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Support Vector Machine Multiuser Receiver for DS-CDMA Signals in Multipath
Channels

S. Chen, A. K. Samingan, and L. Hanzo

Abstract—The problem of constructing an adaptive multiuser cases are common in DS-CDMA channels, neural networks
detector (MUD) is considered for direct sequence code division have been considered as nonlinear MUDs. In the work [15], a
multiple access (DS-CDMA) S|gnal_s transmlyted through multi- multilayer perceptron (MLP) was applied to a CDMA system
path channels. The emerging learning technique, called support . . . .
vector machines (SVMs), is proposed as a method of obtaining a Without intersymbol interference (ISI). The experience shows
nonlinear MUD from a relatively small training data block. Com-  that the MLP MUD has better performance than the linear
puter simulation is used to study this SVM MUD, and the results MUD but training times are long and unpredictable. Mitra
show that it can closely match the performance of the optimal and Poor [16] applied a RBF network to the same problem.
Bayesian one-shot detector. Comparisons with an adaptive radial ap, advantage of the RBF MUD is its intimate link with the
basis function (RBF) MUD trained by an unsupervised clustering . g -
algorithm are discussed. optlmal one-shot detector. Training tlmes_are better and more

predictable than the MLP. A RBF receiver [17] was also

C_:DMA_), linear MMSE Qetector, multiuser detector (MUD), mul- gZ?:é(:;r(xiasfoté’x;?;r;r;e[ljs.g\]/v|th memory, and a Volterra series
tiuser interference, optimal one-shot detector, support vector ma- ] . : o
chines, unsupervised clustering. Alearning technigue known as the SVM has recently gaining
popularity due to its many attractive features and promising
empirical performance [19]-[26]. The formulation of SVM
embodies the structural risk minimization (SRM) principle, as

IRECT-sequence code-division multiple-accesgpposed to the empirical risk minimization (ERM) approach

(DS-CDMA) [1] constitutes an attractive multiusercommonly employed in statistical learning. SRM minimizes an
scheme that allows users to transmit at the same carrier fugper bound on the generalization error, as opposed to ERM
guency in an uncoordinated manner. However, this creawbich minimizes the error on the training data. It is this differ-
multiuser interference (MUI) which, if not controlled, canence which equips SVMs with a greater potential to generalize.
seriously degrade the quality of reception. Mutually orthogon&br binary classification tasks, the SVM approach nonlinearly
spreading codes for different users can provide an inherén@aps the input space into a high-dimensional feature space
immunity to MUI in the case of synchronous systems. Unvia simple kernel representations. In the high-dimensional
fortunately, multipath distortions are often encountered fieature space, a linear classifier with maximum margin is
DS-CDMA systems and will reduce this inherent immunitgonstructed. Apart from good generalization properties, the
to MUI. A variety of receivers, known as multiuser detectolearning aspect of SVMs is intriguing. An SVM classifier is
(MUDs), have been proposed for DS-CDMA systems [2]-[4fletermined only by a sparse set of support vectors (SVs), and
In a DS-CDMA system, the objective of the receiver is to detethiese SVs are automatically selected from the training data
the transmitted information bits of one (at mobile-end) or marguring the learning process.
(at base station) users. In this paper, the first case is considered.he SVM technique has been applied to channel equalization
This is usually referred to as the downlink scenario, the corf27]-[30]. These studies have shown that the SVM approach
munication channel from base station to mobile. In particuldg very effective in overcoming ISI and cochannel interference.
the one-shot detector, that is, the receiver detecting a userAsitthe idea of SVM is originated from finding an optimum hy-
at a bit period, is studied. Furthermore, we will concentrate grerplane to separate two classes with maximum margin, it is
the scenario where a few strong interfering users exist, as #lgo very relevant to multiuser detection in DS-CDMA. In this
use of an MUD is especially effective in such a situation. paper, the SVM technique is investigated as an adaptive non-

For such applications, the linear minimum mean square ertsrear MUD. Our study shows that an SVM MUD trained using
(MMSE) MUD [5]-[9] is widely used, as it is computationallya relatively small block of noisy received signal samples can
very simple and can readily be implemented using standayi@sely approximate the optimal MUD which requires a com-
adaptive filter techniques. A more complicated linear minimuiplete knowledge of the system. The remainder of the paper is
bit error rate MUD has also been studied [10]-[14]. Linear derganized as follows. Section Il presents the DS-CDMA system
tectors, however, can only work when the underlying noise-fréeodel used and provides the necessary notations and defini-
signal classes are linearly separable. As nonlinear separdisies. Section Ill summarizes the linear MMSE MUD and the

optimal Bayesian one-shot MUD. In Section 1V, the proposed
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code filters code matched filters

