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Abstract— A multiresolution representation for video signals is intro-
duced. A three dimensional spatiotemporal pyramid algorithm for high
quality compression of advanced television sequences is presented. The
scheme utilizes a finite memory structure and is robust to channel errors,
provides compatible subchannels, and can handle different scan formats,
thus it is well-suited for the broadcast environment. Additional features
such as fast random access and reverse playback make it suitable for
digital storage as well. Model based processing is used both over space
and time, where motion based interpolation is used. Such as interpola-
tion in an FIR scheme solves uncovered area problems, considerably
improving the temporal prediction. Complexity is comparable to exist-
ing recursive schemes. Computer simulations indicate that high compres-
sion factors (about an order of magnitude) is easily achieved with no
apparent loss of quality. The scheme also has a number of commonali-
ties with the emerging MPEG standard.

1. INTRODUCTION

HE evolution of the current television standards toward

increased quality and realism builds on higher spatial resolu-
tion, wider aspect ratio, better chroma resolution, digital audio
(CD-quality) and possibly a new scanning format. In addition to
the high bandwidth requirements, transmission systems for ad-
vanced television face the challenge that the quality has to be
maintained throughout the system: for this reason component
signals will be preferred over composite and digital representa-
tion over analog.

The bandwidth requirements for advanced television (typically
more than 1 Gbit/s) ask for powerful digital compression
schemes so as to make transmission and storage manageable.
The quality requirements and the high resolution of advanced
television material make very high signal to noise ratios neces-
sary. It is therefore required to develop source coding schemes
for digital video signals which achieve a compression of an
order of magnitude or more at the highest possible quality. Two
specific cases of interest are contribution quality advanced televi-
sion at around 100-140 Mbit/s (where objective quality has to
be nearly perfect to allow post processing like chroma-keying)
and distribution quality for the consumer at rates which are 2-5
times lower and where high subjective quality is required.
Besides production and distribution of advanced television
(ATV), another application of great interest is the coding for
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digital storage media (e.g., VTR, CD-ROM), where it is desir-
able to be able to access any segment of the data, as well as to
browse the data (i.e., fast forward or reverse search).

Currently, there is an on-going debate between proponents of
interlaced and non-interlaced (also called sequential or progres-
sive) scanning formats for ATV. Both formats have their respec-
tive advantages: interlaced scanning saves bandwidth and is well
matched to current display and camera technology, and non-in-
terlaced scanning is better suited for graphics and movie applica-
tions. In this paper, we will thus deal with both scanning
formats.

Our approach to the compression problem of ATV is based on
the concept of multiresolution (MR) representation of signals.
This concept has emerged as a powerful tool both for representa-
tion and for coding purposes. Then, we choose a finite memory
(or finite impulse response, FIR) scheme for robustness and for
fast random access. The resulting FIR multiresolution scheme
successfully addresses the following problems of interest in
coding, representation and storage of ATV:

e signal decomposition for compression purposes;

representation well suited for fast random access or reverse

mode in digital storage devices;

e robustness and error recovery;

e suitable signal representation for joint source /channel cod-
ing;

e compatibility with lower resolution representations.

Note that multiresolution decomposition is also called hierar-
chical or pyramidal decomposition, and associated coding
schemes are sometimes called embedded or layered coding
methods. In the framework of coding, multiresolution decompo-
sitions go back to pyramid coding [1] and subband coding
[2]-[5], and in applied mathematics, they are related to the
theory of wavelets [6], [7]. Note that in this paper, the multires-
olution concept will be employed not only for coding but also for
motion estimation [8] (as an approximate solution to an opti-
mization problem), a technique also known as hierarchical mo-
tion estimation [9], [10].

For robustness purposes, it is advantageous to develop coding
schemes with finite memory. This can either be achieved with an
inherently finite memory approach, or by periodically restarting
a recursive scheme. If a multiresolution decomposition is de-
sired, be it for compatibility purposes or for joint source/chan-
nel coding, it turns out that recursive schemes employing a
prediction loop, like DPCM or motion compensated hybrid DCT
coding [11] have some loss in performance [12]. This is due to
the fact that only a suboptimal prediction based on the coarse
resolution is possible. In the case of coding for storage media,
FIR schemes facilitate easy random access to the data. Addi-
tional features such as fast search or reverse playback are
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provided at almost no extra cost. While error correction is
widely used in magnetic media, uncorrectable errors are still
unavoidable. The finite memory structure of the scheme assures
that errors will not be lasting for more than a few frames.

Among the various possible FIR multiresolution schemes, we
choose to develop a three dimensional pyramidal coding scheme
which uses 2-D spatial interpolation over frames, and motion
based interpolation between frames. Note that the temporal
interpolation is similar to the proposed MPEG standard [13]. We
will justify the reasons for this choice by examining pros and
cons in detail, and showing that the resulting coding scheme
marries simplicity and compression at high quality. The com-
plexity of the overall scheme is comparable to alternative coding
schemes that are considered for high quality ATV applications.

The outline of the paper is as follows. We begin by looking at
multiresolution representations for coding, and examine two
representative techniques in detail: subband and pyramid coding.
We compare these two cases in terms of representation, coding
efficiency, and quantization noise. Section IV describes the
spatiotemporal pyramid, a three-dimensional pyramid structure
that forms the basis of our coding scheme. In the following
section, we focus on the temporal interpolation within the pyra-
mid, describing the multiresolution motion estimation and mo-
tion based interpolation procedures in detail. The coding system
and simulation results are given in section VI, along with a
discussion of relation to the evolving MPEG standard [13].
Finally, we analyze the computational and memory complexity
of the proposed scheme.

II. MULTIRESOLUTION SIGNAL REPRESENTATIONS FOR
CoDING

The idea of multiresolution is similar to that of successive
approximation. A coarse approximation to a signal is refined
step by step, until the signal is obtained at the desired resolution.
Very similarly, an initial solution to an optimization problem can
be refined stepwise, until the full resolution solution is achieved.
To get the coarse approximation, as well as to refine this
approximation to increase the resolution, one needs operators
adapted to the particular resolution change. These can be linear
filters, or more sophisticated model based operators. Typical
examples are decimation of a signal (fine-to-coarse), which is
usually preceded by a lowpass anti-aliasing filter, and upsam-
pling (coarse-to-fine) which is followed by an interpolation filter.
We will see that video processing calls for more sophisticated,
nonlinear operators, such as motion based frame interpolation
used to increase time resolution.

