IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 5, SEPTEMBER 1998 891

Synthesis of Fault-Tolerant Feedforward Neural
Networks Using Minimax Optimization

Dipti Deodhare, M. Vidyasagafkellow, IEEE,and S. Sathiya Keerthi

Abstract—in this paper we examine a technique by which fault the network degrades badly. The network therefore demon-
tolerance can be embedded into a feedforward network leading strates graceful degradation instead of catastrophic failure.
to a network tolerant to the loss of a node and its associated However, there is thus far very littiéheoretical basisfor
weights. The fault tolerance problem for a feedforward network o . L
is formulated as a constrained minimax optimization problem. such a belief. The ability of th? network to exh'b'F fault
Two different methods are used to solve it. In the first method, tolerance depends on the algorithm used to train it. Most
the constrained minimax optimization problem is converted to a connectionist or neural-network learning systems use some
sequence of unconstrainedeast-squaresoptimization problems, version of the backpropagation algorithm which has been
whose solutions converge to the solution of the original minimax g1,y o produce networks that are not always fault tolerant
problem. An efficient gradient-based minimization technique, . . .
specially tailored for nonlinear least-squares optimization, is then [1]- Discussion of formal techniques that produce feedforward
applied to perform the unconstrained minimization at each step neural networksguaranteedto be fault tolerant has been
of the sequence. Several modifications are made to the basiclimited in the literature. Perhaps this is because of the fact

alg?r:itgm aqﬁimpr?ve its sE]e_ed ofdcinnvergentc(ter.] In thb? sect:ond that embedding fault tolerance into the network design/training
method a difrerent approachn Is used 10 conver € problem 1o a process is a nontrivial pr0b|em.

single unconstrained minimization problem whose solution very . .
nearly equals that of the original minimax problem. Networks ~ 1he backpropagation method was introduced to overcome

synthesized using these methods, though not always fault tolerant, the problem of structural credit assignment in a multilayer
exhibit an acceptable degree of partial fault tolerance. perceptron network (MLPN). This algorithm has become al-
Index Terms—Fault tolerance, minimax optimization. most synonymous with MLPN's to such an extent that a
clear distinction between the architecture and the training
algorithm has been lost in many cases. However, this method
is only one particular way of determining the weights in
ISTRIBUTED computing, of which neural networks arean MLPN so that it performs a specific task. Moreover, it
an example, promises to offer new ways of achievinig not uncommon to see that, when a feedforward neural
fault tolerance. By virtue of their architecture and processingetwork is trained to recognize a given set of patterns using
style neural networks are believed to be inherently fauhe backpropagation method, the network fails to reproduce
tolerant. When one unit fails other units may partially takéhe specified input—output pairs when one or more neurons
over its functions, so as to achieggaceful degradatioror is eliminated from the network [1], [3]. An MLPN trained
fail-soft performance. Artificial neural networks are inspiredby the backpropagation algorithm can easily be subjected
by natural neural networks in the human brain and consist tof fault tolerance analysis by artificially forcing randomly
distributed processing elements with each node contributisglected weights to zero. A similar approach has been adopted
to the final output response. The human brain exhibitsim [1] and the exercise indicates that a network trained by
remarkable degree of fault tolerance since it continues tiee backpropagation algorithm may not distribute the solution
function in spite of losing as many as “l@eurons per day. across all the weights. Some of the weights in the network are
Fault tolerance is therefore a desirable property ameliigved indeed critical and the loss of these can cause the network to
to be an intrinsic property of (artificial) neural networks. Théail, contradicting the requirement of fault tolerance. Simply
main reason advanced for this belief is the fact that the storagiated, an MLPN exhibits fault tolerance if the information
mechanism isconnectionistand cutting off a few neurons content of the network, captured in the connection weights, is
and their associated interconnections presumably should patformly distributed, i.e., no single node or weight is critical
affect the performance of the network drastically. Thus, if & the performance of the network. In this paper we discuss
node or its weights are lost or damaged, recall is impaired éynthesis procedures that lead to such an appropriate choice
quality, but the distributed nature of the information storagsf the network weights.
means that damage has to be extensive before the response Phe problem of designing a fault-tolerant neural network
has only recently begun to receive some attention. Bledl.

. INTRODUCTION

M i i F 24,1 ; i 1997 N . .
Apr”a fgsclgg%.rece'vecj ebruary 24, 1996; revised September 30, 1997 399 410 among the first to study this problem. They consider
D. Deodhare and M. Vidyasagar are with the Centre for Artificial Intellia Sstandard MLPN and attempt to minimize the maximum
gence and Robotics, High Grounds, Bangalore 560 001, India. deviation from the desired output for each input in the presence
S. Sathiya Keerthi is with the Department of Computer Science andf inal it fail Th bl is th f | d
Automation, Indian Institute of Science, Bangalore 560 012, India. Y Smg_e unit .a_' ures. k e. prg em is thus formulated as a
Publisher Item Identifier S 1045-9227(98)05339-9. constrained minimax optimizatigsroblem. They then replace

1045-9227/98%$10.001 1998 IEEE

892 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 5, SEPTEMBER 1998

Number of training patterns for the network.

O
&

=1,---,p Set of training patterns for the network,
wherez! € ®" andd’ € ®™.

t Error function for patterd, I =1,---,p.
Total error.
Desired output for patterhon output node.

yjl Actual output for patterrd on output nodej.

The functioning of the networkV with weight matrix
W, denoted for convenience by (1¥), can be described as
follows.

¢ The value of a node in the input layer is simply the input

-1 input applied to it.

e Each nodej € V computes its output value after the
nodes in the preceding layers have computed theirs. If
we use a sigmoidal nonlinearity the rule is

this problem by another problem which is easier to solve; 1

however, there is no guarantee that the solution of the modified z; =

problem is close to that of the original problem.

