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Synthesis of Fault-Tolerant Feedforward Neural
Networks Using Minimax Optimization

Dipti Deodhare, M. Vidyasagar,Fellow, IEEE, and S. Sathiya Keerthi

Abstract—In this paper we examine a technique by which fault
tolerance can be embedded into a feedforward network leading
to a network tolerant to the loss of a node and its associated
weights. The fault tolerance problem for a feedforward network
is formulated as a constrained minimax optimization problem.
Two different methods are used to solve it. In the first method,
the constrained minimax optimization problem is converted to a
sequence of unconstrainedleast-squaresoptimization problems,
whose solutions converge to the solution of the original minimax
problem. An efficient gradient-based minimization technique,
specially tailored for nonlinear least-squares optimization, is then
applied to perform the unconstrained minimization at each step
of the sequence. Several modifications are made to the basic
algorithm to improve its speed of convergence. In the second
method a different approach is used to convert the problem to a
single unconstrained minimization problem whose solution very
nearly equals that of the original minimax problem. Networks
synthesized using these methods, though not always fault tolerant,
exhibit an acceptable degree of partial fault tolerance.

Index Terms—Fault tolerance, minimax optimization.

I. INTRODUCTION

DISTRIBUTED computing, of which neural networks are
an example, promises to offer new ways of achieving

fault tolerance. By virtue of their architecture and processing
style neural networks are believed to be inherently fault
tolerant. When one unit fails other units may partially take
over its functions, so as to achievegraceful degradationor
fail-soft performance. Artificial neural networks are inspired
by natural neural networks in the human brain and consist of
distributed processing elements with each node contributing
to the final output response. The human brain exhibits a
remarkable degree of fault tolerance since it continues to
function in spite of losing as many as 10neurons per day.
Fault tolerance is therefore a desirable property and isbelieved
to be an intrinsic property of (artificial) neural networks. The
main reason advanced for this belief is the fact that the storage
mechanism isconnectionistand cutting off a few neurons
and their associated interconnections presumably should not
affect the performance of the network drastically. Thus, if a
node or its weights are lost or damaged, recall is impaired in
quality, but the distributed nature of the information storage
means that damage has to be extensive before the response of
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the network degrades badly. The network therefore demon-
strates graceful degradation instead of catastrophic failure.
However, there is thus far very littletheoretical basisfor
such a belief. The ability of the network to exhibit fault
tolerance depends on the algorithm used to train it. Most
connectionist or neural-network learning systems use some
version of the backpropagation algorithm which has been
shown to produce networks that are not always fault tolerant
[1]. Discussion of formal techniques that produce feedforward
neural networksguaranteedto be fault tolerant has been
limited in the literature. Perhaps this is because of the fact
that embedding fault tolerance into the network design/training
process is a nontrivial problem.

The backpropagation method was introduced to overcome
the problem of structural credit assignment in a multilayer
perceptron network (MLPN). This algorithm has become al-
most synonymous with MLPN’s to such an extent that a
clear distinction between the architecture and the training
algorithm has been lost in many cases. However, this method
is only one particular way of determining the weights in
an MLPN so that it performs a specific task. Moreover, it
is not uncommon to see that, when a feedforward neural
network is trained to recognize a given set of patterns using
the backpropagation method, the network fails to reproduce
the specified input–output pairs when one or more neurons
is eliminated from the network [1], [3]. An MLPN trained
by the backpropagation algorithm can easily be subjected
to fault tolerance analysis by artificially forcing randomly
selected weights to zero. A similar approach has been adopted
in [1] and the exercise indicates that a network trained by
the backpropagation algorithm may not distribute the solution
across all the weights. Some of the weights in the network are
indeed critical and the loss of these can cause the network to
fail, contradicting the requirement of fault tolerance. Simply
stated, an MLPN exhibits fault tolerance if the information
content of the network, captured in the connection weights, is
uniformly distributed, i.e., no single node or weight is critical
to the performance of the network. In this paper we discuss
synthesis procedures that lead to such an appropriate choice
of the network weights.

