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Abstract—This paper proposes a hybrid optimization algorithrm RNN'’s are adjusted continually in order to minimize an error
which combines the efforts of local search (individual learning) fynction.

and cellular genetic algorithms (GA’s) for training recurrent : : , :
neural networks (RNN's). Each weight of an RNN is encoded Genetic algorithms (GA's) [12], [16], [33], [34], in contrast,

as a floating point number, and a concatenation of the numbers aré StOChaSti‘_: search algorithms b_aSEd on the mechanics of
forms a chromosome. Reproduction takes place locally in a natural selection and natural genetics. GA's can be and have

square grid with each grid point representing a chromosome. peen used in training neural netwotKéor a review, see [46]).
Two approaches, Lamarckian and Baldwinian mechanisms, for In this respect, the GA’s are used to minimize the network
combining cellular GA’s and learning have been compared. Dif- . _ . .
ferent hill-climbing algorithms are incorporated into the cellular ~ €T0r function which is typically defined as the mean squared
GA’s as learning methods. These include the real-time recurrent error (MSE) between the actual outputs and the desired outputs
learning (RTRL) and its simplified versions, and the delta rule. for the whole training set. We have previously [25], [27]

The RTRL algorithm has been successively simplified by freezing yemonstrated that using cellular GA’s [45] to train RNN's
some of the weights to form simplified versions. The delta rule,

which is the simplest form of learning, has been implemented by '€duires a long time to evolve acceptable solutions. One
considering the RNN's as feedforward networks during learning. Possible way to reduce the time taken is to add a learning
The hybrid algorithms are used to train the RNN's to solve a mechanism to the cellular GA’s. This leads to a hybrid

long-term dependency problem. The results show that Baldwinian g stimization algorithm in which the effort of local search
learning is inefficient in assisting the cellular GA. It is conjectured

that the more difficult it is for genetic operations to produce ('nd'v'qual !earnlng) and GA SIS combined. i _

the genotypic changes that match the phenotypic changes due to  In biological systems, learning occurs during the life-span
learning, the poorer is the convergence of Baldwinian learning. of an individual, and it is a process that involves the inter-
Most of the combinations using the Lamarckian mechanism show gction between an individual and its environment. Through

an improvement in reducing the number of generations required the experien f this interaction. the behavior (expr db
for an optimum network; however, only a few can reduce the € éxperience o S_ 'Tn f'm o N e behavior (e pesse y
actual time taken. Embedding the delta rule in the cellular GA's the phenotype) of an individual is adapted accordingly such

has been found to be the fastest method. It is also concluded thatthat it will be better at achieving its goals. This behavioral
learning should not be too extensive if the hybrid algorithm is to  adaptation is achieved by modifying the “inborn” phenotype to
be benefit from leaming. the “learned” phenotype via learning. The motivation of adding
Index Terms—Baldwin effect, genetic algorithms, Lamarckian a |learning mechanism to GA’s is that if each chromosome
learning, real-time recurrent learning, recurrent neural networks. acquires knowledge about the environment through learning

it is possible to accelerate evolutionary adaptation.

|. INTRODUCTION There are two possible forms of embedding learning in

EURAL networks with closed pathsn their topology _GA s. In the first form, the change in the phenot.ype by learning
, is transformed to the corresponding change in the genotype.

are known as recurrent neural networks (RNN's). The, . s known Lamarckian learning 121 1471 through

architecture of RNN'’s enables them to preserve past states %{s S Kho as Lamarckian fearning [2], [47] oug

ich the acquired experience is passed to the offspring.

, o W
the networks. Therefore, RNN's have the capability of dealm,Phe acquired information (observed in the phenotype) through
arning is directly coded into the genotype.

with spatio-temporal problems which have been found to ti)e
difficult for feedforward networks [36]. In order to determine® In the second form of embedding learning in GA's, the
Lhe weights of RNN's, a number of trammg algorithms haVFearned behavior affects the genotypes indirectly. This is
een propqsed [38], [44], [48]. These algorithms are base:\d cnown as Baldwinian learning (based on the Baldwin effect
some gradient descent approaches where the weights |n[ 8[43])'3 Unlike Lamarckian learning, the genotypes after
Baldwinian learning remain unchanged (i.e., the changes in