The main difficulty with a minimax optimization problem ; —

is that the objective function is in genemabndifferentiable ITEISJ\;?;: tIJ/Ie/)reizg rfﬁ: :*:?o(ljirr?gnii(r)?wzwem;%)r’ Z};&fg;?ﬁ;

hence gradient-based methods cannot be used to solve S}H’&N\/ork N(’W) on the inputz’. Let EY(W) be a suitably

problems. In the present paper, two distinct approaches J@ineq error function between the actual output of the network
adopted to get around this difficulty. In the first approach; o4 ihe corresponding desired outpliton an inputz. It
the constrained minimax optimization problem is replaced ¥ common to choose

a sequencef problems, each with a differentiable objective z L e
function; it can be shown that the corresponding sequence EW) =|ld" -yl
of solutions converges to a solution of the ongmal m,'n'\'/i/here thel, norm is defined as

max problem. In the second approach, the nondifferentiable .
objective function of the minimax problem is replaced by 2|3 = Z(x)2
another differentiable objective function which isuaiformly 2 “
close approximatiorio the original objective function; hence o

minimizing the modified objective function (which can bdlowever, we define it here as

Sty

Fig. 1. A feedforward neural network.

where 05 = Z Wi T -

1+ exp(—o;)’ iTea

a=1

achieved using gradient-based methodsyusranteedto be E'W) = ||d" = 4|00
a near-optimal solution of the original minimax optimization) _
problem. where thel., norm is defined as

[|]|loc = max |z,
1<a<m

Il. PROBLEM FORMULATION -

XII—'Vor our problem the., norm is more meaningful since we

o ant eachof the values/d’ — y"¢| to be minimized and this

represented as an acyclic directed graph denotedvby- requirement is more adequately captured by lthenorm as

(V,A), whereV is the set of nodes and C V x V the . 4
set of directed arcs or edges of the graph. Our notation is tﬁg{npared to thé; norm. The overall error is defined as

(i,5) € A if and only if there is an edgfom node: to node EW) = Jnax EYW).

J. A weight w;; is associated with every directed aft j) o

belonging to the sefl, and a threshold valug is associated Obviously, (W) = 0 would imply that for each input pattern

with each node in a hidden layer or the output layer of ther!,{ = 1,---, p, the network output equals the corresponding

network. These threshold values can be treated in a mangdesired output vectod'.

similar to the weights by assuming that their negative valuesFor a given node in a hidden layer of the neural network

are connection weights on arcs from a dummy input node witd(W), let N(W*) be the network derived froniv (W) by

an auxiliary constant-valued input efl. (See Fig 1.) removing node: from N and all weights corresponding to
Let W denote the weight matrix of the network where tharcs starting from node. (See Fig. 2.) LetM(-,W’) be

ijth entry of the matrix isw,;. If the arc(4, j) is not in the the new input-output mapping describing the network. If

set A thenw;; is taken to be zero by convention. Further lety"" = M (!, W), then the error function after removing the

A feedforward neural network (FFNN) is conventionall

n Number of nodes in the input layer. hidden nodei and its associated weights is
m Number of nodes in the output layer. E(W") = max E'(W?"), where
h Number of nodes in the hidden layer(s). I=1,p

Vi, Set of hidden nodes. E'WY =|d" — 4" eo- 1)

DEODHARE et al. SYNTHESIS OF FAULT-TOLERANT FEEDFORWARD NEURAL NETWORKS 893

Fig. 3. In minimax optimization the objective function is not differentiable
at the solution point in general.

-1 input

Minimax optimization can be described as a worst-case
Fig. 2. N(W3): Network obtained after removing node 3 from the networlgptimization in the sense that at each iteration the algo-
in Fig. 1. rithm has to try and reduce the functiofi(z) such that
F(z) = f;(z). Note that even if each of the functiorfs(x)
is_differentiable, F'(x) is nondifferentiable in general. The

IS O . p)
also maximallyfault tolerant. Such a weight vector is definegact thatF(z) is differentiable "almost everywhere” does not

X : L L implify the problem since often a solution occurs ataan
as a solution to the constrained minimax optimization proble ; . . .
P P where F(«) is not differenti able. (See Fig 3.) Therefore

Ir‘}‘i}lxn%g(E(Wi) it is not possible to solve a minimax problem directly by
e . using gradient-based methods, as such methods require that

subject to the constraints S X . . .

L the objective function be differentiable. To overcome this

d—-y =0, Vi=1--p (2) difficulty, the constrained minimax problem is converted to
Here the quantityE (W) represents the error in the networkd S€quenceof unconstrained minimization problems where
output when a hidden nodé is removed. Since we are®ach objective function is continuously differentiable. An
interested in finding a weight configuration that minimize§fficient gradient minimization technique can then be applied
E(W?) for all nodesi in Vj, the problem can be naturally© carry out the unconstrained minimization at each step of
modeled as a constrained minimax optimization problem. TH3¢ sequence. The conversion algorithm is due to Dutta and
is because minimization of theaximumof E(W*) implies Vidyasagar [2] and is described below. _ _
minimization of each of the E(W*). The hard constraints A gener_al CO”Stra'_”ed_ minimax problem is stated in (4).
capture the requirement that whath the nodes in the network Now consider the objective function
are functional, for each input’ to the network the outpus’ P 2 2 2

' . . RS T, p) = (x) — 9" + w;igi(x) + Y vihi(z
should equal the corresponding desired outfutUsing (1) (. ¢) idz(:x)[f()=l jch(:x) 197 () ; thi ()
this problem can be rewritten as

Our objective is to determine a weight matix* such that
the network not only classifies the patterns as desired bu

where ¢ is a prespecified constanty;,j € J andv;,l € L

min max max(dj, — ',y — dj) are prespecified weights, and
subject to the constraints I(x) = {i € I: fi(z)> ¢}
d'—y' =0, vi=1,---,p 3) J(x) ={j € J: g;(x) >0}
wherel = 1,---,p,i =1,-- hk = 1,---,m. By convention, empty sums are taken to equal zero. It can

Therefore to obtain a maximally fault tolerant network W@e shown that, for each constaptP(x, ¢) is continuously
need to solve a constrained minimax optimization problemjterentiable with respect te:.