The problem of designing a fault-tolerant neural network
has only recently begun to receive some attention. Netiet al.
[11] are among the first to study this problem. They consider
a standard MLPN and attempt to minimize the maximum
deviation from the desired output for each input in the presence
of single unit failures. The problem is thus formulated as a
constrained minimax optimizationproblem. They then replace
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Fig. 1. A feedforward neural network.

this problem by another problem which is easier to solve;
however, there is no guarantee that the solution of the modified
problem is close to that of the original problem.

The main difficulty with a minimax optimization problem
is that the objective function is in generalnondifferentiable;
hence gradient-based methods cannot be used to solve such
problems. In the present paper, two distinct approaches are
adopted to get around this difficulty. In the first approach,
the constrained minimax optimization problem is replaced by
a sequenceof problems, each with a differentiable objective
function; it can be shown that the corresponding sequence
of solutions converges to a solution of the original mini-
max problem. In the second approach, the nondifferentiable
objective function of the minimax problem is replaced by
another differentiable objective function which is auniformly
close approximationto the original objective function; hence
minimizing the modified objective function (which can be
achieved using gradient-based methods) isguaranteedto be
a near-optimal solution of the original minimax optimization
problem.

II. PROBLEM FORMULATION

A feedforward neural network (FFNN) is conventionally
represented as an acyclic directed graph denoted by

where is the set of nodes and the
set of directed arcs or edges of the graph. Our notation is that

if and only if there is an edgefrom node to node
. A weight is associated with every directed arc

belonging to the set , and a threshold value is associated
with each node in a hidden layer or the output layer of the
network. These threshold values can be treated in a manner
similar to the weights by assuming that their negative values
are connection weights on arcs from a dummy input node with
an auxiliary constant-valued input of1. (See Fig 1.)

Let denote the weight matrix of the network where the
th entry of the matrix is . If the arc is not in the

set then is taken to be zero by convention. Further let

Number of nodes in the input layer.
Number of nodes in the output layer.
Number of nodes in the hidden layer(s).
Set of hidden nodes.

Number of training patterns for the network.

Set of training patterns for the network,
where and .
Error function for pattern .
Total error.
Desired output for patternon output node.
Actual output for pattern on output node .

The functioning of the network with weight matrix
, denoted for convenience by , can be described as

follows.

• The value of a node in the input layer is simply the input
applied to it.

• Each node computes its output value after the
nodes in the preceding layers have computed theirs. If
we use a sigmoidal nonlinearity the rule is

where

This can be represented by a mapping such that
is the m-dimensionalvector output of the

network on the input Let be a suitably
defined error function between the actual output of the network

and the corresponding desired outputon an input . It
is common to choose

where the norm is defined as

However, we define it here as

where the norm is defined as

For our problem the norm is more meaningful since we
want eachof the values to be minimized and this
requirement is more adequately captured by thenorm as
compared to the norm. The overall error is defined as

Obviously, would imply that for each input pattern
the network output equals the corresponding

desired output vector .
For a given node in a hidden layer of the neural network

, let be the network derived from by
removing node from and all weights corresponding to
arcs starting from node. (See Fig. 2.) Let be
the new input–output mapping describing the network. If

, then the error function after removing the
hidden node and its associated weights is

where

(1)
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Fig. 2. N(W 3): Network obtained after removing node 3 from the network
in Fig. 1.

Our objective is to determine a weight matrix such that
the network not only classifies the patterns as desired but is
alsomaximallyfault tolerant. Such a weight vector is defined
as a solution to the constrained minimax optimization problem

subject to the constraints

(2)

Here the quantity represents the error in the network
output when a hidden node is removed. Since we are
interested in finding a weight configuration that minimizes

for all nodes in , the problem can be naturally
modeled as a constrained minimax optimization problem. This
is because minimization of themaximumof implies
minimization of each of the . The hard constraints
capture the requirement that whenall the nodes in the network
are functional, for each input to the network the output
should equal the corresponding desired output. Using (1)
this problem can be rewritten as

subject to the constraints

(3)

where .
Therefore to obtain a maximally fault tolerant network we

need to solve a constrained minimax optimization problem.
Two approaches for solving such problems are described in
the next two sections.

