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Support Vector Machine Multiuser Receiver for DS-CDMA Signals in Multipath
Channels

S. Chen, A. K. Samingan, and L. Hanzo

Abstract—The problem of constructing an adaptive multiuser
detector (MUD) is considered for direct sequence code division
multiple access (DS-CDMA) signals transmitted through multi-
path channels. The emerging learning technique, called support
vector machines (SVMs), is proposed as a method of obtaining a
nonlinear MUD from a relatively small training data block. Com-
puter simulation is used to study this SVM MUD, and the results
show that it can closely match the performance of the optimal
Bayesian one-shot detector. Comparisons with an adaptive radial
basis function (RBF) MUD trained by an unsupervised clustering
algorithm are discussed.

Index Terms—Direct sequence code division multiple access (DS-
CDMA), linear MMSE detector, multiuser detector (MUD), mul-
tiuser interference, optimal one-shot detector, support vector ma-
chines, unsupervised clustering.

I. INTRODUCTION

D IRECT-sequence code-division multiple-access
(DS-CDMA) [1] constitutes an attractive multiuser

scheme that allows users to transmit at the same carrier fre-
quency in an uncoordinated manner. However, this creates
multiuser interference (MUI) which, if not controlled, can
seriously degrade the quality of reception. Mutually orthogonal
spreading codes for different users can provide an inherent
immunity to MUI in the case of synchronous systems. Un-
fortunately, multipath distortions are often encountered in
DS-CDMA systems and will reduce this inherent immunity
to MUI. A variety of receivers, known as multiuser detector
(MUDs), have been proposed for DS-CDMA systems [2]–[4].
In a DS-CDMA system, the objective of the receiver is to detect
the transmitted information bits of one (at mobile-end) or many
(at base station) users. In this paper, the first case is considered.
This is usually referred to as the downlink scenario, the com-
munication channel from base station to mobile. In particular,
the one-shot detector, that is, the receiver detecting a user bit
at a bit period, is studied. Furthermore, we will concentrate on
the scenario where a few strong interfering users exist, as the
use of an MUD is especially effective in such a situation.

For such applications, the linear minimum mean square error
(MMSE) MUD [5]–[9] is widely used, as it is computationally
very simple and can readily be implemented using standard
adaptive filter techniques. A more complicated linear minimum
bit error rate MUD has also been studied [10]–[14]. Linear de-
tectors, however, can only work when the underlying noise-free
signal classes are linearly separable. As nonlinear separable
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cases are common in DS-CDMA channels, neural networks
have been considered as nonlinear MUDs. In the work [15], a
multilayer perceptron (MLP) was applied to a CDMA system
without intersymbol interference (ISI). The experience shows
that the MLP MUD has better performance than the linear
MUD but training times are long and unpredictable. Mitra
and Poor [16] applied a RBF network to the same problem.
An advantage of the RBF MUD is its intimate link with the
optimal one-shot detector. Training times are better and more
predictable than the MLP. A RBF receiver [17] was also
considered for channels with memory, and a Volterra series
detector was explored [18].

A learning technique known as the SVM has recently gaining
popularity due to its many attractive features and promising
empirical performance [19]–[26]. The formulation of SVM
embodies the structural risk minimization (SRM) principle, as
opposed to the empirical risk minimization (ERM) approach
commonly employed in statistical learning. SRM minimizes an
upper bound on the generalization error, as opposed to ERM
which minimizes the error on the training data. It is this differ-
ence which equips SVMs with a greater potential to generalize.
For binary classification tasks, the SVM approach nonlinearly
maps the input space into a high-dimensional feature space
via simple kernel representations. In the high-dimensional
feature space, a linear classifier with maximum margin is
constructed. Apart from good generalization properties, the
learning aspect of SVMs is intriguing. An SVM classifier is
determined only by a sparse set of support vectors (SVs), and
these SVs are automatically selected from the training data
during the learning process.

