This is the Pre-Published Version

Dynamic Overload Control for Distributed Call

Processors Using the Neural Network Method

S. Wu*and K. Y. Michael Wong
Department of Physics,
The Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong.

phwusi@luc.ac.be and phkywong@usthk.ust.hk

April 2, 1998

Abstract

Overload control of call processors in telecom networks is used to protect the
network of call processing computers from excessive load during traffic peaks, and
involves techniques of predictive control with limited local information. Here we
propose a neural network algorithm, in which a group of neural controllers are
trained using examples generated by a globally optimal control method. Sim-
ulations show that the neural controllers have better performance than local
control algorithms in both the throughput and the response to traflic upsurges.
Compared with the centralized control algorithm, the neural control significantly
decreases the computational time for making decisions and can be implemented

in real time.

1 Introduction

In modern telecommunication systems, overload control is critical to guarantee good
system performances of the call setup and disconnection processes. Overload events
occur in heavy traffic, when the number of call setup jobs exceeds the capacity of
call processing computers. These events, if left uncontrolled, will cause the system
to break down and bring disasters to the network performance. Overload control is
used to protect the limited system resources from excessive load, based on a throttling
mechanism for new arriving requests. It is increasingly important with the emergence of
Integrated Services Digital Networks (ISDN) [1], in which numerous customer services
are provided and traffic is considerably higher.

This kind of control, which balances limited system resources on one hand and
cumstomer requirements on the other, is widely encountered in telecommunications
networks, e.g. in traffic routing [2], call admission control in ATM networks [3], channel
assignment in wireless networks [4] and so on. These problems are often very difficult,
since the traffic processes are stochastic and the degrees of freedom are large. It is
difficult to find the optimal solution or the solution is too complex to be implemented.

In general, traffic control strategies can be implemented in two ways, local or cen-
tralized, according to the amount of information the control decisions depend on. Cen-
tralized control consists of one main networkwide controller which collects all the infor-
mation through the signaling network. This is possible with the recent advances in the
technology of the signaling networks, which enable a large amount of information to
be tranferred instantly among system elements. It can make globally optimal decisions
with the availability of networkwide information. However, it is often complex and
time-consuming, and the work load of the signaling network is also high, rendering it
impractical. Centralized control is also rather sensitive to network breakdown. On the

other hand, local control makes decisions based on locally available information only.

It has the advantages of easy implementation and robustness to system breakdown.
Its shortcoming is that the control decisions are generally not the optimal ones, since
they are based on local information.

In reality, centralized control is preferred in smaller networks, while localized con-
trol is preferred in larger networks. In the latter case, the challenge is to coordinate
the control steps taken by each local controller to achieve performances approaching
globally optimal ones.

For the traditional hierarchical networks, centralized versions of overload control
strategy have been well developed. There is a main controller located at the central
call processer which takes control actions in response to all call setup requests. An
example is the STATOR method [5].

For networks of distributed architecture, where the role of each processor is equiv-
alent, the situation is much more complex and difficult. Some local control methods
have been suggested for this situation [6-8], in which each processor makes decision de-
pending only on its own status and there is no cooperation between each other. Thus
they cannot achieve optimal control.

In this paper we propose a centralized control strategy, which achieves globally
optimal control through networkwide cooperation. It has the shortcomings of being
complex and time-consuming. This leads us to consider modern methods of function
approximation. In recent years the use of neural networks for intelligent management
and control in telecom networks have been widely studied. For example, Hiramatsu
proposed a neural network learning model for call admission control in ATM networks,
which found the complex relation between the offered traffic and service quality during
stochastic multiplexing [9], Campbell et al. proposed a neural network control in
capacity allocation for real time implementation [10], Lor and Wong investigated a

fast, adaptive and optimal neural network strategy for traffic routing in circuit-switched

networks [11], and so on. In these applications, neural networks can extract the general
function from a large number of training examples and generalize it to unknown cases.
Hence we propose a neural network control algorithm by using a group of decentralized
neural controllers to approximate the complex functions of the centralized controller,
thus combining the advantages of both.

The centralized controller serves as the teacher, who generates examples of globally
optimal decisions. These examples are used to train the neural controllers off-line, each
located on a processor node. After learning, the neural controllers are implemented to
infer the control decisions of the teacher based on locally available information.

To evaluate the performance of our method, we perform simulations on a metropoli-
tan network. We compare the behaviors of the proposed local, centralized and neural
control methods, referred to as LCM, CCM and NNM respectively. It shows that NNM
performs better than LCM both in the throughput and the response to traffic upsurges.
Compared with CCM, NNM significantly decreases the computation time for decision
making and can be implemented in real-time. So our strategy indeed combines the
advantages of both CCM and LCM.

The paper is organized as follows. In section 2, a simplified call processing model
is described, and the requirements of an optimal overload control is discussed. We
introduce two traditional control methods. One is a local control algorithm (LCM) and
the other is a centralized control algorithm (CCM). Their advantages and disadvantages
are compared. In section 3, we introduce a radial basis function neural network model
and describe its implemention in a telecom network. Simulation results are presented in
section 4. The performances of NNM, CCM and LCM under constant heavy traffic and
traffic upsurges are compared. We also compare their control errors. In section 5, some
general discussions and conclusion are given. Appendix A shows how the processing

load of a call processor is calculated, and Appendix B gives the control action of LCM.