Two approaches for solving such problems are described in gt z denote a solution to Problem 1. Choose an initial

the next two sections. constantp, < F(z) and minimize
Ill. SOLVING THE MINIMAX PROBLEM—THE FIRST APPROACH Pz, ¢) = Z [fi(x) — o2 + Z w;g3(x)
) - ®]
A general constrained minimax problem can be stated as i€T(z) jeJ(x)
follows. 2
h . 5
Problem 1: +§vz 1) ®)
min{F(z) := rhax Ji(2)} Letz, denote a minimizer of(«, ¢;), and update the constant
subject to the constraints ¢ according to the formula
gj("l") <0, J € J, d)H-l = d)t + [P(Et’ ¢t)/n]l/2
fulz) =0, tel () wheren is the total number of functiong (-). It can be shown

wherel = {1,2,---,n} is a finite set of integers. that if ¢g < F(%), then¢g, < F(z) for all t. Thus{¢,} is a

894 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 5, SEPTEMBER 1998

nondecreasing sequence that is bounded above, and hencd.bathe indexs range over these functions, which are written
a definite limit ast — oo. Under relatively mild assumptionsas f; (W) for convenience. Then the problem at hand becomes
it can be shown [2] thap, — F(Z) ast — oo. This leads us _

to the following algorithm. min{ F(W) := max p, fs(W)}. (7)

Algorithm Note that the_uS are simply large n_umbersmo_de_led_ after

“penalty functions.” Generally speaking, an optimization algo-

rithm used to solve (7) deals with one indexat a time—the

Problem 1. _3?? = 0.) . one for which the product:; (W) is currently the largest.
Step 2) Minimize P(z, ¢). Denote th?/iolutlon b¥:. Therefore by choosing appropriate sufficiently large one
Step 3) Set iy = dr + [P(3s, ¢r) /0]~ can force the equality constraints to be satisfied.

Stgp DI Pria _hd)t <6 wherec is a pdrespecified small \ye now proceed to discuss the algorithm. The problem in
number, STOP. Otherwise, set- ¢ + 1 and go to Step 2). (7) is a nonsmooth optimization problem, since the function

To apply this allgorlthm to the fault tolerance problem |rp(W) is not differentiable everywhere; but it can be ap-
(3), definee;” = dj, — 4", and proximated well by another problem with a smooth objective
function. Consider the function

Step 1) Choose ¢ < F(Z), where Z is a solution to

e i

f(ek 7¢) { :; ek = (/) 1 o
6 fel> e Gy == w > explon, f.(W)] ®)

Finally S P
hop om wherep is a parameter to be specified. Note tigt#V) is a

i 1, differentiable function of the parameter vec#dt and can be
PW, ¢) = ZZZ FHe' 6 + (e, 90) rewritten as P

I W ©) GOV)= W)+~ In {iexp[pmsfs(vv) - F(W))]}.

Herey! are predefined weights. The algorithm given above cAfW
now be used to minimize (6). This is referred tovassion 1of

the problem in Table Ill, Section VI-A. Here the second term ps f5(W) = F(W) <0

corresponds to the third term in (5). Since the fault toleran 8 that

problem as stated has no inequality constraints there is no term

in (6) corresponding to the second term in (5). G(W) < F(W) + In g
P

IV. SOLVING THE MINIMAX Also, for some indext
PROBLEM—THE SECOND APPROACH

An algorithm proposed by Kreisselmeier and Steinhauser
[7]-[9] to solve a control-system design problem as a muk,q pence
tiobjective optimization problem can be adapted to solve the
minimax optimization problem in (3). We begin by introducing G(W)>F(W) + 1 In[1 + 6], §>0
some weights into the objective function in (3), as follows: P

= F(W))
min{F(W) := maxuk ’ max(d, ykz,yk —db)}
114 Lik where
wherel =1,---,p,i =0, h,k=1,---.m
Herei = 0 implies that the entire network is functioning, b= Z explppis £ (W)].
i.e., no nodes have been removed from the network. This o
problem differs from (3) in two respects.
. 1 So we have
* New variablesu;” have been introduced. Their signifi-
cance is explained below. F(W) < (W) < F(W Ino
« The equality constraints have been included in the objec- (W)= GW) < F(W) + p

tive function. Notationally this has been taken care of b_}[o , .
letting 4 range from zero to h. his implies thatF'(1¥) is approximated very well byF(1W)
if p>> lno. Hence, the minimax problem (7) can be approxi-

If we let ¢ denote the total number of functions over wh|ch
mated by the smooth unconstrained problem
the leftmost maximum is taken, then

in G(W).
=ph+1)m W (W)

DEODHARE et al. SYNTHESIS OF FAULT-TOLERANT FEEDFORWARD NEURAL NETWORKS 895

V. IMPROVEMENTS AND MODIFICATIONS minimization technique is used to minimize the error, then the

In this section we discuss a few ways of exploiting thweight vector will essentially be “stuck” in this unacceptable
special structure of the minimax optimization problem fol°cation. For theoutput nodes, since the desired output is
neural networks, so as to facilitate the application of tHEOWN, itis possible to introduce a new error measure so that

algorithms described in Sections Il and IV. its _grz_idient is far from zero even whear ~ 0.0 or z; =~ 1.0.
This is done next.

A. Computing the Objective Function With the notation given in Section I, we have

A couple of simple observations help in significantly reduc- T = B S
ing the time required to compute the objective functiafiv ¢) T 14exp(—oy)
and hence the overall computation time.

