
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 2, MARCH 1999 239

Adding Learning to Cellular Genetic Algorithms
for Training Recurrent Neural Networks

Kim Wing C. Ku, Student Member, IEEE,Man Wai Mak,Member, IEEE,and Wan Chi Siu,Senior Member, IEEE

Abstract—This paper proposes a hybrid optimization algorithm
which combines the efforts of local search (individual learning)
and cellular genetic algorithms (GA’s) for training recurrent
neural networks (RNN’s). Each weight of an RNN is encoded
as a floating point number, and a concatenation of the numbers
forms a chromosome. Reproduction takes place locally in a
square grid with each grid point representing a chromosome.
Two approaches, Lamarckian and Baldwinian mechanisms, for
combining cellular GA’s and learning have been compared. Dif-
ferent hill-climbing algorithms are incorporated into the cellular
GA’s as learning methods. These include the real-time recurrent
learning (RTRL) and its simplified versions, and the delta rule.
The RTRL algorithm has been successively simplified by freezing
some of the weights to form simplified versions. The delta rule,
which is the simplest form of learning, has been implemented by
considering the RNN’s as feedforward networks during learning.
The hybrid algorithms are used to train the RNN’s to solve a
long-term dependency problem. The results show that Baldwinian
learning is inefficient in assisting the cellular GA. It is conjectured
that the more difficult it is for genetic operations to produce
the genotypic changes that match the phenotypic changes due to
learning, the poorer is the convergence of Baldwinian learning.
Most of the combinations using the Lamarckian mechanism show
an improvement in reducing the number of generations required
for an optimum network; however, only a few can reduce the
actual time taken. Embedding the delta rule in the cellular GA’s
has been found to be the fastest method. It is also concluded that
learning should not be too extensive if the hybrid algorithm is to
be benefit from learning.

Index Terms—Baldwin effect, genetic algorithms, Lamarckian
learning, real-time recurrent learning, recurrent neural networks.

I. INTRODUCTION

NEURAL networks with closed paths1 in their topology
are known as recurrent neural networks (RNN’s). The

architecture of RNN’s enables them to preserve past states of
the networks. Therefore, RNN’s have the capability of dealing
with spatio-temporal problems which have been found to be
difficult for feedforward networks [36]. In order to determine
the weights of RNN’s, a number of training algorithms have
been proposed [38], [44], [48]. These algorithms are based on
some gradient descent approaches where the weights in the

Manuscript received February 4, 1998; revised September 28, 1998 and
November 23, 1998. This work was supported by The Hong Kong Polytechnic
University under Grant A/C 350/412.

The authors are with the Department of Electronic and Information Engi-
neering, The Hong Kong Polytechnic University, Hong Kong.

Publisher Item Identifier S 1045-9227(99)02030-5.
1Each node in an RNN is fully connected to all other nodes, and it has a

feedback loop connecting itself.

RNN’s are adjusted continually in order to minimize an error
function.

Genetic algorithms (GA’s) [12], [16], [33], [34], in contrast,
are stochastic search algorithms based on the mechanics of
natural selection and natural genetics. GA’s can be and have
been used in training neural networks2 (for a review, see [46]).
In this respect, the GA’s are used to minimize the network
error function which is typically defined as the mean squared
error (MSE) between the actual outputs and the desired outputs
for the whole training set. We have previously [25], [27]
demonstrated that using cellular GA’s [45] to train RNN’s
requires a long time to evolve acceptable solutions. One
possible way to reduce the time taken is to add a learning
mechanism to the cellular GA’s. This leads to a hybrid
optimization algorithm in which the effort of local search
(individual learning) and GA’s is combined.

In biological systems, learning occurs during the life-span
of an individual, and it is a process that involves the inter-
action between an individual and its environment. Through
the experience of this interaction, the behavior (expressed by
the phenotype) of an individual is adapted accordingly such
that it will be better at achieving its goals. This behavioral
adaptation is achieved by modifying the “inborn” phenotype to
the “learned” phenotype via learning. The motivation of adding
a learning mechanism to GA’s is that if each chromosome
acquires knowledge about the environment through learning,
it is possible to accelerate evolutionary adaptation.

There are two possible forms of embedding learning in
GA’s. In the first form, the change in the phenotype by learning
is transformed to the corresponding change in the genotype.
This is known as Lamarckian learning [2], [47] through
which the acquired experience is passed to the offspring.
The acquired information (observed in the phenotype) through
learning is directly coded into the genotype.

In the second form of embedding learning in GA’s, the
learned behavior affects the genotypes indirectly. This is
known as Baldwinian learning (based on the Baldwin effect
[5], [43]).3 Unlike Lamarckian learning, the genotypes after
Baldwinian learning remain unchanged (i.e., the changes in
phenotypes by learning cannot be transformed to genotypic
changes). Only the fitness will be replaced by the “learned”
fitness (i.e., fitness after learning). A chromosome will survive

2GA’s may have difficulty in training neural networks due to the competing
conventions problem [4].

3Hereafter, we denote the learning mechanism based on the Baldwin effect
as “Baldwinian learning.”

1045–9227/99$10.00 1999 IEEE

240 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 2, MARCH 1999

longer if its “learned” fitness is better, resulting in a smaller
chance of being replaced in the next generation. If it can
survive for a sufficient number of generations, then it is pos-
sible to evolve, by genetic operations, into the right genotype
corresponding to the “learned” fitness. Although Baldwinian
learning cannot change genotypes instantly, there is evidence
[1], [15], [21] that it can direct the genotypic changes.

In other words, with Baldwinian learning, even if a chromo-
some has an undesirable “inborn” fitness (i.e., fitness before
learning), it may still have a high chance (provided that
its “learned” fitness is better) of being selected to evolve
into a better chromosome by genetic operations. Baldwinian
learning can be regarded as a kind of phenotypic variability;
consequently, learning increases the variance of the selection
(i.e., the effect of learning is to weaken selection and to in-
crease genetic polymorphism) [3]. Results of previous research
[19], [47] showed that incorporating Baldwinian learning into
GA’s has the effect of altering the fitness landscape such
that it would become flatter around each local optimum. This
phenomenon leads to an enlargement of the basin of attraction
such that more chromosomes will be allocated around each
local optimum. The overall effect of Baldwinian learning is
that it can help to find the global optimum [37], [47], especially
in a changing environment [3], [6].

Although both of the above learning mechanisms can be
used in GA’s, their philosophies are different and the extent
to which they can assist GA’s is also not clear. This prompts
us to explore the effects of using these learning mechanisms
in cellular GA’s. Our finding is that Baldwinian learning
cannot be better than Lamarckian learning in evolving neural
networks, especially when the learning method can change a
large number of weights in the networks and the changes are
too large for genetic operations to cope with. Furthermore, it
is found that the learning methods need not be sophisticated
in order to gain the benefit of combining GA’s and learning.

