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Efficient Training of RBF Neural Networks for Pattern Recognition

Francesco Lampariello and Marco Sciandrone

Abstract—The problem of training a radial basis function (RBF)  suitable initialization range for the network parameters in order
neural network for distinguishing two disjoint sets in R™ is consid-  to ensure that the network activations lie within the normal
ered. The network parameters can be determined by minimizing - oherating region of the sigmoidal function. However, saturation

an error function that measures the degree of success in the recog- tb i ided during th fi inimizati d
nition of a given number of training patterns. In this paper, taking cannot be easily avoided during the entire minimization, an

into account the specific feature of classification problems, where hence it may cause the training process to slow down. For this
the goal is to obtain that the network outputs take values above or reason we limit ourselves to address classification problems

below a fixed threshold, we propose an approach alternative to the via RBF neural networks, where saturation does not occur by a
classical one that makes use of the least-squares error function. In suitable choice of the activation function.

particular, the problem is formulated in terms of a system of non- Th functi | d for traini | net
linear inequalities, and a suitable error function, which depends € error iunction commonly used Tor training a neural net-

only on the violated inequalities, is defined. Then, a training algo- WOrK is theleast-squaretunction. Different error functions can
rithm based on this formulation is presented. Finally, the results be adopted, such as thess-entropy5] or the exponentia[6]
obtained by applying the algorithm to two test problems are com-  fynction, in order to avoid some undesirable effects related to the
pared with those derived by adopting the commonly used least- s of the sum of squares. In the minimization of an error func-
squares error function. The results show the effectiveness of the . f1h kinds. th . d h iDl
proposed approach in RBF network training for pattern recogni- tion 0_ these kinds, the attempt is to reduce as much as pQSSI e
tion, mainly in terms of computational time saving. the differences between the network outputs corresponding to
the given inputs and the label values associated with the training
patterns. In classification problems, however, it is sufficient to
obtain that the network outputs take values above or below a
fixed threshold. During the training process based on the fore-
. INTRODUCTION going error functions, even the patterns that are already correctly

EEDFORWARD neural networks have increasingly beet{assified with respect to the threshold value give a contribution
F used in many areas for the solution of difficult real-world© the overall network error. This may imply a poor convergence
problems. This is due to the approximation capability of theg@te of the optimization algorithm applied, since these patterns
devices, i.e., to the property that any continuous function cull unnecessarily influence both the search direction and the
be approximated within an arbitrary accuracy by means ofSieplength used by the algorithm.
neural network, provided that its topology includes a sufficient On the basis of these observations, we formulate the training
number of hidden nodes (see, e.g., [1]-[4]). Once the archit@oblem simply in terms of a system of nonlinear inequalities
ture has been defined, the network is determined by performia@d. for solving it, we consider taresholderror function to
atraining process, which can be viewed as a nonlinear optimi¥gich only the patterns corresponding to the violated inequali-
tion problem where the goal is to find the network parameteli§s give a contribution. Then, making use of a standard routine
that minimize a suitable error function. This is done by usin@r minimizing an error function of this kind, a specific algo-

a given number of pattern-target pairs, that are samples of tHem is designed by introducing two scalar parameters, which
input—output mapping to be approximated. represent the upper and lower reference levels for the network
Our attention in this paper is focused on the prob|em @ptputs with reSpeCt to the fixed threshold. The values of
training radial basis function (RBF) networks in the field ofhese parameters are automatically updated during the training
pattern recognition, and more specifically for classificatioRrocess, according to the progress made in the recognition of
problems where the task is to assign a label to one of a num#eg training patterns. In this way, it is possible to avoid that the
of discrete classes or categories. In principle, even multilay&lgorithm will converge to points of the parameter space which

perceptron (MLP) neural networks could be considered inste@@ not provide an acceptable solution of the training problem.
of RBF networks. In this connection, we observe that in MLP Finally, the results obtained by applying the algorithm to real
the sigmoidal function is used as activation function, so th@orld data are compared with those obtained by adopting the
saturation of a number of node outputs may occur, i.e., a num§gmmonly used least-squares error function.

of hidden nodes may become insensitive to the training process.
Indeed, prior to training MLP, it is necessary to choose a

Index Terms—Error functions, neural-network training, pattern
recognition.