III. SOLVING THE MINIMAX PROBLEM—THE FIRST APPROACH

A general constrained minimax problem can be stated as
follows.

Problem 1:

subject to the constraints

(4)

where is a finite set of integers.

Fig. 3. In minimax optimization the objective function is not differentiable
at the solution point in general.

Minimax optimization can be described as a worst-case
optimization in the sense that at each iteration the algo-
rithm has to try and reduce the function such that

. Note that even if each of the functions
is differentiable, is nondifferentiable in general. The
fact that is differentiable “almost everywhere” does not
simplify the problem since often a solution occurs at an
where is not differenti able. (See Fig 3.) Therefore
it is not possible to solve a minimax problem directly by
using gradient-based methods, as such methods require that
the objective function be differentiable. To overcome this
difficulty, the constrained minimax problem is converted to
a sequenceof unconstrained minimization problems where
each objective function is continuously differentiable. An
efficient gradient minimization technique can then be applied
to carry out the unconstrained minimization at each step of
the sequence. The conversion algorithm is due to Dutta and
Vidyasagar [2] and is described below.

A general constrained minimax problem is stated in (4).
Now consider the objective function

where is a prespecified constant, and
are prespecified weights, and

By convention, empty sums are taken to equal zero. It can
be shown that, for each constant is continuously
differentiable with respect to .

Let denote a solution to Problem 1. Choose an initial
constant and minimize

(5)

Let denote a minimizer of , and update the constant
according to the formula

where is the total number of functions . It can be shown
that if , then for all . Thus is a
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nondecreasing sequence that is bounded above, and hence has
a definite limit as . Under relatively mild assumptions
it can be shown [2] that as . This leads us
to the following algorithm.

Algorithm

Step 1) Choose , where is a solution to
Problem 1. Set .

Step 2) Minimize . Denote the solution by .
Step 3) Set .
Step 4) If , where is a prespecified small

number, STOP. Otherwise, set and go to Step 2).
To apply this algorithm to the fault tolerance problem in

(3), define , and

if
if

Finally

(6)

Here are predefined weights. The algorithm given above can
now be used to minimize (6). This is referred to asversion 1of
the problem in Table III, Section VI-A. Here the second term
corresponds to the third term in (5). Since the fault tolerance
problem as stated has no inequality constraints there is no term
in (6) corresponding to the second term in (5).

IV. SOLVING THE MINIMAX

PROBLEM—THE SECOND APPROACH

An algorithm proposed by Kreisselmeier and Steinhauser
[7]-[9] to solve a control-system design problem as a mul-
tiobjective optimization problem can be adapted to solve the
minimax optimization problem in (3). We begin by introducing
some weights into the objective function in (3), as follows:

where .
Here implies that the entire network is functioning,

i.e., no nodes have been removed from the network. This
problem differs from (3) in two respects.

• New variables have been introduced. Their signifi-
cance is explained below.

• The equality constraints have been included in the objec-
tive function. Notationally this has been taken care of by
letting range from zero to h.

If we let denote the total number of functions over which
the leftmost maximum is taken, then

Let the index range over these functions, which are written
as for convenience. Then the problem at hand becomes

(7)

Note that the are simply large numbersmodeled after
“penalty functions.” Generally speaking, an optimization algo-
rithm used to solve (7) deals with one indexat a time—the
one for which the product is currently the largest.
Therefore by choosing appropriate sufficiently large one
can force the equality constraints to be satisfied.

We now proceed to discuss the algorithm. The problem in
(7) is a nonsmooth optimization problem, since the function

is not differentiable everywhere; but it can be ap-
proximated well by another problem with a smooth objective
function. Consider the function

(8)

where is a parameter to be specified. Note that is a
differentiable function of the parameter vector and can be
rewritten as

Now

so that

Also, for some index

and hence

(9)

where

So we have

This implies that is approximated very well by
if . Hence, the minimax problem (7) can be approxi-
mated by the smooth unconstrained problem
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V. IMPROVEMENTS AND MODIFICATIONS

In this section we discuss a few ways of exploiting the
special structure of the minimax optimization problem for
neural networks, so as to facilitate the application of the
algorithms described in Sections III and IV.