The paper is organized as follows. In Section II, we compare
various approaches (including ours) to embedding learning in
GA’s for the optimization of the weights and/or the topologies
of neural networks. A long-term dependency problem, to be
tackled by the recurrent neural networks in the experiments,
is described in Section III. Section IV introduces the cellular
GA. Section V describes the learning methods that we have
used in our experiments. Sections VI and VII compare and
discuss the results of the simulations in which learning is
embedded in cellular GA’s to optimize the weights of RNN’s.
Finally, we conclude in Section VIII.

II. BACKGROUND

Various attempts have been made to combine GA’s and
learning for the optimization of the weights and/or topologies
of neural networks. Some researchers [9], [17], [23], [30]
achieved good results while others [24], [35] found that
learning could not help much. Their experiments differ in
how learning is applied. Some researchers [23] used GA’s to
find possible regions containing the global optimum, then used
learning as a final fine-tuning operator. Good results could pos-

sibly be obtained provided that an effective learning method
is employed or the best solution found by GA’s is already
very close to the global optimum. As the learning methods we
used are not effective for training RNN’s when they are used
alone (to be discussed in detail below), we did not consider this
approach in our experiments. Other researchers [24] fine-tuned
a chromosome when its fitness was good enough, or in other
words, when its fitness was greater than a predefined threshold.
However, it is difficult to determine the threshold value.
Moreover, this approach assumes that greater improvement
could be achieved by applying learning to chromosomes with
better fitness. We believe that learning should be applied
equally and that allowing poorly performed chromosomes to
learn could also improve the evolution of the whole population.
Therefore, we have adopted the approach similar to that
of [9] and [17] where learning was applied to fine-tune
every chromosome generated in each cycle of GA’s. In our
experiments, we have also investigated the effect of varying
the learning frequency on the evolution process, as in [18].

Usually, learning methods depend very much on the
chromosomal representation. For floating point representation,
some researchers [23], [35], [41] used gradient descent
algorithms such as backpropagation or its variants as
the learning methods. In this case, the gradient in the
fitness surface (or error surface) is calculated, and weights
are changed accordingly. The gradient information is
therefore fully utilized. However, these learning methods
are computationally expensive for large networks. Apart from
the gradient descent algorithms, the algorithms from Solis and
Wets [42] can also be used [32]. On the other hand, if binary
representation is used, the learning methods [24], [30] will
usually involve flipping some bits in a chromosome randomly
in order to obtain a better chromosome. These “bit-flipping”
learning methods do not take the gradient information of
the error surface into account. The implementation can be
very simple as in [30], where learning is based upon the
genotypes of parent chromosomes and their corresponding
fitness. The time complexities of these “bit-flipping” learning
methods can be very high as in [24], where fitness has to
be calculated for each flipped bit. There is also a learning
method [17], using binary chromosomal representation, that
flips bits in a chromosome according to the Hebbian learning
on output nodes. An interesting result among these “bit-
flipping” learning methods is that even though they are simple
and do not guarantee to produce a better chromosome after
learning, they can improve the convergence of GA’s [17], [30].

In our experiments, chromosomes have been represented as
a string of floating point numbers. We are more interested
in the learning methods that take the difference between the
desired and actual outputs into account. If gradient information
about the error surface is available, it is better to make use
of it. Therefore, we have tried different gradient descent
algorithms with the aim of making a learning method as
simple as possible. Most reports did not show the actual time
improvement, making the real benefit of combining GA’s and
learning difficult to observe. We, however, compare the actual

KU et al.: ADDING LEARNING TO CELLULAR GENETIC ALGORITHMS 241

TABLE I
AN EXAMPLE OF TRAINING SEQUENCES FOR THELONG-TERM DEPENDENCY PROBLEM. (NOTE THAT FOR THE OUTPUT

PATTERNS, THE LAST TWO BITS DETERMINE WHETHER THE OUTPUT SYMBOL AFTER FIVE TIME STEPS ISx0 OR y
0

time taken in this paper.

III. T HE LONG-TERM DEPENDENCY PROBLEM

Many sequence recognition tasks such as speech recog-
nition, handwriting recognition and grammatical inference
involve long-term dependencies—the output depends on inputs
occurred long time ago. The sequences involved in these
tasks are usually characterized by different time scales. In
terms of short time scales, they can be characterized by
the dynamics that generates the sequences, while in terms
of long time scales, they may have syntactic and seman-
tic structures. For example, speech recognition involves the
processing of short-term speech signals as well as the pro-
cessing of phonemic features spanning a much longer in-
terval. In grammatical inference [28], a single word at the
beginning of a sentence may affect the grammatical cor-
rectness or alter the interpretation of the sentence. In on-
line handwriting recognition [7], words formed by a pen
trajectory may possess sequential structures that spans a long
period.

The performance of these applications depends mainly
on whether the long-term dependencies can be accurately
represented; however, extracting these dependencies from data
is not an easy task. While recurrent neural networks provide
a promising solution to this problem, previous research [8]
has shown that the commonly used gradient descent algo-
rithms have difficulty in learning the long-term dependencies.
To overcome this difficulty, we propose to combine GA’s
and local search algorithms for training RNN’s. The hy-
brid algorithms not only resolve the long-term dependencies
problem efficiently, but also provide us an effective means
to illustrate the benefit of combining different local search
methods and GA’s. We emphasis the benefit via the gain in
convergence performance when the GA’s and local search are
combined. Here, the convergence performance is defined as
the mean squared error (MSE) attained after a fixed period
of time.

The problem we used is defined as follows. It is required
to learn a temporal relationship such that the output at time
depends on the inputs from time to Let us assume
that an input sequence contains symbols drawn from a symbol

Fig. 1. A fully connected recurrent neural network with three inputs(x1 to
x3), 12 processing nodes(p4 to p15), and five outputs (obtained fromp11
to p15):

set, and that each symbol is represented by a binary number
with bits. There are only two possible input sequences

where and are the symbols in the symbol set.
The first symbol in the input sequence can be eitheror ,
but the next input symbols are fixed. The corresponding
output sequences are

if
if

In other words, when the first input symbol is at time
, the output at time is ; when the first input

symbol is at time , the output at time is
For other time intervals, the output predicts the next input.
A training sequence is formed by the concatenation of ten
randomly chosen input–output sequences. A test sequence

242 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 2, MARCH 1999

comprising 100 randomly chosen input–output sequences is
used to determine the misclassification rate (i.e., the chance of
misclassifying an input sequence). Table I shows an example
of the training sequences with temporal length As
the problem becomes increasingly difficult when the temporal
length increases, we used a length of five time steps which
was found to be sufficiently difficult for the gradient descent
algorithms.