To computeE(W*) the value of node € V;, and all weights
w;;, wherej indexes over all nodes in the layer immediately o; = waxz
above the nodé, are taken to be zero. Note that removing P

node: from the network does not change the values of nodgs tes th iahted finputs to the nadend the ind
in the layer to which nodé belongs and those lying below,eno €s the weighted sum ofinputs to the ngy € index

it. Hence, after having computed the values of all nodes fhf aNgES over al thg units in the layer immediately below the
the full network, in order to comput&(*) we need only to ayer to V(;’.h'Ch umrt{y t()jelo'ngj. for th dei
recompute the values of nodes in layers above rioééso to Depending onbt % esfl_red Oﬁtpﬁ'} or g € IOUtPLrJ]t hodg |
recompute the values of those nogen the layer immediately tV_VO cases can be | entified whic are ealt with separately.
above node a more efficient rule can be devised. Lst be :zlrsrt]_conmderhthe case Whefre th? de_swgd ow%lﬂqugls 1‘8'
the weighted sum of inputs to nogavhen the full network is n this case t. € new error -ur.1ct_|o_n IS enote. gy;), an
functioning. Letz; be the value of nodé anda = w;ja;. If should be defined so that minimizimgz,) effectively pushes

we letz;(i) denote the value of nodg after removing node 7. € (00,1.0) Fowards 1.0 (as the desired output is 1.0 in
this case). Define

where

¢ we have
; 1 r(z;) =x; —lnz; — 1.
(1) = : :
1+ exp(—(o; — a)) - , :
_ The derivative ofr with respect tox; is
Now write
1 B 1 1 o) =1 = =)
1+exp(—(o; —a)) 1+exp(—o;) 2 Ly Ly

The value of+ has to be determined. Note thay(l + By the chain rule, the gradient efwith respect to some weight

exp(—0;)) = z;, the value of node when the full network % €duals
is functioning. Simple algebraic manipulations lead to ar) - (1 —)] dx; (a2 0z
1 = x;(1 — exp(a)) + exp(a). Ow Ow Ow
Hencedr/dw will approximately equaldz;/dw if x; ~ 0.
Now consider the case where the desired outpuequals 0.0.
2;(6) = 1 _ T In this case we simply replace the valug by (1 — «;) in
! 1+exp(—(o; —a)) x;(1—exp(a))+exp(a) the definition ofr(z;) and the rest of the discussion in case 1
olds. This is because pushifiy—z,) towards 1.0 effectively
ults in pushing;; towards 0.0, the desired output.
Although in the above discussion, the description of the
ror function has been restricted to binary valued output
nctions, it can be appropriately scaled to handle real-valued
nctions as well.
The new error function can be used only for the output units
o i as the desired output is known only for these units. However
B. Modifying the Error Function the same problems are experienced for the hidden units. A
If ; is the output value of nodg of the network then the simple solution for this is due to Fahiman [4]. In this method
derivative of the sigmoid function with respect to this outpuhe derivative of the sigmoid i.ex;(1 — z;) is altered by
value is given byz;(1 — x;). As a result, for nodes whoseadding a small constant value to it. Typically this value is 0.1
output values are close to zero or one, the derivative is closestthat the derivative of the sigmoid is now a curve going from
zero. Thus, in the case of a node whose output is at the wrdhd to 0.35 and back to 0.1 instead of a curve that goes from
end of the sigmoid (i.e., where the difference between tl@e0 to 0.25 to 0.0. This simple modification helps in reducing
actual output and the desired output is near one), the gradite time for convergence. The implementation of the algorithm
of the error with respect to various weights in the networthat incorporates the above defined error function is referred
will be essentially zero. Consequently, if a gradient-baséd asversion 3in Table Ill, Section VI-A.

This gives

This expression obviates the necessity of recomputing t
entire weighted sum of inputs to nogdefter removing nodeé
from the network. It suffices to compute the single produ%tr
a. The implementation of the algorithm that incorporateﬁl
this improved method of computing the objective function iﬁJ
referred to asrersion 2in Table I, Section VI-A.

896 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 5, SEPTEMBER 1998

C. The Threshold and Margin Criterion TABLE |

. SAMPLE RUN OF THE FIRST ALGORITHM FOR THE XOR PROBLEM. WEIGHTS
The fault tolerance problem as stated requires that, When wege InmiaLizep To SuaLL Ranpom VALUES, AND ! = 1000.0 Vi

the entire network is functioning, each output be very close

to the specified target value. This is reflected in the form of fteration | ¢ P(W, 9)
equality constraints in the problem definition. (See Section Il.) l 0'0009 1.0000067302282
For networks performing a task with binary outputs this seems 2. 0.5773 0'178635789382668
unnecessarily strict: sometimes the algorithm may produce 3. 0‘8?13 3.191 x 10:3
useful outputs quickly, but take much longer to adjust the 4. 0.9245 5.703 x 10_1
output values to within the specified tolerances. . 0'968} 1021 x 107;
The “threshold and margin” criterion [4] can be stated as 6. 0.9665 1.851 x 10
follows: if the total range of output units is 0.0 to 1.0, any Desired | Actual | Quiput on removing a node
value below 0.4 is considered to be a zero and any value above | _output | output 1 2 3
0.6 is considered to be a one; values between 0.4 and 0.6 are 0 0 0 0 0
considered to be “marginal” and are not counted as correct. ! 1 1 1 !
If we consider the valugl — z;) instead ofz; whenever 1 1 1 1 1
d; = 0.0 as suggested in the second case of Section V-B the U U v ! 0

fault tolerance problem can be modified as follows to include

this criterion: _ N _ _

. B(W direct empirical comparison between the approach of Meti
Ir‘%ﬁ{%@f (W} al. and the first algorithm has been carried out by running
subject to the constraints both the aIgoriFhms on the sonar data and the results have
d'— ot <04, Viefie{l,---,phd =1} been reported in Section VI-C.