A. Computing the Objective Function

A couple of simple observations help in significantly reduc-
ing the time required to compute the objective function
and hence the overall computation time.

To compute the value of node and all weights
, where indexes over all nodes in the layer immediately

above the node, are taken to be zero. Note that removing
node from the network does not change the values of nodes
in the layer to which node belongs and those lying below
it. Hence, after having computed the values of all nodes for
the full network, in order to compute we need only to
recompute the values of nodes in layers above node. Also to
recompute the values of those nodesin the layer immediately
above node a more efficient rule can be devised. Let be
the weighted sum of inputs to nodewhen the full network is
functioning. Let be the value of node and . If
we let denote the value of nodeafter removing node

we have

Now write

The value of has to be determined. Note that
, the value of node when the full network

is functioning. Simple algebraic manipulations lead to

This gives

This expression obviates the necessity of recomputing the
entire weighted sum of inputs to nodeafter removing node
from the network. It suffices to compute the single product
. The implementation of the algorithm that incorporates

this improved method of computing the objective function is
referred to asversion 2 in Table III, Section VI-A.

B. Modifying the Error Function

If is the output value of node of the network then the
derivative of the sigmoid function with respect to this output
value is given by . As a result, for nodes whose
output values are close to zero or one, the derivative is close to
zero. Thus, in the case of a node whose output is at the wrong
end of the sigmoid (i.e., where the difference between the
actual output and the desired output is near one), the gradient
of the error with respect to various weights in the network
will be essentially zero. Consequently, if a gradient-based

minimization technique is used to minimize the error, then the
weight vector will essentially be “stuck” in this unacceptable
location. For theoutput nodes, since the desired output is
known, it is possible to introduce a new error measure so that
its gradient is far from zero even when or .
This is done next.

With the notation given in Section II, we have

where

denotes the weighted sum of inputs to the node, and the index
ranges over all the units in the layer immediately below the

layer to which unit belongs.
Depending on the desired output for the output node

two cases can be identified which are dealt with separately.
First consider the case where the desired outputequals 1.0.
In this case the new error function is denoted by , and
should be defined so that minimizing effectively pushes

towards 1.0 (as the desired output is 1.0 in
this case). Define

The derivative of with respect to is

By the chain rule, the gradient ofwith respect to some weight
equals

Hence will approximately equal if .
Now consider the case where the desired outputequals 0.0.
In this case we simply replace the value by in
the definition of and the rest of the discussion in case 1
holds. This is because pushing towards 1.0 effectively
results in pushing towards 0.0, the desired output.

Although in the above discussion, the description of the
error function has been restricted to binary valued output
functions, it can be appropriately scaled to handle real-valued
functions as well.

The new error function can be used only for the output units
as the desired output is known only for these units. However
the same problems are experienced for the hidden units. A
simple solution for this is due to Fahlman [4]. In this method
the derivative of the sigmoid i.e., is altered by
adding a small constant value to it. Typically this value is 0.1
so that the derivative of the sigmoid is now a curve going from
0.1 to 0.35 and back to 0.1 instead of a curve that goes from
0.0 to 0.25 to 0.0. This simple modification helps in reducing
the time for convergence. The implementation of the algorithm
that incorporates the above defined error function is referred
to asversion 3 in Table III, Section VI-A.
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C. The Threshold and Margin Criterion

The fault tolerance problem as stated requires that, when
the entire network is functioning, each output be very close
to the specified target value. This is reflected in the form of
equality constraints in the problem definition. (See Section II.)
For networks performing a task with binary outputs this seems
unnecessarily strict: sometimes the algorithm may produce
useful outputs quickly, but take much longer to adjust the
output values to within the specified tolerances.