In this study, RNN’s (Fig. 1) with three input nodes and
twelve processing nodes (five of them were dedicated as
the output nodes) have been used to learn the long-term
dependency problem with a temporal length of five time steps.
Therefore, there are a total of
weights required to be optimized.

Although the long-term dependency problem is a hypothet-
ical problem, it can be used as a framework for more complex
sequence recognition tasks where classification decisions must
be made at the end of a sequence. For example, in [39], the
correct spelling of a sequence of corrupted text can be found
by a prediction model, which is trained to predict the next
letter from the previous letters. After training, the model is
able to generate a large number of possible text sequences.
The most probable text is the sequence that has the largest
probability of matching the corrupted text, given an estimation
of the probability of having incorrect text. Likewise, predictive
neural networks which predict the next frame of speech based
on several previous frames can be used as speaker models
for speaker identification. Given an utterance spoken by an
unknown speaker, his/her identity can be found by selecting
the speaker model with minimum prediction error at the end
of the utterance [20].

While the long-term dependency problem is rather simple
when compared to the above real-world problems, it allows
us to have a better control of the experimental conditions.
For example, the extent of the long-term dependency can
be easily controlled by changing the number of time steps
between the first input symbol and the last output symbol.
In more difficult problems, however, there may be many
uncontrollable factors that affect the efficiency of the training
process, making the interaction of learning and GA’s difficult
to observe.

IV. CELLULAR GA’S

The idea of cellular GA’s has been introduced by several
researchers [10], [11], [45]. It has been used in [2], [17]
where learning and GA’s were combined to train neural
networks. In cellular GA’s, the population of chromosomes
are organized as a two-dimensional toroidal grid with each
grid point representing a chromosome. To use cellular GA’s
to optimize the weights of RNN’s, each weight in the networks
is encoded as a gene of a chromosome and in the form of a
floating-point number. A chromosome, in which the number of
genes is equal to the number of weights, represents an RNN.
The fitness of a chromosome is determined by the network
error function which is the MSE between the desired outputs
and the actual outputs. In this case the better the fitness, the

lower is the MSE. The following is the procedure of the
cellular GA’s used in our experiments:

procedure cellularGA
Chromosome at position in the grid.
Newly produced chromosome.
Length of random walk.
Total number of chromosomes in the population.
Weights of the network corresponding to .
fitness of .
Set of indexes representing the input nodes
(including the bias).
Set of indexes representing the processing
nodes.

begin
Initialize a population of chromosomes and
evaluate the corresponding

fitness where

// Generate a new chromosome for each
reproduction cycle

repeat
Randomly select at in the grid

// Choose parent along a random walk
originated from

Create a random walk at
at at such that

and

Select such that is the best along the
random walk

// Choose parent along another random walk
originated from

Create a random walk set at at
at such that

and
and

and
Select such that is the best along the
random walk

// Apply crossover to and to produce
for all do

with a probability of 0.5
with a probability of 0.5

endloop

// Apply mutation to by randomly selecting
a processing node in the network, and each

// weight connected to the input part of the node is
changed by exponentially distributed mutation

Randomly select
for all do

with a probability of 0.5
with a probability of 0.5

KU et al.: ADDING LEARNING TO CELLULAR GENETIC ALGORITHMS 243

Fig. 2. Comparisons of using different forms of GA’s to train RNN’s to solve the long-term dependency problem. Results are based on the average
of 100 simulations.

// is a positive number randomly generated
from an exponential

// distribution with density function of the form

endloop

// Replace by if the latter has better fitness
Evaluate
if then

until termination condition reached

endproc cellularGA.

In each reproduction cycle, every position in the grid has
equal opportunity of being selected for starting a random walk.
However, as the best chromosome along a random walk is
always chosen for crossover, chromosomes with better fitness
have a higher probability of being selected. In our experiments,
a population size of 100 and a random walk of four steps4 have
been used. We have found that the cellular GA is able to find
an acceptable solution for the long-term dependency problem
with these parameter settings.

In cellular GA’s, the reproduction process takes place “lo-
cally” in the grid. The reason for using cellular GA’s in our
experiments is that bigger variance in genomes is allowed if
the population is spatially distributed (i.e., chromosomes are
arranged spatially, say in a toroidal grid, and reproduction can
only be occurred between neighboring chromosomes). Local
reproduction has the effect of reducing selection pressure so
that more exploration of the search space can be achieved
[29] and the risk of getting stuck in local optima can be
reduced, especially in the case where Lamarckian learning is

4The length of random walk depends on the population size, too long� � �

(in Fig. 3) or too short(�+ � in Fig. 3) are not appropriate.

used [2]. The effect of using a spatially distributed population
can be assessed by comparing its performance with that of
another GA where crossover is allowed between any two
parents (i.e., the reproduction process takes place “globally”
in the population). Such comparison can be found in Fig. 2
where different GA’s were used to train RNN’s in solving
the long-term dependency problem. It is evident that the
cellular GA (—in Fig. 2) outperforms the GA with “global”
reproduction (—in Fig. 2). We also found that when the GA
with “global” reproduction was used, six out of 100 simulation
runs were trapped in local optima with MSE being higher
than 0.2. However, when the cellular GA was used, none
of the simulations was found to be trapped in these local
optima. Therefore, it is more appropriate to use cellular GA’s
in this case.

One may notice that cellular GA’s use crossover exten-
sively. It has been criticized [40] that the use of crossover
can be detrimental to searching for a good solution in some
circumstances. Fogelet al. [13], [14] also found that there
was no advantage of using crossover in their experiments.
To investigate the effectiveness of the crossover operator,
we have removed it from the cellular GA, resulting in an
evolutionary algorithm with asexual reproduction. The cellular
GA as specified inprocedure cellularGA and the asexual
evolutionary algorithm formed by removing the crossover op-
erator fromprocedure cellularGA were used to train RNN’s
in solving the long-term dependency problem. Fig. 2 illustrates
that the evolutionary algorithm without crossover attains a
higher MSE. This result prompts us to use crossover in the
cellular GA and all hybrid algorithms in this work.