Multiresolution approaches are particularly successful when
some a priori structure or hierarchy can be found in the prob-
lem. A classic approximation technique used in statistical signal
processing and waveform coding is the Karhunen-Loeve trans-
form (KLT) [14]. Given a vector process (typically obtained by
blocking a stream of samples), one computes a linear transform
T such that y, = T - x,,. The rows of the transform matrix are
chosen as the eigenvectors of the autocorrelation matrix R of
x,, which is symmetric (by stationarity assumption), and there-
fore T is unitary. The samples of y, are thus decorrelated.
Now, the rows of T can be ordered so that:

E[y,(i)"] = E[5.(J)7].  i<J. (1)

That is, the first k coefficients of the KLT are a best k
coefficient approximation to the process x,, in the mean squared
error (MSE) sense.
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Fig. 1. Two channel subband coding system.
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Fig. 2. One step in pyramid decomposition and coding. Note that only
source of reconstruction error is quantizer for difference signal.

Transform and subband coding, two successful standard im-
age compression techniques when combined with appropriate
quantization and entropy coding, can be seen as variations on
this idea. In terms of muitiresolution approximation, their suit-
ability stems from the fact that images typically have a power
spectrum that falls off at higher frequencies. Thus, low fre-
quency components of a transform coded picture form a good
approximation to the picture. This multiresolution nature of
transform coding is used for example in progressive transmis-
sion of pictures. Subband coding (see Fig. 1) can be seen as a

- transform with basis vectors extending over more than one

block. Constraints are. imposed on the analysis and synthesis
filterbanks so as to achieve perfect reconstruction [15]. Note that
both transform and subband decompositions form a one-to-one
mapping, as the number of samples is preserved. In contrast,
pyramid decomposition is a redundant representation, since a
low resolution version as well as a full resolution difference are
derived (see Fig. 2). This redundancy, or increase in the number
of sample points, becomes negligible as the dimensionality in-
creases, and allows greater freedom in the filter design.

III. SuBBAND AND PYrRaMID CODING

Transform coding and subband coding are very similar de-
composition methods, and will thus be discussed together. Be-
low, we will compare and contrast respective advantages and
problems of subband schemes versus pyramid schemes. It should
be noted that subband decomposition can be viewed as a special
case of pyramid decomposition using constrained linear opera-
tors in the absence of quantization {16], [7].

A. Characteristics of Subband Schemes

The most obvious advantage of subband schemes is the fact
that they are critically sampled, that is, there is no increase in
the number of samples. The price paid is a constrained filter
design and therefore a relatively poor lowpass version as a
coarse approximation. This is undesirable if the coarse version is
used for viewing in a compatible subchannel or in the case of
progressive transmission. Only linear processing is possible in
subband coding systems, and any nonlinearity has effects which
are hard to predict. In particular, quantization noise can produce
artifacts in the reconstructed signal which are difficult to foresee.

The problems are linked to the fact that the bound on the
maximum error produced in the reconstructed signal because of
quantization in the subbands is fairly weak. This is different
from the MSE (or /, norm of the error), which is conserved
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since the subband decomposition and reconstruction processes
are unitary operators'. However, the maximum error is given by
the /,, norm, which is not conserved by unitary transforms. To
make this point clear, let us consider the case of the size N
DCT. The first row of the IDCT isequal to 1/vVN [1, 1, ..., 1].
If the vector of quantization errors is colinear with this row, the
backtransformed vector of errors is equal to [VNS,0,..., 0]
(where & is the quantization step in the transform domain).
Thus, all the errors accumulated on the first coefficient! Note
that VN is typically equal to 8 (corresponding to blocks of
8 X 8 pels) in image coding applications. Subband schemes
behave similarly.

Three dimensional subband coding has been proposed for
video coding [18], [19], but has not been able to compete with
motion-compensated coding methods in terms of compression
efficiency. It seems difficult to naturally include motion compen-
sation within a subband scheme. Motion is a time domain
concept, while a subband decomposition leads to a (partly)
frequency domain description of the sequence. Thus, motion
compensation can be done outside the subband decomposition
[20] (in which case SBC replaces DCT for encoding the predic-
tion error) or can be seen as preprocessing [21] (where only
block transforms are used over time). Motion compensation
within the bands suffers from accuracy problems [22], and from
the fact that independent errors can accumulate after reconstruc-
tion [23].

B. Pyramid Coding

We have seen that pyramid decomposition is a redundant
representation. This redundancy, or increase in the number of
sample points, becomes negligible as the dimensionality in-
creases. In a one dimensional system, the increase is upper-
bounded by 1+ 1/2+ 1/4 + ... <2, in two dimensions by
1+1/4+41/16 +..<4/3 and in three dimensions, by 1 +
1/8 +1/64... < 8/7. That is, in the three dimensional case
that we will be using, the overhead is less than 15%. At the
price of this slight oversampling, one gains complete freedom in
the design of the coarse-to-fine and fine-to-coarse resolution
change operators, which can be matched to the signal model,
and can be nonlinear [24]. Constraints in the transform or
subband decompositions ofien result in compromises in the filter
quality. If linear filters are chosen to derive the lowpass approxi-
mation in a pyramid, it is possible to take very good lowpass
filters, and derive visually pleasing coarse versions. Therefore,
pyramids can be a better choice when high visual quality must be
maintained across a number of scales [25]. We also observe that
the /,, problem in transform and subband coding case can be
avoided in pyramids by quantization noise feedback. A detailed
analysis follows in the next subsection.

C. Analysis of Quantization Noise

In this section, we analyze the propagation of quantization
noise in pyramid and subband decomposition schemes. We will
consider three representative cases: an iterated two-channel sub-
band splitting, and a pyramid with and without error feedback.
Simulations are based or actual data from the well known image
Lenna.