2 Overload Control in Telecom Networks

2.1 A Simplified Call Processing Model

Consider a distributed telecom network which consists of N fully connected switch sta-
tions (Fig. 1(a)). Call requests between two stations are assumed to arrive as Poisson
processes. A call setup process is often complex and may generate various tasks. Here
we adopt a simplified model [8], which captures the essential features of real processes:
each call setup request initiates five jobs, referred to as jobs 1 to 5 respectively. They
represent the jobs of sending dial tones, receiving digits, routing, connecting path and
so on. Jobs 1-3 are processed on the originating node, and jobs 4-5 on the terminating
node. They consume different service times, denoted by h; for job 7. Time delays be-
tween successive jobs are assumed to be stochastic, and obey rectangular distributions,
that is, p(At) = (&2 — €)™ for €, < At < €3, and 0 otherwise, where p(At) is the prob-
ability of time delay being At, ¢; and €, are the minimum and maximum time delays.
In this paper we use the parameters shown in Table. 1, where hy = hs = hs = 50 ms,
hy = 150 ms and Ay = 100 ms. The time delays between job 1 and jobs 2 & 4 range
from 1 to 3 seconds, and those between jobs 2 & 4 and jobs 3 & 5 range from 2 to 8

seconds.

2.2 Objectives of Overload Control

A processor is overloaded if its load status exceeds a predefined threshold. Overload
control is implemented by gating new calls. The gate values, i.e. the fraction of
admitted calls, are updated periodically. An effective control is to find out the optimal
gate values in each period.

The design of an optimal overload control strategy in fully distributed switching

systems presents a number of new requirements not encountered in a traditional cen-

Table 1: The Simplified Call Processing Model

Call processing on Call processing on

the originating node the terminating node

job 1 (50 ms)

1~3s

job 2 (150 ms) job 4 (100 ms)

2~8s

job 3 (50 ms) job 5 (50 ms)

tralized architecture. In this situation, it is important to coordinate the operations of
all call processors located on each station. An ideal control algorithm should satisfy
the following requirements:

1) Maximum throughput. It is important for a telecom network to maintain high
throughput during heavy traffic. Whereas an ideal control should prevent overload-
ing in the network, it should not be done excessively to the extent that the overall
throughput is compromised, i.e., overcontrol should be avoided.

2) Balance between stations. This means that all stations share the heavy traffic
load. If load balancing is not ensured, the more congested stations will be easily
overloaded in the presence of traffic fluctuations.

3) Fairness. The rejecting action to all customers should be fair.

4) Robustness. The control should be robust against changing traffic profiles and
partial network breakdown.

5) Easy implementation. The control scheme should be fast, adaptive and simple
enough, and can be implemented easily.

Below we introduce two control strateges. Their advantages and disadvantages are

compared.

2.3 The Local Control Method (LCM)

Local control methods are the currently adopted overload control strategies in telecomm-
nunications networks. Each node monitors its own load and makes decisions indepen-
dent of all others. As shown in Fig. 1(b), there are two kinds of gate where throttling
takes place. The gate values g and ¢¢ denote respectively the acceptance rates of calls
outgoing from and incoming to node ¢. They are updated periodically. Taking into
account hardware limitations, control speed and statistical fluctuations, we choose the
control period T' to be 5 seconds. Priority is given to the incoming calls to maximize
the throughput, since they have already consumed processing resources in their origi-
nating nodes. When a node is overloaded, the local controller first rejects outgoing call
requests. If this is still not effective, the controller further adjusts the incoming gate
[7].

For a fair comparison with our proposed methods, we consider a new local control
algorithm (LCM), which is better than other local control methods in that the leftover
jobs carried forward from the past periods are accommodated. Since a call setup process
lasts for about 3-11 seconds (see Table 1), it spans more than one control period, and
the control decisions are naturally affected by the presence of the jobs left over from
the previous periods.

As derived in Appendix A, the control action at node i during period ¢ should

satisfy the capacity constraint given by

S A1) + 30 AN + protese(®) < s 1)
J J
where the parameters involved are explained below:
(a) 7o is the averaged service time for outgoing calls arriving in the current period,
7o 1s the corresponding averaged service time for incoming calls. They are different
because in the model of Table 1, jobs 1 to 3 contribute to 7y, whereas jobs 4 to 5

contribute to 75. They are calculated in Appendix A.

(b) piziesi(t) is the leftover load carried forward from the previous periods. It is

given by

pi-test(l) = TIZ)‘ (t—1)g7(t —1) ‘|‘T2Z)‘ (t =2)g7(t —2)

+ le)\ﬂt—l (t—1) —I-TQZ)\]Zt—Q)gZ(t—Q) (2)

J

where 7 and 7, are the averaged service times for outgoing calls having arrived in
the previous one and two periods respectively. 71 and 7, are the corresponding service
times for incoming calls. Again, 7y and 7, are different from 7y and 75, and are derived
in Appendix A.