Il. RBF NETWORKS

A feedforward neural network is a computing device whose
Manuscript received July 30, 1999; revised July 31, 2000. processing units (thaode$ are distributed in adjacent layers
T_he authors are with the Istituto di Anal|3| dei _S|sterr_1| ed Infor-connected through unidirectional links (theeight3. In par-
matica, CNR, 00185 Rome, ltaly (e-mail: lampariello@iasi.rm.cnr.it;. . .
sciandro@iasi.rm.cnr. it). ticular, a RBF network is a fully connected network with one

Publisher Item Identifier S 1045-9227(01)07568-3. “hidden” layer, whose nodes have some radially symmetric
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function as activation function. Such a network implements amd the centers;, ¢/, i =1, ..., n,.. By using a given number
input—output mapping: R™ — R according to N, of pattern-target pairs (the training set)

Ny . TS= l’yd AUB 0,1, I].,...,N
f(x) = Z Aiop(||lz = &) {{zp, dp) € AUB x {0, 1}, p .}
=1

w is to be determined (network training) in order to obtain that

where
z € R" input vector; Vo€ A= flow)=1
#(): Rt — R radially symmetric function; Vz € B= f(z;w)=0.
|- Euclidean norm; ) ) o )
NERGi=1,... 0 weights: The network is trained by minimizing an error functisifw)
GeRYi=1,....n, RBF centers that measures the degree of success in the recognition of the
n, T number of hidden nodes. training patterns in the set TS
Typical choices for the function(||z — ¢'||) are
Ew)= Y Ey(w)
exp(—||z — ¢!||?/20?) (Gaussian function (2p,dp)ETS
2|2 2\1/2 H H H i
(Il = 'lI* + o)/ (Direct multiquadric functioj where E,,(w) is the contribution of patterm,, to the overall

(lz = || + ¢?)~*/2  (Inverse multiquadric function ~ network error. Then, starting from a prefixed vecie(0), new
values of the parameters are iteratively determined to reduce the

whereo > 0 is the so-called “shift parameter.” network error, according to a scheme of the form
The method of RBFs has been used in the theorsnoki-
variable interpolationin high-dimensional space [7], [8]. It has wk + 1) = w(k) + a(k) d(k)

been shown (see, e.g., [2] and [3]) that the RBF network is a uni-
versal approximator for continuous functions, provided that theherea(k) is the stepsizel¢arning rate along the search di-
numbern,. of the hidden nodes is sufficiently large. This proprectiond(k). Letw* be a vector such thad(w*) is sufficiently
erty makes the network a powerful tool for dealing with mangmall. Then, a given pointis recognized to belong td or to B
real world problems. From both theoretical and practical invelsy computingz = f(x, w*) — 0.5, and using the step function
tigations it appears that the performance of the RBF networktisat maps negative numbersnto {0} and nonnegative num-
not greatly influenced by the choice of the activation function bersz into {1}.
However, as observed in the introduction, the use of the directThe commonly used error function is theast-squaregunc-
multiquadric function will avoid automatically saturation of theion
node outputs.
In order to approximate a given nonlinear mapping, the net- E(w)=1/2 Z (dp — f(zp, w))? Q)
work parameters\;, ¢!, i = 1, ..., n,. have to be determined (2p,dp)ETS
by using a finite set of input—output data (training process).
As regards the centerd, they may be chosen randomlyOr & normalized version of it.
among the input data or fixed at specific locations using somelt has been observed that the use of an error function of this
“clustering” technique (see, e.g., [9]), i.e., placed in the regiok¥d may have undesirable effects. For instance, it is possible
where the input data are more meaningful. Then, the weighgt the training algorithm will converge toward regions of the
\; are computed by applying an optimization algorithm foParameter space where the wide majority of patterns are cor-
minimizing a suitable cost function. rectly classified, while a small number of these are severely mis-
A different approach [4] is based on a supervised |eami,qéassified.This may imply poor subsequent improvements in the
process involving both the weights and the centers of the ni@ining process, since the contribution of the few misclassified
work. Although this approach is more complex and computfatterns to the overall error function is overcomed by that of the
tionally more expensive, it usually leads to an improvement Bffmerous correctly classified ones.

the network performance, and hence it will be adopted here. In order to avoid this drawback, some alternative error func-
tions have been proposed. In particular, Setlal.[5] have con-