Fig. 1. Discrete-time model of synchronous CDMA downlink.

an unsupervised clustering algorithm [31]-[34]. The paper cowhere the channel white Gaussian noise vector is
cludes in Section VII.
n(k) = [ny(k)---ny ()Y with En(k)n? (k)] = oI
II. SYSTEM MODEL . o ©)
the user signature sequence matrix is
Using notations from the multirate filtering literature [35], B
the discrete-time model of the synchronous DS-CDMA system S=[s1---5n] (1)
with V users andV/ chips per bit is depicted in Fig. 1, where ) . . o
bi(k) € {£1} denotes théth bit of useri, the signature code € diagonal user signal amplitude matrix is

sequence for user A = diag{A; --- An} (8)

8 =[51- 5 M) (1) thatis,A? is the uset signal power; theé\/ x LM CIR matrix
H has the form
is normalized to have a unit length, and the transfer function of he b oo B
the channel impulse response (CIR) is oM e

ho h1 -+ Dy
np—1 H = . . . (9)
H(Z) = Z hiz_i’_ (2) . . .
=0 ho hy e gy

Itis assumed thaV < M. The bit vector ofV users at: is the N x LN system matrixP is defined by

b(k) = [bu(k) -+~ bi ()] 3) A0 0
_T 0 §A . .
and the received signal vector after the chip-matched filters is P=SH| (10)
: ' ' 0
r(k) = [r(k) - rn(R)]*F 4) 0 --- 0 SA

and orthogonal code sequences are assumed, so that the noise

The baseband model fof%) can be represented by [36] ’ ) _
vector at the outputs of the chip-matched filters is

Sa- 0 - 0 Ak) = [ (k) - an(B)]T with  E[R(MAT (k)] = 02T,
r(k)=S" H| _ The ISI spanL depends on the length of the CIR,, related
: -0 to the length of the chip sequencdd,. Forn;, = 1, L = 1; for
0 ... 0 SA l<n, <M,L=2;forM <n;, <2M,L = 3;and so on.
The model (5) adopted in this study can readily be extended to
b(k) the more general case of asynchronous DS-CDMA systems by
b(k—1) B an appropriate expansion of the system maipe].
+ S n(k) It is worth pointing out that we assume an MUD operating on
: the outputsr (k) of a bank of chip-matched filters, as modeled
b(k— L4 1) by (5). This model requires the knowledge of all the user codes.
b(k) The assumption that a receiver knows the user codes is often
a reasonable assumption to have. If, however, the user codes
b(k—1) are unknown to the receiver, the MUD can directly operate on
=P _ + n(k) (5) the chip-rate sampled signals(k). For the completeness, the

: model forr.(%) is given in Appendix, where it can be seen that
b(k—L+1) operating orr.(k) andr(k) produces equivalent results.
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[ll. THE LINEAR AND OPTIMAL DETECTORS The Bayesian decision variable (19) can also be written as
The linear MUD for uset has the form Ny ' e(k) — 12
A us(k) = Foe() = A exp (——) .
bi(k) = sgn(yr(k)) (12) ; ! 203
. (21)
with An observation of (21) is that it has an equivalent form to an
T RBF network with Gaussian basis function or kernel.
yr(k) = fr(x(k)) = w'r(k) (13)

where IV. THE SUPPORTVECTORMACHINE DETECTOR

The optimal detector (21) requires the knowledge of all the
w = [wy - wy]" (14) noise-free signal sateg, which are unknown to receiver In

general, the receiver can have access to a blodk dfaining

denotes the detector weight vector for uséfhe most popular samples {r(k), b; (k) K . For notational convenience, let
solution for the detector (13) is the MMSE solution given by , — r(k) andc, = b;(k), and denote the training set &f
noisy receiv ignal v r
— (021 N PPT) _1 o (15) oisy received signal vectors as
: : : X={x;, 1<j<K} (22)
wherep; is theith column of P. The linear detector (13) is
computationally very simple, and standard least mean squargi the set of corresponding class labels as
(LMS) or recursive least squares (RLS) algorithms can be used
to implement the MMSE solution adaptively. C={c, 1<j<K} (23)

