
28 March 2024

Efficient training of RBF neural networks for pattern recognition / F. LAMPARIELLO; M. SCIANDRONE. - In:
IEEE TRANSACTIONS ON NEURAL NETWORKS. - ISSN 1045-9227. - STAMPA. - 12:(2001), pp. 1235-1242.

Original Citation:

Efficient training of RBF neural networks for pattern recognition.

Publisher:

Terms of use:

Publisher copyright claim:

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/256059 since:

IEEE / Institute of Electrical and Electronics Engineers Incorporated:445 Hoes Lane:Piscataway, NJ 08854:

Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 5, SEPTEMBER 2001 1235

Efficient Training of RBF Neural Networks for Pattern Recognition
Francesco Lampariello and Marco Sciandrone

Abstract—The problem of training a radial basis function (RBF)
neural network for distinguishing two disjoint sets in is consid-
ered. The network parameters can be determined by minimizing
an error function that measures the degree of success in the recog-
nition of a given number of training patterns. In this paper, taking
into account the specific feature of classification problems, where
the goal is to obtain that the network outputs take values above or
below a fixed threshold, we propose an approach alternative to the
classical one that makes use of the least-squares error function. In
particular, the problem is formulated in terms of a system of non-
linear inequalities, and a suitable error function, which depends
only on the violated inequalities, is defined. Then, a training algo-
rithm based on this formulation is presented. Finally, the results
obtained by applying the algorithm to two test problems are com-
pared with those derived by adopting the commonly used least-
squares error function. The results show the effectiveness of the
proposed approach in RBF network training for pattern recogni-
tion, mainly in terms of computational time saving.

Index Terms—Error functions, neural-network training, pattern
recognition.

I. INTRODUCTION

FEEDFORWARD neural networks have increasingly been
used in many areas for the solution of difficult real-world

problems. This is due to the approximation capability of these
devices, i.e., to the property that any continuous function can
be approximated within an arbitrary accuracy by means of a
neural network, provided that its topology includes a sufficient
number of hidden nodes (see, e.g., [1]–[4]). Once the architec-
ture has been defined, the network is determined by performing
a training process, which can be viewed as a nonlinear optimiza-
tion problem where the goal is to find the network parameters
that minimize a suitable error function. This is done by using
a given number of pattern-target pairs, that are samples of the
input–output mapping to be approximated.

Our attention in this paper is focused on the problem of
training radial basis function (RBF) networks in the field of
pattern recognition, and more specifically for classification
problems where the task is to assign a label to one of a number
of discrete classes or categories. In principle, even multilayer
perceptron (MLP) neural networks could be considered instead
of RBF networks. In this connection, we observe that in MLP
the sigmoidal function is used as activation function, so that
saturation of a number of node outputs may occur, i.e., a number
of hidden nodes may become insensitive to the training process.
Indeed, prior to training MLP, it is necessary to choose a

Manuscript received July 30, 1999; revised July 31, 2000.
The authors are with the Istituto di Analisi dei Sistemi ed Infor-

matica, CNR, 00185 Rome, Italy (e-mail: lampariello@iasi.rm.cnr.it;
sciandro@iasi.rm.cnr.it).

Publisher Item Identifier S 1045-9227(01)07568-3.

suitable initialization range for the network parameters in order
to ensure that the network activations lie within the normal
operating region of the sigmoidal function. However, saturation
cannot be easily avoided during the entire minimization, and
hence it may cause the training process to slow down. For this
reason we limit ourselves to address classification problems
via RBF neural networks, where saturation does not occur by a
suitable choice of the activation function.

The error function commonly used for training a neural net-
work is theleast-squaresfunction. Different error functions can
be adopted, such as thecross-entropy[5] or theexponential[6]
function, in order to avoid some undesirable effects related to the
use of the sum of squares. In the minimization of an error func-
tion of these kinds, the attempt is to reduce as much as possible
the differences between the network outputs corresponding to
the given inputs and the label values associated with the training
patterns. In classification problems, however, it is sufficient to
obtain that the network outputs take values above or below a
fixed threshold. During the training process based on the fore-
going error functions, even the patterns that are already correctly
classified with respect to the threshold value give a contribution
to the overall network error. This may imply a poor convergence
rate of the optimization algorithm applied, since these patterns
will unnecessarily influence both the search direction and the
steplength used by the algorithm.