[ll. PATTERN RECOGNITION VIA NEURAL NETWORKS sidered theross-entropyor logarithmiq) function

Let us consider two disjoint point set§ and B in R™. A E(w) = — Z In [(f(xm w))dp(l — f(=zp, w))lfdp] )
reference value, say 1, is associated to the pointsand a dif- (2p.d,)ETS
ferent value, say 0, to those B. The classification problem (2)

consists in distinguishing the two point sets, i.e., given an arlising this function, the contribution to the error gradient due
trary pointx € AU B, in recognizing whether belongs taA to the misclassified patterns is significantly higher than using
or to B. This problem can be dealt with by using a feedforwarthe least-squares function, making it easier for the algorithm to
neural network. In particular, we consider a RBF network thascape from bad regions of the parameter space. Note that it is
implements the input-output mappirf¢w): R* — R, where necessary to ensufe< f(xp, w) < 1, by suitably rescaling

the parameter vectar ¢ R"~("*+1) is composed of the weights the network outputs.
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A different approach, proposed by Mgller [6], is based on trere satisfied. Then, for solving system (4), we consider the fol-

use of theexponentiakrror function lowing thresholderror function
Bw)=1/2 ) Bw)= Y (max{0, &= f(ap, w)})"
(wp,dp)CTS (zp, 1)ETS
rexpl—a(f(wp, w)—dp + B)(dp—f(wp, w) +5)} + Y (max{0, e+ fap, P! (6)
(3 (2, 0)ETS

whereq and are positive scalars. The function (3) incorporateghereg > 2 is a given integer, which has the following proper-
the constraintd, — f(z,, w)| < B, V(zp, d,) € TS, that ties:

establishes an “acceptable” error lexsdor the network output 1) E(w) is nonnegative;

values with respect to the reference values. During the training2) F(w) = 0 iff w is a solution of system (4);

process, the value g#, initially set to a relatively high level,  3) E(w) is continuously differentiable — 1 times.

is progressively reduced in size. The contribution of a severefygrefore, by 1) and 2), the problem becomes that of finding
misclassified pattern to this error function is significantly highe‘j|0ba| minima of (5).

(depending on the choice of the parametpthan those of the ~ \ye remark that an error function similar to (5) has been con-
patterns for which the constraint is satisfied. In this way, it i§igered by Sontag and Sussmann in [10], where, with reference
unll_kely that the training algorithm will converge toward bag, multilayer perceptron networks, the properties of its local
regions of the parameter space. ‘minima have been analyzed. However, as far as we are aware,

We observe that, in the minimization of (1)~(3), the goal ighe yse of such an error function for addressing the problem of
to reduce as much as possible the differences between the Rgtwork training has not yet been proposed.
work output values corresponding to the given inputs and they; s evident that function (5) is only dependent on the violated
reference values associated with the training patterns, i.e., fhequalities, so that, during its minimization, only the misclas-
algorithm searches for a vectorsuch thatf (z,, w) is as close gified training patterns contribute to the overall error.
as possible to 1 or to 0. . . We observe that, sineemust be small, due to the structure of

In pattern recognition problems, however, it is sufficient tQ,nction (5), there are regions of the parameter space where the
obtain that the network output takes values above or belgera|l error is close to zero and, at the same time, the number
a fixed threshold valuer, i.e., we have to findu such that ot ihe misclassified patterns may be relatively high. Therefore,
f(@p, w) = 7 or f(zp, w) < 7. Therefore, at a given stageihe minimization algorithm could be trapped in one of these re-
of the training process based on the foregoing error functioaﬁms' reaching a point whet(w) ~ 0 with a very low gra-
(in this case, for reference values 0 and 1= 0.5), even the gient norm, which may not provide an acceptable solution of
patterns(z,,, 1) for which f(z,, w) is greater than or equal t0he trajning problem, although representing a “good” solution
0.5, and thosgu,, 0) for which f(z,, w) is lower than 0.5, of the optimization problem. A similar situation cannot occur
although already correctly classified, give a contribution tghen the least-squares function is adopted as error function,
the overall error function. This may imply a poor convergenc§nce in this case an overall error close to zero implies a high
rate of the algorithm used for minimizing(w), since these percentage of correctly classified patterns. In other words, by
C(_)ntnputlons will unnecessarily _mfluence both the searqjlging least-squares based error functions, a good approxima-
direction and the steplength, which are calculated from thg, of a global minimum provides in any case a good solution of

objective function. the training problem, whereas this correspondence may not hold
when function (5) is adopted. In order to overcome this draw-
IV. AN ALTERNATIVE FORMULATION OF THE TRAINING back, we substitute in the threshold error function the fixed tol-
PROBLEM FOR PATTERN RECOGNITION erance: with two adjustable scalar parametéys> 0 andé, >

