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Abstract

Overload control of call processors in telecom networks is used to protect the

network of call processing computers from excessive load during tra�c peaks� and

involves techniques of predictive control with limited local information� Here we

propose a neural network algorithm� in which a group of neural controllers are

trained using examples generated by a globally optimal control method� Sim�

ulations show that the neural controllers have better performance than local

control algorithms in both the throughput and the response to tra�c upsurges�

Compared with the centralized control algorithm� the neural control signi�cantly

decreases the computational time for making decisions and can be implemented

in real time�

�
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� Introduction

In modern telecommunication systems� overload control is critical to guarantee good

system performances of the call setup and disconnection processes� Overload events

occur in heavy tra�c� when the number of call setup jobs exceeds the capacity of

call processing computers� These events� if left uncontrolled� will cause the system

to break down and bring disasters to the network performance� Overload control is

used to protect the limited system resources from excessive load� based on a throttling

mechanism for new arriving requests� It is increasingly important with the emergence of

Integrated Services Digital Networks �ISDN� ���� in which numerous customer services

are provided and tra�c is considerably higher�

This kind of control� which balances limited system resources on one hand and

cumstomer requirements on the other� is widely encountered in telecommunications

networks� e�g� in tra�c routing ���� call admission control in ATM networks �	�� channel

assignment in wireless networks �
� and so on� These problems are often very di�cult�

since the tra�c processes are stochastic and the degrees of freedom are large� It is

di�cult to �nd the optimal solution or the solution is too complex to be implemented�

In general� tra�c control strategies can be implemented in two ways� local or cen�

tralized� according to the amount of information the control decisions depend on� Cen�

tralized control consists of one main networkwide controller which collects all the infor�

mation through the signaling network� This is possible with the recent advances in the

technology of the signaling networks� which enable a large amount of information to

be tranferred instantly among system elements� It can make globally optimal decisions

with the availability of networkwide information� However� it is often complex and

time�consuming� and the work load of the signaling network is also high� rendering it

impractical� Centralized control is also rather sensitive to network breakdown� On the

other hand� local control makes decisions based on locally available information only�
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It has the advantages of easy implementation and robustness to system breakdown�

Its shortcoming is that the control decisions are generally not the optimal ones� since

they are based on local information�

In reality� centralized control is preferred in smaller networks� while localized con�

trol is preferred in larger networks� In the latter case� the challenge is to coordinate

the control steps taken by each local controller to achieve performances approaching

globally optimal ones�

For the traditional hierarchical networks� centralized versions of overload control

strategy have been well developed� There is a main controller located at the central

call processer which takes control actions in response to all call setup requests� An

example is the STATOR method �
��

For networks of distributed architecture� where the role of each processor is equiv�

alent� the situation is much more complex and di�cult� Some local control methods

have been suggested for this situation ������ in which each processor makes decision de�

pending only on its own status and there is no cooperation between each other� Thus

they cannot achieve optimal control�

In this paper we propose a centralized control strategy� which achieves globally

optimal control through networkwide cooperation� It has the shortcomings of being

complex and time�consuming� This leads us to consider modern methods of function

approximation� In recent years the use of neural networks for intelligent management

and control in telecom networks have been widely studied� For example� Hiramatsu

proposed a neural network learning model for call admission control in ATM networks�

which found the complex relation between the o�ered tra�c and service quality during

stochastic multiplexing ���� Campbell et al� proposed a neural network control in

capacity allocation for real time implementation ����� Lor and Wong investigated a

fast� adaptive and optimal neural network strategy for tra�c routing in circuit�switched

	



networks ����� and so on� In these applications� neural networks can extract the general

function from a large number of training examples and generalize it to unknown cases�

Hence we propose a neural network control algorithm by using a group of decentralized

neural controllers to approximate the complex functions of the centralized controller�

thus combining the advantages of both�

The centralized controller serves as the teacher� who generates examples of globally

optimal decisions� These examples are used to train the neural controllers o��line� each

located on a processor node� After learning� the neural controllers are implemented to

infer the control decisions of the teacher based on locally available information�

To evaluate the performance of our method� we perform simulations on a metropoli�

tan network� We compare the behaviors of the proposed local� centralized and neural

control methods� referred to as LCM� CCM and NNM respectively� It shows that NNM

performs better than LCM both in the throughput and the response to tra�c upsurges�

Compared with CCM� NNM signi�cantly decreases the computation time for decision

making and can be implemented in real�time� So our strategy indeed combines the

advantages of both CCM and LCM�

The paper is organized as follows� In section �� a simpli�ed call processing model

is described� and the requirements of an optimal overload control is discussed� We

introduce two traditional control methods� One is a local control algorithm �LCM� and

the other is a centralized control algorithm �CCM�� Their advantages and disadvantages

are compared� In section 	� we introduce a radial basis function neural network model

and describe its implemention in a telecom network� Simulation results are presented in

section 
� The performances of NNM� CCM and LCM under constant heavy tra�c and

tra�c upsurges are compared� We also compare their control errors� In section 
� some

general discussions and conclusion are given� Appendix A shows how the processing

load of a call processor is calculated� and Appendix B gives the control action of LCM�






� Overload Control in Telecom Networks

��� A Simpli�ed Call Processing Model

Consider a distributed telecom network which consists of N fully connected switch sta�

tions �Fig� ��a��� Call requests between two stations are assumed to arrive as Poisson

processes� A call setup process is often complex and may generate various tasks� Here

we adopt a simpli�ed model ���� which captures the essential features of real processes�

each call setup request initiates �ve jobs� referred to as jobs � to 
 respectively� They

represent the jobs of sending dial tones� receiving digits� routing� connecting path and

so on� Jobs ��	 are processed on the originating node� and jobs 
�
 on the terminating

node� They consume di�erent service times� denoted by hi for job i� Time delays be�

tween successive jobs are assumed to be stochastic� and obey rectangular distributions�

that is� p��t� � ���� ����� for �� � �t � ��� and � otherwise� where p��t� is the prob�

ability of time delay being �t� �� and �� are the minimum and maximum time delays�

In this paper we use the parameters shown in Table� �� where h� � h� � h� � 
� ms�

h� � �
� ms and h� � ��� ms� The time delays between job � and jobs � � 
 range

from � to 	 seconds� and those between jobs � � 
 and jobs 	 � 
 range from � to �

seconds�

��� Objectives of Overload Control

A processor is overloaded if its load status exceeds a prede�ned threshold� Overload

control is implemented by gating new calls� The gate values� i�e� the fraction of

admitted calls� are updated periodically� An e�ective control is to �nd out the optimal

gate values in each period�

The design of an optimal overload control strategy in fully distributed switching

systems presents a number of new requirements not encountered in a traditional cen�






Table �� The Simpli�ed Call Processing Model

Call processing on Call processing on

the originating node the terminating node

job � �
� ms�

� � 	 s

job � ��
� ms� job 
 ���� ms�

� � � s

job 	 �
� ms� job 
 �
� ms�

tralized architecture� In this situation� it is important to coordinate the operations of

all call processors located on each station� An ideal control algorithm should satisfy

the following requirements�

�� Maximum throughput� It is important for a telecom network to maintain high

throughput during heavy tra�c� Whereas an ideal control should prevent overload�

ing in the network� it should not be done excessively to the extent that the overall

throughput is compromised� i�e�� overcontrol should be avoided�

�� Balance between stations� This means that all stations share the heavy tra�c

load� If load balancing is not ensured� the more congested stations will be easily

overloaded in the presence of tra�c �uctuations�

	� Fairness� The rejecting action to all customers should be fair�


� Robustness� The control should be robust against changing tra�c pro�les and

partial network breakdown�


� Easy implementation� The control scheme should be fast� adaptive and simple

enough� and can be implemented easily�

Below we introduce two control strateges� Their advantages and disadvantages are

compared�
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��� The Local Control Method �LCM�

Local control methods are the currently adopted overload control strategies in telecomm�

nunications networks� Each node monitors its own load and makes decisions indepen�

dent of all others� As shown in Fig� ��b�� there are two kinds of gate where throttling

takes place� The gate values goi and gii denote respectively the acceptance rates of calls

outgoing from and incoming to node i� They are updated periodically� Taking into

account hardware limitations� control speed and statistical �uctuations� we choose the

control period T to be 
 seconds� Priority is given to the incoming calls to maximize

the throughput� since they have already consumed processing resources in their origi�

nating nodes� When a node is overloaded� the local controller �rst rejects outgoing call

requests� If this is still not e�ective� the controller further adjusts the incoming gate