' —d' <04, WVielie{l,---,p}:d =0}. (10)

L)) A. The First Approach
The optimization problem of (10) is referred to esrsion 4

in Table IIl. Section VI-A To carry out the unconstrained minimization at each step
’ ' a routine from the MINPACK library [10] was used. The
VI]. COMPUTATIONAL RESULTS AND CONCLUSIONS subroutine minimizes the sum of the squares of multivari-

The above approaches were tested on three standard p{e;otg_scalar-valued functions by a modification of the Leven-

lems from the literature, namely, the XOR problem, theerg—Marquardt algorithm. For both the problems the weight

. . matrix was initialized to random values. The hard (equality)
negation problem and the sonar benchmark. It is useful to L . .
)) o . constraints in the problem formulation represent the require-
discuss the XOR problem since it is the simplest problem .
requiring hidden units, and since many other difficult proble ngent that the full network (without the loss of any node)
d 9 ' y P earns the input—output set of patterns as desired. This has

involve an XOR as a subproblem [13]. A network with a singl . : S
. . en transformed into an unconstrained minimization problem
hidden layer and three hidden nodes was used for the X . :

using the concept of penalty functiong.l =1,---p are

problem. The network had two input nodes, and one outp

i) .~ 'the set of weights or penalty functions used here. [Refer to (6).]
node as required. Consequently the corresponding optimization . .
. . . ese are simply large numbers to be chosen appropriately so
problem involved a total of 13 parameters—nine weights an . : . ;
at the algorithm converges to the right solution. There is no

four threshold V"’?'“es- In the negation p_roblem the input %)Qovious choice for these numbers, and the choice is usually
the system consists of patterns of+ 1 binary values and

. 7 ; uided by trial and error. This may appear to be a daunting
an output ofn values. One of the input bits is special an .
. ask as there argm such numbers to be chosen wherés
is known as thenegation bit When the negation bit equals :
. : : the number of patterns in the pattern set anthe number of
zero the desired output consists of the lastbits of the nodes in the output laver. However. on the problems tested
input. On the other hand, when the negation bit equals o P yer. ' P '

e . .
the complement of the remainingbits is the desired output. this task wrned out to be fairly simple.

Usually the leftmost bit of the input pattern is taken to be the * 1he same value was chosen for all the numbers.
negation bit. The system has no way of knowing this and must” FOr the XOR problem all the numbers were set to the
learn which bit is the negation bit. The negation problem with ~ valué 1000.0.

n = 3 was considered. The training set therefore consisted® FOr the negation problem all numbers were set to 1.0.
of 16 patterns. The network consisted of four input nodes, aFor the XOR problem, with.’ = 1000.0 Vi the solution
single hidden layer with seven hidden nodes, and three outft#t of weights) to which the algorithm converged had the
nodes. The optimization problem in this case comprised $glowing properties (a sample run of the program is given as
parameters—49 weights and ten threshold values. Note thable).

both the XOR problem and the negation problem are difficult 1) The network is totally tolerant to the removal of two of
problems in the sense that very similar patterns (which differ the three hidden nodes (removed one at a time).

only in a single bit) require widely different outputs. To assess 2) When the third hidden node is removed, the network
the performance of the algorithms proposed here on typical maps three of the four input patterns to the correct
real-world problems the sonar benchmark was selected. A output.

DEODHARE et al. SYNTHESIS OF FAULT-TOLERANT FEEDFORWARD NEURAL NETWORKS

TABLE 1

SaMPLE RuUN OF THE FIRST ALGORITHM FOR THE NEGATION PROBLEM.
WEIGHTS WERE INITIALIZED TO SMALL RANDOM VALUES ! = 1.0 VI

TABLE 1l

COMPARISONS BETWEEN VERSION 1, VERSION 2, VERSION 3,
AND VERSION 4. THE AVERAGE WAS TAKEN OVER 20 RUNS

897

Desired | Actual Output on removing a node Version | Time taken for | Time taken for | Average over

OUlput OUtPUt 1 2 3 4 5 6 7 worst case bESt case runs

000 000 1000/000]000/000/000,0001000 1 1 min 22.99 sec | 1 min 19.13 sec | 1 min 19.30 sec

001 | 001 [o01l00l]000]001[00TI]001][001 = = =

010 | 010 [010]010]010]000/010]010]010 2 94.31 sec 93.01 sec 53.61 sce

011 [011 [011|011]010]001 011 011|011 3 38.77 sec 34.28 sec 38.07 sec

100 | 100 [100[100[100/100]000{100([100 4 36.96 sec 32.96 sec 34.87 sec

101 | 101 |[IO01[101]101[101]001][101]101

110 | 110 [110]110]110[100]110[110[110

LI LI it it totj il 1 jillp general the second algorithm is faster than the first. The
T11 | 111 [o1T|t11 111|111 111]110]111 . . L
70 1110 [oToTiTolTi0liiolTTol 10l 0 subroutine used to perform the unco_n_strgmed mlnlmlzanor_l is
101 1101 10T 101101110117 0111011101 due to Shanno and Phua [14] and minimizes an unconstrained
100 | 100 [100]100[100]100[100[100[100 nonlinear scalar valued function of a vector variable either by
011 | 011 J011/011]011]011/011)01@ 011 the BFGS (Broyden—Fletcher—Goldfarb—Shanno) method or by
8(1) (1J 8 3(1) 8(1] (1) 8(])(1] g (1) ? 8 (1)(1’ 8 (lJ (1) 8(1) (1] 8 g}? the conjugate gradient method. Obviously, the quality of the
000 Tooo Toooloool 000 000 000 000 000 solution will depend on the minimization technique applied.

Using the above mentioned routine the program performs well
for the XOR problem and the output of the network is similar
For the negation problem no penalty weights were uset8, Fhat given in '!'able . Fpr the negat!on problem the best

eight configuration to which the algorithm converged gave

i.e., i = 1 VI. The results (see Table 1) can be summarized . .
at least 19 bit errors in the output—a performance worse

as follows.
1) Th work is totally tol t 1o th | of nod than that of the first algorithm which converged to weight
) 5 aenge7wor IS totally tolerant o the removal of no eéonfigurations that gave a total of only 12 bit errors. (See

able II.) This can be explained by the fact that the routine

ffered by MINPACK (refer to Section VI-A) performs a
minimization of the sum of the squares of nonlinear functions.
ﬁ/hile minimizing this sum it also attempts to keep the value