. . . _ lues of these parameters are systematically reduced, during
suitable error function. In particular, the problem is formulat e minimization process, according to the progress made in the
in terms of a system of noqlinear inequalities as follpws. recognition of the traininé patterns.

Lete > 0 be an ""_rb'tfar."y s_ma_ll real number which repre- | particular, after a certain number of iterations, the per-
sents _the tolerance in dlst|_ngwsh|ng Whethe'f a ”e‘WOT" OUtlQfgntage of the patterns which have been correctly classified
value IS above or below a fixed threshold_A_s discussed in the_ classification accuracy), i.e., the percentage of the satisfied in-
precedmg_ ;ectlon, the RBF rrlleng&r)k training problem ?ons'séﬁualities in system (4), is compared with that corresponding
.Of deter.mlmng a \(ectc'm;' € R™ ) such that the nonl_lnear to the initial point. Then, the minimization process is continued
inequalities (for simplicity and without loss of generality, W& ith the same parameter valués ands; or with suitably re-
assumer = 0) duced ones, depending on whether a sufficient increase in the

classification accuracy has been obtained or not. This procedure
(zp, 1) €TS; is repeated until either all the training patterns have been cor-

4

(xp, 0) € TS rectly classified (or their number is sufficiently large), or both

=

3]

3

&

IA IV
@

< <
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the parameters,, andé, have been reduced at the prefixed tol- Updateé,: Let S, be the setS, = {(z,, 0) € TS: —=6; <
erance. f(xp, wD) < —e} andng, the number of patterns ifi;. If

We note that the use of two parameters instead of a single # §, set
one, is advantageous since it is possible to better handle the
contribution to the overall error of the patterns in each of the
two training subset$z,,, 1} and{z,, 0}. 6 =1/ns, Z Fxp, w).

Formally, we define the following threshold error training (2, 0)ESe
algorithm (TETA). Leté,, and é, be the adjustable scalar pa-
rametersV,, the number of patterns:,, 1) € TS andn,, the We observe first that the initial value of the parametgrand
number of these for whiclf(z,, w) > &, N, the number of &, should be chosen sufficiently large (with respect to the toler-
patterns(xz,, 0) € TS andn, the number of these for which ancee), in order to obtain that the network output values cor-
f(zp, w) < —¢, so thatp,, = n,/N, andp, = n¢/N, are the responding to the patteriis,, 1) become well separated from
fractions of the correctly classified patterns in the two subsethpse corresponding to the pattefps, 0). On the other hand,
6 the minimum relative increase in the classification fraction rehe initial values should be of the same order of magnitude as the
quired for maintaining the value &f, or 6, unaltered and@v the network outputs. Therefore, it appears reasonable to tak&, for
maximum allowed number of iterations performed by a giveandé,, the absolute mean values of the outputs corresponding

algorithm used for minimizing the overall error. to the patterns that are initially already correctly classified in the
two training subsets.
The Training Algorithm TETA Starting from the initial point(*), the optimization algorithm

‘ performs at mos¥ iterations. The numbe¥ should be reason-
Data: Letw(® € R+ be the starting parameter vectorgply large in order to ensure a significant progress in the mini-
€ > 0,6, > ¢ 6 > ¢, 60> 0real numbers andV a positive mjzation ofE(w), so that the choice d¥ should be made taking
Integer. 4 4 into account the convergence properties of the algorithm used.
Step 0: Compute the fractiong{’ andp{” corresponding After A iterations, if the overall classification accuracy has not
to w® of the correctly classified patterns in the two trainingeen sufficiently increased or, possibly, it has been at once re-