(c) AZ(1) is the outgoing call rate from node i to j in period ¢, and)\;Z(t) is the
incoming call rate from node j to i. They are estimated by averaging the call rates
over a few control periods. The estimation time should not be too short that the
mearsurements are affected by temporal fluctuations, but not too long that the values
are insensitive to genuine traffic upsurges. Here we use 5 periods for averaging.

(d) pmax is the predefined capacity threshold. It is set to 0.85, slightly below the
nominal value of 1 to accommodate for traffic fluctuations.

The local controller first maximizes the incoming gate values, and next the outgoing
gate values, while satisfying the capacity constraint (1). Explicit expressions are given
in Appendix B.

LCM is not an optimal control, for there is no cooperation between different nodes.

However, it has the advantages of simplicity and robustness.

2.4 The Optimal Centralized Control Method (CCM)

In the centralized control algorithm, networkwide information is available to the con-
troller. Therefore through cooperative control on each node, only outgoing calls need

to be throttled. (Fig. 1(c)). CCM is able to take into account the multiple objectives

prescribed in Section 2.2, in which case the order of priority of the objectives deter-
mines the optimization procedure. We consider the maximization of throughput to
be the most important, since it is a measure of averaged system performance. Load
balancing is next important, since it is a measure of system performance under fluc-
tuations. Fairness comes the third. The technique can be generalized to other choices
of priorities. Hence CCM can be implemented as a sequence of linear programming
problem. Let the gate value g;;(¢) be the acceptance rate for outgoing calls from node
2 to 7 in the time period ¢. They are optimized in the following steps:

Step one: Maximize the throughput Y- ;) A% (1)gi;(t) subject to

7o Z)\ZO] (t)gl] —I_ 7—O Z)\ g]Z —I_ Pi— left() S Pmazx, 1 S Z S N, (4)
J

where 7y has the same meaning as that in LCM, 7] is the corresponding service time
for incoming calls. p;_i. s is the leftover load carried forward from the previous periods.

It is given by

Piciesi(t) = 7’12)\ L)gi;(t — 1) ‘|'7'22)\ —2)gij(t —2)

+ 7—12)‘ gﬂ +7—22)‘ gﬂ t_2) (5)

where 7y and 7, have the same meaning as that in LCM. 7{ and 7, are the corresponding
service times for incoming calls. Note that 7J, 7/ and 75 are different from 7y, 73 and
75 used in LCM, since the former is based on globally available information, whereas
the latter is based on the local estimation of a node (see Appendix A).

The above problem can be solved using the active set searching method in linear
programming [12]. It turns out that the optimal solution space is often degenerate.
Any point in the solution space has the same value of maximum throughput. Removing
the degeneracy enables us to optimize the secondary objectives of load balancing and

fairness.

Removing the degeneracy is also important for subsequent training of neural net-
works in NNM. As described in the next section, CCM is used to generate examples for
training neural controllers. Degeneracy means the teacher will prescribe different con-
trol actions for similar network situations. This is bad for supervised learning since in
this case the student will only learn to output the mean value of the teacher’s outputs.
In order to apply supervised learning to the neural controllers, unambiguous examples
should be provided.

Step two: Optimize load balance in the subspace of maximum throughput. At the
end of Step one, this subspace is defined by a number of equations and inequalities
in (3) and (4), referred to as active and inactive constraints respectively. Active and
inactive constraints in (4) correspond to full nodes and non-full nodes respectively. We

maximize § in the subspace of maximum throughput, where for each non-full node 1,

70 N9 (1) + 7 S NG5 (1) + piciese(1) 0 < prae. (6)
J J

Maximizing 6 decreases the load of the most congested nodes. As a result, the
traffic load is more evenly distributed among the stations. If there is still degeneracy,
which is generally the case in our numerical simulation, the third optimization step is
needed.

Step three: Optimize fairness by maximizing 1 in the subspace of maximum through-

put and optimal load balance, where

n < gij(t) <1, (7)

and each g;;(t) denotes an undetermined gate value (inactive constraint) in the previous

optimization. Maximizing the lower bound n will avoid unfair rejection in some nodes.

In case there is still degeneracy, we apply Step three until all degeneracies are lifted.
The method is very time-consuming. On HP 9000 workstations, one turn of decision

making for a network of 7 fully connected nodes needs 0.4 seconds. The computational

10

time grows exponentially with the increase of the size of networks, proportional to V¢,
where N is the number of nodes [12]. It is also susceptible to network breakdown and

brings heavy load to the signaling network, since networkwide information is necessary.