During the mutation, a node in the network is randomly
selected, and each weight connected to the input part of
that node is changed by a positive or negative offset with

244 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 2, MARCH 1999

Fig. 3. Comparisons of exponential mutation and Gaussian mutation using different standard deviations (SD) and random walk (RW) length. Results
are based on the average of 100 simulations.

exponential distribution (seeprocedure cellularGA). As there
are 12 processing nodes, the probability for a weight to be
mutated is We have increased this probability to 1 (i.e., all
weights will be mutated). However, the result (—in Fig. 2)
is poor. In this work, the offset due to mutation follows
an exponential distribution. Other researchers [35], [41] also
made use of exponential distributions rather than Gaussian
distributions. Their reasoning is that most of the weights in the
optimal solution tend to be small in magnitude but some may
have large absolute values. Therefore, exponential distributions
which favor small offsets but still allow large offsets to occur
were used. This can be justified by a pilot experiment in which
the effect of using Gaussian mutation is compared with that of
using an exponential one. As shown in Fig. 3, the former leads
to a very poor result in the long-term dependency problem.
Therefore, exponential distributions have been adopted in this
study.

V. LEARNING METHODS

We have used the cellular GA as described above to
optimize the weights of an RNN in solving the long-term
dependency problem. In order to improve the convergence,
we have also incorporated several learning methods into
the cellular GA. These learning methods are hill-climbing
algorithms, and their aim is to obtain a better set of weights
such that a smaller MSE can be achieved when they are
incorporated into the cellular GA.

A. Real-Time Recurrent Learning (RTRL)

The real-time recurrent learning (RTRL) [48] algorithm is
an on-line training algorithm for RNN’s. It is a gradient-
based algorithm in which the weights of the network are

determined by minimizing the MSE between the desired output
and the actual output at the current time step. Given an RNN,
the corresponding error gradient at the current time step is
calculated, and the weights are changed according to the error
gradient to minimize the MSE. The parameters of an RNN are
defined as follows:

Signal applied to input nodeat time step
.

Actual output of processing nodeat time
step .
Set of indexes representing the input
nodes (including the bias).
Set of indexes representing the processing
nodes (including the output nodes).
Set of indexes representing the output
nodes.

if if
.

Target output of processing nodeat time
step .
Activation of processing node at time
step .
Weight connecting node to node

The dynamics of node in the RNN is defined as

(1)

where is a sigmoidal function and The
instantaneous squared error at time stepis defined as

(2)

KU et al.: ADDING LEARNING TO CELLULAR GENETIC ALGORITHMS 245

The weights are updated by

(3)

where and is the learning rate.
For notation convenience, we denote as

By differentiating (1) with respect to can be
found by

(4)

where is the Kronecker delta,
and

The RTRL algorithm [represented by (1)–(4)] is computa-
tional intensive because it has a time complexity of for
each time step, where is the number of processing nodes.
A simple GA-RTRL hybrid approach will lead to unrealistic
computation time. This limitation causes us to derive several
simplified versions of RTRL. The idea behind the simplified
versions is that we aim at reducing the overall computation
time of the GA-RTRL hybrid algorithms by reducing the
complexity of the learning algorithm.

B. Restricted RTRL

In the original RTRL algorithm, all weights are changed
in a direction opposite to the error gradient. Therefore, the
amount of computation increases with the number of weights.
In order to reduce the complexity of each learning cycle,
changes in weights are restricted to those connecting to output
nodes where target outputs are given. Therefore, (3) remains
the same, but instead of As a result, we only need
to calculate those values where and

Furthermore, we assume that for all
and for all Therefore, only those
where and have values other than zero. This
means that the changes in will only affect the changes in
the output of processing node Equation (3) becomes

(5)

where and is the learning rate. Hence
(4) becomes

(6)

where and
Comparing to the original RTRL algorithm, the restriction

on the weight changes in this learning method may cause
errors in the gradient computation. However, combining this
restricted learning method with the cellular GA is an attractive
alternative provided that the combination can shorten the
time in finding an acceptable solution. This also applies
to the following learning method where the computational
complexity is further reduced.

C. Delta Rule for Output Nodes Only (DR)

This approach simplifies the above learning method further.
It differs from the restricted RTRL in that does not
depend on where and Therefore
(6) becomes

(7)

where and Combining (3) and (7), the
weights connected to the output nodes are updated by

(8)

where and
We can see that (8) is the delta rule for the output nodes.

During each learning cycle, we consider the fully connected
RNN as a feed-forward network. The dynamics of the network
is based on a fully connected RNN architecture; however, the
updates of weights are based on a feed-forward architecture
[i.e., the delta rule given in (8)]. The philosophy behind this
approach is to reduce the computational complexity as much
as possible by eliminating the term in (4).

VI. EMBEDDING THE LEARNING METHODS IN CELLULAR GAS

There are various ways of incorporating the learning meth-
ods, as described in the previous section, into the cellular
GA. First, different learning methods can be used to learn for
one epoch, where an epoch is a complete presentation of all
training patterns. Second, the learning frequency can be varied,
i.e., learning can take place after every reproduction or at
regular generation intervals. Third, we can adopt Lamarckian
learning or Baldwinian learning. In this section, different com-
binations are specified and their results are shown. The average
result (averaged over 200 simulations) of each combination
is plotted. The time taken for each simulation is based on
the CPU time of a Sun Sparc 1000 workstation. The MSE’s
(together with the variances) attained after 4 min of simulation
are also tabulated so that the significanceof the difference
between two MSE’s can be calculated by Student’s-tests,
where implies that the difference is statistically
significant.

In all simulations, the reproduction process has been the
same asprocedure cellularGA, but learning was applied to
the newly-born offspring at each generation. The learning rate
of all learning algorithms was fixed at 0.9. Since RTRL is com-
putational intensive, applying learning after every reproduction
results in long computation time. In order to reduce the overall
complexity, simulations where the RTRL was applied to a
randomly selected chromosome at regular generation intervals
have also been performed.

A set of control experiments have been performed. In these
experiments, only the learning methods described in Section V
were used (i.e., without GA’s) to train an RNN in order to
solve the long-term dependency problem. It was found that
the RTRL algorithm found a solution with MSE being less
than 0.01 only in one out of ten simulation runs. For other
nine simulation runs, the RTRL algorithm can only reduce the

246 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 2, MARCH 1999

Fig. 4. Comparisons of average MSE’s (with respect to CPU time taken) achieved by embedding RTRL in the cellular GA. The MSE’s after 4 min of
simulation, their variances (inside brackets), the corresponding misclassification rates, and the significancep (calculated by Student’st-tests) of the difference
in MSE’s are also shown. Note that Lamarckian(x)/Baldwinian(x) represents Lamarckian/Baldwinian learning applied at everyx generations.

MSE’s to 0.08. For other learning methods (restricted RTRL
and the delta rule), no acceptable solution can be found in all
simulation runs, and the MSE’s can only be reduced to 0.09.
This indicates that using the gradient-based methods alone is
not able to solve the long-term dependency problem.