����

For a fair comparison with our proposed methods� we consider a new local control

algorithm �LCM�� which is better than other local control methods in that the leftover

jobs carried forward from the past periods are accommodated� Since a call setup process

lasts for about 	��� seconds �see Table ��� it spans more than one control period� and

the control decisions are naturally a�ected by the presence of the jobs left over from

the previous periods�

As derived in Appendix A� the control action at node i during period t should

satisfy the capacity constraint given by

X
j

���
o
ij�t�g

o
i �t� �

X
j

����
i
ji�t�g

i
i�t� � �i�left�t� � �max� ���

where the parameters involved are explained below�

�a� �� is the averaged service time for outgoing calls arriving in the current period�

��� is the corresponding averaged service time for incoming calls� They are di�erent

because in the model of Table �� jobs � to 	 contribute to ��� whereas jobs 
 to 


contribute to ���� They are calculated in Appendix A�

�



�b� �i�left�t� is the leftover load carried forward from the previous periods� It is

given by

�i�left�t� � ��
X
j

�oij�t� ��goi �t� �� � ��
X
j

�oij�t� ��goi �t� ��

� ���
X
j

�iji�t� ��gii�t� �� � ���
X
j

�iji�t� ��gii�t� ��� ���

where �� and �� are the averaged service times for outgoing calls having arrived in

the previous one and two periods respectively� ��� and ��� are the corresponding service

times for incoming calls� Again� �� and �� are di�erent from ��� and ���� and are derived

in Appendix A�

�c� �oij�t� is the outgoing call rate from node i to j in period t� and �iji�t� is the

incoming call rate from node j to i� They are estimated by averaging the call rates

over a few control periods� The estimation time should not be too short that the

mearsurements are a�ected by temporal �uctuations� but not too long that the values

are insensitive to genuine tra�c upsurges� Here we use 
 periods for averaging�

�d� �max is the prede�ned capacity threshold� It is set to ���
� slightly below the

nominal value of � to accommodate for tra�c �uctuations�

The local controller �rst maximizes the incoming gate values� and next the outgoing

gate values� while satisfying the capacity constraint ���� Explicit expressions are given

in Appendix B�

LCM is not an optimal control� for there is no cooperation between di�erent nodes�

However� it has the advantages of simplicity and robustness�

��� The Optimal Centralized Control Method �CCM�

In the centralized control algorithm� networkwide information is available to the con�

troller� Therefore through cooperative control on each node� only outgoing calls need

to be throttled� �Fig� ��c��� CCM is able to take into account the multiple objectives
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prescribed in Section ���� in which case the order of priority of the objectives deter�

mines the optimization procedure� We consider the maximization of throughput to

be the most important� since it is a measure of averaged system performance� Load

balancing is next important� since it is a measure of system performance under �uc�

tuations� Fairness comes the third� The technique can be generalized to other choices

of priorities� Hence CCM can be implemented as a sequence of linear programming

problem� Let the gate value gij�t� be the acceptance rate for outgoing calls from node

i to j in the time period t� They are optimized in the following steps�

Step one� Maximize the throughput
P

�i�j� �
o
ij�t�gij�t� subject to

� � gij�t� � �� �	�

��
X
j

�oij�t�gij�t� � � ��
X
j

�oji�t�gji�t� � �i�left�t� � �max� � � i � N� �
�

where �� has the same meaning as that in LCM� � �� is the corresponding service time

for incoming calls� �i�left is the leftover load carried forward from the previous periods�

It is given by

�i�left�t� � ��
X
j

�oij�t� ��gij�t� �� � ��
X
j

�oij�t� ��gij�t� ��

� � ��
X
j

�oji�t� ��gji�t� �� � � ��
X
j

�oji�t� ��gji�t� ��� �
�

where �� and �� have the same meaning as that in LCM� � �� and � �� are the corresponding

service times for incoming calls� Note that � ��� �
�
� and � �� are di�erent from ���� ��� and

��� used in LCM� since the former is based on globally available information� whereas

the latter is based on the local estimation of a node �see Appendix A��

The above problem can be solved using the active set searching method in linear

programming ����� It turns out that the optimal solution space is often degenerate�

Any point in the solution space has the same value of maximum throughput� Removing

the degeneracy enables us to optimize the secondary objectives of load balancing and

fairness�
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Removing the degeneracy is also important for subsequent training of neural net�

works in NNM� As described in the next section� CCM is used to generate examples for

training neural controllers� Degeneracy means the teacher will prescribe di�erent con�

trol actions for similar network situations� This is bad for supervised learning since in

this case the student will only learn to output the mean value of the teacher�s outputs�

In order to apply supervised learning to the neural controllers� unambiguous examples

should be provided�

Step two� Optimize load balance in the subspace of maximum throughput� At the

end of Step one� this subspace is de�ned by a number of equations and inequalities

in �	� and �
�� referred to as active and inactive constraints respectively� Active and

inactive constraints in �
� correspond to full nodes and non�full nodes respectively� We

maximize � in the subspace of maximum throughput� where for each non�full node i�

��
X
j

�oij�t�gij�t� � � ��
X
j

�oji�t�gji�t� � �i�left�t� � � � �max� ���

Maximizing � decreases the load of the most congested nodes� As a result� the

tra�c load is more evenly distributed among the stations� If there is still degeneracy�

which is generally the case in our numerical simulation� the third optimization step is

needed�

Step three� Optimize fairness bymaximizing � in the subspace of maximumthrough�

put and optimal load balance� where

� � gij�t� � �� ���

and each gij�t� denotes an undetermined gate value �inactive constraint� in the previous

optimization� Maximizing the lower bound � will avoid unfair rejection in some nodes�

In case there is still degeneracy� we apply Step three until all degeneracies are lifted�

The method is very time�consuming� On HP ���� workstations� one turn of decision

making for a network of � fully connected nodes needs ��
 seconds� The computational
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time grows exponentially with the increase of the size of networks� proportional to N��

where N is the number of nodes ����� It is also susceptible to network breakdown and

brings heavy load to the signaling network� since networkwide information is necessary�

� The Neural Network Method �NNM�

A neural network on a processor node receives input about the conditions of the con�

nected call processors� and outputs the corresponding control decisions about the gate

values� It acquires this input�output mapping by a learning process using examples

generated by CCM� It is di�cult to train the neural networks properly using examples

generated for a large range of tra�c intensity� but on the other hand� training them

at a �xed tra�c intensity makes them in�exible to changes� Hence for each processor

node� we build a group of neural networks� each member being a single layer perceptron

trained by CCM using examples generated at a particular background tra�c intensity�

The �nal output is an interpolation of the outputs of all members using radial basis

functions� which weight the outputs according to the similarity between the background

and real�time tra�c intensities� This enables the neural controller to make a smooth �t

to the desired control function� which is especially important during tra�c upsurges�

This network architecture is similar to that of Stokbro et al ��	�� where each hidden

unit produces as an output a linear function of the inputs� and the �nal output is their

average weighted by the radial basis functions� Our network di�ers from theirs in that

the outputs of the hidden units are nonlinear sigmoid functions� and that we save the

e�ort of data clustering by taking advantage of the natural clusters according to their

background tra�c intensities�
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��� Training a Member of the Group of Neural Networks

For a neural controller associated with a node� the available information includes the

measurements� within an updating period of all the outgoing and incoming call at�

tempts� and the processing load of all nodes� Note that the processing load is the

only global information fed into the neural controller� These are used to estimate the

background load and leftover jobs on itself and other nodes�

To increase the learning e�ciency of the neural networks� it is important to prepro�

cess the inputs� so that they are most informative about the teacher control function�

From the viewpoint of the neural controller at node i� the constraint of capacity is