A three stage subband analysis bank and the corresponding
synthesis bank are depicted in Figs. 3 and 4. We assume each
band is independently quantized by a scalar quantizer (band

1 s
Ac@ﬂly, this is only true for paraunitary filter banks [17], but holds
approximately true for most perfect reconstruction filter banks.

Fig. 3. Subband analysis filterbank where band splitting Ahas peen itfarated
three times on low band, yielding for channels with logarithmic spacing.

Reconstructed
signal

Input signal

Channel

Fig. 5. Three level pyramid coding, with feed-back of quantization of high
layers into prediction of lower ones. D and I stand for decimation and
interpolation operations. Only one source of quantization error remains,
namely, that of the highest resolution difference signal.

quantizer) of equal step size and that quantization noise can be
modeled as white. Furthermore, we assume a similar quantizer
(with a finer step size) is used following each filter, to model the
finite wordlength effects (internal quantizer). For simplicity, we
focus on the 'synthesis bank, although a similar conclusion can
be reached for the analysis bank. Let g; be the noise due to the
quantizer for band i, and f; be the internal quantizer noise due
to the synthesis filter pair. Then E{(z), the z transform of e;
can be expressed as

E(z) = E;_(2*)G(2) + Q(2*)H(z) + F(2). (2)

(Upsampling by 2 means replacing z by z? in the z transform
domain [17]) which leads to a final reconstruction error

Ex(3) - 0u() TL6(=) + & ( 11 6]

H{ed)H(z¥) + F(z)}. ()

We note that the noise spectrum is biased into low frequen-
cies. For an intuitive explanation, consider the signal flow graph
corresponding to the analysis-synthesis system. Band N, the
subsignal that takes the longest path (2 N lowpass filters) covers
only 1/2% of the spectrum at the dc end. Therefore, more finite
wordlength effects are visible at low frequencies. A numerical
simulation was done with the 32-tap Johnston QMF filter pair
(type C) [26], using 10 bits for the internal quantizers, and 6 bits
for the band quantizers. The resulting reconstruction error spec-
trum is depicted in Fig. 6(a). We should note that in practice,
one would choose finer quantizers for the lower bands, partially
alleviating the problem, although the accumulation due to finite
wordlength effects is unavoidable.
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Fig. 6. Reconstruction error power spectrum: (a) SBC with three stages.

(b) Pyramid with three layers without quantization error feedback.

Next; we consider an N stage pyramid without quantization
error feedback. We assume that each stage employs a linear
scalar quantizer, and that the quantization noise can be modeled
as white. For simplicity, we assume that quantizers have equal
step size. Let g; be the noise due to the quantizer at layer i,
defined such that coarsest layer is layer 0, and let the reconstruc-
tion error at layer i be denoted by e;. For a linear filter H(z),
we can easily analyze the response of the system to the quantiza-
tion noise by assuming the only input to the decoder is the set
{4o> 41, - > an}- Then

E(z) = E;_(2*)H(z) + Qi(2)

which, by iteration, gives the final reconstruction error as
N .
Eu(3) = L (A (). )
i=0 n

Quahtanvely, it is easy to see how the quantlzanon noise
propagates across the layers: The initial error e, = g, is white.
Upsampling creates a replica in the spectrum, and 4, typically a
lowpass filter, attenuates the replica. Thus, e, consists of white
q, plus this lowpass noise. At each layer, previous reconstruc-
tion error is squeezed into an (approximately) halfband signal,
and white noise is added. The results of a numerical simulation
using three stages is shown in Fig. 6(b). Here the filters are
those used by Burt and Adelson [1], where @ = 0.6, and the
quantizer step size is 4.

Notice the quantization error is hard to control in both cases.

(4)

89

Layer 0

Layer 1

Layer 2

Fig. 7. Spatiotemporal pyramid structure.

Furthermore, the error spectrum is biased toward low frequen-
cies, particularly undesirable since the human visual system
(HVS) is much more sensitive to lower frequencies [27). For
comparison, in a pyramid with feedback the only source of
quantization error is the final quantizer, sitice prior to errors are
corrected at each layer. We can thus gyarantee a bound 6 on the
maximum error, and also tailor the quantization to the HVS, by
shaping the error spectrum and by using mdsking based on the
original sequence.

IV. THE SPATIOTEMPORAL PYRAMID

In this section, we introduce the spatiotemporal pyramid, a
multiscale representation of the video signal. It consists of a
hierarchy of video signals at increasing temporal and spatial
resolutions (see Fig. 7). Here, we should Stress that the video
signal is not a true 3-D signal, but can be modeled as a 2-D
signal with an associated displacement field. This fundamental
difference between space and time is taken into account in the
pyramid by the choice of motion based processing over time.
This also justifies the lack of filtering prior to temporal decima-
tion [28].

The structure is formed in a bottom-up manner, starting from
the finest resolution, and obtaining a hierarchy of lower resolu-
tion versions. Spatially, images are subsampled after anti-alias-
ing filtering. Temporally, the reduction is achieved by simple
frame skipping.

The frequency division obtained with a pyramid is depicted in
Fig. 8(b). The decomposition provides a logarithmic scaling in
frequency (see Fig. 8(a)), with the bandwidth increasing by a
factor of 2 in each dimension down the pyramid. Thus, the
spectral volume of the signal is increased by a factor of 8 at each
coarse-to-fine resolution change (actual scaling factor may de-
pend on the sampling grid).

The encoding is done in a stepwise fashion, starting at the top
layer and working down the pyramld in a series of successive
refinement steps. At each step, the signal is first spatially
interpolated, increasing the Spatial resolution by 2 in each di-
mension (a factor of 4 in the number of samplés per frame).
Motion based interpolatioh foows, doubling the temporal reso-
lution and completing the reconstruction of the next layer. We
describe the motion-based processing in more detail in the next
section, and now focus on somé key properties of the scheme.