A. Embedding RTRL in Cellular GA’s

The table in Fig. 4 shows the significance, computed by
Student’s -tests, of the difference in MSE’s between any
two approaches to embedding RTRL in cellular GA’s. The
difference is considered to be statistical significant when
is less than 0.05. The results show that the pure cellular
GA achieves a statistically lower MSE than all cases of
Lamarckian learning. It also shows that when the generation
interval between the applications of Lamarckian learning is
short, the MSE attained is high. However, Fig. 5 shows that
when the time involved in learning is neglected, applying
Lamarckian learning at a short generation interval (e.g., 20
or 50) can achieve a statistically lower MSE. These results
suggest that although RTRL may provide some benefit, the
corresponding increase in computation time may not provide
sufficient payoff.

A comparison between the convergence of the Lamarckian
learning and the Baldwinian learning applied at the same
generation interval (see Fig. 4) reveals that the latter achieves
statistically higher MSE’s. The inefficiency of Baldwinian
learning is clearly shown. Fig. 5 shows that even if the learning
time is neglected, the MSE’s attained after 20 000 generations
are statistically higher when Baldwinian learning is applied at
a short generation interval (e.g., 20 or 50). We have the fol-
lowing conjecture for explaining this phenomenon.The more
difficult it is for genetic operations (crossover and mutation)

to produce the changes between the genotypes corresponding
to the “inborn” fitness and the “learned” fitness, the poorer is
the convergence of Baldwinian learning.

In Baldwinian learning, the “learned” fitness of a chromo-
some is the fitness obtained after learning. This “learned”
fitness is not equal to the “inborn” fitness corresponding to
the genotype. Genetic operations are therefore required to
produce the change in the genotype, where the change should
correspond to the difference between the “inborn” fitness
and the “learned” fitness. While these genotypic changes are
produced randomly by crossover and mutation, only some of
them may match the phenotypic changes caused by learning.
If only one gene (or one weight) is allowed to be changed5

during Baldwinian learning, the genetic operations should have
no difficulty in producing this change. However, in the RTRL
algorithm, all weights are changed; consequently, it is very
difficult for genetic operations to produce the corresponding
changes in the weights. It becomes more difficult to produce
the changes when the learning frequency is high, since the
weights are changed more often. Therefore, according to our
conjecture, the results of the Baldwinian learning are poor even
if the time spent on learning is neglected. This also explains
why the convergence of all cases of Baldwinian learning in
Fig. 5 is poorer than that of the pure cellular GA.

Frenchet al. [15] did similar investigations on the factors
that affect the convergence of Baldwinian learning. They found
that when the amount of phenotypic plasticity (difficulty in
learning) was either too small or too large, the convergence
became poor. In another study, Keesinget al. [22] showed that
the amount of fitness improvement incurred by learning affects

5The “learned” fitness is obtained by changing that gene while keeping
other genes fixed.

KU et al.: ADDING LEARNING TO CELLULAR GENETIC ALGORITHMS 247

Fig. 5. Comparisons of average MSE’s (with respect to the number of generations taken) achieved by embedding RTRL in the cellular GA. The MSE’s
after 20 000 generations, their variances (inside brackets) and the significancep (calculated by Student’st-tests) of the difference in MSE’s are also tabulated.
Note that Lamarckian(x)/Baldwinian(x) represents Lamarckian/Baldwinian learning applied at everyx generations.

the Baldwin effect significantly. In other words, too little or
too much improvement could lead to poorer convergence. In
addition to these factors, this study suggests that the level
of difficulties for subsequent genetic operations to obtain the
necessary changes in genotypes is also a significant factor that
affects the Baldwin effect.

B. Embedding Restricted RTRL and Delta
Rule in Cellular GA’s

Figs. 6 and 7 show that when the complexity of the learn-
ing method is reduced, the MSE’s achieved by Lamarckian
learning are statistically lower than that achieved by the pure
cellular GA. This indicates that when Lamarckian learning is
properly embedded in the cellular GA, better neural networks
can be obtained. Another advantage of embedding Lamarckian
learning is that the resulting hybrid algorithms save compu-
tation time considerably. For example, the pure cellular GA
takes 4 min to attain a MSE of 0.0303. To evolve a network to
the same accuracy, the hybrid algorithm with restricted RTRL
requires 2.0 min and that with the delta rule requires 1.4 min,
suggesting that up to 65% of computation time can be saved.

Figs. 6 and 7 show that embedding restricted RTRL or
the delta rule in the cellular GA using Baldwinian mecha-
nism performs poorly during the first 4 min. However, these
hybrid algorithms achieve a significantly lower (significance

MSE after 20 000 generations, as shown in Table II.
This indicates that if computation time is not a concern,
Baldwinian learning has merits. Of particular interest is that
no such situation occurs when RTRL is embedded in the
cellular GA using Baldwinian mechanism (see Fig. 4 and
Table II where Baldwinian learning performs poorly with
respect to both convergence rate and achievable MSE’s).

Recall that the main difference between RTRL and simplified
learning methods such as restricted RTRL and the delta rule
is that the latter has a smaller number of changeable weights.
Consequently, it is relatively easy for the genetic operations
to produce the changes in weights caused by the simplified
learning methods. This suggests that Baldwinian learning is
able to assist evolutionary search provided that the learning
is not excessive.

VII. D ISCUSSIONS

In general, a well-trained network has a low misclassifica-
tion rate on test data. This can be observed in Figs. 4, 6, and
7. We found that when a network learned well on the training
set, then it also performed well on the test set. Therefore,
a network that is successfully trained is able to solve the
long-term dependency problem.

Comparing various implementations of Lamarckian learn-
ing, embedding the delta rule in the cellular GA achieves the
lowest MSE in a given CPU time. For example, the average
MSE attained after 4 min is only 18% of that achieved by
the pure cellular GA. Bear in mind that applying the delta rule
does not guarantee any improvement in fitness in each learning
cycle. Applying this learning method alone is not rewarding
because the error gradient computed by this method may differ
significantly from the more accurate one [compare (7) and (4)].
To see whether this approach is successful in other GA’s, we
have tried embedding the delta rule in different GA’s. Table III
illustrates the improvement obtained when the delta rule was
embedded, suggesting that this approach can also be applied
to other GA’s.

So far we have focused on the convergence performance
of the hybrid algorithms by looking at the MSE’s after a

248 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 2, MARCH 1999

Fig. 6. Comparisons of average MSE’s (with respect to CPU time taken) achieved by embedding the restricted RTRL in the cellular GA. The MSE’s,
their variances (inside brackets), the corresponding misclassification rates, and the significancep (calculated by Student’st-tests) of the difference in
final MSE’s are also shown.