subsets of TS and the overall classification accura®y = duced, it is likely that the contribution to the overall error of the
PN, +péZ)NZ)/Np' correctly classified patterns for whieh< f(z,, w) < &, and
Step 1: If p¥ =1, orif 6, < e andé;, < ¢, stop. of those for which-6; < f(x,, w) < —e has been prevailing
Step 2: Starting from the point(”), perform.V iterations of over that of the misclassified patterns. In this case a reduction
a given algorithm for minimizing of the parametef,,, or §,, or both, is beneficial, since some cor-

rectly classified patterns will no more give a contribution and
hence, that of the misclassified patterns will be reinforced. In
articular, we distinguish whether the classification accurac
B(w)=1/2 > (max{0, éu — f(zp, w)})* Eas not been sufﬁciegntly increased in both or in one only of thg
(@, ETS two training subsets. In the first case, both the paraméters
+1/2 Z (max{0, & + f(z,, w)})? (6) and§, are reduced. In the second case, if in both the training
(zp,0)ETS subsets the classification accuracy has been increased, only the
parameter is reduced corresponding to the subset in which the
and letw* be the reached point. Compute the correspondiigcrease was insufficient. If in one subset the classification ac-
fractionsp}, p}, p* = (p} Nu+p; Ne)/Np, and setw™ := w*.  cyracy is decreased, the parameter is reduced corresponding to

Step 3: If (p* — p)/(1 —p) > 6, go to Step 5. the other subset. As regards the updating rul&,aindé,, it is
Step 4: ComputeA,, = (p;;, — pi)/(1 - p) andA, = important that their values be reduced gradually. Then, we take
(v - pg))/(l - pg))- as new values, the means of the outputs corresponding to the

If A, < 6 andA, < 6, then Updaté,, and Update,. patterns in the setS, andS,, provided that the latter are not
If A, > 6, then Updaté, if 0 < A, < 6, or Updates, if €Mpty. Otherwise, the valuég andé, remain unchanged.
A < 0. Finally, it is possible that both the parametérsandé, be-
If A, > 6, then Updaté,, if 0 < A, < 6, or Updates, if come lower than or equal tg and the overall classification ac-
A, < 0. curacy obtained is still unsatisfactory for the problem consid-

ered. Inthis case, since itis unlikely that a further progress could
be obtained, the training algorithm should be restarted by per-
forming a greater numbe¥ of iterations, or with a suitably re-
duced value of the parameterAlternatively, a network having

a greater number of hidden nodes could be considered.

As an example, we compare in the Figs. 1 and 2 the behavior
of Algorithm TETA with that of a training algorithm (LSTA)
that minimizes the least-squares function. Both algorithms use
6, = 1/ns, Z flazp, w). the same minimization routine (E04DGF of the NAG library).

(zp, 1)CS The implementative details are described in the next section.

Step 5: Setp{” := pr, pi := pr, p := p*, and go to Step
1.

Updateé,: Let S, be the setS, = {(z,, 1) € TS:e <
flxp, w?) < 6, andng, the number of patterns if,. If
Su # 0, set
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100 the contribution to the overall error of the patterns that have