The structure forms the basis of a finite-memory coding
procedure. The frames at a particular iayer are based upon the
frames directly above them. Note that the dependence graph is in
the form of a binary tree, in which the nodes are the individual
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Fig. 8. Logarithmic frequency division in pyramid. (a) One dimensional
pyramid with four layers. (b) Three dimensional pyramid with two layers.
Notice that the spectral volume doubles in the first case, but increases
eight-fold in the latter.

frames, and the leaves are the frames in the final layer. There-
fore any channel error has a finite (and short) duration effect on
the output: only the frames with branches passing through the
error are affected. With typical parameters, this implies no error
can last more than a small fraction of a second. This is in
contrast with predictive coders, where the prediction loop has to
be restarted frequently to avoid error accumulation.

The encoding procedure is also computationally attractive.
Although the scheme provides a 3-D decomposition, the com-
plexity is kept linear by using separable kernels for interpola-
tion. We should note that an optimal algorithm would require
complex motion-adaptive spatiotemporal filters, computationally
expensive and hard to design. By decoupling space and time, we
achieve significant reductions in computation with little penalty,
especially in view of our source model: A sequence is formed by
images displaced smoothly over time.

The coarse-to-fine scale change step is illustrated in Fig. 9 (a).
First the spatial resolution is increased, then the temporal inter-
polation is done based on these new frames at the finer scale. We
should note that reversing the order of these operations would
cause increased energy in the difference signals to be encoded.
In other words, interpolation is statistically more successful over
time than over space, so the temporal difference signal has lower
energy and thus is easier to compress.

As a side note, we should note that this mismatch problem can
be partially alleviated by interpolating more than one frame over

@

|

Fig. 9. Reconstruction of pyramid. (a) One step of coarse-to-fine scale
change (b) The reconstruction pyramid. Note that approximately one half of
frames in structure (shown as shaded) are spatially coded /interpolated.

(b)

time?. However, this scheme is not without drawbacks: It be-
comes harder to maintain the quality between frames, and the
effect of a channel error has now longer duration.

We have seen that motion based interpolation is central to the
multiresolution approach over time. Therefore we will focus on
the motion estimation problem in the next section.

V. MULTIRESOLUTION MOTION ESTIMATION AND
INTERPOLATION

Motion estimation is based on a multiresolution algorithm:
The motion field is initially estimated on a coarse grid, and
successively refined until a sufficiently dense motion field is
obtained. Here, we are concerned with computing the apparent
2-D motion, rather than the actual 3-D velocities. However, the
motion based interpolation still requires a reasonably accurate
estimate, not just a match in the MSE sense.

Hierarchical approaches have been applied to motion estima-
tion problem [9], [29], [30]. The motivation for the algorithm
lies in the observation that typical scenes frequently contain
motion at all scales. Camera movements such as pan and zoom
induce global motion, and objects in the scene move with
velocities roughly proportional to their sizes.

The structural model, i.c., the relation between the image and

? Indeed, the current MPEG proposal [13] for video coding provides two
interpolated frames between conventional predicted frames.
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motion field, also suggests a MR strategy. Consider a scene
consisting of a superposition of sine waves (any frequency
domain technique implicitly assumes this). Now consider uni-
formly displacing this scene in time. Looking at a single sinu-
soid, the largest displacement that can be computed is limited to
less than half its wavelength. With low frequencies, it’s hard to
resolve small differences in displacement, i.e., precision is
reduced. With high spatial frequencies, one gets high resolution
at small displacements, but large displacements are ambiguous at
best, due to aliasing. However, we assume that all these compo-
nents move at the same velocity, because they belong to the
same rigid object. So a coarse-to-fine strategy at estimating
motion seems to be a natural choice: Start at a low resolution
image, compute a coarse motion field, refine the motion estimate
while looking at higher spatial frequencies.

The second argument in favor of a MR technique is the
computational complexity. Brute force algorithms such as full
search require O(d?) searches, where d is the maximum allow-
able displacement, and is typically a fraction of the picture size.
Thus, as the picture definition increases, so does d, quadrati-
cally increasing the search complexity. In contrast, MR schemes
can be designed with roughly logarithmic complexity. So, the
MR choice is also a computationally attractive one.

An inherent difficulty in motion compensation is the problem
of covered /uncovered areas. In a predictive scheme, one cannot
account for the area that has just been uncovered: an object
appears on screen for which no motion vector can be computed.
Interpolation within an FIR structure elegantly solves this prob-
lem: covered areas are visible in the past, and uncovered areas
in the future.

We will present the motion estimation algorithm in two steps.
First, we describe a hierarchical symmetric mode search similar
to that of Bierling [10], but uses the previous and the following
frames to compute the motion field. Next, we consider the
problem of motion based interpolation, and modify the estima-
tion algorithm for the best reconstruction. Essentially, the algo-
rithm consists of three concurrent searches, and a control mech-
anism to select the best model. In effect, this also selects the
interpolation mode, and sends it as side information.

A. Basic Search Procedure

We start with the video signal I(r, n) where r denotes the
spatial coordinate (x, y), and n denotes the time. The goal is to
find a mapping d(r, n) that would help reconstruct I(#, n)
from I(r, n— 1) and I(r, n + 1). We assume a restrictive
motion model, where the image is assumed to be composed of
rigid objects in translational motion on a plane:

I(r,n) =I(r-d(r,n), n-1).

(6)
We also expect homogeneity in time, i.e.,
I(r,n)=I(r+d(r,n), n+1). (7

Furthermore, we are using a block based scheme, expecting
these assumptions are approximately valid for all points within a
block b using the same displacement vector d,,. These assump-
tions are easily justified when the blocks are much smaller than
the objects, and temporal sampling is sufficiently dense (we have
used 8 x 8 blocks, but any size down to 4 X 4 works quite
well).

In what follows, we change the notation slightly, omitting the
spatial coordinate r when the meaning is clear, and replacing
K(r, n) by Iy(n), and d(r, n) by dg(n).

Current
Frame
@

Search
region

Current Frame
(b)
Fig. 10. Motion estimation starts from coarse image, and gradually refines

estimate. Search is performed in symmetric fashion within window around
previous estimate.

To compute dg(n), we require a hierarchy of lower spatial
resolution representations of I (n) denoted I;(n), 0 = k < K.
Ii(n) is computed from I, ,(n) by first spatially low-pass
filtering with half-band filters, reducing the spatial resolution.
This filtered image is then decimated, giving I,(n). Note that
this reduces by 4 the number of pels in a frame at each level (see
Fig. 10).