Fig. 7. Comparisons of average MSE’s (with respect to CPU time taken) achieved by embedding the delta rule (DR) in the cellular GA. The final
MSE’s, their variances (inside brackets), the corresponding misclassification rates, and the significancep (calculated by Student’st-tests) of the difference
in final MSE’s are also shown.

given CPU time. It is also interesting to explore the capability
of these algorithms without considering the computation time
involved. Table II summarizes the MSE’s achieved by various
hybrid algorithms after 20 000 generations. It shows that
combining cellular GA’s and RTRL with Lamarckian learning
applied at every generation attains the lowest MSE. This
approach, however, has limitations as it requires an extremely
long computation time. For example, to reach 20 000 genera-

tions, this hybrid algorithm requires 11 h, whereas the hybrid
algorithm that combines cellular GA’s and delta rule requires
9 min only. It is also evident that when the learning frequency
decreases (generation interval between learning increases), the
MSE achieved by Lamarckian learning increases while that
achieved by Baldwinian learning decreases. This phenome-
non agrees with our conjecture for Baldwinian learning that
learning should not be too extensive; otherwise, the genetic

KU et al.: ADDING LEARNING TO CELLULAR GENETIC ALGORITHMS 249

TABLE II
MSES AND VARIANCES (INSIDE BRACKETS) ATTAINED AFTER 20 000 GENERATIONS BY EMBEDDING DIFFERENT LEARNING METHODS IN

CELLULAR GA’S. ALL RESULTS ARE BASED ON THE AVERAGE OF 200 SIMULATION RUNS, EXCEPT RTRL WITH LEARNING APPLIED BY

EVERY GENERATION WHERE THE MSE’S ARE BASED ON THE AVERAGE OF TEN SIMULATION RUNS BECAUSE OF THELONG COMPUTATION

TABLE III
MSES ATTAINED BY EMBEDDING THE DELTA RULE IN DIFFERENT GA’S USING THE LAMARCKIAN MECHANISM.

ALL FIGURES WERE OBTAINED BY RECORDING THE MSE’S AFTER 4 MIN (CPU TIME) OF SIMULATION

operations would not be able to produce the changes in
phenotypes caused by learning. Table II also demonstrates the
superiority of Lamarckian learning over Baldwinian learning,
suggesting that Baldwinian learning may not be appropriate
for training RNN’s.

To verify the benefit of Lamarckian learning, let us increase
the complexity of the long-term dependency problem—the
temporal length is doubled to ten time steps. The RNN to
be trained has four input nodes and 16 processing nodes,
where six of them were dedicated as output nodes.6 Therefore,
there are totally weights. In
our experimental work, we used a population size of 1600
instead of 100, but other parameters remained unchanged.
As the problem is more difficult, a large population size
is required to increase the chance of finding an acceptable
solution. However, a large population size also increases
the computation time significantly. This is a typical prob-
lem in GA’s. Fig. 8 illustrates that combining cellular GA’s
with the delta rule achieve a better convergence as com-
pared to the pure cellular GA despite the large number of
weights.

Our conjecture for Baldwinian learning stated in Section IV-
A suggests that if many weights are changed by Baldwinian
learning and the changes are large, the hybrid algorithms will
not be better than the pure cellular GA. This is because the
search space is too large for genetic operations to produce
the correct genotype associated with the “learned” fitness.
The validity of the conjecture has also been justified in
our recent report [26] where further evidence is provided.
It is interesting to point out that the results of a recent

6Note that the number of input–output pattern pairs increases with the
temporal length. In order to represent the additional patterns, we increased
the number of input nodes as well as the number of output nodes. We found
that an RNN with 16 processing nodes was sufficient.

independent study performed by Mayley [31] also support our
conjecture. Mayley [31] suggested that to get the maximum
benefit out of the Baldwin effect, the phenotypic distance
between two phenotypes has to be correlated with the geno-
typic distance between the corresponding genotypes. The
phenotypic distance is measured by the “ease” of transform-
ing the “inborn” phenotype to the “learned” phenotype by
learning, while the genotypic distance is measured by the
expected number of genetic operations required to achieve
the corresponding transformation in genotype space. When
there are many changeable weights, the correlation between
the genotypic distance and the phenotypic distance becomes
small. As a result, the advantage of Baldwinian learning is
lost.

This study found that combining cellular GA’s and Lamar-
ckian learning is a promising approach. For a learning method
to be efficient, the learning process must not spend too much
computation time as compared to the reproduction process so
that a net gain could be obtained. Therefore, the criteria for
a good learning method are: 1) it should be simple so that
computation time taken is short and 2) it should have the
capability of moving toward on obtaining a better solution
in each learning cycle. Obviously, these two criteria are
contradictory. One should choose an algorithm that strikes a
balance between these two criteria, although it may be difficult
to decide which criterion is more important. Comparing to
the delta rule, the restricted RTRL might be more capable of
improving the fitness; but we have found that its computation
time is 40% longer. In the long-term dependency problem,
it is the hybrid algorithm that uses the delta rule has better
convergence. However, it is possible in other problems that the
restricted RTRL is more capable of improving the fitness than
the delta rule, and this improvement could be so significant that
it can compensate for the cost of longer computation time. In

250 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 2, MARCH 1999

Fig. 8. Average MSE’s (based on the average of 30 simulations) achieved by embedding the delta rule in the cellular GA using Lamarckian learning for
solving the long-term dependency problem with a temporal length of ten time steps.

this case, the hybrid algorithm that uses the restricted RTRL
may converge better.

There is a dilemma in adding learning to GAs: the more
frequent and the larger extent (e.g., more epochs for each
learning cycle) we apply learning, the more improvement
can be achieved in each generation; however, this can only
be achieved at the expense of more computation time. As
a result, these parameters have to be chosen carefully such
that the combination of learning and GA’s is better (in terms
of computation time) than the pure GA’s. The selection of
these parameters may not be difficult. This is because in our
experiments, the convergence of combining cellular GA’s and
the delta rule is better than the pure cellular GA even for
the simplest case in which minimum amount of learning (one
epoch per learning cycle) is applied.

VIII. C ONCLUSIONS

This study has found that embedding simple learning meth-
ods in the cellular GA using the Lamarckian mechanism
can improve the prediction and classification capability of
RNN’s. This suggests that the learning methods need not be
sophisticated in order to get the benefit of combining GA’s
and learning. It is commonly believed that using GA’s to train
RNN’s is a slow approach. However, our study suggests a
way to speed up and to improve the accuracy of the training
process. Our experiments also show that Baldwinian learning
cannot be better than Lamarckian learning. We postulate that
Baldwinian learning is not suitable for evolving RNN’s, espe-
cially when the learning method can change a large number
of weights in the networks and the changes are too large for
genetic operations to cope with. Our findings are based on the
experimental results obtained by embedding various learning

methods in the cellular GA. The resulting hybrid algorithms
were used to train the RNN’s in order to solve the long-term
dependency problem. Further investigations are required to see
whether this approach will be successful in other problems, and
to provide a more critical comparison between Lamarckian
learning and Baldwinian learning.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions.