Manuscript received February 4, 1998; revised September 28, 1998 %G”Otypes by leamlng cannot be transformed to genotypic
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longer if its “learned” fitness is better, resulting in a smallesibly be obtained provided that an effective learning method
chance of being replaced in the next generation. If it cas employed or the best solution found by GA's is already
survive for a sufficient number of generations, then it is posery close to the global optimum. As the learning methods we
sible to evolve, by genetic operations, into the right genotypmsed are not effective for training RNN’s when they are used
corresponding to the “learned” fitness. Although Baldwiniaalone (to be discussed in detail below), we did not consider this
learning cannot change genotypes instantly, there is evidemggoroach in our experiments. Other researchers [24] fine-tuned
[1], [15], [21] that it can direct the genotypic changes. a chromosome when its fitness was good enough, or in other
In other words, with Baldwinian learning, even if a chromowords, when its fithess was greater than a predefined threshold.
some has an undesirable “inborn” fitness (i.e., fithess befddewever, it is difficult to determine the threshold value.
learning), it may still have a high chance (provided tha#loreover, this approach assumes that greater improvement
its “learned” fitness is better) of being selected to evolveould be achieved by applying learning to chromosomes with
into a better chromosome by genetic operations. Baldwinidetter fitness. We believe that learning should be applied
learning can be regarded as a kind of phenotypic variabilitgqually and that allowing poorly performed chromosomes to
consequently, learning increases the variance of the selectigarn could also improve the evolution of the whole population.
(i.e., the effect of learning is to weaken selection and to iTherefore, we have adopted the approach similar to that
crease genetic polymorphism) [3]. Results of previous reseaisth [9] and [17] where learning was applied to fine-tune
[19], [47] showed that incorporating Baldwinian learning int@very chromosome generated in each cycle of GA’s. In our
GA'’s has the effect of altering the fitness landscape suelperiments, we have also investigated the effect of varying
that it would become flatter around each local optimum. Thife learning frequency on the evolution process, as in [18].
phenomenon leads to an enlargement of the basin of attractiowsually, learning methods depend very much on the
such that more chromosomes will be allocated around easiromosomal representation. For floating point representation,
local optimum. The overall effect of Baldwinian learning iSsome researchers [23], [35], [41] used gradient descent
that it can help to find the global optimum [37], [47], especiallgigorithms such as backpropagation or its variants as
in a changing environment [3], [6]. the learning methods. In this case, the gradient in the
Although both of the above learning mechanisms can kigness surface (or error surface) is calculated, and weights
used in GA's, their philosophies are different and the extegte changed accordingly. The gradient information is
to which they can assist GA’s is also not clear. This promptgerefore fully utilized. However, these learning methods
us to explore the effects of using these learning mechanisgre computationally expensive for large networks. Apart from
in cellular GA's. Our finding is that Baldwinian learningthe gradient descent algorithms, the algorithms from Solis and
cannot be better than Lamarckian learning in evolving neunglets [42] can also be used [32]. On the other hand, if binary
networks, especially when the learning method can changgepresentation is used, the learning methods [24], [30] will
large number of weights in the networks and the changes @gually involve flipping some bits in a chromosome randomly
too large for genetic operations to cope with. Furthermore,iif order to obtain a better chromosome. These “bit-flipping”
is found that the learning methods need not be sophisticaigglrning methods do not take the gradient information of
in order to gain the benefit of combining GA’s and learningthe error surface into account. The implementation can be
The paper is Organized as follows. In Section Il, we Compa{@ry Simp|e as in [30]’ where |earning is based upon the
various approaches (including ours) to embedding learningd@notypes of parent chromosomes and their corresponding
GA's for the optimization of the weights and/or the topologiefitness. The time complexities of these “bit-flipping” learning
of neural networks. A long-term dependency problem, to Bgethods can be very high as in [24], where fitness has to
tackled by the recurrent neural networks in the experimentss calculated for each flipped bit. There is also a learning
is described in Section Ill. Section IV introduces the cellulgfethod [17], using binary chromosomal representation, that
GA. Section V describes the learning methods that we haygs pits in a chromosome according to the Hebbian learning
used in our experiments. Sections VI and VII compare ang output nodes. An interesting result among these “bit-
discuss the results of the simulations in which learning fﬁppingn learning methods is that even though they are simple
embedded in cellular GA’s to optimize the weights of RNN'sang do not guarantee to produce a better chromosome after

Finally, we conclude in Section VIIl. learning, they can improve the convergence of GA’s [17], [30].
In our experiments, chromosomes have been represented as
II. BACKGROUND a string of floating point numbers. We are more interested

Various attempts have been made to combine GA’s aithe learning methods that take the difference between the
learning for the optimization of the weights and/or topologiedesired and actual outputs into account. If gradient information
of neural networks. Some researchers [9], [17], [23], [3@bout the error surface is available, it is better to make use
achieved good results while others [24], [35] found thaif it. Therefore, we have tried different gradient descent
learning could not help much. Their experiments differ imlgorithms with the aim of making a learning method as
how learning is applied. Some researchers [23] used GA’ssmnple as possible. Most reports did not show the actual time
find possible regions containing the global optimum, then usedprovement, making the real benefit of combining GA's and
learning as a final fine-tuning operator. Good results could pdsarning difficult to observe. We, however, compare the actual
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TABLE |
AN EXAMPLE OF TRAINING SEQUENCES FOR THELONG-TERM DEPENDENCY PROBLEM. (NOTE THAT FOR THE OUTPUT
PATTERNS, THE LAST Two BiTs DETERMINE WHETHER THE OUTPUT SymBoL AFTER FIVE TIME STEPS ISz’ OR ¢/

time

step t—1 t t+4+1 t+2 t+3 t+4 t+5 t+6 t4+7 t+ 8 t+9 t+4+10 { ¢4+ 11 | t4+12
input

symbol PR T aj an as a4 ay Yy aq an a3 a4 ag

input

(binary) e 001 010 011 100 101 110 000 010 011 100 101 110

output

symbol ... a1 as a3 aq as z! ay ag as aq as y'

output

(binary) AN 01000 | 01100 | 10000 | 10100 | 11000 | 00010 | 01000 | 01100 | 10000 | 10100 | 11000 | 00001

time taken in this paper.

Ill. THE LONG-TERM DEPENDENCY PROBLEM

Many sequence recognition tasks such as speech recog-
nition, handwriting recognition and grammatical inference
involve long-term dependencies—the output depends on input
occurred long time ago. The sequences involved in these
tasks are usually characterized by different time scales. In
terms of short time scales, they can be characterized by
the dynamics that generates the sequences, while in terms
of long time scales, they may have syntactic and seman-
tic structures. For example, speech recognition involves the
processing of short-term speech signals as well as the pro-
cessing of phonemic features spanning a much longer in-
terval. In grammatical inference [28], a single word at the
beginning of a sentence may affect the grammatical cawg. 1. A fully connected recurrent neural network with three inguts to
rectness or alter the interpretation of the sentence. In gh?: 12 processing node@; to pis), and five outputs (obtained from,
line handwriting recognition [7], words formed by a pen’ 2**"
trajectory may possess sequential structures that spans a long

period. L . set, and that each symbol is represented by a binary number
The performance of these applications depends main| . L
. th N bits. There are only two possible input sequences
on whether the long-term dependencies can be accurately

represented; however, extracting these dependencies from data

is not an easy task. While recurrent neural networks provide (z,ay,a0,as, - az)

a promising solution to this problem, previous research [8] I= { (y, a1, a2, a3, ag)

has shown that the commonly used gradient descent algo-

rithms have difficulty in learning the long-term dependencies.