On the basis of these observations, we formulate the training
problem simply in terms of a system of nonlinear inequalities
and, for solving it, we consider athresholderror function to
which only the patterns corresponding to the violated inequali-
ties give a contribution. Then, making use of a standard routine
for minimizing an error function of this kind, a specific algo-
rithm is designed by introducing two scalar parameters, which
represent the upper and lower reference levels for the network
outputs with respect to the fixed threshold. The values of
these parameters are automatically updated during the training
process, according to the progress made in the recognition of
the training patterns. In this way, it is possible to avoid that the
algorithm will converge to points of the parameter space which
do not provide an acceptable solution of the training problem.

Finally, the results obtained by applying the algorithm to real
world data are compared with those obtained by adopting the
commonly used least-squares error function.

II. RBF NETWORKS

A feedforward neural network is a computing device whose
processing units (thenodes) are distributed in adjacent layers
connected through unidirectional links (theweights). In par-
ticular, a RBF network is a fully connected network with one
“hidden” layer, whose nodes have some radially symmetric

1045–9227/01$10.00 © 2001 IEEE

1236 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 5, SEPTEMBER 2001

function as activation function. Such a network implements an
input–output mapping according to

where
input vector;
radially symmetric function;
Euclidean norm;

, weights;
, RBF centers;

number of hidden nodes.
Typical choices for the function are

Gaussian function

Direct multiquadric function

Inverse multiquadric function

where is the so-called “shift parameter.”
The method of RBFs has been used in the theory ofmulti-

variable interpolationin high-dimensional space [7], [8]. It has
been shown (see, e.g., [2] and [3]) that the RBF network is a uni-
versal approximator for continuous functions, provided that the
number of the hidden nodes is sufficiently large. This prop-
erty makes the network a powerful tool for dealing with many
real world problems. From both theoretical and practical inves-
tigations it appears that the performance of the RBF network is
not greatly influenced by the choice of the activation function.
However, as observed in the introduction, the use of the direct
multiquadric function will avoid automatically saturation of the
node outputs.

In order to approximate a given nonlinear mapping, the net-
work parameters , have to be determined
by using a finite set of input–output data (training process).

As regards the centers , they may be chosen randomly
among the input data or fixed at specific locations using some
“clustering” technique (see, e.g., [9]), i.e., placed in the regions
where the input data are more meaningful. Then, the weights

are computed by applying an optimization algorithm for
minimizing a suitable cost function.

A different approach [4] is based on a supervised learning
process involving both the weights and the centers of the net-
work. Although this approach is more complex and computa-
tionally more expensive, it usually leads to an improvement of
the network performance, and hence it will be adopted here.

III. PATTERN RECOGNITION VIA NEURAL NETWORKS

Let us consider two disjoint point sets and in . A
reference value, say 1, is associated to the points inand a dif-
ferent value, say 0, to those in. The classification problem
consists in distinguishing the two point sets, i.e., given an arbi-
trary point , in recognizing whether belongs to
or to . This problem can be dealt with by using a feedforward
neural network. In particular, we consider a RBF network that
implements the input–output mapping , where
the parameter vector is composed of the weights

and the centers , . By using a given number
of pattern-target pairs (the training set)

TS

is to be determined (network training) in order to obtain that

The network is trained by minimizing an error function
that measures the degree of success in the recognition of the
training patterns in the set TS

where is the contribution of pattern to the overall
network error. Then, starting from a prefixed vector , new
values of the parameters are iteratively determined to reduce the
network error, according to a scheme of the form

where is the stepsize (learning rate) along the search di-
rection . Let be a vector such that is sufficiently
small. Then, a given point is recognized to belong to or to
by computing , and using the step function
that maps negative numbersinto and nonnegative num-
bers into .

The commonly used error function is theleast-squaresfunc-
tion

(1)

or a normalized version of it.
It has been observed that the use of an error function of this

kind may have undesirable effects. For instance, it is possible
that the training algorithm will converge toward regions of the
parameter space where the wide majority of patterns are cor-
rectly classified, while a small number of these are severely mis-
classified. This may imply poor subsequent improvements in the
training process, since the contribution of the few misclassified
patterns to the overall error function is overcomed by that of the
numerous correctly classified ones.