However, a linear MUD only performs adequately in certain ]
situations. Let theV, = 2"V possible combinations or se-Applying the standard SVM method [19], an SVM detector can

quences ofb? (k)bT (k — 1) ---bT(k — L + 1)]* be be constructed for usér
) X
b (%) ysvm(k) = fsvm(r(k)) = Z g;c; B (r(k), x;) +77 (24)
b (k — 1) j=1

b) = ., 1<j<N,  (16)

where the set of Lagrangian multiplie{g; }, denoted in the

b (k- L+1) vector form

J - o= |00, T 25
andb’ the ith element ofb@ (k). Define the set of theV, g=1-9 (25)
noise-free received signal states as is the solution of the quadratic programming (QP)

R={r;=PbY), 1<j< N} (17) K K K
- . g =argmin § 3 giqicialk (x5, x;) — 95
‘R can be partitioned into two subsets g |* ;::1 ; o ’ i=1 ’
€) (26)
Ry ={r; e R: b7 ==*1}. (18)  with the constraints
If R_ and’R, are not linearly separable, a linear MUD will 0<g;,<C, 1<j<K (27)
have an irreducible error floor even in the noise-free case, as
it can only form a hyperplane in th¥-dimensional received and
signal space. I
As the one-shot MUD at a bit period is only concerned with Z g;c; = 0. (28)
one particular bit from one particular user, the optimal solution = Y

can be derived from a one-shot Bayesian classification problem,
similar to the channel equalization problem [31]. Thus, the op- In this particular application, it is obviously advantageous to

timal one-shot detector for usécan readily be given as choose the Gaussian kernel function
. 2
ity (k) - v, Flxg, x) = exp (- P =il (29)
k) = E)) = Y4 _ J iy X7 P >
R e %

(19) where the width parameteris related to the root mean square
where¢; area priori probabilities ofr; andbg’) € {+1} serve on of the channel noise, an estimate of which can be obtained.
as class labels. Usually, all the are equiprobable, ang} = The offset constant is usually determined from the “margin”
1/N,. The optimal decision is then given by SVs, i.e., thosex;s with the corresponding Lagrangian multi-

A pliers0 < g; < C. Because the optimal decision boundary,
bi(k) = sgu(yp(k)). (20) defined by{r: fg(r) = 0}, passes through the origin of the
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received signal space and possesses certain symmetric proper-
ties due to the symmetric structure®®L. andR, 7 = 0 can
be used. With this choice of the offset constant, the equality
constraint (28) is no longer needed, and this leads to a simpler
optimization task. The user-defined parametecontrols the
tradeoff between model complexity and training error. In our
application, we will choos€' empirically.

The set of SVs, denoted b¥sy, is given by thosex; s with
nonzero Lagrangian multiplie® < g, < C. Xsvy is usually
a small subset of the training data et These SVs are deter-
mined during the optimization process. Thus the SVM MUD
consists of computing the decision variable

ysvm(k) = fevm(r(k))

Z g;C5 €xp

X; €XsvM

<_ (k) — %,
2p?

) (30)

and making the decision with

bi(k) = sen(ysvm(k)). (31)
Before presenting some simulation results, we emphasize that
the main purpose of this study is to investigate feasibility of the
SVM method as a nonlinear MUD, and we use the standard gra-
dient method to solve for the QP problem (26). Such an opti-
mization technique associated with the SVM method requires a
considerable amount of computation, especially for a ldfge
The issue of computational efficiency is more general than the
MUD problem. Efficient SVM implementation is an active area
of research (see, for example, [23], [37], and [38]).
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Fig. 2. The set of noise-free signal points and the two decision
boundaries (dotted: linear MMSE, solid: optimal) for user 1 of Example
1. SNR = SNR, = 16 dB.
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Fig. 3. The set of noise-free signal points and the three decision boundaries

(dotted: linear MMSE, thick solid: optimal, thin solid: SVM) for user 2 of

V. SIMULATION RESULTS

Two simulation examples were used to investigate the pro-

Example 1. SNR = SNR, = 20 dB.