) of each of the component functions low. This leads to superior
To make the tables (Tables | and Il) conveniently readablggyits since for the fault tolerance problem we are interested

each output value has been rounded off to the nearest Zergndfeducing the error in each function. On the other hand,
one value. (The errors are in italics.) the algorithm due to Shanno and Phua simply minimizes
The first implementation of the algorithm (which has beeghe ghjective function without bothering about the component
called versionl), was modified to incorporate the improvetynctions li.e.,f.(W)—see (8)]. Consequently, when a large
ments suggested in Section V to get vers@nversion 3 nymber of functions contribute to the objective function the
and versiond. Although all program development was dongesyits can be mediocre. However, this need not necessarily
on a SPARC Station with the UNIX operating system, tgean that the second approach is inferior. The MINPACK
compare the performance of the various versions in terms ﬁﬁckage is based on what are knowntrast region methods
termination time, the more convenient single-user PC-DQ&) and although the package itself is tailored to solve least-
environment was used. Microsoft FORTRAN 5.0 was Usﬁuares optimization problems in theory the implementation
to compile the programs. Each version was run a number Qi pe extended to handle more generic optimization problems
times to solve the XOR problem with weights and thresholdg; \yell. The authors are not aware of any such implementation
initialized randomly. The starting time and terminating timgt fee| that usage of such an implementation to perform

were obtained from the system and the difference notagle unconstrained optimization in the second algorithm may
The average was taken over 20 runs. The results are lisieksibly lead to better results.

in Table Ill. Average run time comparisons between various
versions justify the successive modifications made in tra? Comparison with Neti et al.’s Method
algorithm. ' '

2) There is a single bit error on two inputs when nodes
3, 5, and 6 are removed.

3) There is a single bit error on four inputs when node
is removed.

In this section we present a direct empirical comparison
of the first method described in Section Il and that of Neti
et al. on the sonar database. This is the data set used by

The alternative approach to solving the minimax optimizasorman and Sejnowski [6] in their study of the classification
tion problem discussed in Section IV was also implemented sonar signals using a neural network. The task is to train a
separately. Recall that the first approach of Section Ill twetwork to discriminate between sonar signals bounced off a
solving the minimax optimization problem involves solvingnetal cylinder and those bounced off a roughly cylindrical
a sequence of unconstrained minimization problems. Theck. The sonar benchmark comprises two files. The file
alternative approach of Section IV requires the solution ¢$onar.mines” contains 111 signals corresponding to sonar
a single unconstrained minimization problem. Therefore imeturns from metal cylinders. The file “sonar.rocks” contains

B. Implementation of the Alternative Approach

898 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 5, SEPTEMBER 1998

TABLE IV TABLE V
PERFORMANCE OF TwO HIDDEN NODE PERFORMANCE OF THREE HIDDEN NODES NETWORKS DESIGNED
NETWORKS DESIGNED USING THE FIRST METHOD UsING NETI et al’s METHOD FOR DIFFERENT VALUES OF €
% correct| % correct on removing a node c % correet | % correct on removing a node
it on 1 9 on trng. set 1 2 3
trng. | test | trng. test | trng. test 0.0 50% 50% 50% 50%
0.1]98.1% | 84.5% | 98.1% | 86.4% | 98.1% | 86.1% 0.1 88.6% 50% 88.6% 88.6%
1.0 | 100% | 84.5% | 100% | 83.5% | 50% 50% 0.2 87.6% 50% 85.7% 86.7%
0.3 81% 50% 83.9% 81.9%
0.33 71.4% 50% 74.3% 66.7%
97 signals corresponding to sonar returns from rocks. In [6], | 0.5 78.1% 50% 74.3% | 64.8%
Gorman and Sejnowski discuss two series of experiments: an | 0-75 86.7% 50% 1% | 72.4%
“aspect-angle independent” series, in which the whole data set | 0-88 89.5% 50% 88.6% | 82.9%
is used without controlling for aspect angle, and an “aspect- | 0-92 91.4% 50% 87.6% | 85.7%
angle dependent” series in which the training and testing sets { 9.9 94.3% 50% 89.5% | 87.6%
were carefully controlled to ensure that each set contained | 1.0 95.2% 50% 95.2% | 90.5%

cases from each aspect angle in appropriate proportions. Here
we have used the aspect-angle dependent sets of data for
training and testing the networks. Since the input signals areSince the solutions obtained for network configurations with
60-dimensional, networks with 60 input units and two outpifree hidden nodes and four hidden nodes were the best,
units, one indicating a cylinder and the other a rock have beefly the performance of these networks on the test set have
used. been tabulated in Table VII. For easy reference the results
The networks were initialized to small random weightgeported in [6] for the angle-dependent experiments are being
using a random number generator. Several different startifgproduced here partially in Table VIIl. The performance
points in the weight space were tried and only the best resuMsour algorithm compares favorably both with the results
are being reported for both the algorithms. For this the seebtained by Netet al’s method and those obtained in [6].
to the random number generator was varied. The performancd he second entry in Table IV indicates that even with one
of networks designed using the method of Section IIl on tHg@de functioning (i.e., node 2 in the two hidden nodes network)
sonar benchmark is tabulated in Table IV. For these results the network is able to achieve 100% classification accuracy
seed to the random number generator was ten. The numbe@fthe training set. This suggested that perhaps the sonar
hidden nodes in the networks was two, gufd= 0.1 VI for database consists of a linearly separable set of data points.
the first table entryu! = 1.0 VI for the second table entry. To test this a routine from the neural networks toolbox of
The fault tolerance problem formulated in [11] is as followsMATLAB was used to train a perceptron on the entire set
. of data points (208 in all). The perceptron training algorithm
H&PE(W) converged in 1172480 epochs confirming that the sonar data
subject to the constraints is in fact linearly separableTo assess the perfo rmance of our
; . algorithm on “realistic’not linearly separable data the sonar
EW") - E(W) <+, fori € V. (11) data was perturbed a little so that it was no longer linearly