The search starts at the top level of the spatial hierarchy,
Iy(n). The image I(n) is partitioned into non-overlapping
blocks of size M X M. For every block b in the image I;(n), a

- displacement d,, is searched to minimize the matching criterion

Y| I(r. n) = I(r, n)|

reb

(®)

where fk(r, n) is the motion based estimate of I;(n) computed
as '

I(r, n) = 12(I(r — dy, n = 1) + L (r + dy, n = 1)).
©)

Notice that this estimate implies that if a block has moved the

distance d between the previous and the current frame, it is

expected to move d between the current and the following
frame. This constitutes the symmetric block based search.

B. Stepwise Refinement

Going to step down the hierarchy, we want to-compute d(n),
given that d,_,(n) is already known. We may think of d; as a
sampled version of an underlying continuous displacement field.
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Fig. 11. Stepwise refinement for motion estimation. (a) Blocks and corre-
spondmg grids at two successive scales in the spatial hierarchy. (b) Motion
field is resampled in new finer grid, giving initial estimate for next search.
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Fig. 12.  Block diagram for coding interlaced input signals.

Then {d,:0=<k <K} is a set of multi-resolution samples
taken from the underlying displacement field. Therefore, d,, can
be written as

di(r,n) =2d,_\(r, n) + Ad(r, n)

(10)

where d,_, is the displacement field d 11 interpolated at the
new sampling grid (see Fig. 11), and Ad,, is the correction term
for the displacement due to increased resolution at level k. The
rescaling by 2 arises due to the finer sampling grid for 7,: the
distance between two pels in the upper level has now doubled.
Thus, we have reduced the problem of computing d, into two
subtasks which we now describe.

Computing d,_, on the new sampling grid requires a resam-
pling, or interpolation (this may seem to be a minor point,
however, the interpolation is crucial for best performance with
the constrained search). The discontinuities in the displacement
field are often due to the occluding boundaries of moving
objects. Therefore, the interpolation may use a (tentative) seg-
mentation of the frame based on the displacement field, or even
on the successive frame difference. The segmentation would
allow classifying the blocks as belonging to distinct objects, and
preventing the corona effect around the moving objects. How-

ever, we currently use a simple bilinear interpolation for effi-
ciency, moving the burden to computing Ad,.

After the interpolation, every block b has an initial displace-
ment estimate db, which is equal to 2dk (ry, n) where ry is
the coordinate of the center of block &. Now the search for Ad,
is done inside a window centered around db, ie.,

dy=d,+Ad, Ade{(x,y):-D=x,y= +D}.

(11)

Note that the number of displacements searched for a block is
constant, while the number of searches increases geometrically
down the hierarchy. The procedure is repeated until one obtains
the motion field dg(n), corresponding to I(n).

Suppose the displacement in the original sequence I (n) were
limited to +d,,,, pels in each dimension. Then the displacement
in the (K — k)th level is limited to +d . /2 k since the frames
at this level have been & times spatially decimated by 2. In
general, K can be chosen such that the displacement at the top
level is known to be less than +D. Given the choice, we can
limit the search for each d (r, n) to {(x, y):— D=<x,y=<
+D}. This results in (2D + 1) tests to compute d,, for each
block. The maximum displacement that can be handled is

1)D. (12)

For a typical sequence, D can be 2 or 3, and K can be 3,
allowing a maximum displacement of 30 or 45. This constrained
window symmetric search algorithm yields a smooth motion
field with high temporal and spatial correlation, at the same time
allowing large displacements. Three stages in the estimation
procedure are shown in Fig. 14,

K .
32D = (25+1 -
i=0

C. Motion Based Interpolation

Given frames I(n — 1) and I(n + 1), and the displacement
d(n), we form I(n), the motion based estimate of I(n) by
displaced averaging:

I(r,n) =12(I(r—d, n=1) + I(r +d, n + 1)). (13)

Here, we use d — d,, the displacement of the block contain-
ing r, ie., we operate on a block level. There are other
alternatives, including a pel-level resampling of the displacement
field d(r). However, this would significantly increase the com-
plexity of the decoder, which is kept to a minimum by the
blockwise averaging scheme. Furthermore, simulations indicate
that the time-varying texture distortions caused by pel-level
interpolation are visually unpleasant. It is desirable to preserve
textures, but it is especially critical to avoid time-varying distor-
tions which tend to be perceptually unacceptable.

We shall use motion based interpolation as the temporal
interpolator in a three dimensional pyramid scheme. However,
the method, as presented, has some limitations especially when
temporal sampling rate is reduced. Consider temporally decimat-
ing Iy(n), call it I}'(n) (recall that I,(n) has a reduced spatial
resolution). If the original sequence I(#n) has a frame-to-frame
maximum displacement of d_ ., this property is preserved in
I}(n). However, as we go up the spatial hierarchy, the displace-
ments start to deviate significantly from our original assump-
tions: We can no longer assume that the velocities are constant,
nor that time is homogeneous, although we know that the
maximum displacement is preserved. To make matters even
worse, the area covered (or uncovered) by a moving object
increases proportional to the temporal decimation factor. Thus,
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(b) (©)
Fig. 13. (a)-(c) Original frame and two coarser versions from MIT sequence (also see Fig. 7). (For color supplement see page
158.)

(b)

o
Fig. 14. Motion estimation based on multiresolution search. (a) Successive frame difference, showing considerable amount of
motion is present in sequence. (b)-(d) Three stages in motion estimation algorithm. (For color supplement see page 158.)
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)

()

(d)

Fig. 15. Interpolated frames and corresponding difference signals. (a) Temporally interpolated frame. Some blocking artifacts can
be noticed around wheel. (b) Temporal difference signal to be encoded. (c) Spatially interpolated frame. Note all sharp edges are
blurred. (d) Spatial interpolation error to be encoded. (For color supplement of Fig. 15(a) and (c) see page 159.)

an increasingly larger ratio of the viewing area is covered /un-
covered as we go up in our pyramid structure. In that case,
simple averaging by a symmetric motion vector will likely result
in double images and other unpleasant artifacts.