3 The Neural Network Method (NINM)

A neural network on a processor node receives input about the conditions of the con-
nected call processors, and outputs the corresponding control decisions about the gate
values. It acquires this input-output mapping by a learning process using examples
generated by CCM. It is difficult to train the neural networks properly using examples
generated for a large range of traffic intensity, but on the other hand, training them
at a fixed traffic intensity makes them inflexible to changes. Hence for each processor
node, we build a group of neural networks, each member being a single layer perceptron
trained by CCM using examples generated at a particular background traffic intensity.
The final output is an interpolation of the outputs of all members using radial basis
functions, which weight the outputs according to the similarity between the background
and real-time traffic intensities. This enables the neural controller to make a smooth fit
to the desired control function, which is especially important during traffic upsurges.
This network architecture is similar to that of Stokbro et al [13], where each hidden
unit produces as an output a linear function of the inputs, and the final output is their
average weighted by the radial basis functions. Our network differs from theirs in that
the outputs of the hidden units are nonlinear sigmoid functions, and that we save the
effort of data clustering by taking advantage of the natural clusters according to their

background traffic intensities.

11

3.1 Training a Member of the Group of Neural Networks

For a neural controller associated with a node, the available information includes the
measurements, within an updating period of all the outgoing and incoming call at-
tempts, and the processing load of all nodes. Note that the processing load is the
only global information fed into the neural controller. These are used to estimate the
background load and leftover jobs on itself and other nodes.

To increase the learning efficiency of the neural networks, it is important to prepro-
cess the inputs, so that they are most informative about the teacher control function.

From the viewpoint of the neural controller at node 7, the constraint of capacity is

ZTO)‘?ng] + ZTO —I_ Pi— left() < Pmaz- (8)
J

At the same time, the controller at node 7 should consider the constraints of capacity

at other nodes j # 1, that is

7oA 96 (1) + 1A% (1) + pijoiesi(t) + picvack(t) < Pmaws J F 1. (9)

where the first two terms are the processing load on node j generated by the traffic flow
between node 7 and j, and p;j_i.z(t) is the corresponding leftover load. pj_pecr(t) is
the background processing load between node j and other nodes excluding node . To
the neural controller, the information of A% and g;; for j # i is not available. To assess
the processing load on node j, it has to estimate the traffic flow A% g;; (measured by
the arrival rate of admitted job 1) from the knowledge of)\;Z (measured by the arrival
rate of job 4). We estimate A% g;:(t) to be)\;Z(t) pij—iest(t) is given, in analogy to (5),

by
Pij—tert(t) = TGt —1)gij(t = 1) + A7 (¢ — 2)gi; (t —2)
+ AL = 1)gi(t — 1) + 1A% (= 2)gi(t — 2). (10)

Pi—back(t) is estimated by averaging over a few periods.

12

For simplicity, we rewrite the equations (8) and (9) as

21Nt < pi, (11)
J
TGt < py, T F (12)
where pi = poae — ;TN (E) = piciepi(t) and g = prae — T0A%05i (1) — pijiep:(t) —
Pi—back(l).

To find the most informative inputs to the neural networks, we consider for illustra-
tion a simple network of 3-fully connected nodes. The feasible solution space satisfying
the above constraints is shaded in Fig. 2. The following variables are important in
reflecting the geometry of the shaded region: (a) the range along the direction of g¢;;(),
given by p;/miAi; for 7 # 1. Since g¢,;(t) lies between 0 and 1, we let min (p;/79A;,
1) to be N — 1 inputs to the neural control at node i. (b) the distance of the plane
corresponding to constraint (11) from the origin, given by ﬁi/ro[zj()\fj(t))z]l/z. Since
this is bounded above by v/N, we let min (pi/ 7032, (A% (1)), VN) to be the N
input to the neural network at node 1.

The other N — 1 inputs consist of the outgoing call attempts A7; for node i. We
normalize A%, by a factor 1/>7;(A%)?, since according to the constraints in CCM, they
represent the optimization direction in the space of gate values.

The above inputs form a 2N — 1 dimensional vector ¢! fed to each neural network
in the group, each trained by a distinct training set of examples. The k' member

outputs the gate values gfj according to

2N -1

n=1

where f(h) = (1 + e7")7! is the sigmoid function. The couplings J% and the bias

iyn
J;;O are obtained during the learning process by gradient descent minimization of an
energy function
1

B =23 (05" - g")* (14)
ko

13

where ij’“ is the optimal decision of ¢;; prescribed by the teacher for example p in
the k' training set, and i} 4 is the output of the k™ member of the group of neural

networks.

3.2 Implementation of the Group of Neural Networks

Consider the part of neural controller for calculating the gate value g¢;;, as shown in
Fig. 3 (the other parts have the same structure). The & hidden unit is trained at a
particular traffic intensity, and outputs the decision gf](fl) for the 2N — 1 dimensional
input vector £! discribed in Section 3.1.

To weight the contribution of the k'™ output, we consider a N — 1 dimensional
input vector {* which consists of the call rates A{;(t), j # i. The weight 15(€%) is the

radial-basis-function (RBF) [14] given by

exp[— (¢ — p*)?/207]
2y exp[—(&2 — p!)?/207]

JHE) = (15)

where 1 is the k' RBF center, and oy is the size of the RBF cluster. In our case, y*
is the input vector £? averaged over the k™ training set of examples, and describes the
backgound traffic intensity. o7 is chosen to be the variance of the Poisson traffic at the
k'™ RBF center, i.e. 3;4;(X7;)/T. This is slightly different from the usual choice of o}
being the variance of the k" training set, which is smaller in our simulations. In fact,
it turns out that our choice yields a better performance in simulations.