TABLE |

posed SVM MUD and compare its performance with those of |\rLuence oFC on ConsTRUCTING THESVM MUD FOR USER2 OF

the linear MMSE and optimal MUDs. It is worth pointing out
again that the linear MMSE MUD and the optimal MUD are
designed based on the complete knowledge of the system (the
system matrixP? and the noise variance) while the SVM MUD
is trained using a block of the noisy received signal samples.
Example 1:This was a two-user system with four
chips per bit. The code sequences of the two users were
(+1, +1, —1, —1) and (+1, —1, —1, +1), respectively, and
the transfer function of the CIR was
H(z)=0.3+0.72"1 403272 (32)
The two users had equal signal power, that is, the user 1 signal
to noise ratio (SNR) was equal to that of user 2 (SNRFig. 2
depicts the two subsets of noise-free signal states for user 1 to-
gether with the decision boundaries of the linear MMSE and
optimal Bayesian MUDs, given SNR= SNR, = 16 dB. It

EXAMPLE 1. SNR =

SNR; = 20 dB, AND THE NUMBER OF

TRAINING DATA Is 160

C 1.0 5.0 10.0  100.0
number of SVs 50 35 23 52
log;o(BER) |[-3.084 -2.740 -2.974 -2.840
optimal MUD log,,(BER) = —3.155

EXAMPLE 1. SNR =

TABLE 1l

INFLUENCE OFC' ON CONSTRUCTING THESVM MUD FOR USER 2 OF

SNR, = 15 dB, AND THE NUMBER OF

TRAINING DATA IS 160

C 1.0 5.0 10.0  100.0
number of SVs | 52 39 37 36
log,,(BER) -1.590 -1.506 -1.440 -1.424
optimal MUD log;o(BER) = —1.674

To construct an SVM MUD for user 2, 160 training data

is clear that for user 1 it is not worth to implement a complepoints were generated for each given noise variance. The in-
nonlinear detector, as a simple linear detector can perform aflaence of the parametér on the model complexity and the bit
quately. However, for user Z3_ andR are not linearly sep- error rate (BER) of the resulting MUD was firstinvestigated. Ta-
arable and the linear MMSE detector will have an irreduciblgles | and Il summarize the results for two different noise condi-

error floor of 0.125, as illustrated in Fig. 3.

tions, respectively. It can be seen thiahas some influence on
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Fig. 4. Performance comparison of three MUDs for user 2 of Example Eig. 6. Performance comparison of three MUDs for user 2 of Example 2.

SNR; = SNR;, and the training data set for SVM has 160 samples. SNR;, 1 < ¢ < 3, are identical, and the training data set for SVM has 640
samples.
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Fig.5. Performance comparison of two MUDs for user 1 of Example 2..SNRrig, 7. Performance comparison of three MUDs for user 3 of Example 2.
1 <@ < 3, are identical. SNR;, 1 < i < 3, are identical, and the training data set for SVM has 640
samples.
the construction of SVM model, but the solution is not overly TABLE 1II

sensitive to it. The decision boundary of the constructed SVM INFLUENCE OFC' ON CONSTRUCTING THESVM MUD FOR USER 2 OF

MUD for user 2 is compared with those of the linear MMSE and EXAMPLE 2. SNR = 30 dBFOR1 < i < 3, AND THE NUMBER OF
. . . . . TRAINING DATA IS 640

optimal MUD in Fig. 3, given SNR = SNR, = 20 dB. Fig. 4

plots the BERs of the three MUDs for user 2 under different ¢ 0.5 0.6 0.8 0.9 1.0 5.0

noise conditions. The results clearly show that the SVM MUD humber of SVs | 220 206 192 179 173 139
Togo(BER) | -2.840 2.850 -2.833 -2.827 2797 -2.490

can closely matc_h the p_er_formance of the Qpnmal one-shot dEJ optimal MUD log,o(BER) = —3.000
tector. For the given training set of 160 points, the number ot
SVs were found typically to be around 40. TABLE IV

Example 2:This was a three-user system with eight \eyence oFC on ConsTRUCTING THESVM MUD FoR USER 2 OF
chips per bit. The code sequences for the three users wereexampLe 2. SNR = 25 dBFOR1 < i < 3, AND THE NUMBER OF

(+1, +1, +1, +1, =1, =1, =1, —=1), (+1, =1, +1, =1, —1, TRAINING DATA |Is 640

+1, -1, +1) and (+1, -1, —1,+1, -1, +1, +1, -1), C 06 08 10 50
respectively, and the transfer function of the CIR was number of SVs | 261 240 229 181
log,,(BER) |-1.442 -1.454 -1.459 -1.429
H(Z) =04 + 0'92,71 + 0'42,72' (33) optlmal MUD 10g10(BER,) = -1.521

The three users had equal signal power. For user 1, the perforfhe number of training data for constructing SVM models
mance of the linear MMSE detector is very close to the optimalas 640 for each given noise condition. The influenc€ain
detector, as shown in Fig. 5. For users 2 and 3, however, ntime model complexity and performance was again found to be
linear MUDs are certainly needed, as can be seen in Fig. 6 armat overly sensitive, as illustrated in Tables Ill and IV for the
Fig. 7. case of user 2 with two different noise conditions. From the
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training data set of 640 points, typically around 200 SVs wefer centersy,, is self-adjusting based on an “entropy” formula
selected. The BERSs of the resulting SVM MUDs for users 2 arj@3].