For a successful interpolation, we have to be able to 1) handle
discontinuities in motion; 2) interpolate uncovered areas. These
are fundamental problems in any motion based scheme; a mani-
festation of the fact that we are dealing with solid objects in 3-D
space, of which we have incomplete observations in the form of
a 2-D projection on the focal plane.

To overcome these difficulties, we allow the interpolator to
selectively use previous, following, or both frames on a block by
block basis. The algorithm is thus modified in the final step,
where Ady is computed to yield the final displacement d - In
addition to the symmetric search so far discussed, two other
searchers are run in parallel: one using the current and previous,
and the other using the following and current frames. Then the
motion interpolated blocks using the three schemes are com-
pared against the original block. Now the displacement and
interpolation mode minimizing the interpolation error is chosen
as the final displacement. (In practice, one may weight the
errors, favoring the displacement obtained by the symmetric
search). Tests performed using different scenes indicate that the
scheme works as intended: Symmetric mode is chosen most of
the time, with the other two modes being used 1) when there is a
pan, in which case the covered/uncovered image boundary is

interpolated from future /past; 2) around moving object bound-
aries (for the same reason); 3) when there is irregular motion,
i.e., the symmetry assumption no longer holds (see Fig. 16).
This interpolation technique has originated from an earlier study
for MPEG [31], and is similar to the current MPEG proposal
[13].

VI. CoMPRESSION FOR ATV

Compression of ATV signals for digital transmission is a
challenging problem. High quality, meaning both high signal-
to-noise ratio and near perfect perceptual quality must be main-
tained at an order of magnitude reduction of bandwidth. Addi-
tional constraints such as cost, real-time implementation and
suitability to broadcast environment narrow down the number of
alternatives even further.

The layers in the pyramid, except for the top one, consist of
interpolation errors, i.e., they are mostly bandpass signals with
logarithmic spacing. The bands can be modeled to be indepen-
dent to a good approximation, although this assumption is often
violated around edges in the image. Nevertheless, multiresolu-
tion decomposition provides a good compromise between effi-
ciency and coding complexity, and facilitates joint source-chan-
nel coding. Properties of the HVS can also be exploited in such
a decomposition. HVS has been modeled to consist of indepen-
dent band-pass channels (at least for still images) [27], [32], and
distributing error into these bands provides high compression
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(a)

with little unpleasant artifacts. Temporal and spatial masking
phenomena [33] can also be used to advantage while maintaining
high perceptual quality.

In this section, we apply the multiresolution concepts so far
developed to coding for ATV. First we describe how the scheme
can be applied for coding interlaced sequences, and then give
some simulation results. We show that both scan types can be
successfully merged within a multiresolution hierarchy, provid-
ing a versatile, compatible representation for the video signal.

A. Compatibility and Scan Formats

All existing broadcast TV standards currently employ inter-
laced scan, and we can expect it to dominate the ATV scene in
the foreseeable future. The inherent bandwidth reduction and
efficient utilization has been the major factor in its acceptance.
Today’s high resolution, low noise cameras rely on interlacing:
switching to non-interlated scan may degrade the performance
by as much as 9 dB [34] (for the same number of lines). On the
other hand, non-interlaced scan has many desirable features,
including less visible artifacts (absence of line flicker), and
convenience for digital processing. Furthermore, some sources
such as movies and computer generated graphics are available
only in non-interlaced format. Both objective and subjective tests
indicate the non-interlaced displays are superior [35]. The next
generation systems may be required to handle both scan types,
which we show can actually be achieved within a multiresolution
scheme at little extra cost. An excellent overview of sampling
and reconstruction of multidimensional signals can be found in
[36].

Approaches to the coding of interlaced television signals have
been studied within CCIR’s CMTT/2 Expert Group [37], [38].
The CMTT algorithm considers a recursive coder with three
prediction modes (intrafield, interfield, or motion-compensated
interframe). The work done in the CMTT/2 Expert Group did
not consider interpolative or non-causal prediction, however, the
idea of getting a predictor—forward or backward—from either
the nearest reference field or the nearest cosited field is critical
in dealing with interlaced video: depending on the amount and
the nature of motion either field may be a good candidate for
prediction.

In a finite memory scheme, we are faced with a choice: either
group two adjacent fields to form a reference frame, or limit the
references to one field. The second solution is much more

(b)

Fig. 16. Temporal interpolation mode. (a) Typical frame. Majority of the blocks are averaged. (b) Motion changes from pan top
200m. Backward or forward mode is used for most blocks, accounting for the fact that motion is highly irregular. (For color
supplement see page 159.)

natural in a temporal pyramid. If the decimation factor is two,
the low temporal resolution signal is all of parity and the signal
to be interpolated is of the other parity. Work along those lines
has also been performed independently by Wang and Anastas-
siou and is reported in [39]. In a temporal pyramid with a
decimation factor of two, the input signal is thus separated into
odd and even fields, as illustrated in Fig. 12. The three-dimen-
sional pyramid decomposition is performed as described on the
even fields. As also suggested in [39], the odd fields are encoded
by motion-compensated interfield interpolation. The three inter-
polation modes previously described can again be used on a
block by block basis.

Overhead can be kept low by using the motion information
already available at the decoder, or a new temporal interpolation
step can be performed, along with transmission of motion vec-
tors and interpolation modes. This is a particularly attractive
solution, for it marries the simplicity of non-interlaced sampling
inside the spatiotemporal pyramid with the scan compatibility by
providing an interlaced signal at the finest resolution. Initial
results in this direction look promising, with compression and
quality comparable to those obtained with non-interlaced se-
quences.

B. Results

The proposed coding system consists of an entropy coder
following the three-dimensional pyramidal decomposition. A
discrete cosine transform (DCT) based coder is used to encode
the top layer and the subsequent bandpass difference images.
The coding algorithm is similar to the JPEG standard [38], [39]
for coding still images. DCT is probably not the best choice for
coding difference signals, as it approximates the KLT for sta-
tionary signals with high autocorrelation [14]. However, it has
been widely used in practice, and VLSI implementations make it
an attractive choice for inexpensive real-time implementations.