been already correctly classified may have a significant influ-
ence on the behavior of a training algorithm (note that this out-
come may result of specific importance in the case where the
J—— network training is to be continued using new available data).
In particular, after 30 000 function evaluations, the LSTA algo-
rithm obtains the classification accuracy of 75.6% for the two
) spirals problem and of 95.7% for the heart problem. Moreover,
Ao LsTa — |  forinstance with reference to the first problem, by increasing the
number of nodes,. at 20 and at 25, after 30 000 function eval-
0 1 5 3 4 3 6 7 g s 10 uations, the percentage of correctly classified patterns becomes
number of function evaluations (in thousands) 95.5% and 98.9%, respectively. On the basis of these results,
it is likely that the LSTA algorithm requires both more hidden
nodes and more training iterations than the TETA algorithm to
achieve perfect performance on a given set of patterns. It could
be of some interest to establish how many more iterations or
nodes are needed, but we observe that perfect performance is
not the goal of network training, since, as well known, the over-
fitting effect will arise at the final stage of the training process.
A more interesting aspect is that the TETA algorithm obtains
a high percentage of correctly classified patterns by performing
a relatively small number of function evaluations, and hence re-
Algorithm TETA —— quiring a limited computation time. Therefore, it is to be ex-
Algorithm LSTA -~ pected a significant time saving by using the TETA algorithm
85 , , . : : : : : . in conjunction with a strategy for ensuring a satisfactory gener-
O b mber of funcyion evaluations (in thowsandsy . &lization property of the trained network, i.e., for obtaining that
even patterns not used in the training process will be correctly
Fig. 2. Performance of the training algorithms for the heart problem. classified, which is the ultimate goal of learning. This aspect
will be considered in the next section, where some experimental
Fig. 1 refers to the two spirals problem, a classical teggsults are reported.
problem, where the task is to discriminate between two sets ofFinally, we observe that the proposed approach refers to
points that are arranged in two interlocking spirals in the plan&class classification problems. However, the same approach
The training set consists 6f, = 720 patterns. The input spacecan be easily extended for classifying multiple subsets, for
dimension is» = 2 and the network is composed of = 15 instance, as follows.
hidden nodes. Let Ay, Ao, ..., A, bem disjoint point sets in?™, and let
Fig. 2 refers to the heart problem [11], where the task is tt$ consider a RBF network having hidden nodes angk out-
predict heart disease, i.e., to decide whether at least one of fouts fx: B" — R, k = 1, ..., m (note that, form = 2,
major vessels is reduced in diameter by more than 50%. Tiwés problem formulation is alternative to that adopted in this
decision is made based on personal data and results of varipager, where networks having a single output are considered).
medical examination. The training set consists\gf = 303 Then, we want to determine the network parameter vegtar
patterns. The input space dimensiomis- 35 and the network R™*"*™) in such a way that, for any patterr), € A, the
is composed of.,, = 25 hidden nodes. output f; is above a fixed threshold and all the other net-
In order to properly compare the behavior of the two algavork outputs are below it. This is equivalent, by assuming again
rithms, the numben,. is taken sufficiently large so as to allow” = 0, to solve the following system of nonlinear inequalities:

4
<
1

Qo
(=
1

----------------

-~
o
)

classiftcation accuracy

[
o
—_——

wn
<

Fig. 1. Performance of the training algorithms for the two spirals problem.

100

classification accuracy

the correct classification of all patterns by the TETA algorithndor k£ = 1, ..., m

Indeed, to obtain perfect performance it is necessary that the set

of pointsw € R™*+1 for which the system of nonlinear in- {fk(xpv w)ze  Vap € Ay
equalities (4) is satisfied [and hence the global minimum of the Julzp, w) < —e, Va,€Aj, j#k

error function (5) is zero] be not empty. This can be ensured pro-

vided that the number of network parameters is large enoughwfteres > 0 is the arbitrarily small tolerance.

is evident that, with the same number of hidden nodes, even byl he search for such a vectar can be performed by mini-
minimizing the least-squares error function it will be possible, ifizing the following threshold error function:

principle, to obtain perfect performance. However, the behavior
of the two algorithms in terms of classification accuracy ob-
tained during the minimization process shows that the training®(w) = o1 Y (max{o, e — falwp, w)})?

m

algorithm that uses the least-squares error function, after the ini- k=1 | @p €Ak
tial progress, does not obtain further significant improvements
in spite of an extended minimization process, while the TETA + Z (max{0, € + fr(xp, w)})?

algorithm continues to obtain a progress. This confirms that x,CA;, j2k
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We can again substitute if(w) the fixed tolerance with the sizes of the training, validation and test sets are 50%, 25%,
two adjustable scalar parametésand é,, or it is even pos- and 25% of the available data, respectively.
sible to use a different padt,, &, for each of then subsets. This
last choice, i.e., the use of multiple “adjustable thresholds,” m@ancer Problem [11]
give rise to a more flexible behavior of the algorithm that min- __ ) ) _
imizes E(w), although the procedure for updating them ma This problem deals with the diagnosis of breast cancer. The

become more complex. An in depth investigation of this aspd@ek IS {0 classify a tumor as either benign or malignant based
could be the topic of further work. on cell descriptions obtained by microscopic examination. This