REFERENCES

[1] D. H. Ackley and M. L. Littman, “Interactions between learning
and evolution,” in C. G. Langton, C. Taylor, J. D. Farmer, and S.
Rasmussen, Eds.,Artificial Life 2. Reading, MA: Addison-Wesley,
1992, pp. 487–509.

[2] , “A case for Lamarckian evolution,” in C. G. Langton, Ed.,
Artificial Life 3. Reading, MA: Addison-Wesley, 1994, pp. 3–10.

[3] R. W. Anderson, “Learning and evolution: A quantitative genetics
approach,”J. Theoretical Biol., vol. 175, pp. 89–101, 1995.

[4] P. J. Angeline, G. M. Saunders, and J. B. Pollack, “An evolutionary
algorithm that constructs recurrent neural networks,”IEEE Trans. Neural
Networks, vol. 5, pp. 54–65, 1994.

[5] J. M. Baldwin, “A new factor in evolution,”Amer. Naturalist, vol. 30,
pp. 441–451, 1896.

[6] R. K. Belew, “Evolution, learning, and culture: Computational
metaphors for adaptive algorithms,”Complex Syst., vol. 4, pp. 11–49,
1990.

[7] Y. Bengio, Y. LeCun, C. Nohl, and C. Burges, “Lerec: A NN/HMM
hybrid for on-line handwriting recognition,”Neural Comput., vol. 7,
pp. 1289–1303, 1995.

[8] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependen-
cies with gradient descent is difficult,”IEEE Trans. Neural Networks,
vol. 5, pp. 157–166, 1994.

[9] H. Braun and P. Zagorski, “ENZO-M—A hybrid approach for opti-
mizing neural networks by evolution and learning,” in Y. Davidor,
H.-P. Schwefel, and R. Manner, Eds.,Parallel Problem Solving from
Nature—PPSN III, Springer-Verlag, pp. 440–451, 1994.

KU et al.: ADDING LEARNING TO CELLULAR GENETIC ALGORITHMS 251

[10] R. J. Collins and D. R. Jefferson, “Selection in massively parallel
genetic algorithms,” inProc. 4th Int. Conf. Genetic Algorithms, 1991,
pp. 249–256.

[11] Y. Davidor, “A naturally occuring niche & species phenomenon: The
model and first results,” inProc. 4th Int. Conf. Genetic Algorithms, 1991,
pp. 257–262.

[12] D. B. Fogel,Evolutionary Computation: Toward a New Philosophy of
Machine Intelligence. Piscataway, NJ: IEEE Press, 1995.

[13] D. B. Fogel and J. W. Atmar, “Comparing genetic operators with
gaussian mutations in simulated evolutionary processes using linear
systems,”Biol. Cybern., vol. 63, pp. 111–114, 1990.

[14] D. B. Fogel and L. C. Stayton, “On the effectiveness of crossover
in simulated evolutionary optimization,”BioSyst., vol. 32, no. 3, pp.
171–182, 1994.

[15] R. M. French and A. Messinger, “Genes, phenes and the Baldwin effect:
Learning and evolution in a simulated population,” in A. B. Rodeny and
M. Pattie, Eds.,Artificial Life 4. Cambridge, MA: MIT Press, 1994,
pp. 277–282.

[16] D. E. Goldberg,Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. Reading, MA: Addison-Wesley, 1989.

[17] F. Gruau and D. Whitley, “Adding learing to the cellular development
of neural networks: Evolution and the Baldwin effect,”Evolutionary
Comput., vol. 1, no. 3, pp. 213–233, 1993.

[18] W. E. Hart, “Adaptive global optimization with local search,” Ph.D.
dissertation, Dept. Comput. Sci. Eng., Univ. California, San Diego,
1994.

[19] W. E. Hart, T. E. Kammeyer, and R. K. Belew, “The role of development
in genetic algorithms,” in L. D. Whitley and M. D. Vose, Eds.,Foun-
dations of Genetic Algorithms 3. San Mateo, CA: Morgan Kaufmann,
1995, pp. 315–332.

[20] H. Hattori, “Text-independent speaker recognition using neural net-
works,” in Proc. ICASSP, 1992, pp. 153–156.

[21] G. E. Hinton and S. J. Nowlan, “How learning can guide evolution,”
Comput. Syst., vol. 1, pp. 495–502, 1987.

[22] R. Keesing and D. G. Stork, “Evolution and learning in neural networks:
The number and distribution of learning trial affect the rate of evolution,”
in R. P. Lippmann, J. E. Moody, and D. S. Touretzky, Eds.,Advances
in Neural Information Processing Systems 3. San Mateo, CA: Morgan
Kaufmann, 1991, pp. 804–810.

[23] H. Kitano, “Empirical studies on the speed of convergence of neural
network training using genetic algorithms,” inProc. 8th Nat. Conf.
Artificial Intell., 1990, pp. 789–795.

[24] P. G. Korning, “Training neural networks by means of genetic algo-
rithms working on very long chromosomes,”Int. J. Neural Syst., vol. 6,
no. 3, pp. 299–316, 1995.

[25] K. W. C. Ku and M. W. Kak, “Exploring the effects of Lamarckian
and Baldwinian learing in evolving recurrent neural networks,” inProc.
IEEE Int. Conf. Evolutionary Comput., 1997, pp. 617–621.

[26] , “Empirical analysis of the factors that affect the Baldwin
effect,” in Parallel Problem Solving from Nature—PPSN V.. New
York: Springer-Verlag, 1998.

[27] K. W. C. Ku, M. W. Mak, and W. C. Siu, “A cellular genetic algorithm
for training recurrent neural networks,” inProc. Int. Conf. Neural
Networks Signal Processing, 1995, pp. 140–143.

[28] T. Lin, B. G. Horne, P. Tĭno, and C. L. Giles, “Learning long-term
dependencies in NARX recurrent neural networks,”IEEE Trans. Neural
Networks, vol. 7, pp. 1329–1338, 1996.

[29] B. Manderick and P. Spiessens, “Fine-grained parallel genetic algo-
rithms,” in Proc. 3rd Int. Conf. Genetic Algorithms, 1989, pp. 428–433.

[30] V. Maniezzo, “Genetic evolution of the topology and weight distribution
of neural networks,”IEEE Trans. Neural Networks, vol. 5, pp. 39–53,
1994.

[31] G. Mayley, “Landscapes, learning costs, and genetic assimilation,”
Evolutionary Comput., vol. 4, no. 3, pp. 213–234, 1997.