To overcome this difficulty, we propose to combine GA'&vherez,y, and {a;}}_, are the symbols in the symbol set.

and local search algorithms for training RNN's. The hyThe first symbol in the input sequence can be eithar y,

brid algorithms not only resolve the long-term dependenciesit the nextk input symbols are fixed. The corresponding

problem efficiently, but also provide us an effective mearsutput sequences are

to illustrate the benefit of combining different local search

methods and GA's. We emphasis the benefit via the gain jn_ {(a17a27a3,~~~,ak,x’) if I =(x,a1,02,a3,---,ax)

convergence performance when the GA’s and local search are | (a1, a2,a3,---,ax, %) if I =(y,a1,0a2,0a3,---,az).

combined. Here, the convergence performance is defined as o ) )

the mean squared error (MSE) attained after a fixed perify Other words, when the first input symbol is at time

of time. t, the output at timet + % is z’; when the first input
The problem we used is defined as follows. It is require@ymbol is y at time ¢, the output at timet + k& is y'.

to learn a temporal relationship such that the output at imd-or other time intervals, the output predicts the next input.

depends on the inputs from timte- ¢’ to t — 1. Let us assume A training sequence is formed by the concatenation of ten

that an input sequence contains symbols drawn from a symbamhdomly chosen input—output sequences. A test sequence
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comprising 100 randomly chosen input—output sequenceslagver is the MSE. The following is the procedure of the
used to determine the misclassification rate (i.e., the chanceceflular GA’s used in our experiments:

misclassifying an input sequence). Table | shows an exampleprocedure cellularGA

of the training sequences with temporal lendth= 5. As c Chromosome at positiofzs, y) in the grid.

the problem becomes increasingly difficult when the temporal ¢, .. Newly produced chromosome.

length increases, we used a length of five time steps which; Length of random walk.

was found to be sufficiently difficult for the gradient descent 37  Total number of chromosomes in the population.

algorithms. w;t  Weightsw;; of the network corresponding Q..

In this study, RNN’s (Fig. 1) with three input nodes and f(gk)

twelve processing nodes (five of them were dedicated as7
the output nodes) have been used to learn the long-term
dependency problem with a temporal length of five time steps.z¢
Therefore, there are a total ®2 x 12+ 12 x (3+ 1) = 192
weights required to be optimized.

Although the long-term dependency problem is a hypothet-
ical problem, it can be used as a framework for more complex

fitness ofcz.

Set of indexes representing the input nodes
(including the bias).

Set of indexes representing the processing
nodes.

begin
Initialize a population ofA/ chromosomes;,, and

sequence recognition tasks where classification decisions must evaluate the corresponding

be made at the end of a sequence. For example, in [39], the

fitnessf(cx) wherek =1,2,--- M

correct spelling of a sequence of corrupted text can be found // Generate a new chromosome for each

by a prediction model, which is trained to predict the next
letter from the previous letters. After training, the model is
able to generate a large number of possible text sequences.
The most probable text is the sequence that has the largest
probability of matching the corrupted text, given an estimation
of the probability of having incorrect text. Likewise, predictive
neural networks which predict the next frame of speech based
on several previous frames can be used as speaker models
for speaker identification. Given an utterance spoken by an
unknown speaker, his/her identity can be found by selecting
the speaker model with minimum prediction error at the end
of the utterance [20].

While the long-term dependency problem is rather simple
when compared to the above real-world problems, it allows
us to have a better control of the experimental conditions.
For example, the extent of the long-term dependency can
be easily controlled by changing the number of time steps
between the first input symbol and the last output symbol.
In more difficult problems, however, there may be many
uncontrollable factors that affect the efficiency of the training
process, making the interaction of learning and GA's difficult
to observe.

IV. CELLULAR GA'S

The idea of cellular GA’s has been introduced by several
researchers [10], [11], [45]. It has been used in [2], [17]
where learning and GA’s were combined to train neural
networks. In cellular GA'’s, the population of chromosomes
are organized as a two-dimensional toroidal grid with each
grid point representing a chromosome. To use cellular GA’s
to optimize the weights of RNN’s, each weight in the networks
is encoded as a gene of a chromosome and in the form of a
floating-point number. A chromosome, in which the number of
genes is equal to the number of weights, represents an RNN.
The fithess of a chromosome is determined by the network
error function which is the MSE between the desired outputs
and the actual outputs. In this case the better the fitness, the

reproduction cycle

repeat

Randomly select, at (zq, yo0) in the grid

/I Choose parent, along a random walk
originated from(zo, yo)

Create a random walke; at (@1, 41), co

at (.TQ, yg), R -\ (J}l, yl)} such that
|zky1 — 2] < 1and|yrqr —wnl < 1,
k=01,2---,1—1

Selecte, such thatf(c,) is the best along the

random walk

/I Choose parent; along another random walk
originated from(zo, yo)
Create a random walk s¢t] at (z/,v}),c, at
(xh.95), -+, ¢ at(x}, )} such that
|Zhr1r — 23l < Landly,yy — il < 1,
k=1,2,---,]-1and
|z} —xo| < 1 andly) —yo| <1
Selectc, such thatf(c) is the best along the
random walk

/I Apply crossover te, and ¢, to producecyq,
forall ield,j edUZ do

CDC\V .
ij

wi?  with a probability of 0.5

B {wfj with a probability of 0.5
ij
endloop

/I Apply mutation toe,,.,, by randomly selecting
//a processing node in the network, and each

/I weight connected to the input part of the node is

//changed by exponentially distributed mutation
Randomly select € U/
forall jetfUZ do

Cnew .

i 6 with a probability of 0.5

Cnew
w;;

B {wfj + 6 with a probability of 0.5
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MSE

cellular GA -o—

global reproduction -+--
without crossover -B--

mutate all weights ¢~

0.01 L L L
0 5000 10000 15000 20000
number of generations

Fig. 2. Comparisons of using different forms of GA’s to train RNN'’s to solve the long-term dependency problem. Results are based on the average

of 100 simulations.