data set was created for the “Breast Cancer Wisconsin” of the
University of Wisconsin Hospitals, Madison [12].
V. EXPERIMENTAL RESULTS The available data consist of 699 patterns. The training set is
Among the various strategies proposed in the literature fc?mpqseq ofY, = 350 pattern.s, while 1.75 and 174 are usgd
achieving good generalization, we adopt here the easy metf%vahdatmn and test, respectively. The input space dimension
2 ) . X iSn = 9 and we consider networks with. = 5, 10, 15, 20
of performing “early stopping.” In particular, the available datanol o5
are split into three disjoint sets, training, validation and test. '
Then, during the learning process performed by using the pat- .
terns in thegtraining set, the network is periodically tested O%redlt Card Problem [11]
the validation set, every time Step 2 of the TETA algorithm is The task is to predict the approval or nonapproval of a credit
completed, i.e., after everd/ steps of the minimization algo- card for a customer.
rithm. The optimization is stopped when the classification accu- The available data consist of 690 patterns. The training set is
racy on the validation set is lower than the best value achievesimposed ofV,, = 345 patterns, while 173 and 172 are used
five times consecutively. Finally, the generalization capabilitfor validation and test, respectively. The input space dimension
of the trained network is evaluated by computing the classifica&n = 51 and we consider networks with. = 10, 15, 20, 25
tion accuracy on the test set. and 30.

We report here the results obtained by applying the TETA al- The results obtained for these classification problems,
gorithm in conjunction with the described strategy to two clastarting from three different initial points (a, b, c), are shown in
sification problems which consist of real world data taken froMables | and I, where the performance of the TETA and LSTA
the PROBEN1 benchmark site [11]. The aim of the experimerdggorithms is given in terms of classification accuracy for each
is to show the efficiency of the proposed approach in termpgttern subset, and of CPU time (in seconds).
of computational time saving, by comparing the numerical re- We observe first that the behavior of the two algorithms
sults with those obtained by adopting the commonly used leaist-terms of classification accuracy is substantially similar,
squares error function. Obviously, even in this case the eaitylependent of the number of hidden nodes, although, as re-
stopping is performed by testing the network evAriterations. gards the generalization property, the LSTA algorithm obtains

The TETA algorithm has been implemented by applyingn most cases a slightly better percentage. This fact may be
for minimizing the overall error function (6), a preconditioneaxplained by observing that, using the TETA algorithm, less
limited memory quasi-Newton conjugate gradient methaghd less training patterns are qualified as misclassified during
(EO4DGF routine, NAG library). Taking into account thehe training process, and hence, the drastic reduction of the
effectiveness of this standard routine, we have set the maximaommber of patterns involved may give rise to the overfitting
number of iterations at the valué = 100. The values chosen effect, which, however, is limited by the early stopping strategy.

for the other parameters are= 10~5 andé = 0.01. As regards the computational cost, the CPU time employed by
In the starting parameter vector, the weights;, the TETA algorithm is lower than that employed by the LSTA
t=1, ..., n., arerandomly chosen in the interyal0.5, 0.5], algorithm in 24 runs over the 30 performed. The time saving is
whereas the centex$, ¢ = 1, ..., n, are randomly chosen appreciable for both problems in most runs, particularly for the
among the input vectors,,. Cancer problem. In summary, the TETA algorithm performs the

As regards the LSTA algorithm, we used again the EQ4DGtetwork training more quickly than the LSTA algorithm does,
routine, starting from the same initial points as our algorithmwith less accurate results, but the worsening is very limited.

The RBF networks are composed of hidden nodes having thdt is worth noting that, for the cases corresponding.to—
direct multiquadric function as activation function and the shift in Table I, the TETA algorithm stops because both the ad-
parameter is set to = 0.1. The choice of the number, of justable threshold§, andé, have been reduced below the fixed
hidden nodes should be made in accordance with the probleaterances (Step 1), and not by the effect of the early stop-
complexity. Thisis related on one hand to the input space dimgging criterion. Nevertheless, the generalization property of the
sion and the number of the training patterns, and on the othertt@ined network is good, although, as observed, slightly worse
the nonlinearity degree of the decision surface (note, in partittan that obtained by the LSTA algorithm, with computation
ular, that with linearly separable subsets, one hidden node otiiyes clearly lower. On the other hand, even taking into account
is sufficient to achieve perfect performance independent of ttiee results corresponding tg. = 10 in Table I, it does seem
problem dimension). Since we have no control over the lattérat the use of networks with a low number of hidden nodes is
factor, we report here for both the problems considered the rest advisable when the TETA algorithm is applied for training
sults obtained with different values of.. As suggested in [11], them. In fact, the system of nonlinear inequalities (4) could not
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TABLE |
COMPARISON OF THECLASSIFICATION ACCURACY OBTAINED AND THE CPU TiIME EMPLOYED BY ALGORITHMS TETA AND LSTA (FIRST AND SECOND NUMBER,
RESPECTIVELY, IN EACH COLUMN) FOR THE CANCER PROBLEM, STARTING FROM THREE DIFFERENTINITIAL POINTS. 2. IS THENUMBER OF HIDDEN NODES