3 are given in Figs. 6 and 7, respectively, in comparison with 14 jjjystrate the optimal properties of the enhansedheans
the corresponding linear MMSE and optimal one-shot MUDgystering method, consider the user 2 of Example 1 given in
The results again demonstrate that the SVM MUD can closgly, previous section with SNR= SNR, — 20 dB. Started
approximate the performance of the optimal detector. from ¢;(0) = 0,1 < j < 16, the trajectories of cluster cen-
We would like to point out that, even though orthogonaks in"10 000-samples adaptation are shown in Fig. 8. Table V
spreading sequences were used in the simulation, the orthogs marizes the final cluster center positions and variations, in
onality was destroyed by the ISI channel. Interfering signalgmparison with the true noise-free signal states. Similar clus-
in the simulation were also kept to be relatively strong. Theying performance can be obtained with only 4000 data samples
desired user signal to interference ratio was 0 dB for ExXamplgen the first 16 data points are used as the initial centers, as

1 and approximately-5 dB for Example 2. illustrated in Fig. 9. The BER performance of such a clustering
RBF MUD is indistinguishable with the optimal one-shot MUD.
VI. COMPARISON WITH THE CLUSTERING RBF DETECTOR The following comparisons for the SVM and clustering RBF
Because of its intimate link with the optimal one-shot detect®fUDs can be made. The adaptation of the SVM model is based
(21), the RBF model of the form on a block of data while the clustering RBF is implemented

sample-by-sample. The sample-by-sample adjustment is more
N (k) — ;|2 desired in real-time applications. The clustering RBF MUD can
yrer(k) = frer(r(k)) = ajexp <——J> achieve the optimal MUD, provided that a sufficient number of
J=1 training data are available. The SVM MUD has an important

advantage as it requires a relatively short training data set. For

is a good candidate for nonlinear MUD. Assuming the numb Ur simple Example 1, The SVM MUD requires less than 200

of the users is known, the number of the centers should Sini .
L ) ning data. In contrast, the clustering RBF MUD needs a fe
N. = N, and the optimal RBF centers are the set of nmse—frgg' g ustering W
|

2p2

(34)

. - . . . ousands of training data, due to the nature of the unsupervised
signal state®k. The widthp is an estimate of the noise standar 9 P

deviati 4 th his. imolv b ¢ ding t ustering process. Such a long training data length is difficult
eviation, and the Weighis; can simply be set according f0,, 4chjeye in practice. As the SVM approach places the kernel
the class label of the corresponding center, or trained using

: ; Shters directly on some noisy data points called SVs, it will re-
LMS or RLS algorithm. Such an RBF MUD achieves the eX‘F’“equire more centers than the clustering RBF model. For Example

optimal MUD. 1, the SVM MUD needs typically 40 kernels to closely match

The most efficient way of adaptively placing the RBF centely optimal performance, while the clustering RBF MUD has
to the desired noise-free signal states is the supervised cluste{)ﬁiy 16 kernel functions '

gorithm [31]. In the multiuser detection context, the algorithm
will require to know all the users’ bits frorh — L + 1 to k,
and this is impractical for downlink. Thus, unsupervised clus-
tering has to be used. The enhaneetheans clustering algo-
rithm [32]-[34] is ideal for the RBF MUD. By using a cluster
variation-weighted measure, this algorithm always converges to
an optimal or near optimal cluster configuration, independent of
the initial center locations. Furthermore, the variance of every
cluster is equal after convergence. This property is particular
relevant to our application since all the cluster variances in this
case should be equal.