/I 6 is a positive number randomly generated used [2]. The effect of using a spatially distributed population
//from an exponential can be assessed by comparing its performance with that of
/I distribution with density function of the form  gnother GA where crossover is allowed between any two
[leF x>0 parents (i.e., the reproduction process takes place “globally”
endloop in the population). Such comparison can be found in Fig. 2
/I Replacecy by cyew if the latter has better fitness where different GA’s were used to train RNN’s in solving
Evaluatef(cpey) the long-term dependency problem. It is evident that the
if f(Caew) < flco) then co := cpew cellular GA («-in Fig. 2) outperforms the GA with “global”
until termination condition reached reproduction ¢—in Fig. 2). We also found that when the GA

with “global” reproduction was used, six out of 100 simulation
runs were trapped in local optima with MSE being higher

) L . than 0.2. However, when the cellular GA was used, none
In each reproduction cycle, every position in the grid ha& the simulations was found to be trapped in these local

equal opportunity of being selected for starting a random Walgptima. Therefore, it is more appropriate to use cellular GA’s

However, as the best chromosome along a random Walkiﬁsthis case.

always chosen for crossover, chromosomes with better fitnes%ne may notice that cellular GA’s use crossover exten-
have ahigherprobability of being selected. In ourexperimenE?Vely_ It has been criticized [40] that the use of crossover
a population size of 100 and a random walk of four stéave can be detrimental to searching for a good solution in some

been used. We have found that the cellular GA is able to ﬁr&grcumstances Fogadt al. [13], [14] also found that there
an acceptable solution for the long-term dependency probl%vrgs no advantage of using c,rossover in their experiments.

with these parar,neter settings. . . Jo investigate the effectiveness of the crossover operator,
In celiular GA's, the reproduction process takes place lQ/Y/e have removed it from the cellular GA, resulting in an

cally n the g”d' Thg reason for using cellular G.AS in Oure.\(olutionary algorithm with asexual reproduction. The cellular
experiments is that bigger variance in genomes is allowed

th lation i tallv distributed (i h GA as specified inprocedure cellularGA and the asexual
e population is spatially distributed (i.e., chromosomes aé?/olutionary algorithm formed by removing the crossover op-

arranged spatially, say in a toroidal grid, and reproduction C%Pialtor fromprocedure cellularGA were used to train RNN's

only be occurred between neighboring chromosomes). I‘O(fr‘Fi‘solving the long-term dependency problem. Fig. 2 illustrates

reproduction has the effect of reducing selection Pressure #8: the evolutionary algorithm without crossover attains a

29 d the risk of . K in local . b\fﬁ her MSE. This result prompts us to use crossover in the
[29] and the risk of getting stuck in local optima can b&. 12 GA and all hybrid algorithms in this work.

reduced, especially in the case where Lamarckian learning 'ﬁ)uring the mutation, a node in the network is randomly

4The length of random walk depends on the population size, too Ibng selected, a_md each weight Con_n_eCted to thPT Input part_ of
(in Fig. 3) or too shor(- + - in Fig. 3) are not appropriate. that node is changed by a positive or negative offset with

endproc cellularGA.
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MSE

RW = 4, Exponential mutation -e-—

RW = 2, Exponential mutation -+~

RW = 8, Exponential mutation -a--
RW = 4, Gaussian mutation with SD = 0.5 -
RW = 4, Gaussian mutation with SD = 1.0 &~
RW = 4, Gaussian mutation with SD = 2.0 -*-

0.01 1 1 L
o] 5000 10000 15000 20000
number of generations

Fig. 3. Comparisons of exponential mutation and Gaussian mutation using different standard deviations (SD) and random walk (RW) length. Results
are based on the average of 100 simulations.

exponential distribution (sgarocedure cellularGA). As there determined by minimizing the MSE between the desired output

are 12 processing nodes, the probability for a weight to laed the actual output at the current time step. Given an RNN,

mutated i%. We have increased this probability to 1 (i.e., althe corresponding error gradient at the current time step is

weights will be mutated). However, the resulk (ir-Fig. 2) calculated, and the weights are changed according to the error
is poor. In this work, the offset due to mutation followggradient to minimize the MSE. The parameters of an RNN are

an exponential distribution. Other researchers [35], [41] alsefined as follows:

made use of exponential distributions rather than Gaussiar;tk(t) Signal applied to input node at time step
distributions. Their reasoning is that most of the weights in the t.
optimal solution tend to be small in magnitude but some may 4. (t) Actual output of processing nodeat time
have large absolute values. Therefore, exponential distributions stept.
which favor small offsets but still allow large offsets to occur 7 Set of indexes representing the input
were used. This can be justified by a pilot experiment in which nodes (including the bias).
the effect of using Gaussian mutation is compared with that ofz¢ Set of indexes representing the processing
using an exponential one. As shown in Fig. 3, the former leads nodes (including the output nodes).
to a very poor result in the long-term dependency problem.» Set of indexes representing the output
Therefore, exponential distributions have been adopted in this nodes.
study. Zk(t) = a:k(t) Zk(t) = a:k(t) if kel Zk(t) = yk(t) if
kel
V. LEARNING METHODS dr(t) 'Sl'ggjt output of processing noéeat time
We have used the cellular GA as described above tog, (4) Act?ve.\tion of processing nodé at time
optimize the weights of an RNN in solving the long-term stept.
dependency problem. In order to improve the convergence,,;, . Weight connecting nodg to node:.

we have also incorporated several learning methods int
the cellular GA. These learning methods are hill-climbing
algorithms, and their aim is to obtain a better set of weights ~ ¥x(t + 1) = fu(si(t))
such that a smaller MSE can be achieved when they are

%The dynamics of nodé € ¢/ in the RNN is defined as

incorporated into the cellular GA. =fu | D waprp() + > wrgya(t) | (@)
peL qelU
A. Real-Time Recurrent Learning (RTRL) where f,( ) is a sigmoidal function andy(0) = 0. The