The “threshold and margin” criterion [4] can be stated as
follows: if the total range of output units is 0.0 to 1.0, any
value below 0.4 is considered to be a zero and any value above
0.6 is considered to be a one; values between 0.4 and 0.6 are
considered to be “marginal” and are not counted as correct.
If we consider the value instead of whenever

as suggested in the second case of Section V-B the
fault tolerance problem can be modified as follows to include
this criterion:

subject to the constraints

(10)

The optimization problem of (10) is referred to asversion 4
in Table III, Section VI-A.

VI. COMPUTATIONAL RESULTS AND CONCLUSIONS

The above approaches were tested on three standard prob-
lems from the literature, namely, the XOR problem, the
negation problem and the sonar benchmark. It is useful to
discuss the XOR problem since it is the simplest problem
requiring hidden units, and since many other difficult problems
involve an XOR as a subproblem [13]. A network with a single
hidden layer and three hidden nodes was used for the XOR
problem. The network had two input nodes, and one output
node as required. Consequently the corresponding optimization
problem involved a total of 13 parameters—nine weights and
four threshold values. In the negation problem the input to
the system consists of patterns of binary values and
an output of values. One of the input bits is special and
is known as thenegation bit. When the negation bit equals
zero the desired output consists of the lastbits of the
input. On the other hand, when the negation bit equals one
the complement of the remainingbits is the desired output.
Usually the leftmost bit of the input pattern is taken to be the
negation bit. The system has no way of knowing this and must
learn which bit is the negation bit. The negation problem with

was considered. The training set therefore consisted
of 16 patterns. The network consisted of four input nodes, a
single hidden layer with seven hidden nodes, and three output
nodes. The optimization problem in this case comprised 59
parameters—49 weights and ten threshold values. Note that
both the XOR problem and the negation problem are difficult
problems in the sense that very similar patterns (which differ
only in a single bit) require widely different outputs. To assess
the performance of the algorithms proposed here on typical
real-world problems the sonar benchmark was selected. A

TABLE I
SAMPLE RUN OF THE FIRST ALGORITHM FOR THE XOR PROBLEM. WEIGHTS

WERE INITIALIZED TO SMALL RANDOM VALUES, AND �l
= 1000:0 8l

direct empirical comparison between the approach of Netiet
al. and the first algorithm has been carried out by running
both the algorithms on the sonar data and the results have
been reported in Section VI-C.

A. The First Approach

To carry out the unconstrained minimization at each step
a routine from the MINPACK library [10] was used. The
subroutine minimizes the sum of the squares of multivari-
ate scalar-valued functions by a modification of the Leven-
berg–Marquardt algorithm. For both the problems the weight
matrix was initialized to random values. The hard (equality)
constraints in the problem formulation represent the require-
ment that the full network (without the loss of any node)
learns the input–output set of patterns as desired. This has
been transformed into an unconstrained minimization problem
by using the concept of penalty functions. are
the set of weights or penalty functions used here. [Refer to (6).]
These are simply large numbers to be chosen appropriately so
that the algorithm converges to the right solution. There is no
obvious choice for these numbers, and the choice is usually
guided by trial and error. This may appear to be a daunting
task as there are such numbers to be chosen whereis
the number of patterns in the pattern set andthe number of
nodes in the output layer. However, on the problems tested,
this task turned out to be fairly simple.

• The same value was chosen for all the numbers.
• For the XOR problem all the numbers were set to the

value 1000.0.
• For the negation problem all numbers were set to 1.0.

For the XOR problem, with the solution
(set of weights) to which the algorithm converged had the
following properties (a sample run of the program is given as
Table I).

1) The network is totally tolerant to the removal of two of
the three hidden nodes (removed one at a time).

2) When the third hidden node is removed, the network
maps three of the four input patterns to the correct
output.
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TABLE II
SAMPLE RUN OF THE FIRST ALGORITHM FOR THE NEGATION PROBLEM.
WEIGHTS WERE INITIALIZED TO SMALL RANDOM VALUES �l

= 1:0 8l

For the negation problem no penalty weights were used,
i.e., . The results (see Table II) can be summarized
as follows.

1) The network is totally tolerant to the removal of nodes
2 and 7.

2) There is a single bit error on two inputs when nodes 1,
3, 5, and 6 are removed.