X
j

���
o
ijgij�t� �

X
j

����
i
ji�t� � �i�left�t� � �max� ���

At the same time� the controller at node i should consider the constraints of capacity

at other nodes j �� i� that is

� ���
o
ijgij�t� � ���

o
jigji�t� � �ij�left�t� � �j�back�t� � �max� j �� i� ���

where the �rst two terms are the processing load on node j generated by the tra�c �ow

between node i and j� and �ij�left�t� is the corresponding leftover load� �j�back�t� is

the background processing load between node j and other nodes excluding node i� To

the neural controller� the information of �oji and gji for j �� i is not available� To assess

the processing load on node j� it has to estimate the tra�c �ow �ojigji �measured by

the arrival rate of admitted job �� from the knowledge of �iji �measured by the arrival

rate of job 
�� We estimate �ojigji�t� to be �iji�t�� �ij�left�t� is given� in analogy to �
��

by

�ij�left�t� � ���
o
ij�t� ��gij�t� �� � ���

o
ij�t� ��gij�t� ��

� � ���
o
ji�t� ��gji�t� �� � � ���

o
ji�t� ��gji�t� ��� ����

�j�back�t� is estimated by averaging over a few periods�
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For simplicity� we rewrite the equations ��� and ��� as

X
j

���
o
ijgij�t� � ��i� ����

� ���
o
ijgij�t� � ��j� j �� i� ����

where ��i � �max � Pj ����
i
ji�t� � �i�left�t� and ��j � �max � ���

o
jigji�t� � �ij�left�t� �

�j�back�t��

To �nd the most informative inputs to the neural networks� we consider for illustra�

tion a simple network of 	�fully connected nodes� The feasible solution space satisfying

the above constraints is shaded in Fig� �� The following variables are important in

re�ecting the geometry of the shaded region� �a� the range along the direction of gij�t��

given by ��j�� ���ij for j �� i� Since gij�t� lies between � and �� we let min ���j�� ���ij �

�� to be N � � inputs to the neural control at node i� �b� the distance of the plane

corresponding to constraint ���� from the origin� given by ��i����
P

j��
o
ij�t��

������ Since

this is bounded above by
p
N � we let min ���i����

P
j��

o
ij�t��

������
p
N� to be the N th

input to the neural network at node i�

The other N � � inputs consist of the outgoing call attempts �oij for node i� We

normalize �oij by a factor
qP

l��
o
il�

�� since according to the constraints in CCM� they

represent the optimization direction in the space of gate values�

The above inputs form a �N � � dimensional vector 	� fed to each neural network

in the group� each trained by a distinct training set of examples� The kth member

outputs the gate values gkij according to

gkij � f�
�N��X
n	�

Jk
ijn	

�
n � Jk

ij��� ��	�

where f�h� � �� � e�h��� is the sigmoid function� The couplings Jk
ijn and the bias

Jk
ij� are obtained during the learning process by gradient descent minimization of an

energy function

E �
�

�

X
k��

�Ok��
ij � gk��ij �� ��
�

�	



where Ok��
ij is the optimal decision of gij prescribed by the teacher for example 
 in

the kth training set� and gk��ij is the output of the kth member of the group of neural

networks�

��� Implementation of the Group of Neural Networks

Consider the part of neural controller for calculating the gate value gij � as shown in

Fig� 	 �the other parts have the same structure�� The kth hidden unit is trained at a

particular tra�c intensity� and outputs the decision gkij�	
�� for the �N � � dimensional

input vector 	� discribed in Section 	���

To weight the contribution of the kth output� we consider a N � � dimensional

input vector 	� which consists of the call rates ��ij�t�� j �� i� The weight fk�	�� is the

radial�basis�function �RBF� ��
� given by

fk�	�� �
exp���	� � 
k������k�P
l exp���	� � 
l������l �

��
�

where 
k is the kth RBF center� and �k is the size of the RBF cluster� In our case� 
k

is the input vector 	� averaged over the kth training set of examples� and describes the

backgound tra�c intensity� ��k is chosen to be the variance of the Poisson tra�c at the

kth RBF center� i�e�
P

j �	ih�oiji�T � This is slightly di�erent from the usual choice of ��k

being the variance of the kth training set� which is smaller in our simulations� In fact�

it turns out that our choice yields a better performance in simulations�

The �nal output of the neural network is a combination of the weighted outputs of

all hidden units� that is�

gij�	
�� 	�� �

X
k

fk�	��gkij�	
��� ����

Since the numerator of ��
� is a decreasing function of the distance between the

vector 	� and 
k� the RBF center nearest to 	� has the largest weight� If 	� moves
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between the RBF centers� their relative weights change continuously� hence providing

a smooth interpolation of the control function�

� Simulation results

To compare the above three methods� we perform simulations on part of the Hong Kong