The aim of the problem formulation of (11) is to minimize the&eparable. For this the data points in the rocks file and the
overall error in the network output as measured by the errdata points in the mines file were moved toward each other
E(W), subject to the constraint that removing any single nodong the line joining the respective centroids of these points.
from the hidden layer must not increase the error by more thahe performance of the algorithm on this new data is given
e. In the experiments (11) is solved for a range of values ofin Table IX.
and the smallest value for which the corresponding optimal
value of the objective function is close to zero is approximately
determined. A successive quadratic programming algorithm
from the IMSL software library has been used in [11]. The Currently used learning algorithms result in nonuniform
same has been done here. weights and thresholds, of which a few are critical and many
Neti et als algorithm was also run on the sonar benchmaidthers are insignificant. Therefore there is a need for new
and the results are tabulated in Tables V and VI. For theapproaches that yield specific weights and thresholds that
results the seed to the random number generator was 25. Sincerporate fault tolerance. This work is a step in this direction.
on an average the solution obtained was better for networksthis point it is important to make some general comments
with three hidden nodes, in Table V the performance of threeegarding the solutions obtained by the methods discussed.
hidden node networks (in terms of percentage classification
accuracy) obtained for different values ©fire reported.

Note that in Table V the best solution is obtained usin INote that the experiments of Gorman and Sejnowski with zero hidden
lgodes did not demonstrate the linear separability of the data. This is because

€= 10 The effect of 'changing the number of hidden nOderﬁinimizing the least-squares error function is not the same as minimizing the
keepinge fixed at 1.0 is reported in Table VI. number of misclassifications.

VII. DISCUSSION

DEODHARE et al. SYNTHESIS OF FAULT-TOLERANT FEEDFORWARD NEURAL NETWORKS 899

TABLE VI
PERFORMANCE OF2, 3, 4, 6 HDDEN NobeE NETWORKS DESIGNED UsING NETI et al!s METHOD WITH € = 1
Hidden | ¢ % correct % correct on removing a node
nodes on trng. set | 1 2 3 4 5 6

2 1.0 50% 50% | 50% - - - -
3 1.0 95.2% 50% 1 95.2% | 90.5% - - -
4 1.0 94.3% 50% | 94.3% | 94.3% | 94.3% -
6 1.0 < 10% 50% | 50% | <50% | 50% | 50% | 50%

TABLE VII and the number of output nodes are fixed by the set of input
PERFORMANCE OF3, 4 HDDEN NODE NETWORKS DESIGNED and output patterns. For the XOR problem the choice of three
UsinG NETI et al!'s METHOD WiTH € = 1 ON THE TEST SeT
hidden nodes is the least possible, since on a single node fault,
Hidden | ¢ | % correct | Output on removing a node we need at least two functioning nodes in order for the network
nodes on lest set | 1 2 3 4 to produce the correct output. An important point to note here
3 1.0 79.6% 50% | 79.6% | 718.1% | - is that even when the number of hidden nodes was increased
4 1.0 79% 50% | 79% | 80% | 80% from three up to eight one at a time, the single bit error in the

output persisted. A possible explanation for this phenomenon
as given by one of the reviewers is as follows: In the usual

TABLE Vil solution to the XOR problem obtained by training a two-
RESULTS FOR THE/ANGLE-DEPENDENT EXPERIVENTS hidden node network using backpropagation one node acts as
Hidden | % correct on | % correct on an OR-gate while the other acts as a NAND-gate. The NAND-
nodes | iraining sct test set gate inhibits the “1”-output when both inputs are “1”. Since
0 79.3 73.1 the NAND-gate is only functional for the two-“1's” input, it is
2 96.2 85.7 less critical as compared to the OR-gate. For this very reason,
3 98.1 87.6 it is possible that the effect of the constrained optimization
6 99.4 89.3 is to replicate the “more important” OR-gate. Then one could
12 99.8 90.4 remove any of these replicates and the remaining nodes would
24 100.0 89.2 ensure correct network operation. But removing the (single)
NAND-gate will cause the network to fail for the two-“1's”
input.
TABLE IX ; ; ;
For the negation problem a network with two hidden nodes
PERFORMANCE OF TWO THREE-HIDDEN-NODE NETWORKS DESIGNED USING THE . . .
FIRST METHOD WITH 41! = 1.0 VI ON THE perturbedSoNAR DATA was used to start with and this number was increased one at

a time. An acceptable solution was finally obtained when the
network architecture had seven hidden nodes. It is not obvious
whether the following fact is relevant but a negation problem
can be reduced to a set of three XOR’s between the negation
bit and each input.

Hidden Y% correct| % correct on removing a node
nodes | p on 1 2

trng. test trng. test trng. test

2 1.0 99% | 77.6% | 99% | 75.7% | 50% 50%

3 10| 99% | 75.7% | 99% | 15.7% | 99% | 75.7%

C. How Easy Is It to Incorporate Fault Tolerance?

A. How Good Are the Solutions Obtained? When one compares between the effort required to train the
The solutions obtained can be described as good. Thetwork by an existing conventional method (like backprop-
programs were run for several times with a different seigation for example) and that required to incorporate fault
of starting weights and the best results have been reporttalerance as described here, it is found that the latter requires
Although it may be possible to get a better solution for theubstantially more effort. In other words, both in terms of
negation problem, our intuitive feeling is that it may not b&ime and space, incorporating fault tolerance is significantly
possible to improve on the solution for the XOR problenmore expensive. The problem mainly arises due to the choice
The fact that the XOR problem cannot be solved by a singdé using conventional optimization algorithms to perform the
hidden node MLP may prohibit this. These observations amgnimization. These need to be modified or tailored to suit the
based merely on an empirical study, and more analysis nestie of a neural-network problem.

to be carried out in order to make any definite claims. The
performance of the first algorithm on the sonar benchmark is

obviously very good. VIIl. CONCLUSIONS
_ _ Some important lessons have been learned through this
B. How Simple Is the Network Design Used? research. These can be listed as follows.

When we speak of the simplicity of the network we refer 1) The fault tolerance requirement for a neural network
to the number of hidden nodes, as the number of input nodes needs to be incorporated in the problem formulation it-

900

self and training algorithms need to be designed keepinfg]
this requirement in mind.