In order to avoid this drawback, some alternative error func-
tions have been proposed. In particular, Sollaet al.[5] have con-
sidered thecross-entropy(or logarithmic) function

(2)
Using this function, the contribution to the error gradient due
to the misclassified patterns is significantly higher than using
the least-squares function, making it easier for the algorithm to
escape from bad regions of the parameter space. Note that it is
necessary to ensure , by suitably rescaling
the network outputs.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 5, SEPTEMBER 2001 1237

A different approach, proposed by Møller [6], is based on the
use of theexponentialerror function

(3)

where and are positive scalars. The function (3) incorporates
the constraint , TS, that
establishes an “acceptable” error levelfor the network output
values with respect to the reference values. During the training
process, the value of, initially set to a relatively high level,
is progressively reduced in size. The contribution of a severely
misclassified pattern to this error function is significantly higher
(depending on the choice of the parameter) than those of the
patterns for which the constraint is satisfied. In this way, it is
unlikely that the training algorithm will converge toward bad
regions of the parameter space.

We observe that, in the minimization of (1)–(3), the goal is
to reduce as much as possible the differences between the net-
work output values corresponding to the given inputs and the
reference values associated with the training patterns, i.e., the
algorithm searches for a vectorsuch that is as close
as possible to 1 or to 0.

In pattern recognition problems, however, it is sufficient to
obtain that the network output takes values above or below
a fixed threshold value , i.e., we have to find such that

or . Therefore, at a given stage
of the training process based on the foregoing error functions
(in this case, for reference values 0 and 1,), even the
patterns for which is greater than or equal to
0.5, and those for which is lower than 0.5,
although already correctly classified, give a contribution to
the overall error function. This may imply a poor convergence
rate of the algorithm used for minimizing , since these
contributions will unnecessarily influence both the search
direction and the steplength, which are calculated from the
objective function.

IV. A N ALTERNATIVE FORMULATION OF THE TRAINING

PROBLEM FORPATTERN RECOGNITION

We propose here an alternative approach that takes into ac-
count the specific feature of pattern recognition, by defining a
suitable error function. In particular, the problem is formulated
in terms of a system of nonlinear inequalities as follows.

Let be an arbitrarily small real number which repre-
sents the tolerance in distinguishing whether a network output
value is above or below a fixed threshold. As discussed in the
preceding section, the RBF network training problem consists
of determining a vector such that the nonlinear
inequalities (for simplicity and without loss of generality, we
assume)

TS;

TS
(4)

are satisfied. Then, for solving system (4), we consider the fol-
lowing thresholderror function

(5)

where is a given integer, which has the following proper-
ties:

1) is nonnegative;
2) iff is a solution of system (4);
3) is continuously differentiable times.

Therefore, by 1) and 2), the problem becomes that of finding
global minima of (5).

We remark that an error function similar to (5) has been con-
sidered by Sontag and Sussmann in [10], where, with reference
to multilayer perceptron networks, the properties of its local
minima have been analyzed. However, as far as we are aware,
the use of such an error function for addressing the problem of
network training has not yet been proposed.

It is evident that function (5) is only dependent on the violated
inequalities, so that, during its minimization, only the misclas-
sified training patterns contribute to the overall error.

We observe that, sincemust be small, due to the structure of
function (5), there are regions of the parameter space where the
overall error is close to zero and, at the same time, the number
of the misclassified patterns may be relatively high. Therefore,
the minimization algorithm could be trapped in one of these re-
gions, reaching a point where with a very low gra-
dient norm, which may not provide an acceptable solution of
the training problem, although representing a “good” solution
of the optimization problem. A similar situation cannot occur
when the least-squares function is adopted as error function,
since in this case an overall error close to zero implies a high
percentage of correctly classified patterns. In other words, by
using least-squares based error functions, a good approxima-
tion of a global minimum provides in any case a good solution of
the training problem, whereas this correspondence may not hold
when function (5) is adopted. In order to overcome this draw-
back, we substitute in the threshold error function the fixed tol-
erance with two adjustable scalar parameters and
, which represent the upper and lower reference levels for the

network output values with respect to the fixed threshold. The
values of these parameters are systematically reduced, during
the minimization process, according to the progress made in the
recognition of the training patterns.