There are several parameters for adjusting the quality versus
bandwidth. Each DCT coefficient is quantized by a linear scalar
quantizer. Luminance and chrominance components have sepa-
rate quantizers, with steps adjusted based on MSE and percep-
tual quality. Typically, chrominance components use about 20%
of the total bandwidth for MSE comparable to the luminance
MSE. The bit allocation among the layers is determined by
setting the quantizer step size to maintain good visual quality in
each layer. Selection of optimal quantizers across the multireso-



96

TABLE 1
Layer Spatial Temporal Overall
1 3.06 N/A 0.04
2 2.10 0.55 0.16
3 2.21 0.45 1.33
Total 2.52 0.52 1.53

Bit allocation to various layers for the MIT sequence. All numbers are in
bits per pixel. The overall column indicates the contribution of each layer
toward the final bitrate, as summarized in the last row.

lution hierarchy remains as an interesting problem. We should
note that the ‘“‘optimum’’ must be based on a joint MR criteria:
If the final layer MSE were the criteria, the optimal coder would
not have an MR structure except for a restricted class of input
signals. Therefore, all bits would be allocated for the final layer
for most inputs. Notice that forcing higher layers to zero in a
pyramid (effectively allocating no bits) makes the input signal
available at the final layer (see Fig. 5).

Spatial decimation and interpolation are performed by very
simple kernels similar to those of Burt and Adelson [1]. The
interpolation filter involve two or three pixel averaging (recall
that every other sample is zero in the upsampled signal) and is
given by [0.5 — a 0.5 2a 0.5 0.5 — @] in one-dimensional
form. The parameter 0 < a < 0.5 determines the smoothness of
the interpolation kernel, and was chosen as 0.4 for the simula-
tions. This forms a relatively smooth lowpass filter chosen so
that the interpolation does not create high frequency error sig-
nals that are hard to encode with DCT.

There is also some overhead information associated with each
block that has to be coded, most notably the motion vectors.
They are differentially coded, with the DPCM loop initialized at
the first vector at the upper left of each frame and the predictor
is given by the motion vector of the previous block. The
differential vectors are coded by a variable length code, typically
requiring (on the average) 2 to 5 bits per vector. The horizontal
and vertical displacements are coded with a 2-D variable length
coder where the less likely events are coded with a prefix and
PCM code. The interpolation mode is also encoded, which is
one of backward, forward, or averaged. A runlength coder
gives satisfactory results, resulting in under a bit per block
overhead.

Simulations were performed for several sources. One of the
sources is a non-interlaced test sequence produced at MIT that
contains a rotating wheel, a subpicture from a movie, and a high
detail background with artificially generated zoom and pan. A
luminance-chrominance (YCrCb) version is used, with 4:2:2
chrominance subsampling. The picture size is 512 by 512, and
60 frames have been used in the simulation. Blocks of size
8 X 8 were used throughout, with displacement limited to +3 at
each stage. The results are summarized in Table I. The second
and third columns indicate the average bits per pixel (bpp) used
to encode spatial and temporal interpolation errors. Recall that
each frame at the top (coarsest) layer and every other frame in
the subsequent layers are spatially interpolated. Thus, the overall
column is computed by averaging the two rates. The last row
takes into account the overhead of coarser layers to compute the
total rate in terms of bits per pixel in the finest layer.

Subjective quality of each layer was judged to be very good to
excellent. No artifacts were visible at normal speed, while some
DCT associated artifacts could be seen upon close examination
of still frames. The average signal-to-noise (SNR) was 40.2 dB
for the luminance component.

The Renata (Fig. 17) sequence from RAI and Table Tennis
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(b)

Fig. 17. Renata sequence. (a) Original frame. (b) The coded frame at 1.13
bits per pixel. (For color supplement see page 160.)
TABLE II
Layer Spatial Temporal Overall
1 1.86 N/A 0.01
2 1.64 0.31 0.06
3 1.86 0.75 1.06
Total 2.07 0.76 1.13

Bit allocation to various layers for the interlaced Renata sequence. All
numbers are in bits per pixel. The overall column indicates the contribution
of each layer toward the final bitrate, as summarized in the last row. Note
that three times as many pixels are temporally interpolated at the last layer.

from ISO were used for the interlaced coding simulations. A
progressive subsequence was obtained by dropping odd fields,
and the described algorithm was applied to code this sequence.
Then a new set of motion vectors were computed to predict the
odd fields from the already encoded even fields and were coded
together with the prediction error. The reconstruction procedure
consists of the motion-based temporal interpolation we have
described. The results of a simulation using the Renata sequence
are presented in Table II. The picture is 1440 by 1152 pixels, in
YCrCb format with 4:2:2 chrominance subsampling. Sixteen
frames have been used for the simulation. Note that unlike the
non-interlaced scan case, 3/4 of the frames (or rather fields)
have been temporally interpolated in the finest layer. This results
in a lower overall bitrate than the previous case, with the overall
column in the table reflects this weighting. The average SNR
was 38.9 dB. The original picture contains a high amount of
camera noise, and is therefore difficult to compress while retain-
ing high fidelity. There were no visible artifacts in an informal
subjective evaluation.

C. Relation to Emerging Video Coding Standards

The technique proposed in this paper has a number of com-
monalities with the emerging MPEG standard —both are based
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on motion compensated interpolation—and a usable subset of the
techniques presented in this paper could be implemented using a
MPEG like syntax. An immediate benefit would be a cost
effective implementation of the algorithm with off-the-shelf-
hardware.

In addition to this basic commonality, the techniques pre-
sented in this paper generalize the MPEG approach by introduc-
ing spatial hierarchies. Spatial hierarchies are particularly useful
when compatibility issues require that a coded bitstream corre-
sponding to a low resolution subsignal be easily obtainable from
the higher resolution compressed video signal. They also pro-
vide a format suitable for recording on digital media, facilitating
fast search and reserve playback.