[32] J. R. McDonnel and D. Waagen, “Evolving recurrent perceptrons for
time-series modeling,”IEEE Trans. Neural Networks, vol. 5, pp. 24–28,
1994.

[33] Z. Michalewicz, Genetic Algorithms+ Data Structures= Evolution
Programs. New York: Springer-Verlag, 1996.

[34] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA:
MIT Press, 1996.

[35] D. J. Montana and L. Davis, “Training feedforward neural network using
genetic algorithms,” inProc. 11th Int. Joint Conf. Artificial Intell., 1989,
pp. 762–767.

[36] M. C. Mozer, “A focus backpropagation algorithm for temporal pattern
recognition,”Complex Syst., vol. 3, pp. 349–381, 1989.

[37] S. Nolfi, J. L. Elman, and D. Parisi, “Learning and evolution in neural
networks,”Adaptive Behavior, vol. 3, pp. 5–28, 1994.

[38] B. A. Pearlmutter, “Learning state-space trajectories in recurrent neural
networks,”Neural Comput., vol. 1, pp. 263–269, 1989.

[39] D. Ron, Y. Singer, and N. Tishby, “The power of amnesia,” in J. Cowan,
G. Tesauro, and J. Alspector, Eds.,Advances in Neural Information
Processing Systems 6. San Mateo, CA: Morgan Kaufmann, 1994, pp.
176–183.

[40] J. D. Schaffer and L. J. Eshleman, “On crossover as an evolutionary
viable strategy,” inProc. 4th Int. Conf. Genetic Algorithms, 1991, pp.
61–68.

[41] A. J. Skinner and J. Q. Broughton, “Neural networks in computational
materials science: Training algorithms,”Modeling Simulation Materials
Sci. Eng., vol. 3, pp. 371–389, 1995.

[42] F. J. Solis and R. J.-B. Wets, “Minimization by random search tech-
niques,”Math. Operations Res., vol. 6, no. 1, pp. 19–30, 1981.

[43] P. Turney, “Myths and legends of the Baldwin effect,” inProc. Work-
shop Evolutionary Comput. Machine Learning 13th Int. Conf. Machine
Learning, 1996, pp. 135–142.

[44] P. J. Werbos, “Backpropagation through time: What it does and how to
do it,” Proc. IEEE, vol. 78, pp. 1550–1560, 1990.

[45] D. Whitley, “A genetic algorithm tutorial,”Statist. Comput., vol. 4, no.
2, pp. 65–85, 1994.

[46] , “Genetic algorithms and neural networks,” in G. Winter, J.
Periaux, M. Galan, and P. Cuesta, Eds.,Genetic Algorithms Engineering
and Computer Science. New York: Wiley, 1995, pp. 191–201.

[47] D. Whitley, V. S. Gordon, and K. Mathias, “Lamarckian evolution,
the Baldwin effect and function optimization,” in Y. Davidor, H.-
P. Schwefel, and R. Manner, Eds.,Parallel Problem Solving from
Nature—PPSN III, Springer-Verlag, 1994, pp. 6–15.

[48] R. J. Williams and D. Zipser, “Experimental analysis of the real-time
recurrent learning algorithm,”Connection Sci., vol. 1, pp. 87–111, 1989.

Kim-Wing C. Ku (S’98) received the B.Sc.(Hons)
degree in computer studies from the City Polytech-
nic of Hong Kong in 1993 and the M.Sc. degree in
information technology (knowledge-based systems)
from the University of Edinburgh, U.K., in 1994.
Presently, he is a Ph.D. student at the Department
of Electronic and Information Engineering of the
Hong Kong Polytechnic University.

His research interests inlude recurrent neural net-
works and evolutionary algorithms.

Man-Wai Mak (S’91–M’93) received the
B.Eng.(Hons) degree in electronic engineering from
Newcastle Upon Tyne Polytechnic, U.K., in 1989
and the Ph.D. degree in electronic engineering
from the University of Northumbria at Newcastle,
U.K., in 1993.

He was a Research Assistant at the University of
Northumbria at Newcastle from 1990 to 1993. He
joined the Department of Electronic Engineering
at the Hong Kong Polytechnic University as a
Lecturer in 1993 and as an Assistant Professor

in 1995. His research interests include recurrent neural networks, genetic
algorithms, and speaker recognition.

Since 1995, Dr. Mak has been an executive committee member of the
IEEE Hong Kong Section Computer Chapter. He is currently the Secretary
of the IEEE Hong Kong Section Computer Chapter.

252 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 2, MARCH 1999

Wan-Chi Siu (S’77–M’77–SM’90) received the As-
sociateship degree from the Hong Kong Polytechnic
University (formerly called Hong Kong Polytech-
nic), the M.Phil. degree from the Chinese Univer-
sity of Hong Kong, and the Ph.D. degree from
the Imperial College of Science, Technology &
Medicine, London, U.K., in 1975, 1977, and 1984,
respectively.

He was with the Chinese University of Hong
Kong between 1975 and 1980. He then joined the
Hong Kong Polytechnic University as a Lecturer in

1980 and became Chair Professor and Associate Dean of Engineering Faculty
in 1992. He has been Chair Professor and Head of Department of Electronic
Engineering of the same university since 1994. He has published more than
180 research papers. His research interests include digital signal processing,
fast computational algorithms, transforms, video coding, computational as-
pects of image processing and pattern recognition, and neural networks.

Dr. Siu is a Member of the Editorial Board of the JOURNAL OF VLSI SIGNAL

PROCESSING SYSTEMS for SIGNAL, IMAGE AND VIDEO TECHNOLOGY, and an
overseas member of the Editorial Board of theIEE Review. He is also a
Guest Editor of the Special Issue on ISCAS’97 of the IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS, Pt. II, published in May 1998. He was an Associate
Editor of the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, Pt. II from
1995 to 1997. He was the General Chairman of the International Symposium
on Neural Networks, Image and Speech Processing (ISSIPNN’94), and a
Cochair of the Technical Program Committee of the IEEE International
Symposium on Circuits and Systems (ISCAS’97) which were held in Hong
Kong in April 1994 and June 1997, respectively. He is now also chairing the
tentative organizing committee of the 2003 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP) which is to be held
in Hong Kong. From 1991 to 1995, he was a member of the Physical
Sciences and Engineering Panel of the Research Grants Council (RGC),
Hong Kong Government, and in 1994 he chaired the first Engineering and
Information Technology Panel to assess the research quality of 19 Cost Centers
(departments) from all universities in Hong Kong. He is a Chartered Engineer,
a Fellow of the Institute of Electrical Engineers and the HKIE, and has also
been listed inMarquis Who’s Who in the World, Marquis Who’s Who in Science
and Engineering, and other citation biographies.