In particular, after a certain number of iterations, the per-
centage of the patterns which have been correctly classified
(classification accuracy), i.e., the percentage of the satisfied in-
equalities in system (4), is compared with that corresponding
to the initial point. Then, the minimization process is continued
with the same parameter values and or with suitably re-
duced ones, depending on whether a sufficient increase in the
classification accuracy has been obtained or not. This procedure
is repeated until either all the training patterns have been cor-
rectly classified (or their number is sufficiently large), or both

1238 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 5, SEPTEMBER 2001

the parameters and have been reduced at the prefixed tol-
erance.

We note that the use of two parameters instead of a single
one, is advantageous since it is possible to better handle the
contribution to the overall error of the patterns in each of the
two training subsets and .

Formally, we define the following threshold error training
algorithm (TETA). Let and be the adjustable scalar pa-
rameters, the number of patterns TS and the
number of these for which , the number of
patterns TS and the number of these for which

, so that and are the
fractions of the correctly classified patterns in the two subsets,

the minimum relative increase in the classification fraction re-
quired for maintaining the value of or unaltered and the
maximum allowed number of iterations performed by a given
algorithm used for minimizing the overall error.

The Training Algorithm TETA

Data: Let be the starting parameter vector,
, , , real numbers and a positive

integer.
Step 0: Compute the fractions and corresponding

to of the correctly classified patterns in the two training
subsets of TS and the overall classification accuracy

.
Step 1: If , or if and , stop.
Step 2: Starting from the point , perform iterations of

a given algorithm for minimizing

(6)

and let be the reached point. Compute the corresponding
fractions , , , and set .

Step 3: If , go to Step 5.
Step 4: Compute and

.

If and , then Update and Update .
If , then Update if , or Update if

.
If , then Update if , or Update if

.

Step 5: Set , , , and go to Step
1.

Update : Let be the set: TS:
and the number of patterns in . If

, set

Update : Let be the set: :
and the number of patterns in . If

, set

We observe first that the initial value of the parametersand
should be chosen sufficiently large (with respect to the toler-

ance), in order to obtain that the network output values cor-
responding to the patterns become well separated from
those corresponding to the patterns . On the other hand,
the initial values should be of the same order of magnitude as the
network outputs. Therefore, it appears reasonable to take, for
and , the absolute mean values of the outputs corresponding
to the patterns that are initially already correctly classified in the
two training subsets.

Starting from the initial point , the optimization algorithm
performs at most iterations. The number should be reason-
ably large in order to ensure a significant progress in the mini-
mization of , so that the choice of should be made taking
into account the convergence properties of the algorithm used.
After iterations, if the overall classification accuracy has not
been sufficiently increased or, possibly, it has been at once re-
duced, it is likely that the contribution to the overall error of the
correctly classified patterns for which and
of those for which has been prevailing
over that of the misclassified patterns. In this case a reduction
of the parameter , or , or both, is beneficial, since some cor-
rectly classified patterns will no more give a contribution and
hence, that of the misclassified patterns will be reinforced. In
particular, we distinguish whether the classification accuracy
has not been sufficiently increased in both or in one only of the
two training subsets. In the first case, both the parameters
and are reduced. In the second case, if in both the training
subsets the classification accuracy has been increased, only the
parameter is reduced corresponding to the subset in which the
increase was insufficient. If in one subset the classification ac-
curacy is decreased, the parameter is reduced corresponding to
the other subset. As regards the updating rule ofand , it is
important that their values be reduced gradually. Then, we take
as new values, the means of the outputs corresponding to the
patterns in the sets and , provided that the latter are not
empty. Otherwise, the values and remain unchanged.

Finally, it is possible that both the parametersand be-
come lower than or equal to, and the overall classification ac-
curacy obtained is still unsatisfactory for the problem consid-
ered. In this case, since it is unlikely that a further progress could
be obtained, the training algorithm should be restarted by per-
forming a greater number of iterations, or with a suitably re-
duced value of the parameter. Alternatively, a network having
a greater number of hidden nodes could be considered.