The SVM technique has been applied to channel equalization
[27]–[30]. These studies have shown that the SVM approach
is very effective in overcoming ISI and cochannel interference.
As the idea of SVM is originated from finding an optimum hy-
perplane to separate two classes with maximum margin, it is
also very relevant to multiuser detection in DS-CDMA. In this
paper, the SVM technique is investigated as an adaptive non-
linear MUD. Our study shows that an SVM MUD trained using
a relatively small block of noisy received signal samples can
closely approximate the optimal MUD which requires a com-
plete knowledge of the system. The remainder of the paper is
organized as follows. Section II presents the DS-CDMA system
model used and provides the necessary notations and defini-
tions. Section III summarizes the linear MMSE MUD and the
optimal Bayesian one-shot MUD. In Section IV, the proposed
SVM MUD is presented. Section V gives some computer sim-
ulation results, comparing the performance of the SVM MUD
with those of the linear and optimal MUDs. Section VI com-
pares the adaptive SVM MUD with a RBF MUD trained by
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Fig. 1. Discrete-time model of synchronous CDMA downlink.

an unsupervised clustering algorithm [31]–[34]. The paper con-
cludes in Section VII.

II. SYSTEM MODEL

Using notations from the multirate filtering literature [35],
the discrete-time model of the synchronous DS-CDMA system
with users and chips per bit is depicted in Fig. 1, where

denotes the th bit of user , the signature code
sequence for user

(1)

is normalized to have a unit length, and the transfer function of
the channel impulse response (CIR) is

(2)

It is assumed that . The bit vector of users at is

(3)

and the received signal vector after the chip-matched filters is

(4)

The baseband model for can be represented by [36]

...
...

...
. . .

. . .

...

...
(5)

where the channel white Gaussian noise vector is

with
(6)

the user signature sequence matrix is

(7)

the diagonal user signal amplitude matrix is

(8)

that is, is the user signal power; the CIR matrix
has the form

...
...

...
(9)

the system matrix is defined by

...
...

...
. . .

. . .
(10)

and orthogonal code sequences are assumed, so that the noise
vector at the outputs of the chip-matched filters is

with
(11)

The ISI span depends on the length of the CIR, , related
to the length of the chip sequence,. For , ; for

, ; for , ; and so on.
The model (5) adopted in this study can readily be extended to
the more general case of asynchronous DS-CDMA systems by
an appropriate expansion of the system matrix[6].

It is worth pointing out that we assume an MUD operating on
the outputs of a bank of chip-matched filters, as modeled
by (5). This model requires the knowledge of all the user codes.
The assumption that a receiver knows the user codes is often
a reasonable assumption to have. If, however, the user codes
are unknown to the receiver, the MUD can directly operate on
the chip-rate sampled signals . For the completeness, the
model for is given in Appendix, where it can be seen that
operating on and produces equivalent results.
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III. T HE LINEAR AND OPTIMAL DETECTORS

The linear MUD for user has the form

(12)

with

(13)

where

(14)

denotes the detector weight vector for user. The most popular
solution for the detector (13) is the MMSE solution given by

(15)

where is the th column of . The linear detector (13) is
computationally very simple, and standard least mean square
(LMS) or recursive least squares (RLS) algorithms can be used
to implement the MMSE solution adaptively.

However, a linear MUD only performs adequately in certain
situations. Let the possible combinations or se-
quences of be

...
(16)

and the th element of . Define the set of the
noise-free received signal states as

(17)

can be partitioned into two subsets

(18)

If and are not linearly separable, a linear MUD will
have an irreducible error floor even in the noise-free case, as
it can only form a hyperplane in the -dimensional received
signal space.

As the one-shot MUD at a bit period is only concerned with
one particular bit from one particular user, the optimal solution
can be derived from a one-shot Bayesian classification problem,
similar to the channel equalization problem [31]. Thus, the op-
timal one-shot detector for usercan readily be given as

(19)
where area priori probabilities of and serve
as class labels. Usually, all the are equiprobable, and

. The optimal decision is then given by

(20)

The Bayesian decision variable (19) can also be written as

(21)
An observation of (21) is that it has an equivalent form to an
RBF network with Gaussian basis function or kernel.

