivial problem framed within the first constituent lattice.
In the sequel consider the maximal expansions “along” the
rest of the constituent lattices, these are at the most another

maximal expansions. The set-union of the
intervals in all maximal expansions “along” all the constituent
lattices has to be the maximum element in that is the
quotient .

To prove the latter statement consider any intervalwhich
contains only elements of . If contains exclusively
elements of OR exclusively elements of then it will
be or respectively, hence .
On the other hand, suppose that contains
exclusive elements of AND exclusive
elements of , where “exclusive element”
means that it belongs only to one interval and not to the other.
This implies that for at least one constituent lattice interval

it will be . But such a strict
inequality can be true for at most one constituent lattice inter-
val; otherwise would contain elements that do not belong to

neither nor . Because of the way the set was
constructed it follows that . In conclusion,

is the maximum family in , that
is the quotient .

Consider now a third interval such that
is connected. Assume the maximal expansions

and . Then any interval containing
only elements of one of , and , and ,

and will be included in
. In addition to that and in order to consider

intervals containing exclusive elements of AND AND
, if any, the following maximal expansions will have to

be considered: , ,
and . Note that one of the latter maximal
expansions, say, between an interval

and the family of intervals is calculated
by finding the maximal expansions between and all
the intervals in . Finally, the set-union of the
intervals in all the resulting maximal expansions is the
quotient . Apparently the problem becomes
a combinatorial one and the truth of Lemma 2 follows, in
general, by mathematical induction.

The aforementioned algorithm which calculates the quotient
of a connected family of intervals, where

belongs to a finite index set, is called algorithm-. Note
that the order in which the intervals of are selected to
calculate the maximal expansions is not important. Remark
that algorithm- is not computationally efficient due to the
exponential explosion of the required operations as a family’s
cardinality increases. Nevertheless, it does find the quotient

and it was proven handy in the classification exam-
ples presented in this paper where families of relatively small
cardinality (a few tens of intervals, at the most) were identified.

Finally, note that any interval not connected to the rest
intervals in a family does not have to be considered in any
maximal expansion because such an interval is by itself a
maximal interval. Likewise, any connected group of intervals,
but detached from the rest intervals in a class, is treated by
itself when calculating the maximal expansion of the class the
group in question belongs to.
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