As an example, we compare in the Figs. 1 and 2 the behavior
of Algorithm TETA with that of a training algorithm (LSTA)
that minimizes the least-squares function. Both algorithms use
the same minimization routine (E04DGF of the NAG library).
The implementative details are described in the next section.

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 5, SEPTEMBER 2001 1239

Fig. 1. Performance of the training algorithms for the two spirals problem.

Fig. 2. Performance of the training algorithms for the heart problem.

Fig. 1 refers to the two spirals problem, a classical test
problem, where the task is to discriminate between two sets of
points that are arranged in two interlocking spirals in the plane.
The training set consists of patterns. The input space
dimension is and the network is composed of
hidden nodes.

Fig. 2 refers to the heart problem [11], where the task is to
predict heart disease, i.e., to decide whether at least one of four
major vessels is reduced in diameter by more than 50%. The
decision is made based on personal data and results of various
medical examination. The training set consists of
patterns. The input space dimension is and the network
is composed of hidden nodes.

In order to properly compare the behavior of the two algo-
rithms, the number is taken sufficiently large so as to allow
the correct classification of all patterns by the TETA algorithm.
Indeed, to obtain perfect performance it is necessary that the set
of points for which the system of nonlinear in-
equalities (4) is satisfied [and hence the global minimum of the
error function (5) is zero] be not empty. This can be ensured pro-
vided that the number of network parameters is large enough. It
is evident that, with the same number of hidden nodes, even by
minimizing the least-squares error function it will be possible, in
principle, to obtain perfect performance. However, the behavior
of the two algorithms in terms of classification accuracy ob-
tained during the minimization process shows that the training
algorithm that uses the least-squares error function, after the ini-
tial progress, does not obtain further significant improvements
in spite of an extended minimization process, while the TETA
algorithm continues to obtain a progress. This confirms that

the contribution to the overall error of the patterns that have
been already correctly classified may have a significant influ-
ence on the behavior of a training algorithm (note that this out-
come may result of specific importance in the case where the
network training is to be continued using new available data).
In particular, after 30 000 function evaluations, the LSTA algo-
rithm obtains the classification accuracy of 75.6% for the two
spirals problem and of 95.7% for the heart problem. Moreover,
for instance with reference to the first problem, by increasing the
number of nodes at 20 and at 25, after 30 000 function eval-
uations, the percentage of correctly classified patterns becomes
95.5% and 98.9%, respectively. On the basis of these results,
it is likely that the LSTA algorithm requires both more hidden
nodes and more training iterations than the TETA algorithm to
achieve perfect performance on a given set of patterns. It could
be of some interest to establish how many more iterations or
nodes are needed, but we observe that perfect performance is
not the goal of network training, since, as well known, the over-
fitting effect will arise at the final stage of the training process.

A more interesting aspect is that the TETA algorithm obtains
a high percentage of correctly classified patterns by performing
a relatively small number of function evaluations, and hence re-
quiring a limited computation time. Therefore, it is to be ex-
pected a significant time saving by using the TETA algorithm
in conjunction with a strategy for ensuring a satisfactory gener-
alization property of the trained network, i.e., for obtaining that
even patterns not used in the training process will be correctly
classified, which is the ultimate goal of learning. This aspect
will be considered in the next section, where some experimental
results are reported.

Finally, we observe that the proposed approach refers to
2-class classification problems. However, the same approach
can be easily extended for classifying multiple subsets, for
instance, as follows.

Let be disjoint point sets in , and let
us consider a RBF network having hidden nodes and out-
puts , (note that, for ,
this problem formulation is alternative to that adopted in this
paper, where networks having a single output are considered).
Then, we want to determine the network parameter vector

in such a way that, for any pattern , the
output is above a fixed threshold and all the other net-
work outputs are below it. This is equivalent, by assuming again

, to solve the following system of nonlinear inequalities:
for

where is the arbitrarily small tolerance.
The search for such a vector can be performed by mini-

mizing the following threshold error function:

1240 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 5, SEPTEMBER 2001

We can again substitute in the fixed tolerance with
two adjustable scalar parametersand , or it is even pos-
sible to use a different pair for each of the subsets. This
last choice, i.e., the use of multiple “adjustable thresholds,” may
give rise to a more flexible behavior of the algorithm that min-
imizes , although the procedure for updating them may
become more complex. An in depth investigation of this aspect
could be the topic of further work.