3) There is a single bit error on four inputs when node 4
is removed.

To make the tables (Tables I and II) conveniently readable,
each output value has been rounded off to the nearest zero or
one value. (The errors are in italics.)

The first implementation of the algorithm (which has been
called version , was modified to incorporate the improve-
ments suggested in Section V to get version, version
and version . Although all program development was done
on a SPARC Station with the UNIX operating system, to
compare the performance of the various versions in terms of
termination time, the more convenient single-user PC-DOS
environment was used. Microsoft FORTRAN 5.0 was used
to compile the programs. Each version was run a number of
times to solve the XOR problem with weights and thresholds
initialized randomly. The starting time and terminating time
were obtained from the system and the difference noted.
The average was taken over 20 runs. The results are listed
in Table III. Average run time comparisons between various
versions justify the successive modifications made in the
algorithm.

B. Implementation of the Alternative Approach

The alternative approach to solving the minimax optimiza-
tion problem discussed in Section IV was also implemented
separately. Recall that the first approach of Section III to
solving the minimax optimization problem involves solving
a sequence of unconstrained minimization problems. The
alternative approach of Section IV requires the solution of
a single unconstrained minimization problem. Therefore in

TABLE III
COMPARISONSBETWEEN VERSION 1, VERSION 2, VERSION 3,
AND VERSION 4. THE AVERAGE WAS TAKEN OVER 20 RUNS

general the second algorithm is faster than the first. The
subroutine used to perform the unconstrained minimization is
due to Shanno and Phua [14] and minimizes an unconstrained
nonlinear scalar valued function of a vector variable either by
the BFGS (Broyden–Fletcher–Goldfarb–Shanno) method or by
the conjugate gradient method. Obviously, the quality of the
solution will depend on the minimization technique applied.
Using the above mentioned routine the program performs well
for the XOR problem and the output of the network is similar
to that given in Table I. For the negation problem the best
weight configuration to which the algorithm converged gave
at least 19 bit errors in the output—a performance worse
than that of the first algorithm which converged to weight
configurations that gave a total of only 12 bit errors. (See
Table II.) This can be explained by the fact that the routine
offered by MINPACK (refer to Section VI-A) performs a
minimization of the sum of the squares of nonlinear functions.
While minimizing this sum it also attempts to keep the value
of each of the component functions low. This leads to superior
results since for the fault tolerance problem we are interested
in reducing the error in each function. On the other hand,
the algorithm due to Shanno and Phua simply minimizes
the objective function without bothering about the component
functions [i.e., —see (8)]. Consequently, when a large
number of functions contribute to the objective function the
results can be mediocre. However, this need not necessarily
mean that the second approach is inferior. The MINPACK
package is based on what are known astrust region methods
[5] and although the package itself is tailored to solve least-
squares optimization problems in theory the implementation
can be extended to handle more generic optimization problems
as well. The authors are not aware of any such implementation
but feel that usage of such an implementation to perform
the unconstrained optimization in the second algorithm may
possibly lead to better results.

C. Comparison with Neti et al.’s Method

In this section we present a direct empirical comparison
of the first method described in Section III and that of Neti
et al. on the sonar database. This is the data set used by
Gorman and Sejnowski [6] in their study of the classification
of sonar signals using a neural network. The task is to train a
network to discriminate between sonar signals bounced off a
metal cylinder and those bounced off a roughly cylindrical
rock. The sonar benchmark comprises two files. The file
“sonar.mines” contains 111 signals corresponding to sonar
returns from metal cylinders. The file “sonar.rocks” contains
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TABLE IV
PERFORMANCE OF TWO HIDDEN NODE

NETWORKS DESIGNED USING THE FIRST METHOD

97 signals corresponding to sonar returns from rocks. In [6],
Gorman and Sejnowski discuss two series of experiments: an
“aspect-angle independent” series, in which the whole data set
is used without controlling for aspect angle, and an “aspect-
angle dependent” series in which the training and testing sets
were carefully controlled to ensure that each set contained
cases from each aspect angle in appropriate proportions. Here
we have used the aspect-angle dependent sets of data for
training and testing the networks. Since the input signals are
60-dimensional, networks with 60 input units and two output
units, one indicating a cylinder and the other a rock have been
used.