metropolitan network �for convenience we call it the Jumbo Network�� which consists

of ��fully connected switch stations �see Fig���a��� The call arrival rates between dif�

ferent nodes under normal tra�c condition are shown in Table �� Call attempts are

generated according to the Poisson process� and accepted with probabilities given by

the corresponding gate values� The accepted calls will queue in the bu�er waiting for

service� If the queueing time is too long� customers may lose patience and abandon the

call attempts� This is the over�ow process ��
�� When the tra�c is well controlled� the

chance of over�ow is small� It usually happens during tra�c upsurges where a large

amount of calls arrive simultaneously� In our simulation� we assume that the over�ow

process is stochastic and satis�es an exponential distribution� The survival probability

p of a call after waiting for t seconds is assumed to be p � minf�� e������t���g� Thus

within � second� there is no abandonment� After 
 seconds of waiting� the probability

the customer still in the queue is around �
��

The RBF centers of the neural networks are chosen as �� �� 	� 
� � and � multiples

of the normal tra�c intensity� To generate examples for neural network training by

CCM algorithm� we simulate the tra�c corresponding to each RBF center for more

than � � ��� seconds� The data of network scenarios and their associated globally

optimal decisions are collected to train the neural controllers o��line� Fig� 
 gives an

example of neural control during constant heavy tra�c� The controlled load of each

processor �uctuates around the prede�ned threshold value ���
� The performance of

the three control methods are compared in the following aspects�

�




��� Steady Throughput

Fig� 
 compares the throughputs of the network under di�erent steady�state tra�c

intensities� The simulation for each case are done for 
��� seconds� We see that

the neural control performs comparably with the centralized teacher� and has a large

improvement in throughput over the local control for a large range of tra�c intensities�

��� Control Error

In reality control errors are unavoidable due to statistical �uctuations� They may be

due to the stochasticity of call arrivals� the uncertainty in measuring the tra�c rates�

the stochasticity of time delays in job arrivals etc� We de�ne the control error �CE� as

the fraction of the processing load which exceeds the nominal value �� given by

CE �

P
i�t��i�t�� �����i�t�� ��P

i�t �i�t�
����

where �i�t� is the actual load on node i in the control period t� ��x� is the step

function� which equals � when x � � and � otherwise� CE re�ects the stability of

control to the �uctuations� Fig�� compares the control error of the three methods

during constant tra�c� It shows that CCM has lowest error at all tra�c intensities�

For light tra�c� NNM and LCM have comparable control errors� whereas for heavy

tra�c� NNM performs better than LCM�

��� Tra�c Upsurges

Of particular interest to network management is the response of the system to tra�c

upsurges� In reality this occurs in such cases as phone�in programs� telebeting and the

hoisting of typhoon signals� when the amount of call attempts abruptly increases� It is

expected that control schemes should respond as fast as possible to accommodate the

changing tra�c condition�

��



We model two cases of tra�c upsurges� The �rst case is a tra�c upsurge in all

nodes� Fig� ��a� shows how the system responds when the normal tra�c intensity

becomes sixfold at t � 
�s� We also measured the averaged control errors of three

methods for the subsequent 
�s� We see that NNM has a throughput higher than

CCM� but with a slight� tolerable compromise in control error� They are both much

better than LCM�

The second is that tra�c intensites only increase in part of the network� Responses

to an upsurge of incoming and outgoing tra�c of node � are shown in Fig� ��b�� leading

to the same conclusion�

Neural controller signi�cantly decreases the time for making decisions� For the

network we simulated� it is about ��� of the CPU time of CCM� Hence NNM can be

implemented in real time�

� Conclusion and Discussions

In summary� we have found a neural network algorithm for overload control in telecom�

munication systems� The neural controllers are implemented in each station and learns

the controlling functions prescribed by an optimal centralized teacher� Simulations

show that NNM performs better than the local controller in both the throughput and

the response to tra�c upsurges� Compared with the centralized teacher� the neural

controller performs comparably in the response to tra�c upsurges� It is interesting to

note that NNM signi�cantly decreases the time for making decisions� and hence can