IV. THE SUPPORTVECTORMACHINE DETECTOR

The optimal detector (21) requires the knowledge of all the
noise-free signal sates, which are unknown to receiver. In
general, the receiver can have access to a block oftraining
samples . For notational convenience, let

and , and denote the training set of
noisy received signal vectors as

(22)

and the set of corresponding class labels as

(23)

Applying the standard SVM method [19], an SVM detector can
be constructed for user

(24)

where the set of Lagrangian multipliers , denoted in the
vector form

(25)

is the solution of the quadratic programming (QP)

(26)
with the constraints

(27)

and

(28)

In this particular application, it is obviously advantageous to
choose the Gaussian kernel function

(29)

where the width parameteris related to the root mean square
of the channel noise, an estimate of which can be obtained.

The offset constant is usually determined from the “margin”
SVs, i.e., those s with the corresponding Lagrangian multi-
pliers . Because the optimal decision boundary,
defined by , passes through the origin of the
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received signal space and possesses certain symmetric proper-
ties due to the symmetric structure of and , can
be used. With this choice of the offset constant, the equality
constraint (28) is no longer needed, and this leads to a simpler
optimization task. The user-defined parametercontrols the
tradeoff between model complexity and training error. In our
application, we will choose empirically.

The set of SVs, denoted by , is given by those s with
nonzero Lagrangian multipliers . is usually
a small subset of the training data set. These SVs are deter-
mined during the optimization process. Thus the SVM MUD
consists of computing the decision variable

(30)

and making the decision with

(31)

Before presenting some simulation results, we emphasize that
the main purpose of this study is to investigate feasibility of the
SVM method as a nonlinear MUD, and we use the standard gra-
dient method to solve for the QP problem (26). Such an opti-
mization technique associated with the SVM method requires a
considerable amount of computation, especially for a large.
The issue of computational efficiency is more general than the
MUD problem. Efficient SVM implementation is an active area
of research (see, for example, [23], [37], and [38]).

V. SIMULATION RESULTS

Two simulation examples were used to investigate the pro-
posed SVM MUD and compare its performance with those of
the linear MMSE and optimal MUDs. It is worth pointing out
again that the linear MMSE MUD and the optimal MUD are
designed based on the complete knowledge of the system (the
system matrix and the noise variance) while the SVM MUD
is trained using a block of the noisy received signal samples.

Example 1: This was a two-user system with four
chips per bit. The code sequences of the two users were

and , respectively, and
the transfer function of the CIR was

(32)

The two users had equal signal power, that is, the user 1 signal
to noise ratio (SNR) was equal to that of user 2 (SNR). Fig. 2
depicts the two subsets of noise-free signal states for user 1 to-
gether with the decision boundaries of the linear MMSE and
optimal Bayesian MUDs, given SNR SNR dB. It
is clear that for user 1 it is not worth to implement a complex
nonlinear detector, as a simple linear detector can perform ade-
quately. However, for user 2, and are not linearly sep-
arable and the linear MMSE detector will have an irreducible
error floor of 0.125, as illustrated in Fig. 3.

Fig. 2. The set of noise-free signal points and the two decision
boundaries (dotted: linear MMSE, solid: optimal) for user 1 of Example
1. SNR = SNR = 16 dB.

Fig. 3. The set of noise-free signal points and the three decision boundaries
(dotted: linear MMSE, thick solid: optimal, thin solid: SVM) for user 2 of
Example 1. SNR = SNR = 20 dB.

TABLE I
INFLUENCE OFC ON CONSTRUCTING THESVM MUD FOR USER2 OF

EXAMPLE 1. SNR = SNR = 20 dB, AND THE NUMBER OF

TRAINING DATA IS 160

TABLE II
INFLUENCE OFC ON CONSTRUCTING THESVM MUD FOR USER2 OF

EXAMPLE 1. SNR = SNR = 15 dB, AND THE NUMBER OF

TRAINING DATA IS 160

To construct an SVM MUD for user 2, 160 training data
points were generated for each given noise variance. The in-
fluence of the parameter on the model complexity and the bit
error rate (BER) of the resulting MUD was first investigated. Ta-
bles I and II summarize the results for two different noise condi-
tions, respectively. It can be seen thathas some influence on
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Fig. 4. Performance comparison of three MUDs for user 2 of Example 1.
SNR = SNR , and the training data set for SVM has 160 samples.