The networks were initialized to small random weights
using a random number generator. Several different starting
points in the weight space were tried and only the best results
are being reported for both the algorithms. For this the seed
to the random number generator was varied. The performance
of networks designed using the method of Section III on the
sonar benchmark is tabulated in Table IV. For these results the
seed to the random number generator was ten. The number of
hidden nodes in the networks was two, and for
the first table entry, for the second table entry.

The fault tolerance problem formulated in [11] is as follows:

subject to the constraints

for (11)

The aim of the problem formulation of (11) is to minimize the
overall error in the network output as measured by the error

, subject to the constraint that removing any single node
from the hidden layer must not increase the error by more than
. In the experiments (11) is solved for a range of values of

and the smallest value for which the corresponding optimal
value of the objective function is close to zero is approximately
determined. A successive quadratic programming algorithm
from the IMSL software library has been used in [11]. The
same has been done here.

Neti et al.’s algorithm was also run on the sonar benchmark
and the results are tabulated in Tables V and VI. For these
results the seed to the random number generator was 25. Since
on an average the solution obtained was better for networks
with three hidden nodes, in Table V the performance of three-
hidden node networks (in terms of percentage classification
accuracy) obtained for different values ofare reported.

Note that in Table V the best solution is obtained using
The effect of changing the number of hidden nodes

keeping fixed at 1.0 is reported in Table VI.

TABLE V
PERFORMANCE OFTHREE HIDDEN NODES NETWORKS DESIGNED

USING NETI et al.’ S METHOD FOR DIFFERENT VALUES OF �

Since the solutions obtained for network configurations with
three hidden nodes and four hidden nodes were the best,
only the performance of these networks on the test set have
been tabulated in Table VII. For easy reference the results
reported in [6] for the angle-dependent experiments are being
reproduced here partially in Table VIII. The performance
of our algorithm compares favorably both with the results
obtained by Netiet al.’s method and those obtained in [6].

The second entry in Table IV indicates that even with one
node functioning (i.e., node 2 in the two hidden nodes network)
the network is able to achieve 100% classification accuracy
on the training set. This suggested that perhaps the sonar
database consists of a linearly separable set of data points.
To test this a routine from the neural networks toolbox of
MATLAB was used to train a perceptron on the entire set
of data points (208 in all). The perceptron training algorithm
converged in 1 172 480 epochs confirming that the sonar data
is in fact linearly separable.1 To assess the perfo rmance of our
algorithm on “realistic”not linearly separable data the sonar
data was perturbed a little so that it was no longer linearly
separable. For this the data points in the rocks file and the
data points in the mines file were moved toward each other
along the line joining the respective centroids of these points.
The performance of the algorithm on this new data is given
in Table IX.

VII. D ISCUSSION

Currently used learning algorithms result in nonuniform
weights and thresholds, of which a few are critical and many
others are insignificant. Therefore there is a need for new
approaches that yield specific weights and thresholds that
incorporate fault tolerance. This work is a step in this direction.
At this point it is important to make some general comments
regarding the solutions obtained by the methods discussed.

1Note that the experiments of Gorman and Sejnowski with zero hidden
nodes did not demonstrate the linear separability of the data. This is because
minimizing the least-squares error function is not the same as minimizing the
number of misclassifications.
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TABLE VI
PERFORMANCE OF2, 3, 4, 6 HIDDEN NODE NETWORKS DESIGNED USING NETI et al.’ S METHOD WITH � = 1