The real-time recurrent learing (RTRL) [48] algorithm idnStantaneous squared error at time step defined as

an on-line training algorithm for RNN's. It is a gradient-  p(¢) =1 Z {a®)}? =1 Z () — ()2 (2)
based algorithm in which the weights of the network are ) )
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The weights are updated by C. Delta Rule for Output Nodes Only (DR)
OE(t) yr(t) This approach simplifies the above learning method further.
Awij(t) = —a 5= =« > e S (3) 1t differs from the restricted RTRL in that};(¢+ 1) does not
! keo ! depend orpj;(t), wherek € O andj € U U Z. Therefore
wherei € U,j € U UZ, and« is the learning rate. (6) becomes
Fo.r notatlpn. convenience, we denm(tz/aw” asp;; (#). P+ 1) = fl(si(8)2(t) @)
By differentiating (1) with respect ta;;,p;;(t + 1) can be
found by wherei € O andj € U UZ. Combining (3) and (7), the
weights connected to the output nodes are updated by
P+ 1) = filsk®)] 2 (D6 + > wigpl(1) (4) Aw;;(t) = ae;(t) fi (si(t — 1))zt — 1) (8)
qel

wherei € O andj € U UZ.

wherei € U,5 € UUZ, k € U, &, is the Kronecker delta, We can see that (8) is the delta rule for the output nodes.
and pfj(o) = 0. During each learning cycle, we consider the fully connected

The RTRL algorithm [represented by (1)-(4)] is computaRNN as a feed-forward network. The dynamics of the network
tional intensive because it has a time complexityogh*) for is based on a fully connected RNN architecture; however, the
each time step, where is the number of processing nodesupdates of weights are based on a feed-forward architecture
A simple GA-RTRL hybrid approach will lead to unrealistici.e., the delta rule given in (8)]. The philosophy behind this
computation time. This limitation causes us to derive sevempproach is to reduce the computational complexity as much
simplified versions of RTRL. The idea behind the simplifieds possible by eliminating the terkiyc., wi,pi;(t) in (4).
versions is that we aim at reducing the overall computation
time of the GA-RTRL hybrid algorithms by reducing thevi. EMBEDDING THE LEARNING METHODS IN CELLULAR GAS

complexity of the learning algorithm. There are various ways of incorporating the learning meth-

) ods, as described in the previous section, into the cellular

B. Restricted RTRL GA. First, different learning methods can be used to learn for

In the original RTRL algorithm, all weights are changeane epoch, where an epoch is a complete presentation of all
in a direction opposite to the error gradient. Therefore, theaining patterns. Second, the learning frequency can be varied,
amount of computation increases with the number of weighi®., learning can take place after every reproduction or at
In order to reduce the complexity of each learning cycléggular generation intervals. Third, we can adopt Lamarckian
changes in weights are restricted to those connecting to outfg#rning or Baldwinian learning. In this section, different com-
nodes where target outputs are given. Therefore, (3) remaiisations are specified and their results are shown. The average
the same, but € O instead ofi/. As a result, we only need result (averaged over 200 simulations) of each combination
to calculate thosq;j?; values wherei € O, € YU Z, and is plotted. The time taken for each simulation is based on
k € O. Furthermore, we assume thaff, = 0 for all k # ¢ the CPU time of a Sun Sparc 1000 workstation. The MSE's
and for allk ¢ ©. Therefore, only thos@fj (= Oyi/Owy;) (together with the variances) attained after 4 min of simulation
wherek € © andj € ¢/ UZ have values other than zero. Thigre also tabulated so that the significapcef the difference
means that the changes-in,; will only affect the changes in between two MSE's can be calculated by Studenitssts,

the output of processing node Equation (3) becomes wherep < 0.05 implies that the difference is statistically
significant.
Awg;(t) = —a OL(t) = aei(t) yi(t) (5) In all simulations, the reproduction process has been the
Owij wij same agrocedure cellularGA, but learning was applied to

the newly-born offspring at each generation. The learning rate
of all learning algorithms was fixed at 0.9. Since RTRL is com-
putational intensive, applying learning after every reproduction

wherei € O,j € U UZ, and « is the learning rate. Hence
(4) becomes

pﬁj(t +1)= fiI(Si(t)){Zj(t) + wiipﬁj(t)} (6) results in long computation time. In order to reduce the overall
complexity, simulations where the RTRL was applied to a
wherei € @ andj € U U Z. randomly selected chromosome at regular generation intervals

Comparing to the original RTRL algorithm, the restrictiorhave also been performed.
on the weight changes in this learning method may causeA set of control experiments have been performed. In these
errors in the gradient computation. However, combining thexperiments, only the learning methods described in Section V
restricted learning method with the cellular GA is an attractivgere used (i.e., without GA’s) to train an RNN in order to
alternative provided that the combination can shorten tlselve the long-term dependency problem. It was found that
time in finding an acceptable solution. This also applighe RTRL algorithm found a solution with MSE being less
to the following learning method where the computationghan 0.01 only in one out of ten simulation runs. For other
complexity is further reduced. nine simulation runs, the RTRL algorithm can only reduce the
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0.1

MSE

pure CGA (MSE = 0.0303 (0.0022), rate = 4.6%) <—

Lamarckian(1 sMSE = 0.1500 (0.0005), rate = 10.5%) -+~

Lamarckian{20) (MSE = 0.1373 (0.0010), rate = 11.3%} -&--
Lamarckian(50) (MSE = 0.1000 (0.0008), rate = 9.2%) %~
Baldwinain(1) (MSE = 0.3677 (0.0027), rate = 91.4%) & —