be implemented in real time� NNM combines the advantages of both LCM and CCM�

and achieves a simple� adaptive� robust and near�optimal control�

Our method is more powerful if the network tra�c is more inhomogeneous� To

see this� we simulate a network with an extremely inhomogeneous tra�c pro�le� The

normal tra�c rates are shown in Table 	� Again� we choose RBF centers of neural

��



networks as �� �� 	� 
� � and � times the normal tra�c intensity and repeat the above

procedure of neural training� Fig� � shows the steady throughput of the network at

di�erent tra�c intensities under the control of the three methods� We see that NNM

has a signi�cant improvement in throughput over LCM� which is much larger than

that in Fig� 
� In the case of completely homogeneous tra�c� our simulation shows

that there is no di�erence between the three methods in steady throughput� and only

a small di�erence in response to tra�c upsurges� Since tra�c is often inhomogeneous

in reality� NNM is a realistic control method�

For a control method to work outside the simulator� it should be robust against the

choice of the call processing model� In our approach� the estimation of the processing

load is based on a simpli�ed call processing model� by which we calculate the averaged

service times� However� it may not be easy in practice to estimate the distribution of

service times� For example� the time delay between di�erent jobs may not be a rect�

angular distribution� We perform simulations on a modi�ed model of call processing�

in which the time delays between di�erent jobs obey a Gaussian distribution �trun�

cated when the argument is negative�� whereas the controllers operate by assuming the

model of rectangular distributions with the same averages as shown in Table �� i�e� the

controllers make an unprecise assumption� Simulations show that there is no change

in the network throughput and only a little increase in control errors�

In our approach we choose normal tra�c rates and its multiples as RBF centers

of neural networks� without doing any data clustering which is generally needed in

neural network training� and �nd that it works well� In practice� normal tra�c rates

are available by taking statistics for su�ciently long time in the normal tra�c condi�

tion� For networkwide increase in tra�c� multiples of normal tra�c rates can indeed

capture the features of tra�c pro�les and can be chosen as RBF centers� However� it is

sometimes di�cult to collect data for high tra�c situations� To study the e�ects of the

��



uneven distribution of training examples� we consider a time dependent tra�c pattern

as shown in Fig� �� in which the training examples for high tra�c are increasingly rare�

It turns out that the performance of the resultant neural controllers is approximately

the same as those trained at multiples of the normal tra�c described in section 
�

Some remarks about the methodology of the teacher and student controllers are

relevant here� In our problem� the teacher is a complex optimization task with multiple

objectives� This is realized through stepwise optimizations� which is a process of lifting

degeneracies with performance criteria optimized in order of priority� In our case the

order is network throughput� balance between stations� and fairness� This approach

is in contrast to the more conventional one�step optimization strategy� in which all

performance criteria are considered simultaneously� but with relative weights tuned

according to priority� In fact� the stepwise optimization process is equivalent to the

one�step approach if we take the ratios of the relative weights of successively important

criteria to approach in�nity� This saves the e�ort in choosing the reliable weights

in the one�step optimization� Furthermore� the computational time for the case of

many variables is reduced� and the linearized program does not su�er from convergence

problems�

Finally� we remark on the implications of our work to general issues of distributed

control� Instead of learning the teacher task by a sophisticated student network� the

task is divided among a group of local student networks with simple architecture�

which cooperate in the control function� This methodology successfully avoids the

shortcomings of traditional centralized and local control methods� and combines their

advantages� The control technique can be generalized to the distributed control of

many large systems such as the ATM network and the wireless cellular network�
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Appendix A� The Estimation of Processing Load

For a node in the network� the outgoing and incoming call rates of the node are mea�

sured by averaging the number of arriving job � and job 
 respectively� Suppose no
ij�t�

is the number of outgoing calls from node i to j in tth control period of duration T �

and ni
ji�t� the number of incoming calls from j to i� The outgoing and incoming tra�c

rates in the coming period t � � are estimated by averaging over the past L periods�

that is�

�oij�t� �� �
L��X
l	�

no
ij�t� l��LT� ����

�iji�t� �� �
L��X
l	�

ni
ji�t� l��LT� ����

Here we use T � 
 s and L � 
�

For a centralized controller� the outgoing call rates of all nodes are available� whereas

for a local controller associated with a node� the only available local information are

the outgoing call rates from this node and the incoming call rates to it� Hence they

estimate the processing load in di�erent ways�

�� Estimates for Centralized Control

Consider setting up a call from node i to j� As shown in Fig� ���a�� let �t� be the

call arrival time in the current period t� �t� and �t� be the time delays from job � to