V. EXPERIMENTAL RESULTS

Among the various strategies proposed in the literature for
achieving good generalization, we adopt here the easy method
of performing “early stopping.” In particular, the available data
are split into three disjoint sets, training, validation and test.
Then, during the learning process performed by using the pat-
terns in the training set, the network is periodically tested on
the validation set, every time Step 2 of the TETA algorithm is
completed, i.e., after every steps of the minimization algo-
rithm. The optimization is stopped when the classification accu-
racy on the validation set is lower than the best value achieved
five times consecutively. Finally, the generalization capability
of the trained network is evaluated by computing the classifica-
tion accuracy on the test set.

We report here the results obtained by applying the TETA al-
gorithm in conjunction with the described strategy to two clas-
sification problems which consist of real world data taken from
the PROBEN1 benchmark site [11]. The aim of the experiments
is to show the efficiency of the proposed approach in terms
of computational time saving, by comparing the numerical re-
sults with those obtained by adopting the commonly used least-
squares error function. Obviously, even in this case the early
stopping is performed by testing the network everyiterations.

The TETA algorithm has been implemented by applying,
for minimizing the overall error function (6), a preconditioned
limited memory quasi-Newton conjugate gradient method
(E04DGF routine, NAG library). Taking into account the
effectiveness of this standard routine, we have set the maximum
number of iterations at the value . The values chosen
for the other parameters are and .

In the starting parameter vector, the weights ,
, are randomly chosen in the interval ,

whereas the centers, are randomly chosen
among the input vectors .

As regards the LSTA algorithm, we used again the E04DGF
routine, starting from the same initial points as our algorithm.

The RBF networks are composed of hidden nodes having the
direct multiquadric function as activation function and the shift
parameter is set to . The choice of the number of
hidden nodes should be made in accordance with the problem
complexity. This is related on one hand to the input space dimen-
sion and the number of the training patterns, and on the other, to
the nonlinearity degree of the decision surface (note, in partic-
ular, that with linearly separable subsets, one hidden node only
is sufficient to achieve perfect performance independent of the
problem dimension). Since we have no control over the latter
factor, we report here for both the problems considered the re-
sults obtained with different values of . As suggested in [11],

the sizes of the training, validation and test sets are 50%, 25%,
and 25% of the available data, respectively.

Cancer Problem [11]

This problem deals with the diagnosis of breast cancer. The
task is to classify a tumor as either benign or malignant based
on cell descriptions obtained by microscopic examination. This
data set was created for the “Breast Cancer Wisconsin” of the
University of Wisconsin Hospitals, Madison [12].

The available data consist of 699 patterns. The training set is
composed of patterns, while 175 and 174 are used
for validation and test, respectively. The input space dimension
is and we consider networks with
and 25.

Credit Card Problem [11]

The task is to predict the approval or nonapproval of a credit
card for a customer.

The available data consist of 690 patterns. The training set is
composed of patterns, while 173 and 172 are used
for validation and test, respectively. The input space dimension
is and we consider networks with
and 30.

The results obtained for these classification problems,
starting from three different initial points (a, b, c), are shown in
Tables I and II, where the performance of the TETA and LSTA
algorithms is given in terms of classification accuracy for each
pattern subset, and of CPU time (in seconds).

We observe first that the behavior of the two algorithms
in terms of classification accuracy is substantially similar,
independent of the number of hidden nodes, although, as re-
gards the generalization property, the LSTA algorithm obtains
in most cases a slightly better percentage. This fact may be
explained by observing that, using the TETA algorithm, less
and less training patterns are qualified as misclassified during
the training process, and hence, the drastic reduction of the
number of patterns involved may give rise to the overfitting
effect, which, however, is limited by the early stopping strategy.
As regards the computational cost, the CPU time employed by
the TETA algorithm is lower than that employed by the LSTA
algorithm in 24 runs over the 30 performed. The time saving is
appreciable for both problems in most runs, particularly for the
Cancer problem. In summary, the TETA algorithm performs the
network training more quickly than the LSTA algorithm does,
with less accurate results, but the worsening is very limited.