Most sophisticated optimization algorithms make use ¢fg;
some sort of approximate inverse Hessian. This matrix
is of very large size, and is difficult to store for Iarge[“]
networks. Therefore efficiently applying quasi-Newton
methods to large neural networks is an important prolbt2]
lem. We need methods that are efficient both in spa%
and time. Besides, to conform to the neural-networ
approach they also need to be local and parallel. Some
work in this direction has been reported by Pearlmuttélr‘”
[12].

The methods proposed here lead to networks that exhibit a
partial degree of fault tolerance. However it may be possible
to extend these methods to ensgrearanteedault tolerance.
Guaranteed fault tolerance implies that the network contin
to function after the removal odny of the hidden nodes of
the network. A simple strategy to achieve this can be based
replication. Once network weights using minimax optimizatio
are obtained, critical weights of the network can be identifi
and replicated. This approach may prove to be less expen
than a purely replication-based approach. Other construct
methods need to be explored.

We conclude with the comment that the extra expense
of embedding fault tolerance arises only during the training
phase of the network. Once a robust set of weights has b
determined for a given problem, the on-line functioning of t
network in terms of time and space is not significantly affecte
In most applications of artificial neural networks, training i
an off-line process and hence these methods can find prac
use in spite of the added cost.

2)

ACKNOWLEDGMENT

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 5, SEPTEMBER 1998

, “Application of vector performance optimization to a robust
control loop design for a fighter aircraft/ht. J. Contr, vol. 37, pp.
251-284, 1983.

J. J. Mog, D. C. Sorensen, B. S. Garbow, and K. E. Hillstorm,
MINPACK Project Argonne National Laboratory, Mar. 1980.

C. Neti, M. H. Schneider, and E. D. Young, “Maximally fault-tolerant
neural networks,IEEE Trans. Neural Networks/ol. 3, pp. 4-23, Jan.
1992.

B. A. Pearimutter, “Fast multiplication by the hessiaNgural Comput.
June 1993.

] D. E. Rumelhart and J. L. McClellan&arallel Distributed Processing:

Explorations in the Microstructure of Cognitiprvol. 1.
MA: MIT Press, 1986.

D. F. Shanno and K. H. Phua, “Minimization of unconstrained multi-
variate functions,”ACM Trans. Math. Softwarevol. 6, Dec. 1980, pp.
618-622.

Cambridge,

Dipti Deodhare received the M.Sc. degree in com-
puter science from Pune University, India. She re-
ceived the M.S. (Engg.) degree in computer science
and automation from Indian Institute of Science,
Bangalore.

She has been with the Centre for Artificial Intel-
ligence and Robotics, Bangalore since March 1991.

M. Vidyasagar (S'69-M'69-SM’'78-F'83) was
born in Guntur, Andhra Pradesh, India, on
September 29, 1947. He received the B.S., M.S.,
and Ph.D. degrees, all in electrical engineering,
from the University of Wisconsin, Madison, in
1965, 1967, and 1969, respectively.

He has taught at Marquette University, Milwau-
kee , from 1969 to 1970, Concordia University,
- Montreal, Canada, from 1970 to 1980, and the
University of Waterloo, Ontario, Canada, from 1980
to 1989. Since June 1989, he has been the Director

The authors are grateful to the reviewers for their comments.the Centre for Artificial Intelligence and Robotics (under the Defence

Research and Development Organization), Bangalore, India. In addition to
the above, he has held visiting positions at several universities including the
Massachusetts Institute of Technology, the University of California (Berkeley,
Los Angeles), C.N.R.S., Toulouse, France, the Indian Institute of Science, the
University of Minnesota, Minneapolis, and Tokyo Institute of Technology,
[1] G. Bolt, J. Austin, and G. Morgan, “Fault-tolerant multilayer perceptrodapan. He is the author or coauthor of seven books and more than 120 papers
networks,” Dept. Comput. Sci., Univ. York, Hestington, York, U.K.,in archival journals.
Tech. Rep. YCS 180, July 1992. Dr. Vidyasagar has received several honors in recognition of his research

These have vastly helped in improving the paper.

REFERENCES

[2] S.R.K.Duttaand M. Vidyasagar, “New algorithms for constrained minactivities, including the Distinguished Service Cit ation from his Alma Mater
imax optimization,”Math. Programmingvol. 13, no. 2, pp. 140-155, (The University of Wisconsin). In addition, he is a Fellow of the Indian
Oct. 1977. o] _ Academy of Sciences, the Indian National Science Academy, the Indian

[3] M. D. Emmerson and R. I. Damper, “Determining and improvingyational Academy of Engineering, and the Third World Academy of Sciences.
the fault tolerance of multilayer perceptrons in a pattern-recognition
application,”|[EEE Trans. Neural Networkwol. 4, pp. 788-793, Sept.

1993.

[4] S.E. Fahlman, “An empirical study of learning speed in backpropagation
networks,” June 1988. S. Sathiya Keerthireceived the Ph.D degree in con-

[5] R. Fletcher,Practical Methods of Optimization New York: Wiley- trol engineering from The University of Michigan,
Interscience, 1987. Ann Arbor, in 1987.

[6] R.P.Gorman and T. J. Sejnowski, “Analysis of hidden units in a layerg Since April 1987 he has been with the faculty

network trained to classify sonar targetdleural Networksvol. 1, pp.
75-89, 1988.

[7] J. M. Maciejowski, Multivariable Feedback Design Reading, MA:
Addison-Wesley, 1989.

[8] G. Kreisselmeier and R. Steinhauser, “Systematic control design
optimizing a vector performance index,” Rroc. IFAC Symp. Comput.- i
Aided Design Contr. SystZurich, Switzerland, 1979, pp. 113-117. 1

of the Department of Computer Science and Au-
tomation, Indian Institute of Science, where he is
currently an Associate Professor. His main research
interests include optimization and geometric algo-
rithms, neural networks, and robot path planning.