Fig. 5. Performance comparison of two MUDs for user 1 of Example 2. SNR,
1 � i � 3, are identical.

the construction of SVM model, but the solution is not overly
sensitive to it. The decision boundary of the constructed SVM
MUD for user 2 is compared with those of the linear MMSE and
optimal MUD in Fig. 3, given SNR SNR dB. Fig. 4
plots the BERs of the three MUDs for user 2 under different
noise conditions. The results clearly show that the SVM MUD
can closely match the performance of the optimal one-shot de-
tector. For the given training set of 160 points, the number of
SVs were found typically to be around 40.

Example 2: This was a three-user system with eight
chips per bit. The code sequences for the three users were

, , , , ,
and , , ,

respectively, and the transfer function of the CIR was

(33)

The three users had equal signal power. For user 1, the perfor-
mance of the linear MMSE detector is very close to the optimal
detector, as shown in Fig. 5. For users 2 and 3, however, non-
linear MUDs are certainly needed, as can be seen in Fig. 6 and
Fig. 7.

Fig. 6. Performance comparison of three MUDs for user 2 of Example 2.
SNR , 1 � i � 3, are identical, and the training data set for SVM has 640
samples.

Fig. 7. Performance comparison of three MUDs for user 3 of Example 2.
SNR , 1 � i � 3, are identical, and the training data set for SVM has 640
samples.

TABLE III
INFLUENCE OFC ON CONSTRUCTING THESVM MUD FOR USER2 OF

EXAMPLE 2. SNR = 30 dB FOR 1 � i � 3, AND THE NUMBER OF

TRAINING DATA IS 640

TABLE IV
INFLUENCE OFC ON CONSTRUCTING THESVM MUD FOR USER 2 OF

EXAMPLE 2. SNR = 25 dB FOR 1 � i � 3, AND THE NUMBER OF

TRAINING DATA IS 640

The number of training data for constructing SVM models
was 640 for each given noise condition. The influence ofon
the model complexity and performance was again found to be
not overly sensitive, as illustrated in Tables III and IV for the
case of user 2 with two different noise conditions. From the
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training data set of 640 points, typically around 200 SVs were
selected. The BERs of the resulting SVM MUDs for users 2 and
3 are given in Figs. 6 and 7, respectively, in comparison with
the corresponding linear MMSE and optimal one-shot MUDs.
The results again demonstrate that the SVM MUD can closely
approximate the performance of the optimal detector.

We would like to point out that, even though orthogonal
spreading sequences were used in the simulation, the orthog-
onality was destroyed by the ISI channel. Interfering signals
in the simulation were also kept to be relatively strong. The
desired user signal to interference ratio was 0 dB for Example
1 and approximately 5 dB for Example 2.

VI. COMPARISON WITH THECLUSTERINGRBF DETECTOR

Because of its intimate link with the optimal one-shot detector
(21), the RBF model of the form

(34)
is a good candidate for nonlinear MUD. Assuming the number
of the users is known, the number of the centers should be

, and the optimal RBF centers are the set of noise-free
signal states . The width is an estimate of the noise standard
deviation, and the weights can simply be set according to
the class label of the corresponding center, or trained using the
LMS or RLS algorithm. Such an RBF MUD achieves the exact
optimal MUD.

The most efficient way of adaptively placing the RBF centers
to the desired noise-free signal states is the supervised cluster al-
gorithm [31]. In the multiuser detection context, the algorithm
will require to know all the users’ bits from to ,
and this is impractical for downlink. Thus, unsupervised clus-
tering has to be used. The enhanced-means clustering algo-
rithm [32]–[34] is ideal for the RBF MUD. By using a cluster
variation-weighted measure, this algorithm always converges to
an optimal or near optimal cluster configuration, independent of
the initial center locations. Furthermore, the variance of every
cluster is equal after convergence. This property is particular
relevant to our application since all the cluster variances in this
case should be equal.