The final output of the neural network is a combination of the weighted outputs of

all hidden units, that is,

9ii(£",€%) Zf gl (€h). (16)

Since the numerator of (15) is a decreasing function of the distance between the

vector €2 and u*, the RBF center nearest to £? has the largest weight. If ¢€2 moves

14

between the RBF centers, their relative weights change continuously, hence providing

a smooth interpolation of the control function.

4 Simulation results

To compare the above three methods, we perform simulations on part of the Hong Kong
metropolitan network (for convenience we call it the Jumbo Network), which consists
of 7-fully connected switch stations (see Figl.(a)). The call arrival rates between dif-
ferent nodes under normal traffic condition are shown in Table 2. Call attempts are
generated according to the Poisson process, and accepted with probabilities given by
the corresponding gate values. The accepted calls will queue in the buffer waiting for
service. If the queueing time is too long, customers may lose patience and abandon the
call attempts. This is the overflow process [15]. When the traffic is well controlled, the
chance of overflow is small. It usually happens during traffic upsurges where a large
amount of calls arrive simultaneously. In our simulation, we assume that the overflow
process is stochastic and satisfies an exponential distribution. The survival probability
p of a call after waiting for ¢ seconds is assumed to be p = min{l, e ***(=Y} Thus
within 1 second, there is no abandonment. After 5 seconds of waiting, the probability
the customer still in the queue is around 25%.

The RBF centers of the neural networks are chosen as 1, 2, 3, 4, 6 and 8 multiples
of the normal traffic intensity. To generate examples for neural network training by
CCM algorithm, we simulate the traffic corresponding to each RBF center for more
than 2 x 10° seconds. The data of network scenarios and their associated globally
optimal decisions are collected to train the neural controllers off-line. Fig. 4 gives an
example of neural control during constant heavy traffic. The controlled load of each
processor fluctuates around the predefined threshold value 0.85. The performance of

the three control methods are compared in the following aspects:

15

4.1 Steady Throughput

Fig. 5 compares the throughputs of the network under different steady-state traffic
intensities. The simulation for each case are done for 4000 seconds. We see that
the neural control performs comparably with the centralized teacher, and has a large

improvement in throughput over the local control for a large range of traffic intensities.

4.2 Control Error

In reality control errors are unavoidable due to statistical fluctuations. They may be
due to the stochasticity of call arrivals, the uncertainty in measuring the traffic rates,
the stochasticity of time delays in job arrivals etc. We define the control error (CE) as

the fraction of the processing load which exceeds the nominal value 1, given by

Lipi(t) = 1)b(pi(t) — 1)

CFE =
Zi,t Pi(t)

(17)

where p;(t) is the actual load on node ¢ in the control period t. @(x) is the step
function, which equals 1 when = > 0 and 0 otherwise. CE reflects the stability of
control to the fluctuations. Fig.6 compares the control error of the three methods
during constant traffic. It shows that CCM has lowest error at all traffic intensities.
For light traffic, NNM and LCM have comparable control errors, whereas for heavy

traffic, NNM performs better than LCM.

4.3 Traffic Upsurges

Of particular interest to network management is the response of the system to traffic
upsurges. In reality this occurs in such cases as phone-in programs, telebeting and the
hoisting of typhoon signals, when the amount of call attempts abruptly increases. It is
expected that control schemes should respond as fast as possible to accommodate the

changing traffic condition.

16

We model two cases of traffic upsurges. The first case is a traffic upsurge in all
nodes. Fig. 7(a) shows how the system responds when the normal traffic intensity
becomes sixfold at ¢ = 40s. We also measured the averaged control errors of three
methods for the subsequent 50s. We see that NNM has a throughput higher than
CCM, but with a slight, tolerable compromise in control error. They are both much
better than LCM.

The second is that traffic intensites only increase in part of the network. Responses
to an upsurge of incoming and outgoing traffic of node 1 are shown in Fig. 7(b), leading
to the same conclusion.

Neural controller significantly decreases the time for making decisions. For the
network we simulated, it is about 10% of the CPU time of CCM. Hence NNM can be

implemented in real time.

5 Conclusion and Discussions

In summary, we have found a neural network algorithm for overload control in telecom-
munication systems. The neural controllers are implemented in each station and learns
the controlling functions prescribed by an optimal centralized teacher. Simulations
show that NNM performs better than the local controller in both the throughput and
the response to traffic upsurges. Compared with the centralized teacher, the neural
controller performs comparably in the response to traffic upsurges. It is interesting to
note that NNM significantly decreases the time for making decisions, and hence can
be implemented in real time. NNM combines the advantages of both LCM and CCM,
and achieves a simple, adaptive, robust and near-optimal control.

Our method is more powerful if the network traffic is more inhomogeneous. To
see this, we simulate a network with an extremely inhomogeneous traffic profile. The

normal traffic rates are shown in Table 3. Again, we choose RBF centers of neural

17

networks as 1, 2, 3, 4, 6 and 8 times the normal traffic intensity and repeat the above
procedure of neural training. Fig. 8 shows the steady throughput of the network at
different traffic intensities under the control of the three methods. We see that NNM
has a significant improvement in throughput over LCM, which is much larger than
that in Fig. 5. In the case of completely homogeneous traffic, our simulation shows
that there is no difference between the three methods in steady throughput, and only
a small difference in response to traffic upsurges. Since traffic is often inhomogeneous
in reality, NNM is a realistic control method.