� �also job � to 
� and job � to 	 �also job 
 to 
� respectively�

Let ��� �� and �� be the averaged service times for an outgoing call on the originating
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node in the period t� and the future periods t� � and t� � respectively� Then

�� � h� �
h�
T

Z T
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d�t�

Z
d�t�P ��t��j��
t��
t��T
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Z T
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Z
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t��
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Z
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t��
t���T ����

Let � ��� �
�
� and � �� be the averaged service times on the terminating node in the

current period t� and the future periods t� � and t� � respectively� Then

� �� �
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Z T
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Z
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For the call processing model in Table �� �� � �
� ms� �� � �� ms� �� � �� ms�

� �� � �� ms� � �� � �� ms and � �� � �� ms�

Based on the knowledge of ��ij for all nodes� the centralized controller estimates

the processing load of of node i in the period t as in the left hand side of �
�� where

�i�left�t� is the leftover load carried forward from the previous periods given in �
��

�� Estimates for Local Control

For a local controller associated with a node i� the information of �oji for j �� i is not

available� and it has to estimate the processing load from the only available information

of �iji for j �� i� As shown in Fig� ���b�� let ���� ��� and ��� be the averaged service times
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for an incoming call in the current period t� and the future periods t � � and t � �

respectively� Again� assuming �t�� is uniformly distributed�

��� � h� �
h�
T

Z T

�
d�t��

Z
d�t��P ��t��� j��
t�

�
�
t�

�
�T ����

��� �
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d�t��

Z
d�t��P ��t��� jT�
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�
�
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�
��T ����

��� �
h�
T

Z T

�
d�t��

Z
d�t��P ��t��� j�T�
t�

�
�
t�

�
��T ����

For the call processor model in Table �� ��� � ����
 ms� ��� � 	
 ms and ��� � ��
 ms�

So the local controller at node i estimates the processing load in the period t as in left

hand side of ���� and the leftover load �i�left�t� as in ����

Appendix B� The Control Action of LCM

The local controllers in LCM adjust the gate values in the following way�

�a�high load�

if �max � �i�left�t��

gii � �� goi � ��

�b�intermediate load�

�� if �i�left � �max � �i�left�t� � ���
P

j �
i
ji�t��

gii � ��max � �i�left�t������
P

j �
i
ji�t�� g

o
i � ��

�� if �i�left�t� �
P

j ����
i
ji�t� � �max � �i�left�t� �

P
j ����

i
ji�t� �

P
j ���

o
ij�t��

gii�t� � �� goi � ��max � �i�left�t��Pj ����
i
ji�t���

P
j ���

o
ij�t��

�c� light load�

if �max � �i�left�t� �
P

j ����
i
ji�t� �

P
j ���

o
ij�t��

gii � �� goi � ��
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Figure Captions

Fig����a� A ��Node fully connected network of switch stations� �b� Local control

method� �c� Centralized control method�

Fig��� A simple diagram to illustrate the solution space of inequalities ���� and

���� for node ��

Fig�	� The part of neural network for calculating gate value gij �

Fig�
� The processing load of node � in Jumbo Network under the control of NNM�

The tra�c intensity is � times the normal case�

Fig�
� Network throughput under constant tra�c� The tra�c intensities are mea�

sured in multiples of the normal rates�

Fig��� Control errors under di�erent tra�c intensities�

Fig�� �a� Network throughput during a tra�c upsurge on all nodes� The tra�c

intensities of all nodes increase to � times at t � 
�s� CEL� CEC and CEN are the

averged control errors of LCM� CCM and NNM respectively within 
�s after tra�c

increase� �b� Network throughput during a tra�c upsurge at node �� The tra�c

intensity of node � increases to � times at t � 
�s�

Fig��� Network throughput under constant tra�c� The tra�c intensities are mea�

sured in multiples of the normal rates shown in Table 	�

Fig��� A time dependent tra�c pattern�

Fig���� The time structure of call setup processes� �a� A outgoing call setup process�

�b� A incoming call setup process�
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