0.01 | Baldwinian(20 éMSE =0.3192 §0.0050;, rate = 35.6%) -*-- -
Baldwinian{50) (MSE = 0.1513 (0.0028), rate = 13.7%) -o--
Significance
[ average MSEs comparisons I = T = T =
Lamarckian{z) > pure CGA 0.00 0.00 0.00
Lamarckian{z] < Baldwinian{z} 0.00 0.00 0.00
Lamarckian(z) > Lamarckian (20} 0.00 N/& N/A
Lamarckian{z) > Lamarckian(50) 0.00 0.00 NJA
0.001 1 1 1 1 ! 1 )
0 0.5 1 1.5 2 25 3 3.5 4

minutes

Fig. 4. Comparisons of average MSE’s (with respect to CPU time taken) achieved by embedding RTRL in the cellular GA. The MSE’s after 4 min of
simulation, their variances (inside brackets), the corresponding misclassification rates, and the sigpiffcalwegated by Student'stests) of the difference
in MSE’s are also shown. Note that LamarckigyiBaldwinian() represents Lamarckian/Baldwinian learning applied at evegenerations.

MSE's to 0.08. For other learning methods (restricted RTRio produce the changes between the genotypes corresponding
and the delta rule), no acceptable solution can be found in #llthe “inborn” fitness and the “learned” fithess, the poorer is
simulation runs, and the MSE’s can only be reduced to 0.®e convergence of Baldwinian learning.

This indicates that using the gradient-based methods alone i#n Baldwinian learning, the “learned” fithess of a chromo-

not able to solve the long-term dependency problem. some is the fitness obtained after learning. This “learned”
fithess is not equal to the “inborn” fithess corresponding to
A. Embedding RTRL in Cellular GA’s the genotype. Genetic operations are therefore required to

- N produce the change in the genotype, where the change should
The table in Fig. 4 shows the significangecomputed by correspond to the difference between the “inborn” fitness

tStudent’st-ter.? s, tOf theb déf(;?ren;?ré: _MSE,I‘T‘ lbetv(\;i(?n ?I_?]%nd the “learned” fithess. While these genotypic changes are
WO approaches fo embedding Y- In-cefiuar S: Sroduced randomly by crossover and mutation, only some of
gllfference is considered to be statistical significant Wb’enthem may match the phenotypic changes caused by learning.
gAlesshFhan 0.05.t I.hf. rﬁsullts shol\\//lvstga;ththe ;?lure Ce”“'l‘?ronly one gene (or one weight) is allowed to be charfged
achieves a statistically lower an afl cases uring Baldwinian learning, the genetic operations should have
!_amarcklan learning. It als_o shows that When.the gengratl% difficulty in producing this change. However, in the RTRL
interval between thg app_llca_nons of Lamarc_k|an learning gorithm, all weights are changed; consequently, it is very
sr;]ort, iﬂe ';{lSE _attallnec(Jj 'S h||gh. Howgver, Fllg.t5dshows| Fhaﬁficult for genetic operations to produce the corresponding
when the time involved in ‘earning 1S hegiected, app ylnghanges in the weights. It becomes more difficult to produce
Lamarckian learning at a short generation interval (e.g., 20, changes when the learning frequency is high, since the

or 50) can achieve a statistically lower MSE. These resu eights are changed more often. Therefore, according to our

suggest the.lt aI_though R.TRL may p_rovuje some benefit, t Snjecture, the results of the Baldwinian learning are poor even
corresponding increase in computation time may not provi

. the time spent on learning is neglected. This also explains
sufficient payoff. P g 9 p

. why the convergence of all cases of Baldwinian learning in
A comparison between the convergence of the LamaI’CkIE\’b 5 is poorer than that of the pure cellular GA

learning and the Baldwinian leaming applied at the SAME L anchet al, [15] did similar investigations on the factors

gene rgtion int_erval (see Fig. 4) re_veal_s.that the latter af:hie\fﬁgt affect the convergence of Baldwinian learning. They found
statls_uca_lly higher MSE S The inefficiency of _Baldw'ma_nthat when the amount of phenotypic plasticity (difficulty in

learning is clearly shown. Fig. 5 shows that even if the Ieam”?garning) was either too small or too large, the convergence
Bcame poor. In another study, Keesat@l.[22] showed that

time is neglected, the MSE’s attained after 20 000 generati
are statistically higher when Baldwinian learning is applied aﬁe amount of fithess improvement incurred by learning affects

a short generation interval (e.g., 20 or 50). We have the f

|0.W.Ing c.or.uecture for'explalnln.g this phenomendine morg 5The “learned” fitness is obtained by changing that gene while keeping
difficult it is for genetic operations (crossover and mutationjther genes fixed.
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Lamarcklans ; MSE = 0.0136 (0.0010)) -+ TSl TEege g g
Lamarckian(50) (MSE =0.0193 (0.0011)) -8- R
Lamarckian(200) (MSE = 0.0292 (0.0021)) -»-- AR
0.01 |- Baldwinian(20) (MSE = 0.0401 (0.0023)) -&--- .
X Baldwmlan(sog éMSE 0.0398 (0. 0024 s
Baldwinian(200) (MSE = 0.0310 (0.0015)) -o-
| Significance
average M5SEs comparisons ['FETU_[T—_'PSU—‘I
Lamarckian(z) < pure CCA 6.00 0.01
Baldwinian{z) > pure CGA 0.04 0.05
Lamarckian{z) < Baldwinian{z) 0.00 0.00
Lamarckian{z) < Tamarckian{200) 0.00 0.01
Baldwinian{z) > Baldwinian {200} 0.04 0.05
0.001 L 1 L
0 5000 10000 15000 20000

number of generations

Fig. 5. Comparisons of average MSE's (with respect to the number of generations taken) achieved by embedding RTRL in the cellular GA. The MSE’s

after 20 000 generations, their variances (inside brackets) and the significéraleulated by Student'stests) of the difference in MSE'’s are also tabulated.
Note that Lamarckian()/Baldwinian{) represents Lamarckian/Baldwinian learning applied at ewvegenerations.