Finally, this paper proposes a solution to apply the motion
compensated interpolation techniques (temporal multi-resolution)
to interlaced video signal. The solution fits strictly within the
multi resolution, FIR approach and provides an efficient tech-
nique to deal with most signals. It is important however to
continue investigating the interlaced video problem; and solu-
tions where the two parities—odd and even field—play the same
role and where the interpolation can take advantage of the
nearest spatial and temporal samples available need to be investi-
gated further.

VII. COMPLEXITY

In this section, we give a detailed analysis of the computa-
tional and memory complexity of the scheme we have presented.
In particular, we compare it to conventional techniques such as
full search motion estimation and hybrid DCT coding. Also of
concern is the decoder simplicity. Highly asymmetric processing
schemes are desirable for ATV applications. Encoders are rela-
tively few and can have fairly complex circuitry, even non
real-time algorithms can sometimes be acceptable, particularly
for recording on digital media. However, decoders have to be
simple, inexpensive, and must operate in real time.

Another related issue is compatibility. A low resolution de-
coder should not have to decode the whole bitstream at full
speed to extract the low resolution information. This implies that
a hierarchical coding scheme has to be employed.

A. Computational Complexity

The major computational burden is in the task of motion
estimation. Before we give a complete analysis, let us first look
at the major differences from a conventional predictive coding
scheme. First, every other frame is interpolated temporally, so
motion estimation is used half as often. Second, there are three
stages that are coded in the analogous fashion, which brings the
total cost to 1 + 1/8 + 1/64 = 1.14 times the cost in the final
layer.

We use a three stage search, and at each stage do a con-
strained search in a 7 X 7 window, allowing a (differential)
displacement of +3. Thus, each stage involves 49 comparison
operations. The total operation count per block is 49 + 49/4 +
49/16 = 64.31 operations per block.

The factors are due to the fact that a block is split into 4
blocks at each coarse-to-fine step. Thus, there are four times less
blocks on the second stage compared to the third (and last) stage.
There is also an interpolation step at each step, but this is
extremely simple, involving 2 or 4 additions per block, and can
be safely neglected.

Each operation basically involves a three-step summation with
appropriate shifts, as given in (9) and (8). Using 8 x 8 blocks,
each operation thus accounts for 192 additions (assuming shifts

by 2 are free). This compares with 128 additions in a conven-
tional scheme using two frames (i.e. using the next frame is only
50% more expensive).

The maximum displacement that can be handled is 3 + 3+ 2
+ 3 -4 =21. In comparison, a full search covering the same
range would require (2 - 21 + 1)> = 1849 operations per block,
prohibitively expensive with the current technology.

At the last step for each layer, three independent searches are
performed: two conventional searches involving two frames, and
one symmetric search. Thus, the number of operations is actu-
ally 49 + 49/4 + 49/16 three-frame operations per block plus
2 - 49 two-frame operations per block.

As a final note, we should point out that the: same strategy is
used in coding the two coarser layers. Recalhng that only half of
the frames are motion-compensated; we conclude that the com-
putational ‘complexity of the motion estimation task is on par
with the hybrid predictive type algorithms, even when hierarchi-
cal ME is used for the latter.

Once the motion vectors are computed, decoding is very
simple. Interpolation mode is encoded as a side information, and
all the decoder has to do is either use one displaced block from
the previous or the following frame (backward or forward
mode), or do a symmetrically displaced averaging (averaged
mode).

B. Memory Requirement

Meémory requirement of the algorithm is a critical issue from
the hardware realization point of view. In what follows, we usé
the frame store as the basic unit, meaning memory required to
hold one frame in the final layer. It is relatively easy to see that
we differ from a predictive scheme in two ways (see Fig. 9):

1) Three frames are used at a time,/ compared to two.
2) A complete hierarchy has to be decoded, which, as we
have seen, involves 15% overhead.

In the best case, no temporal interpolation is performed, so
only 1.15 frames are required for the decoding. For the worst
case tmemory usage, consider frame 1 at layer 2 (last layer) in
Fig. 9. In order to decode it, following frames must also de
decoded: frames 0 and 1 in layer 0; frames 0, 1 and 2 in layer i;
and frames 0, 1 and 2 in layer 2. The total number of frames
stores required is 3 + 3/4 + 2/16 = 3.875 frame stores.

In a recursive scheme, such as the hybrid DCT, only 2 frame
stores are required. However, we should emphasize that the
pyramid structure allows random access to -any frame after

‘decoding at most 3.875 units of input. In sharp contrast, a

predictive scheme would have to decode all frames since the last
restart, which might require as much as 30 frames, even if it is
restarted every half second.

To conclude, overall complexity is only slightly higher than
the .conventional predictive schemes. In return, much faster
random access is achieved, and reverse decoding is possible.
Note that reverse display requires a prohibitive number of frame
stores in the recursive case. The scheme is asymmetric, with a
much simpler decoder, which is highly desirable in a broadcast
environment. Furthermore, many of the encoding tasks can be
run in parallel, making it suitable for real-time implementations.

VIII. CONCLUSION AND DIRECTIONS

We have introduced a multiresolution approach to signal
representation and coding for advanced television. A three-di-
mensional pyramid structure has been described where motion
information is used for temporal processing, in accordance with



98 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 1, NO. 1, MARCH 1991

our video signal model. Very high subjective quality and SNR of
over 40 dB has been achieved in coding of high resolution
interlaced and non-interlaced sequences. The scheme provides
many advantages in a broadcast environment or for digital
storage applications:

o It is an FIR structure, and temporal processing with a short
kernel ensures that no errors accumulate over time. Ability
to use both the past and the future solves covered/un-
covered area problems.

e Fast random access and reverse playback modes are possi-
ble.

» Different scan formats can be accommodated.

e Layered and prioritized channels ensure compatibility and
graceful degradation.

In the near future at least, we are likely to have several de
facto video standards. Multirate processing will be a key tech-
nique for the next generation video codecs. We have seen that
the proposed scheme has a number of commonalities with the
emerging MPEG standard, and can be seen as a possible evolu-
tion path. Multiresolution schemes, both conceptually and as
algorithms, can be elegant solutions to a number of problems in
coding and representation for advanced television.
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