The enhanced -means clustering method [33] adjusts the
RBF centers according to

(35)

where the membership function

if

otherwise
(36)

and is the “variance” of the th cluster. To estimate , the
following rule is used:

(37)

where is a constant slightly less than 1.0. The initial ,
, can be set to the same small value. The learning rate

for centers, , is self-adjusting based on an “entropy” formula
[33].

To illustrate the optimal properties of the enhanced-means
clustering method, consider the user 2 of Example 1 given in
the previous section with SNR SNR dB. Started
from , , the trajectories of cluster cen-
ters in 10 000-samples adaptation are shown in Fig. 8. Table V
summarizes the final cluster center positions and variations, in
comparison with the true noise-free signal states. Similar clus-
tering performance can be obtained with only 4000 data samples
when the first 16 data points are used as the initial centers, as
illustrated in Fig. 9. The BER performance of such a clustering
RBF MUD is indistinguishable with the optimal one-shot MUD.

The following comparisons for the SVM and clustering RBF
MUDs can be made. The adaptation of the SVM model is based
on a block of data while the clustering RBF is implemented
sample-by-sample. The sample-by-sample adjustment is more
desired in real-time applications. The clustering RBF MUD can
achieve the optimal MUD, provided that a sufficient number of
training data are available. The SVM MUD has an important
advantage as it requires a relatively short training data set. For
our simple Example 1, The SVM MUD requires less than 200
training data. In contrast, the clustering RBF MUD needs a few
thousands of training data, due to the nature of the unsupervised
clustering process. Such a long training data length is difficult
to achieve in practice. As the SVM approach places the kernel
centers directly on some noisy data points called SVs, it will re-
quire more centers than the clustering RBF model. For Example
1, the SVM MUD needs typically 40 kernels to closely match
the optimal performance, while the clustering RBF MUD has
only 16 kernel functions.

VII. CONCLUSION

The SVM technique has been applied to adaptive nonlinear
multiuser detection for DS-CDMA systems. It has been shown
that the SVM MUD can closely match the performance of
the optimal Bayesian one-shot detector with an important
advantage of requiring a relatively small training data set.
Comparisons with an adaptive clustering RBF MUD have been
made. A disadvantage of the SVM approach is its block-based
adaptation nature. Although the SVM approach has an excel-
lent model reduction ability, the resulting SVM MUD still
has a larger model size, in comparison with the number of
noise-free signal states. Future research will investigate how
to reduce the number of support vectors further without sacri-
ficing the BER performance too much and how to incorporate
the sample-by-sample adaptive methodology with the SVM
approach.
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Fig. 8. Cluster center trajectories using the enhanced�-means clustering for
user 2 of Example 1. SNR= SNR = 20 dB, initial centers are all placed at
the origin, and 10 000 data samples are used.

TABLE V
CLUSTER CENTERS ANDVARIATIONS OBTAINED USING THE ENHANCED

�-MEANS CLUSTERING FORUSER2 OF EXAMPLE 1. SNR = SNR = 20 dB
(NOISE VARIANCE 0.001), INITIAL CENTERSARE ALL PLACED AT THE

ORIGIN, AND 10 000 DATA SAMPLES ARE USED

APPENDIX

During one bit period, the chip rate sampler producessam-
ples

(38)

The baseband model for is represented by [36]

...
...

...
. . .

. . .
...

...
(39)

Fig. 9. Cluster center trajectories using the enhanced�-means clustering for
user 2 of Example 1. SNR= SNR = 20 dB, the first 16 data points are used
as initial centers, and 4000 data samples are used.

where the system matrix is defined as

...
...

...
. . .

. . .
(40)

An MUD can directly operate on , instead of the chip-
matched filtered version . For example, an alternative linear
MUD takes the form

(41)

with the -dimensional weight vector .
It is well-known that this linear MUD is equivalent to the linear
MUD of (13). In the -dimensional space , the set of the

noise-free received signal states is defined by

(42)

An optimal Bayesian one-shot detector, similar to (21), can al-
ternatively be defined.
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