the Baldwin effect significantly. In other words, too little orRecall that the main difference between RTRL and simplified

too much improvement could lead to poorer convergence. Iearning methods such as restricted RTRL and the delta rule
addition to these factors, this study suggests that the leigkhat the latter has a smaller number of changeable weights.
of difficulties for subsequent genetic operations to obtain tl@onsequently, it is relatively easy for the genetic operations
necessary changes in genotypes is also a significant factor thaproduce the changes in weights caused by the simplified

affects the Baldwin effect. learning methods. This suggests that Baldwinian learning is
able to assist evolutionary search provided that the learning
B. Embedding Restricted RTRL and Delta IS not excessive.
Rule in Cellular GA’s
Figs. 6 and 7 show that when the complexity of the learn- VII. Discussions

ing method is reduced, the MSE’s achieved by Lamarckianin general, a well-trained network has a low misclassifica-
learning are statistically lower than that achieved by the putien rate on test data. This can be observed in Figs. 4, 6, and
cellular GA. This indicates that when Lamarckian learning i8. We found that when a network learned well on the training
properly embedded in the cellular GA, better neural networket, then it also performed well on the test set. Therefore,
can be obtained. Another advantage of embedding Lamarckametwork that is successfully trained is able to solve the
learning is that the resulting hybrid algorithms save compileng-term dependency problem.
tation time considerably. For example, the pure cellular GA Comparing various implementations of Lamarckian learn-
takes 4 min to attain a MSE of 0.0303. To evolve a network ing, embedding the delta rule in the cellular GA achieves the
the same accuracy, the hybrid algorithm with restricted RTRhwest MSE in a given CPU time. For example, the average
requires 2.0 min and that with the delta rule requires 1.4 mimISE attained after 4 min is only 18% of that achieved by
suggesting that up to 65% of computation time can be savélde pure cellular GA. Bear in mind that applying the delta rule
Figs. 6 and 7 show that embedding restricted RTRL @oes not guarantee any improvement in fithess in each learning
the delta rule in the cellular GA using Baldwinian mechaeycle. Applying this learning method alone is not rewarding
nism performs poorly during the first 4 min. However, theskecause the error gradient computed by this method may differ
hybrid algorithms achieve a significantly lower (significanceignificantly from the more accurate one [compare (7) and (4)].
p < 0.01) MSE after 20000 generations, as shown in Table ITo see whether this approach is successful in other GA's, we
This indicates that if computation time is not a concerrave tried embedding the delta rule in different GA’s. Table 11|
Baldwinian learning has merits. Of particular interest is thdtustrates the improvement obtained when the delta rule was
no such situation occurs when RTRL is embedded in tlenbedded, suggesting that this approach can also be applied
cellular GA using Baldwinian mechanism (see Fig. 4 ani other GA’s.
Table Il where Baldwinian learning performs poorly with So far we have focused on the convergence performance
respect to both convergence rate and achievable MSE®S).the hybrid algorithms by looking at the MSE’s after a
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pure CGA (MSE = 0.0303 (0.0022), rate = 4.6%) ~o—
Lamarckian learning (MSE = 0.0075 (0.0003), rate = 1.8%) -+-
Baldwinian learning (MSE = 0.0608 (0.0019), rate = 6.9%) -8--
[Caverage MSEs comparisons | Significance p ]
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Fig. 6. Comparisons of average MSE'’s (with respect to CPU time taken) achieved by embedding the restricted RTRL in the cellular GA. The MSE’s,
their variances (inside brackets), the corresponding misclassification rates, and the signific@adeulated by Student’s-tests) of the difference in
final MSE’s are also shown.

MSE

MSE = 0.0054
MSE = 0.0430

0.0003), rate = 1.4%) -+--
0.0016), rate = 6.1%) -8--

Lamarckian learning
Baldwinian learning

pure CGA gMSE =0.0303 §0.0022§, rate = 4.6%) -o—

[Caverage MSEs comparisons | Significance p ]
[[Lamarckian < pure CGA | 0.00 |
[ Baldwinian > pure CGA | 0.04 |
0.001 1 1 ! 1 1 1 1
0 0.5 1 1.5 2 25 3 35 4
minutes

Fig. 7. Comparisons of average MSE'’s (with respect to CPU time taken) achieved by embedding the delta rule (DR) in the cellular GA. The final
MSE'’s, their variances (inside brackets), the corresponding misclassification rates, and the signififeaicalated by Student's-tests) of the difference
in final MSE’s are also shown.

given CPU time. It is also interesting to explore the capabilityons, this hybrid algorithm requires 11 h, whereas the hybrid
of these algorithms without considering the computation timagorithm that combines cellular GA’s and delta rule requires
involved. Table Il summarizes the MSE’s achieved by vario@&min only. It is also evident that when the learning frequency
hybrid algorithms after 20000 generations. It shows thdecreases (generation interval between learning increases), the
combining cellular GA’s and RTRL with Lamarckian learningMSE achieved by Lamarckian learning increases while that
applied at every generation attains the lowest MSE. Thighieved by Baldwinian learning decreases. This phenome-
approach, however, has limitations as it requires an extremalyn agrees with our conjecture for Baldwinian learning that
long computation time. For example, to reach 20000 genefaarning should not be too extensive; otherwise, the genetic
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TABLE I
MSEs AND VARIANCES (INSIDE BRACKETS) ATTAINED AFTER 20 000 GENERATIONS BY EMBEDDING DIFFERENT LEARNING METHODS IN
CELLULAR GA's. ALL ResuLTs ARE BASED ON THE AVERAGE OF 200 SMULATION RuUNs, ExCEPT RTRL wITH LEARNING APPLIED BY
EVERY GENERATION WHERE THE MSES ARE BASED ON THE AVERAGE OF TEN SIMULATION RUNS BECAUSE OF THELONG COMPUTATION

I Learning method l Learning every « generations [ Lamarckian l Baldwinian I

without learning N/A 0.0303 (0.0022)