For a control method to work outside the simulator, it should be robust against the
choice of the call processing model. In our approach, the estimation of the processing
load is based on a simplified call processing model, by which we calculate the averaged
service times. However, it may not be easy in practice to estimate the distribution of
service times. For example, the time delay between different jobs may not be a rect-
angular distribution. We perform simulations on a modified model of call processing,
in which the time delays between different jobs obey a Gaussian distribution (trun-
cated when the argument is negative), whereas the controllers operate by assuming the
model of rectangular distributions with the same averages as shown in Table 1, i.e. the
controllers make an unprecise assumption. Simulations show that there is no change
in the network throughput and only a little increase in control errors.

In our approach we choose normal traffic rates and its multiples as RBF centers
of neural networks, without doing any data clustering which is generally needed in
neural network training, and find that it works well. In practice, normal traffic rates
are available by taking statistics for sufficiently long time in the normal traffic condi-
tion. For networkwide increase in traffic, multiples of normal traffic rates can indeed
capture the features of traffic profiles and can be chosen as RBF centers. However, it is

sometimes difficult to collect data for high traffic situations. To study the effects of the

18

uneven distribution of training examples, we consider a time dependent traffic pattern
as shown in Fig. 9, in which the training examples for high traffic are increasingly rare.
It turns out that the performance of the resultant neural controllers is approximately
the same as those trained at multiples of the normal traffic described in section 4.

Some remarks about the methodology of the teacher and student controllers are
relevant here. In our problem, the teacher is a complex optimization task with multiple
objectives. This is realized through stepwise optimizations, which is a process of lifting
degeneracies with performance criteria optimized in order of priority. In our case the
order is network throughput, balance between stations, and fairness. This approach
is in contrast to the more conventional one-step optimization strategy, in which all
performance criteria are considered simultaneously, but with relative weights tuned
according to priority. In fact, the stepwise optimization process is equivalent to the
one-step approach if we take the ratios of the relative weights of successively important
criteria to approach infinity. This saves the effort in choosing the reliable weights
in the one-step optimization. Furthermore, the computational time for the case of
many variables is reduced, and the linearized program does not suffer from convergence
problems.

Finally, we remark on the implications of our work to general issues of distributed
control. Instead of learning the teacher task by a sophisticated student network, the
task is divided among a group of local student networks with simple architecture,
which cooperate in the control function. This methodology successfully avoids the
shortcomings of traditional centralized and local control methods, and combines their
advantages. The control technique can be generalized to the distributed control of

many large systems such as the ATM network and the wireless cellular network.

19

Acknowledgements

This work was supported by the Hong Kong Telecom Institute of Information Technol-
ogy, HKUST. We would like to thank Prof. Cao Xiren for useful suggestions, and Hong

Kong Telecom for providing data of part of the Hong Kong metropolitan network.

Appendix A: The Estimation of Processing Load

For a node in the network, the outgoing and incoming call rates of the node are mea-
sured by averaging the number of arriving job 1 and job 4 respectively. Suppose n¢,(t)
is the number of outgoing calls from node i to j in " control period of duration 7',
and nél(t) the number of incoming calls from j to :. The outgoing and incoming traffic

rates in the coming period ¢ 4+ 1 are estimated by averaging over the past L periods,

that is,
L-1
AGt+1) = ng;(t = 1)/ LT, (18)
=0
Not41) = Soni(t—1)/LT. (19)

l

Il
=]

Here we use T'=5 s and L = 5.

For a centralized controller, the outgoing call rates of all nodes are available; whereas
for a local controller associated with a node, the only available local information are
the outgoing call rates from this node and the incoming call rates to it. Hence they
estimate the processing load in different ways.

1. Estimates for Centralized Control

Consider setting up a call from node ¢ to j. As shown in Fig. 10(a), let Aty be the
call arrival time in the current period ¢, At, and Atz be the time delays from job 1 to
2 (also job 1 to 4) and job 2 to 3 (also job 4 to 5) respectively.

Let 79, 71 and 75 be the averaged service times for an outgoing call on the originating

20

node in the period ¢, and the future periods ¢t + 1 and ¢ + 2 respectively. Then

h T
o= bt [ddt [dAGP(AL)ocanransr
h T
+22 [T dnn [dAnP(AL) [dAGPAL) locst sanssusr (20)
hy [T
o= T/o dAtl/dAt2P(At2) |T<At 1AL <oT
h T
+22 [T dan [anup(an) [datP(AL) e ssnssnsor 1)
hy (T
2= T/O dAtl/dAt2P(At2) |aT <At AL <3T

he T
+2 /0 AL / AL, P(Al) / AL P(Al) lar<an s 2ot <a7 22)

Let 74, 7{ and 75 be the averaged service times on the terminating node in the

current period ¢, and the future periods ¢t + 1 and ¢ + 2 respectively. Then

h T
o= 2| dan [dALP(AL) locanrancr

h T
+22 [T dan [dAnP(AL) [AALP(AL) losst sanssusr (23)
/ hy [T
o= T/o dAtl/dAt2P(At2) [T<an+at<or
he T
+22 [T dan [anur(an) [datP(At) e ssnssnsorn (24)
/ hy [T
2 = T/O dAtl/dAt2P(At2) |aT <At AL <3T
h T
t0 [st [danPan) [dMPAG) bresnranransr(25)
For the call processing model in Table 1, 7 = 141 ms, 4, = 83 ms, 7, = 21 ms,

75, = 61 ms, 7{ = 68 ms and 7, = 21 ms.