i.p. | training (%) | validation (%) test (%) time (sec.)

a 96.30 - 96.87 98.28 - 98.28 97.15 - 99.43 215 - 4234
n, =5 b 95.44 - 96.30 97.70 - 98.28 97.15 - 98.28 71- 231
c 95.73 - 96.30 98.28 - 98.28 97.70 - 98.85 247 - 3205

a 96.87 - 99.14 98.28 - 98.85 97.70 - 98.28 | 221 - 1436
n, = 10 b 95.73-97.15 98.28 - 98.28 97.70 - 98.85 49 - 610
c 98.28 - 97.15 98.28 - 98.28 98.28 - 98.85 | 230- 612

a 95.73 - 98.58 98.28 - 98.85 97.70 - 98.85 185 - 1131
n, =15 b 96.59 - 98.87 98.85 - 98.85 97.15 - 98.85 108 - 2065
c 98.85 - 96.59 98.28 - 98.85 98.28 - 98.28 240 - 225
a 99.72 - 96.59 98.85 - 98.28 98.28 - 98.28 271- 49
n, =20 b 97.15 - 98.28 98.85 - 98.85 98.85 - 99.43 130 - 1802
c 98.58 - 99.14 98.28 - 98.85 96.55 - 98.28 | 323 - 3307
a 99.43 - 98.58 98.85 - 98.28 98.28 - 98.85 | 394 - 2917
n, =25 b 99.43 - 98.85 98.85 - 98.85 98.85-99.43 | 342-4788

c 99.43 - 98.58 98.28 - 98.85 97.70 - 99.43 | 345- 3780

TABLE I
COMPARISON OF THECLASSIFICATION ACCURACY OBTAINED AND THE CPU TiIME EMPLOYED BY ALGORITHMS TETA AND LSTA (FIRST AND SECOND NUMBER,
RESPECTIVELY, IN EACH COLUMN) FOR THECREDIT CARD PROBLEM, STARTING FROM THREE DIFFERENT INITIAL POINTS. 7n,. IS THENUMBER OF HIDDEN NODES

i.p. | training (%) | validation (%) test (%) time (sec.)

a 88.73 - 89.02 88.96 - 90.12 86.05 - 87.80 | 1214 - 1532
n, =10 b 88.44 - 87.28 88.96 - 89.54 85.46 - 86.63 810- 571
c 88.16 - 87.57 90.12 - 89.54 86.63 - 86.63 | 1229 - 234

a 87.87 - 88.44 88.38 - 89.54 86.05 - 86.63 458 - 525
n, =15 b 89.60 - 87.87 88.38 - 89.54 87.20 - 86.63 183 - 353
c 88.44 - 90.18 89.54 - 88.96 86.05 - 88.96 456 - 2614

a 90.18 - 88.73 88.38 - 89.54 87.20 - 87.20 489 - 248
n, = 20 b 91.33 - 89.30 88.38 - 89.54 88.96 - 87.80 487 - 1175
c 88.73 - 89.02 89.54 - 89.54 87.80 - 87.20 490 - 718
a 90.45 - 89.60 88.38 - 89.54 87.80 - 87.80 | 1817- 901
n, =25 b 91.05 - 91.33 87.80 - 89.96 88.38 - 89.54 | 1517 - 3466
c 92.49 - 89.02 87.20 - 89.54 86.63 - 88.38 906 - 1215
a 91.33 - 89.30 87.80 - 89.54 88.96 - 88.38 390- 722
n, = 30 b 90.75 - 91.33 88.38 - 88.96 87.80 - 88.38 185 - 4858

c 88.73 - 90.18 89.54 - 88.96 88.38 - 88.96 777 - 1767
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