RTRL 1 0.0001 0.1161
RTRL 20 0.0136 (0.0010) | 0.0401 (0.0023)
RTRL 50 0.0193 (0.0011) | 0.0398 (0.0024)
RTRL 200 0.0292 (0.0021) | 0.0310 (0.0015)
restricted RTRL 1 0.0024 (0.0002) | 0.0167 (0.0010)
delta rule 1 0.0047 (0.0003) | 0.0196 {(0.0013)

TABLE Il
MSES ATTAINED BY EMBEDDING THE DELTA RULE IN DIFFERENT GA'S USING THE LAMARCKIAN MECHANISM.
ALL FIGURES WERE OBTAINED BY RECORDING THE MSES AFTER 4 MIN (CPU TIME) OF SIMULATION

cellular GA cellular GA cellular GA with cellular GA with

without crossover | ‘global’ reproduction | all weights mutate
without learning 0.0303 0.0483 0.0521 0.1531
with delta rule 0.0054 0.0081 0.0080 0.1353

operations would not be able to produce the changes imependent study performed by Mayley [31] also support our
phenotypes caused by learning. Table Il also demonstrates ¢bajecture. Mayley [31] suggested that to get the maximum
superiority of Lamarckian learning over Baldwinian learningyenefit out of the Baldwin effect, the phenotypic distance
suggesting that Baldwinian learning may not be approprigitetween two phenotypes has to be correlated with the geno-
for training RNN'’s. typic distance between the corresponding genotypes. The
To verify the benefit of Lamarckian learning, let us increagshenotypic distance is measured by the “ease” of transform-
the complexity of the long-term dependency problem—thiag the “inborn” phenotype to the “learned” phenotype by
temporal length is doubled to ten time steps. The RNN tearning, while the genotypic distance is measured by the
be trained has four input nodes and 16 processing nodegpected number of genetic operations required to achieve
where six of them were dedicated as output nddBserefore, the corresponding transformation in genotype space. When
there are totallyl6 x 16 + 16 x 5 = 336 weights. In there are many changeable weights, the correlation between
our experimental work, we used a population size of 16QAe genotypic distance and the phenotypic distance becomes
instead of 100, but other parameters remained unchang&gall. As a result, the advantage of Baldwinian learning is
As the problem is more difficult, a large population sizgst.
is required to increase the chance of finding an acceptablerhis study found that combining cellular GA’s and Lamar-
solution. However, a large population size also increasggian learning is a promising approach. For a learning method
the computation time significantly. This is a typical probtg pe efficient, the learning process must not spend too much
lem in GA’s. Fig. 8 illustrates that combining cellular GA’scomputation time as compared to the reproduction process so
with the delta rule achieve a better convergence as COffat a net gain could be obtained. Therefore, the criteria for
pared to the pure cellular GA despite the large number gfgo0d learning method are: 1) it should be simple so that
weights. computation time taken is short and 2) it should have the
Our conjecture for Baldwinian learning stated in Section 'VCapabiIity of moving toward on obtaining a better solution
A suggests that if many weights are changed by Baldwinigh each learning cycle. Obviously, these two criteria are
learning and the changes are large, the hybrid algorithms Willyiragictory. One should choose an algorithm that strikes a
not be better than the pure cellular GA. This is because th§|ance between these two criteria, although it may be difficult
search space is too large for genetic operations to prodyGeqecide which criterion is more important. Comparing to
the correct genotype associated with the *leamned” fitne§fe geita rule, the restricted RTRL might be more capable of
The validity of the conjecture has also been justified ipy,oying the fitness; but we have found that its computation
our rgcent rgport [26]-Where further evidence is prowdegme is 40% longer. In the long-term dependency problem,
It is interesting to point out that the results of a recenf is \he hybrid algorithm that uses the delta rule has better
convergence. However, it is possible in other problems that the
®Note that the number of input-output pattern pairs increases with thestricted RTRL is more capable of improving the fitness than
temporal length. In order to represent the additional patterns, we increa delta rule, and this improvement could be so significant that

the number of input nodes as well as the number of output nodes. We fou : X
that an RNN with 16 processing nodes was sufficient. it can compensate for the cost of longer computation time. In
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Fig. 8. Average MSE's (based on the average of 30 simulations) achieved by embedding the delta rule in the cellular GA using Lamarckian learning for
solving the long-term dependency problem with a temporal length of ten time steps.

this case, the hybrid algorithm that uses the restricted RTRtethods in the cellular GA. The resulting hybrid algorithms

may converge better. were used to train the RNN’s in order to solve the long-term
There is a dilemma in adding learning to GAs: the moréependency problem. Further investigations are required to see

frequent and the larger extent (e.g., more epochs for eaghether this approach will be successful in other problems, and

learning cycle) we apply learning, the more improvemend provide a more critical comparison between Lamarckian
can be achieved in each generation; however, this can oldgrning and Baldwinian learning.

be achieved at the expense of more computation time. As

a result, these parameters have to be chosen carefully such

that the combination of learning and GA'’s is better (in terms
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experiments, the convergence of combining cellular GA's and

the delta rule is better than the pure cellular GA even for

the simplest case in which minimum amount of learning (oneFl]
epoch per learning cycle) is applied.

VIl [2]

This study has found that embedding simple learning metH3!
ods in the cellular GA using the Lamarckian mechanisny,
can improve the prediction and classification capability of
RNN'’s. This suggests that the learning methods need not be
sophisticated in order to get the benefit of combining GA’
and learning. It is commonly believed that using GA's to train[s]
RNN's is a slow approach. However, our study suggests a
way to speed up and to improve the accuracy of the trainin
process. Our experiments also show that Baldwinian learning
cannot be better than Lamarckian learning. We postulate that
Baldwinian learning is not suitable for evolving RNN'’s, espe—[
cially when the learning method can change a large number
of weights in the networks and the changes are too large fd?
genetic operations to cope with. Our findings are based on the
experimental results obtained by embedding various learning
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