TABLE VII
PERFORMANCE OF3, 4 HIDDEN NODE NETWORKS DESIGNED

USING NETI et al.’ S METHOD WITH � = 1 ON THE TEST SET

TABLE VIII
RESULTS FOR THEANGLE-DEPENDENT EXPERIMENTS

TABLE IX
PERFORMANCE OFTWO THREE-HIDDEN-NODE NETWORKS DESIGNED USING THE

FIRST METHOD WITH �l
= 1:0 8l ON THE perturbedSONAR DATA

A. How Good Are the Solutions Obtained?

The solutions obtained can be described as good. The
programs were run for several times with a different set
of starting weights and the best results have been reported.
Although it may be possible to get a better solution for the
negation problem, our intuitive feeling is that it may not be
possible to improve on the solution for the XOR problem.
The fact that the XOR problem cannot be solved by a single
hidden node MLP may prohibit this. These observations are
based merely on an empirical study, and more analysis needs
to be carried out in order to make any definite claims. The
performance of the first algorithm on the sonar benchmark is
obviously very good.

B. How Simple Is the Network Design Used?

When we speak of the simplicity of the network we refer
to the number of hidden nodes, as the number of input nodes

and the number of output nodes are fixed by the set of input
and output patterns. For the XOR problem the choice of three
hidden nodes is the least possible, since on a single node fault,
we need at least two functioning nodes in order for the network
to produce the correct output. An important point to note here
is that even when the number of hidden nodes was increased
from three up to eight one at a time, the single bit error in the
output persisted. A possible explanation for this phenomenon
as given by one of the reviewers is as follows: In the usual
solution to the XOR problem obtained by training a two-
hidden node network using backpropagation one node acts as
an OR-gate while the other acts as a NAND-gate. The NAND-
gate inhibits the “1”-output when both inputs are “1”. Since
the NAND-gate is only functional for the two-“1’s” input, it is
less critical as compared to the OR-gate. For this very reason,
it is possible that the effect of the constrained optimization
is to replicate the “more important” OR-gate. Then one could
remove any of these replicates and the remaining nodes would
ensure correct network operation. But removing the (single)
NAND-gate will cause the network to fail for the two-“1’s”
input.

For the negation problem a network with two hidden nodes
was used to start with and this number was increased one at
a time. An acceptable solution was finally obtained when the
network architecture had seven hidden nodes. It is not obvious
whether the following fact is relevant but a negation problem
can be reduced to a set of three XOR’s between the negation
bit and each input.

C. How Easy Is It to Incorporate Fault Tolerance?

When one compares between the effort required to train the
network by an existing conventional method (like backprop-
agation for example) and that required to incorporate fault
tolerance as described here, it is found that the latter requires
substantially more effort. In other words, both in terms of
time and space, incorporating fault tolerance is significantly
more expensive. The problem mainly arises due to the choice
of using conventional optimization algorithms to perform the
minimization. These need to be modified or tailored to suit the
size of a neural-network problem.

VIII. C ONCLUSIONS

Some important lessons have been learned through this
research. These can be listed as follows.

1) The fault tolerance requirement for a neural network
needs to be incorporated in the problem formulation it-



900 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 5, SEPTEMBER 1998

self and training algorithms need to be designed keeping
this requirement in mind.

2) Most sophisticated optimization algorithms make use of
some sort of approximate inverse Hessian. This matrix
is of very large size, and is difficult to store for large
networks. Therefore efficiently applying quasi-Newton
methods to large neural networks is an important prob-
lem. We need methods that are efficient both in space
and time. Besides, to conform to the neural-network
approach they also need to be local and parallel. Some
work in this direction has been reported by Pearlmutter
[12].

The methods proposed here lead to networks that exhibit a
partial degree of fault tolerance. However it may be possible
to extend these methods to ensureguaranteedfault tolerance.
Guaranteed fault tolerance implies that the network continues
to function after the removal ofany of the hidden nodes of
the network. A simple strategy to achieve this can be based on
replication. Once network weights using minimax optimization
are obtained, critical weights of the network can be identified
and replicated. This approach may prove to be less expensive
than a purely replication-based approach. Other constructive
methods need to be explored.

We conclude with the comment that the extra expense
of embedding fault tolerance arises only during the training
phase of the network. Once a robust set of weights has been
determined for a given problem, the on-line functioning of the
network in terms of time and space is not significantly affected.
In most applications of artificial neural networks, training is
an off-line process and hence these methods can find practical
use in spite of the added cost.
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