The enhanced-means clustering method [33] adjusts the

RBF centers according to The SVM technique has been applied to adaptive nonlinear
multiuser detection for DS-CDMA systems. It has been shown
cj(k +1) = ej(k) + M;(x(k))u(r(k) —¢;(k))  (35)  that the SVM MUD can closely match the performance of
the optimal Bayesian one-shot detector with an important
advantage of requiring a relatively small training data set.
1, ifvlr—cjl? <wlr—c?VI#£j Comparisons with an adaptive clustering RBF MUD have been
My(r) = { (36) made. A disadvantage of the SVM approach is its block-based
adaptation nature. Although the SVM approach has an excel-
andv; is the “variance” of thejth cluster. To estimate;, the ent model reduction ability, the resulting SVM MUD still
following rule is used: has a larger model size, in comparison with the number of
noise-free signal states. Future research will investigate how
vi(k+1) = yv; (k) + (1 —v)M,;(r(k))|[r(k) — c;(k)||* (37) to reduce the number of support vectors further without sacri-
ficing the BER performance too much and how to incorporate
wherey is a constant slightly less than 1.0. The initig0), 1 < the sample-by-sample adaptive methodology with the SVM
7 < N, can be set to the same small value. The learning ratpproach.

VII. CONCLUSION

where the membership function

0, otherwise



610

15 ¢t
1

0.5

0 (S

-1

05|
¥

matched filter output 2

-1.5

-2

2-15-1-050 05 1 15 2
matched filter output 1

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 3, MAY 2001

2 —
1.5

1

0.5
0
05 4 4

matched filter output 2

-1

-1.5

-2

2-15-1-050 05 1 15 2
matched filter output 1

Fig. 8. Cluster center trajectories using the enhanceaeans clustering for Fig. 9. Cluster center trajectories using the enhanceaeans clustering for
user 2 of Example 1. SNR= SNR., = 20 dB, initial centers are all placed at user 2 of Example 1. SNR= SNR, = 20 dB, the first 16 data points are used
the origin, and 10 000 data samples are used.

TABLE V
CLUSTER CENTERS AND VARIATIONS OBTAINED USING THE ENHANCED
r-MEANS CLUSTERING FORUSER2 OF EXAMPLE 1. SNR, = SNR, = 20 dB
(NoIse VARIANCE 0.001), NITIAL CENTERSARE ALL PLACED AT THE
ORIGIN, AND 10 000 DxtA SAMPLES ARE USED

class true center cluster center cluster variance
+1 (—0.8552,0.8552) (—0.8615, 0.8468) 0.0011
+1 | (—1.6493,-0.4276) | (—1.6563, —0.4339) 0.0011
+1 (—0.4276,0.7941) (—0.4238,0.7943) 0.0014
+1 | (—1.2217,—0.4887) | (—1.2107, —0.4959) 0.0015
+1 (—0.0611,0.4276) (—0.0664,0.4182) 0.0014
+1 | (—0.8552, —0.8552) | (—0.8510, —0.8662) 0.0013
+1 (0.3665,0.3665) (0.3810, 0.3704) 0.0013
+1 | (-0.4276,—0.9163) | (—0.4306, —0.9213) 0.0021
-1 (0.4276,0.9163) (0.4399, 0.9148) 0.0011
-1 | (~0.3665,—0.3665) | (—0.3653,—0.3769) 0.0013
-1 (0.8552, 0.8552) (0.8550, 0.8325) 0.0013
-1 (0.0611, —0.4276) (0.0669, —0.4298) 0.0013
-1 | (1.2217,0.4887) (1.2286,0.4972) 0.0019
-1 (0.4276, —0.7941) (0.4198, —0.8084) 0.0012
-1 (1.6493, 0.4276) (1.6459, 0.4352) 0.0015
-1 (0.8552, —0.8552) (0.8630, —0.8501) 0.0011

APPENDIX
During one bit period, the chip rate sampler produkksam-
ples
ro(k) = [re 1(k) 7o (B)]F (38)
The baseband model for(k) is represented by [36]
SA o 0 b(k)
0 SA b(k—1)
r.(k) =H + n(k)
0 :
0 0 SA| Lbk-L+1)
b(k)
b(k —1)
=P, +n(k) (39)

as initial centers, and 4000 data samples are used.

where thel x LN system matrixP. is defined as

SA 0 - 0
0 SA
P.=H (40)
0
0 --- 0 SA

An MUD can directly operate on.(k), instead of the chip-
matched filtered version(k). For example, an alternative linear
MUD takes the form

yr(k) = wire(k)

with the M -dimensional weight vectow, = [we 1 -+ - we, p]?

It is well-known that this linear MUD is equivalent to the linear
MUD of (13). In theM -dimensional space.(k), the set of the
N, noise-free received signal states is defined by

(41)

Re={re; =PbV, 1<j<N}. (42)

An optimal Bayesian one-shot detector, similar to (21), can al-
ternatively be defined.
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