It is worth noting that, for the cases corresponding to
in Table I, the TETA algorithm stops because both the ad-

justable thresholds and have been reduced below the fixed
tolerance (Step 1), and not by the effect of the early stop-
ping criterion. Nevertheless, the generalization property of the
trained network is good, although, as observed, slightly worse
than that obtained by the LSTA algorithm, with computation
times clearly lower. On the other hand, even taking into account
the results corresponding to in Table II, it does seem
that the use of networks with a low number of hidden nodes is
not advisable when the TETA algorithm is applied for training
them. In fact, the system of nonlinear inequalities (4) could not

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 5, SEPTEMBER 2001 1241

TABLE I
COMPARISON OF THECLASSIFICATION ACCURACY OBTAINED AND THE CPU TIME EMPLOYED BY ALGORITHMS TETA AND LSTA (FIRST AND SECONDNUMBER,

RESPECTIVELY, IN EACH COLUMN) FOR THECANCER PROBLEM, STARTING FROM THREEDIFFERENTINITIAL POINTS. n IS THENUMBER OFHIDDEN NODES

TABLE II
COMPARISON OF THECLASSIFICATION ACCURACY OBTAINED AND THE CPU TIME EMPLOYED BY ALGORITHMS TETA AND LSTA (FIRST AND SECONDNUMBER,
RESPECTIVELY, IN EACH COLUMN) FOR THECREDIT CARD PROBLEM, STARTING FROM THREEDIFFERENTINITIAL POINTS. n IS THENUMBER OFHIDDEN NODES

admit a solution when the number of network parameters is rel-
atively small with respect to that of the training patterns. In this
case, the TETA algorithm, which concentrates on the misclas-
sified patterns only, will not easily obtain further improvements
during the minimization process, since, unavoidably, some pat-
terns that were correctly classified will become misclassified.

In conclusion, although the numerical experience reported
here is not particularly extensive, on the basis of the results ob-
tained it appears that the use of a threshold-type error function
and the definition of a suitable algorithmic scheme for handling
its minimization represent an attractive approach in RBF net-
work training for pattern recognition.

REFERENCES

[1] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,”Neural Networks, vol. 2, pp.
359–366, 1989.

[2] E. J. Hartman, J. D. Keeler, and J. M. Kowalsky, “Layered neural net-
works with Gaussian hidden units as universal approximators,”Neural
Comput., vol. 2, pp. 210–215, 1990.

[3] F. Girosi and T. Poggio, “Networks and the best approximation prop-
erty,” Biol. Cybern., vol. 63, pp. 169–176, 1990.

[4] T. Poggio and F. Girosi, “Networks for approximation and learning,”
Proc. IEEE, vol. 78, no. 9, pp. 1481–1497, 1990.

[5] S. A. Solla, E. Levin, and M. Fleisher, “Accelerated learning in layered
neural networks,”Complex Syst., vol. 2, pp. 625–640, 1989.

[6] M. Møller, “Efficient training of feedforward neural networks,” Ph.D.
dissertation, Daimi PB-464, Computer Science Department, Aarhus
University, 1993.

[7] C. A. Micchelli, “Interpolation of scattered data: Distance matrices and
conditionally positive definite function,”Construct. Approx., vol. 2, pp.
11–22, 1986.

[8] M. J. D. Powell, “Radial basis function approximations to polyno-
mials,” in Proc. 12th Biennial Numerical Anal. Conf., Dundee, 1987,
pp. 223–241.

[9] M. T. Musavi, W. Ahmed, K. h. Chan, K. B. Faris, and D. M. Hummels,
“On the training of radial basis function classifiers,”Neural Networks,
vol. 5, pp. 595–603, 1992.

1242 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 5, SEPTEMBER 2001

[10] E. D. Sontag and H. J. Sussmann, “Backpropagation separates where
perceptrons do,”Neural Networks, vol. 4, pp. 243–249, 1991.

[11] L. Prechelt, “PROBEN1-A set of neural network benchmark problems
and benchmarking rules,” Fakultät für Informatik, Universität Karl-
sruhe, Karlsruhe, Germany, Tech. Rep. 21/94, 1994.

[12] O. L. Mangasarian and W. H. Wolberg, “Cancer diagnosis via linear
programming,”SIAM News, vol. 23, pp. 1–18, 1990.