Based on the knowledge of A}, for all nodes, the centralized controller estimates
the processing load of of node i in the period ¢ as in the left hand side of (4), where
pi-test(t) is the leftover load carried forward from the previous periods given in (5).

2. Estimates for Local Control

For a local controller associated with a node 7, the information of A% for j # 7 is not
available, and it has to estimate the processing load from the only available information

of)\;Z for j # i. As shown in Fig. 10(b), let 7, 71 and 72 be the averaged service times

21

for an incoming call in the current period ¢, and the future periods ¢ + 1 and ¢ + 2

respectively. Again, assuming At} is uniformly distributed,

A h T

7 = h4—|-T5 /0 dAL, / At P(AL)) locas +au<r (26)
~ h5 T / / /

T = T/O dAtl/dAtQP(Atz) |T§At’1+Até§2T (27)
~ h5 T / / /

T2 = T/o dAtl/dAtQP(Atz) |2T§At’1+At§§3T (28)

For the call processor model in Table 1, 75 = 107.5 ms, 74 = 35 ms and 75, = 7.5 ms.
So the local controller at node 1 estimates the processing load in the period ¢ as in left

hand side of (1), and the leftover load p;_.f+(t) as in (2).

Appendix B: The Control Action of LCM

The local controllers in LCM adjust the gate values in the following way:
(a)high load:
Zf Pmaz S Pi—left(t)7

gi=0,¢"=0.

(b)intermediate load:
L. Zf Pi—left S Pmaz S pi—left(t) + 7A—0 Z])‘;z(t)7

gzl: = [pmax - pi—left(t)]/%o Zj)‘;i(t)v g7 = 0.

2.0 piciese(t) + X5 0N (1) < piman < piciese(t) + X FoX (1) + X5 7oA (1).

gf(t) =1, 6! = [pmaz — pi-tese(t) — > 710)‘2@'@)]/ 2 TO)‘fj(t)-

(¢) light load:
Zf Pmazx Z pi—left(t) —I' Z] %OA;Z(t) —I_ Z] TO)\ZQj (t)7
gi=19=L

22

References

[1] A. E. Eckberg and P. E. Wirth, “Switch Overload and Flow Control Strategies in
ISDN Enviroment”, Traffic Engineering for ISDN Design and Planning, pp. 425-434,
1988.

[2] B. Sanso, F.Soumis and M. Gendreau, “Centralized and Decentralized Stochas-
tic Routing Models in Telecommunication Networks”, Telecommunication Systems -
Modeling, Analysis, Design and Management, vol. 1, no. 2, pp. 133-148, 1993.

[3] G. M. Woodruff, R. G. H. Rogers and P. S. Richards, “A Congestion Control
Framework for High-speed Integrated Packetized Transport”, Proc. GLOBECOM’SS,
pp. 7.1.1-7.1.5, 1988.

[4] M. Schwartz, “Network Management and Control Issues in Multimedia Wireless
Networks”, IEFE Personal Communications, 1995.

[5] P. Hanselka, J. Oehlerich and G. Wegmann, “Adaptation of the Overload Regu-
lation Method STATOR to Multiprocessor Controls and Simulation Results”, I'TC-12,
pp. 395-401, 1989.

[6] D. Manfield, B. Denis, K. Basu and G. Rouleau, “Overload Control in a Hier-
archical Switching System”, ITC-11, pp. 894-900, 1985.

[7] M. Villen-Altamirano, G. Morales-Andres and L. Bermejo-Saez, “An Overload
Control Strategy for Distributed Control Systems”, ITC-11, pp. 835-841, 1985.

[8] J. S. Kaufman and A. Kumar, “Traffic Overload Control in a Fully Distributed
Switching Environment”, ITC-12, pp. 386-394,1989.

[9] A. Hiramatsu, “ATM Communications Network Control by Neural Networks”,
IEEFE Transactions on Neural Networks, vol. 1, pp. 122-130, 1991.

[10] P. K. Campbell, M. dale, H. L. Ferra and A. Kowalczyk, “Experiments wth
Neural Networks for Real Time Implementation of Control”, Advances in Neural In-

formation Processing System 8, Cambridge, MA: MIT Press, 1995.

23

[11] W. K. F. Lor and K. Y. M. Wong, “Decentralized Neural Dynamic Routing
in Circuit-switched Networks”, Proceedings of the International Workshop on Applica-
tions of Neural Networks to Telecommunications 2 (IWANNT-95), Ed. J. Alspector et
al., Lawrence Erlbaum Associates, New Jersy, pp. 137-144.

[12] M. J. Best and K. Ritter, Linear Programming: Active Set Analysis and Com-
puter Programs, 1985, Englewood Cliffs, NJ. : Prentice-Hall.

[13] K. Stokbro, D. K. Umberger and J. A. Hertz, “Exploiting Neurons with Local-
ized Receptive Fields to Learn Chaos”, Complex Systems 4, pp. 603-622, 1990.

[14] J. A. Hertz, A. Krogh and R. G. Palmer, Introduction to the Theory of Neural
Computation, London, Addison-Wesley, 1991.

[15] A. W. Berger, “Comparison of Call Gapping and Percent Blocking for Overload
Control in Distributed Switching Systems and Telecommunications Networks”, I[FEFE

Transactions on Communications, vol. 39, pp. 574-580, 1991.

24

Figure Captions

Fig.1:(a) A 7-Node fully connected network of switch stations; (b) Local control
method; (¢) Centralized control method.

Fig.2: A simple diagram to illustrate the solution space of inequalities (10) and
(11) for node 1.

Fig.3: The part of neural network for calculating gate value g;;.

Fig.4: The processing load of node 1 in Jumbo Network under the control of NNM.
The traffic intensity is 6 times the normal case.

Fig.5: Network throughput under constant traffic. The traffic intensities are mea-
sured in multiples of the normal rates.

Fig.6: Control errors under different traffic intensities.

Fig7: (a) Network throughput during a traffic upsurge on all nodes. The traffic
intensities of all nodes increase to 6 times at t = 40s. CEL, CEC and CEN are the
averged control errors of LCM, CCM and NNM respectively within 50s after traffic
increase. (b) Network throughput during a traffic upsurge at node 1. The traffic
intensity of node 1 increases to 8 times at ¢ = 40s.

Fig.8: Network throughput under constant traffic. The traffic intensities are mea-
sured in multiples of the normal rates shown in Table 3.

Fig.9: A time dependent traffic pattern.

Fig.10: The time structure of call setup processes. (a) A outgoing call setup process;

(b) A incoming call setup process.

25

m
N
=
MN—1
N
N
MN—1
m

So Sl 52 53 54 55 56

So | 0 |480 | 1070 | 1040 | 1640 | 280 | 670

St | 360 0 | 220 | 320 | 390 | 240 | 300

Sz | 900 | 400 0 | 2100 | 1550 | 450 | 520

Ss | 700 | 410 | 2090 0 1020 | 270 | 410

Sy | 1080 | 280 | 1300 | 970 0 | 380 | 400

Ss | 250 | 220 | 290 | 170 | 230 0 |210

Se | 500 | 260 | 490 | 430 | 450 | 230 | O

Table 2: Call arrival rates (per hour) of the Jumbo Network in the condition of normal

traffic.

26

SO Sl 52 53 54 55 56

So| O 180 | 180 | 180 | 180 | 180 | 180

S1 | 1800 0 1800 | 1800 | 1800 | 1800 | 1800

Sz | 180 | 180 0 180 | 180 | 180 | 180

S3 | 1800 | 1800 | 1800 0 1800 | 1800 | 1800

Sq | 180 | 180 | 180 | 180 0 180 | 180

Ss | 1800 | 1800 | 1800 | 1800 | 1800 0 1800

Se | 180 | 180 | 180 | 180 | 180 | 180 0

Table 3: Call arrival rates (per hour) of an artificial network with extremely asymmetry

traffic.
0 0 ~
TO 7\‘12(1:) ng (t)+TO 7\‘13(1:) gl3 (t) = pl
~ A0
p3 /TO }\/13

0 Pp/T A 9,00

12

27

10 -

,AV

\J \/V\/ \/\/

08
E

S 0.6
04 t

0.2

0.0

AAA

J\A

Y,

M
Ry

28

80

0.85

control error

15

12

throughput (calls per second)

0.020

0.015

0.010

0.005

e——e neural control 7
& - - o centralized control
P A local control

4 5 6 7 8
traffic intensity

e——e neural control
& - - o centralized control
Dy A local control

4 5 6 7 8
traffic intensity

29

throughput (calls per second)

throughput (calls per second)

18

14

10

14

®—® neural control CEN=0.095
G - -O centralized control CEC=0.071
A-——-A local control CEL=0.090

80 120
time (second)

@

12 -

10 -

®— neural control CEN=0.050
G - -0 centralized control CEC=0.027
A4 local control CEL=0.037

80 120
time (second)

(b)

30

throughput (calls per second)

traffic intensity

16

12 -
8 r e——e neural control §
/ & - - © centralized control
P A local control
4 L L L L L L
1 2 3 4 5 6 7 8
traffic intensity
10

time (hour)

31

job 1 job 2 job3

job 4 job 5
At At =~=— At Atl==— AL
ot A | s e I
on nodei t t+1 t+2
| job4 JobS on nodei
— At == At
ey e
t t+1 t+2
on nodej
) (b)

32

